1 /* 2 * linux/fs/ext4/ialloc.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * BSD ufs-inspired inode and directory allocation by 10 * Stephen Tweedie (sct@redhat.com), 1993 11 * Big-endian to little-endian byte-swapping/bitmaps by 12 * David S. Miller (davem@caip.rutgers.edu), 1995 13 */ 14 15 #include <linux/time.h> 16 #include <linux/fs.h> 17 #include <linux/jbd2.h> 18 #include <linux/stat.h> 19 #include <linux/string.h> 20 #include <linux/quotaops.h> 21 #include <linux/buffer_head.h> 22 #include <linux/random.h> 23 #include <linux/bitops.h> 24 #include <linux/blkdev.h> 25 #include <asm/byteorder.h> 26 27 #include "ext4.h" 28 #include "ext4_jbd2.h" 29 #include "xattr.h" 30 #include "acl.h" 31 32 #include <trace/events/ext4.h> 33 34 /* 35 * ialloc.c contains the inodes allocation and deallocation routines 36 */ 37 38 /* 39 * The free inodes are managed by bitmaps. A file system contains several 40 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap 41 * block for inodes, N blocks for the inode table and data blocks. 42 * 43 * The file system contains group descriptors which are located after the 44 * super block. Each descriptor contains the number of the bitmap block and 45 * the free blocks count in the block. 46 */ 47 48 /* 49 * To avoid calling the atomic setbit hundreds or thousands of times, we only 50 * need to use it within a single byte (to ensure we get endianness right). 51 * We can use memset for the rest of the bitmap as there are no other users. 52 */ 53 void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap) 54 { 55 int i; 56 57 if (start_bit >= end_bit) 58 return; 59 60 ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit); 61 for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++) 62 ext4_set_bit(i, bitmap); 63 if (i < end_bit) 64 memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3); 65 } 66 67 /* Initializes an uninitialized inode bitmap */ 68 static unsigned ext4_init_inode_bitmap(struct super_block *sb, 69 struct buffer_head *bh, 70 ext4_group_t block_group, 71 struct ext4_group_desc *gdp) 72 { 73 struct ext4_group_info *grp; 74 struct ext4_sb_info *sbi = EXT4_SB(sb); 75 J_ASSERT_BH(bh, buffer_locked(bh)); 76 77 /* If checksum is bad mark all blocks and inodes use to prevent 78 * allocation, essentially implementing a per-group read-only flag. */ 79 if (!ext4_group_desc_csum_verify(sb, block_group, gdp)) { 80 ext4_error(sb, "Checksum bad for group %u", block_group); 81 grp = ext4_get_group_info(sb, block_group); 82 if (!EXT4_MB_GRP_BBITMAP_CORRUPT(grp)) 83 percpu_counter_sub(&sbi->s_freeclusters_counter, 84 grp->bb_free); 85 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, &grp->bb_state); 86 if (!EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) { 87 int count; 88 count = ext4_free_inodes_count(sb, gdp); 89 percpu_counter_sub(&sbi->s_freeinodes_counter, 90 count); 91 } 92 set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state); 93 return 0; 94 } 95 96 memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8); 97 ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb), sb->s_blocksize * 8, 98 bh->b_data); 99 ext4_inode_bitmap_csum_set(sb, block_group, gdp, bh, 100 EXT4_INODES_PER_GROUP(sb) / 8); 101 ext4_group_desc_csum_set(sb, block_group, gdp); 102 103 return EXT4_INODES_PER_GROUP(sb); 104 } 105 106 void ext4_end_bitmap_read(struct buffer_head *bh, int uptodate) 107 { 108 if (uptodate) { 109 set_buffer_uptodate(bh); 110 set_bitmap_uptodate(bh); 111 } 112 unlock_buffer(bh); 113 put_bh(bh); 114 } 115 116 /* 117 * Read the inode allocation bitmap for a given block_group, reading 118 * into the specified slot in the superblock's bitmap cache. 119 * 120 * Return buffer_head of bitmap on success or NULL. 121 */ 122 static struct buffer_head * 123 ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group) 124 { 125 struct ext4_group_desc *desc; 126 struct buffer_head *bh = NULL; 127 ext4_fsblk_t bitmap_blk; 128 struct ext4_group_info *grp; 129 struct ext4_sb_info *sbi = EXT4_SB(sb); 130 131 desc = ext4_get_group_desc(sb, block_group, NULL); 132 if (!desc) 133 return NULL; 134 135 bitmap_blk = ext4_inode_bitmap(sb, desc); 136 bh = sb_getblk(sb, bitmap_blk); 137 if (unlikely(!bh)) { 138 ext4_error(sb, "Cannot read inode bitmap - " 139 "block_group = %u, inode_bitmap = %llu", 140 block_group, bitmap_blk); 141 return NULL; 142 } 143 if (bitmap_uptodate(bh)) 144 goto verify; 145 146 lock_buffer(bh); 147 if (bitmap_uptodate(bh)) { 148 unlock_buffer(bh); 149 goto verify; 150 } 151 152 ext4_lock_group(sb, block_group); 153 if (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) { 154 ext4_init_inode_bitmap(sb, bh, block_group, desc); 155 set_bitmap_uptodate(bh); 156 set_buffer_uptodate(bh); 157 set_buffer_verified(bh); 158 ext4_unlock_group(sb, block_group); 159 unlock_buffer(bh); 160 return bh; 161 } 162 ext4_unlock_group(sb, block_group); 163 164 if (buffer_uptodate(bh)) { 165 /* 166 * if not uninit if bh is uptodate, 167 * bitmap is also uptodate 168 */ 169 set_bitmap_uptodate(bh); 170 unlock_buffer(bh); 171 goto verify; 172 } 173 /* 174 * submit the buffer_head for reading 175 */ 176 trace_ext4_load_inode_bitmap(sb, block_group); 177 bh->b_end_io = ext4_end_bitmap_read; 178 get_bh(bh); 179 submit_bh(READ | REQ_META | REQ_PRIO, bh); 180 wait_on_buffer(bh); 181 if (!buffer_uptodate(bh)) { 182 put_bh(bh); 183 ext4_error(sb, "Cannot read inode bitmap - " 184 "block_group = %u, inode_bitmap = %llu", 185 block_group, bitmap_blk); 186 return NULL; 187 } 188 189 verify: 190 ext4_lock_group(sb, block_group); 191 if (!buffer_verified(bh) && 192 !ext4_inode_bitmap_csum_verify(sb, block_group, desc, bh, 193 EXT4_INODES_PER_GROUP(sb) / 8)) { 194 ext4_unlock_group(sb, block_group); 195 put_bh(bh); 196 ext4_error(sb, "Corrupt inode bitmap - block_group = %u, " 197 "inode_bitmap = %llu", block_group, bitmap_blk); 198 grp = ext4_get_group_info(sb, block_group); 199 if (!EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) { 200 int count; 201 count = ext4_free_inodes_count(sb, desc); 202 percpu_counter_sub(&sbi->s_freeinodes_counter, 203 count); 204 } 205 set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state); 206 return NULL; 207 } 208 ext4_unlock_group(sb, block_group); 209 set_buffer_verified(bh); 210 return bh; 211 } 212 213 /* 214 * NOTE! When we get the inode, we're the only people 215 * that have access to it, and as such there are no 216 * race conditions we have to worry about. The inode 217 * is not on the hash-lists, and it cannot be reached 218 * through the filesystem because the directory entry 219 * has been deleted earlier. 220 * 221 * HOWEVER: we must make sure that we get no aliases, 222 * which means that we have to call "clear_inode()" 223 * _before_ we mark the inode not in use in the inode 224 * bitmaps. Otherwise a newly created file might use 225 * the same inode number (not actually the same pointer 226 * though), and then we'd have two inodes sharing the 227 * same inode number and space on the harddisk. 228 */ 229 void ext4_free_inode(handle_t *handle, struct inode *inode) 230 { 231 struct super_block *sb = inode->i_sb; 232 int is_directory; 233 unsigned long ino; 234 struct buffer_head *bitmap_bh = NULL; 235 struct buffer_head *bh2; 236 ext4_group_t block_group; 237 unsigned long bit; 238 struct ext4_group_desc *gdp; 239 struct ext4_super_block *es; 240 struct ext4_sb_info *sbi; 241 int fatal = 0, err, count, cleared; 242 struct ext4_group_info *grp; 243 244 if (!sb) { 245 printk(KERN_ERR "EXT4-fs: %s:%d: inode on " 246 "nonexistent device\n", __func__, __LINE__); 247 return; 248 } 249 if (atomic_read(&inode->i_count) > 1) { 250 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: count=%d", 251 __func__, __LINE__, inode->i_ino, 252 atomic_read(&inode->i_count)); 253 return; 254 } 255 if (inode->i_nlink) { 256 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: nlink=%d\n", 257 __func__, __LINE__, inode->i_ino, inode->i_nlink); 258 return; 259 } 260 sbi = EXT4_SB(sb); 261 262 ino = inode->i_ino; 263 ext4_debug("freeing inode %lu\n", ino); 264 trace_ext4_free_inode(inode); 265 266 /* 267 * Note: we must free any quota before locking the superblock, 268 * as writing the quota to disk may need the lock as well. 269 */ 270 dquot_initialize(inode); 271 ext4_xattr_delete_inode(handle, inode); 272 dquot_free_inode(inode); 273 dquot_drop(inode); 274 275 is_directory = S_ISDIR(inode->i_mode); 276 277 /* Do this BEFORE marking the inode not in use or returning an error */ 278 ext4_clear_inode(inode); 279 280 es = EXT4_SB(sb)->s_es; 281 if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) { 282 ext4_error(sb, "reserved or nonexistent inode %lu", ino); 283 goto error_return; 284 } 285 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 286 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb); 287 bitmap_bh = ext4_read_inode_bitmap(sb, block_group); 288 /* Don't bother if the inode bitmap is corrupt. */ 289 grp = ext4_get_group_info(sb, block_group); 290 if (unlikely(EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) || !bitmap_bh) 291 goto error_return; 292 293 BUFFER_TRACE(bitmap_bh, "get_write_access"); 294 fatal = ext4_journal_get_write_access(handle, bitmap_bh); 295 if (fatal) 296 goto error_return; 297 298 fatal = -ESRCH; 299 gdp = ext4_get_group_desc(sb, block_group, &bh2); 300 if (gdp) { 301 BUFFER_TRACE(bh2, "get_write_access"); 302 fatal = ext4_journal_get_write_access(handle, bh2); 303 } 304 ext4_lock_group(sb, block_group); 305 cleared = ext4_test_and_clear_bit(bit, bitmap_bh->b_data); 306 if (fatal || !cleared) { 307 ext4_unlock_group(sb, block_group); 308 goto out; 309 } 310 311 count = ext4_free_inodes_count(sb, gdp) + 1; 312 ext4_free_inodes_set(sb, gdp, count); 313 if (is_directory) { 314 count = ext4_used_dirs_count(sb, gdp) - 1; 315 ext4_used_dirs_set(sb, gdp, count); 316 percpu_counter_dec(&sbi->s_dirs_counter); 317 } 318 ext4_inode_bitmap_csum_set(sb, block_group, gdp, bitmap_bh, 319 EXT4_INODES_PER_GROUP(sb) / 8); 320 ext4_group_desc_csum_set(sb, block_group, gdp); 321 ext4_unlock_group(sb, block_group); 322 323 percpu_counter_inc(&sbi->s_freeinodes_counter); 324 if (sbi->s_log_groups_per_flex) { 325 ext4_group_t f = ext4_flex_group(sbi, block_group); 326 327 atomic_inc(&sbi->s_flex_groups[f].free_inodes); 328 if (is_directory) 329 atomic_dec(&sbi->s_flex_groups[f].used_dirs); 330 } 331 BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata"); 332 fatal = ext4_handle_dirty_metadata(handle, NULL, bh2); 333 out: 334 if (cleared) { 335 BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata"); 336 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 337 if (!fatal) 338 fatal = err; 339 } else { 340 ext4_error(sb, "bit already cleared for inode %lu", ino); 341 if (gdp && !EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) { 342 int count; 343 count = ext4_free_inodes_count(sb, gdp); 344 percpu_counter_sub(&sbi->s_freeinodes_counter, 345 count); 346 } 347 set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state); 348 } 349 350 error_return: 351 brelse(bitmap_bh); 352 ext4_std_error(sb, fatal); 353 } 354 355 struct orlov_stats { 356 __u64 free_clusters; 357 __u32 free_inodes; 358 __u32 used_dirs; 359 }; 360 361 /* 362 * Helper function for Orlov's allocator; returns critical information 363 * for a particular block group or flex_bg. If flex_size is 1, then g 364 * is a block group number; otherwise it is flex_bg number. 365 */ 366 static void get_orlov_stats(struct super_block *sb, ext4_group_t g, 367 int flex_size, struct orlov_stats *stats) 368 { 369 struct ext4_group_desc *desc; 370 struct flex_groups *flex_group = EXT4_SB(sb)->s_flex_groups; 371 372 if (flex_size > 1) { 373 stats->free_inodes = atomic_read(&flex_group[g].free_inodes); 374 stats->free_clusters = atomic64_read(&flex_group[g].free_clusters); 375 stats->used_dirs = atomic_read(&flex_group[g].used_dirs); 376 return; 377 } 378 379 desc = ext4_get_group_desc(sb, g, NULL); 380 if (desc) { 381 stats->free_inodes = ext4_free_inodes_count(sb, desc); 382 stats->free_clusters = ext4_free_group_clusters(sb, desc); 383 stats->used_dirs = ext4_used_dirs_count(sb, desc); 384 } else { 385 stats->free_inodes = 0; 386 stats->free_clusters = 0; 387 stats->used_dirs = 0; 388 } 389 } 390 391 /* 392 * Orlov's allocator for directories. 393 * 394 * We always try to spread first-level directories. 395 * 396 * If there are blockgroups with both free inodes and free blocks counts 397 * not worse than average we return one with smallest directory count. 398 * Otherwise we simply return a random group. 399 * 400 * For the rest rules look so: 401 * 402 * It's OK to put directory into a group unless 403 * it has too many directories already (max_dirs) or 404 * it has too few free inodes left (min_inodes) or 405 * it has too few free blocks left (min_blocks) or 406 * Parent's group is preferred, if it doesn't satisfy these 407 * conditions we search cyclically through the rest. If none 408 * of the groups look good we just look for a group with more 409 * free inodes than average (starting at parent's group). 410 */ 411 412 static int find_group_orlov(struct super_block *sb, struct inode *parent, 413 ext4_group_t *group, umode_t mode, 414 const struct qstr *qstr) 415 { 416 ext4_group_t parent_group = EXT4_I(parent)->i_block_group; 417 struct ext4_sb_info *sbi = EXT4_SB(sb); 418 ext4_group_t real_ngroups = ext4_get_groups_count(sb); 419 int inodes_per_group = EXT4_INODES_PER_GROUP(sb); 420 unsigned int freei, avefreei, grp_free; 421 ext4_fsblk_t freeb, avefreec; 422 unsigned int ndirs; 423 int max_dirs, min_inodes; 424 ext4_grpblk_t min_clusters; 425 ext4_group_t i, grp, g, ngroups; 426 struct ext4_group_desc *desc; 427 struct orlov_stats stats; 428 int flex_size = ext4_flex_bg_size(sbi); 429 struct dx_hash_info hinfo; 430 431 ngroups = real_ngroups; 432 if (flex_size > 1) { 433 ngroups = (real_ngroups + flex_size - 1) >> 434 sbi->s_log_groups_per_flex; 435 parent_group >>= sbi->s_log_groups_per_flex; 436 } 437 438 freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter); 439 avefreei = freei / ngroups; 440 freeb = EXT4_C2B(sbi, 441 percpu_counter_read_positive(&sbi->s_freeclusters_counter)); 442 avefreec = freeb; 443 do_div(avefreec, ngroups); 444 ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter); 445 446 if (S_ISDIR(mode) && 447 ((parent == sb->s_root->d_inode) || 448 (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) { 449 int best_ndir = inodes_per_group; 450 int ret = -1; 451 452 if (qstr) { 453 hinfo.hash_version = DX_HASH_HALF_MD4; 454 hinfo.seed = sbi->s_hash_seed; 455 ext4fs_dirhash(qstr->name, qstr->len, &hinfo); 456 grp = hinfo.hash; 457 } else 458 grp = prandom_u32(); 459 parent_group = (unsigned)grp % ngroups; 460 for (i = 0; i < ngroups; i++) { 461 g = (parent_group + i) % ngroups; 462 get_orlov_stats(sb, g, flex_size, &stats); 463 if (!stats.free_inodes) 464 continue; 465 if (stats.used_dirs >= best_ndir) 466 continue; 467 if (stats.free_inodes < avefreei) 468 continue; 469 if (stats.free_clusters < avefreec) 470 continue; 471 grp = g; 472 ret = 0; 473 best_ndir = stats.used_dirs; 474 } 475 if (ret) 476 goto fallback; 477 found_flex_bg: 478 if (flex_size == 1) { 479 *group = grp; 480 return 0; 481 } 482 483 /* 484 * We pack inodes at the beginning of the flexgroup's 485 * inode tables. Block allocation decisions will do 486 * something similar, although regular files will 487 * start at 2nd block group of the flexgroup. See 488 * ext4_ext_find_goal() and ext4_find_near(). 489 */ 490 grp *= flex_size; 491 for (i = 0; i < flex_size; i++) { 492 if (grp+i >= real_ngroups) 493 break; 494 desc = ext4_get_group_desc(sb, grp+i, NULL); 495 if (desc && ext4_free_inodes_count(sb, desc)) { 496 *group = grp+i; 497 return 0; 498 } 499 } 500 goto fallback; 501 } 502 503 max_dirs = ndirs / ngroups + inodes_per_group / 16; 504 min_inodes = avefreei - inodes_per_group*flex_size / 4; 505 if (min_inodes < 1) 506 min_inodes = 1; 507 min_clusters = avefreec - EXT4_CLUSTERS_PER_GROUP(sb)*flex_size / 4; 508 509 /* 510 * Start looking in the flex group where we last allocated an 511 * inode for this parent directory 512 */ 513 if (EXT4_I(parent)->i_last_alloc_group != ~0) { 514 parent_group = EXT4_I(parent)->i_last_alloc_group; 515 if (flex_size > 1) 516 parent_group >>= sbi->s_log_groups_per_flex; 517 } 518 519 for (i = 0; i < ngroups; i++) { 520 grp = (parent_group + i) % ngroups; 521 get_orlov_stats(sb, grp, flex_size, &stats); 522 if (stats.used_dirs >= max_dirs) 523 continue; 524 if (stats.free_inodes < min_inodes) 525 continue; 526 if (stats.free_clusters < min_clusters) 527 continue; 528 goto found_flex_bg; 529 } 530 531 fallback: 532 ngroups = real_ngroups; 533 avefreei = freei / ngroups; 534 fallback_retry: 535 parent_group = EXT4_I(parent)->i_block_group; 536 for (i = 0; i < ngroups; i++) { 537 grp = (parent_group + i) % ngroups; 538 desc = ext4_get_group_desc(sb, grp, NULL); 539 if (desc) { 540 grp_free = ext4_free_inodes_count(sb, desc); 541 if (grp_free && grp_free >= avefreei) { 542 *group = grp; 543 return 0; 544 } 545 } 546 } 547 548 if (avefreei) { 549 /* 550 * The free-inodes counter is approximate, and for really small 551 * filesystems the above test can fail to find any blockgroups 552 */ 553 avefreei = 0; 554 goto fallback_retry; 555 } 556 557 return -1; 558 } 559 560 static int find_group_other(struct super_block *sb, struct inode *parent, 561 ext4_group_t *group, umode_t mode) 562 { 563 ext4_group_t parent_group = EXT4_I(parent)->i_block_group; 564 ext4_group_t i, last, ngroups = ext4_get_groups_count(sb); 565 struct ext4_group_desc *desc; 566 int flex_size = ext4_flex_bg_size(EXT4_SB(sb)); 567 568 /* 569 * Try to place the inode is the same flex group as its 570 * parent. If we can't find space, use the Orlov algorithm to 571 * find another flex group, and store that information in the 572 * parent directory's inode information so that use that flex 573 * group for future allocations. 574 */ 575 if (flex_size > 1) { 576 int retry = 0; 577 578 try_again: 579 parent_group &= ~(flex_size-1); 580 last = parent_group + flex_size; 581 if (last > ngroups) 582 last = ngroups; 583 for (i = parent_group; i < last; i++) { 584 desc = ext4_get_group_desc(sb, i, NULL); 585 if (desc && ext4_free_inodes_count(sb, desc)) { 586 *group = i; 587 return 0; 588 } 589 } 590 if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) { 591 retry = 1; 592 parent_group = EXT4_I(parent)->i_last_alloc_group; 593 goto try_again; 594 } 595 /* 596 * If this didn't work, use the Orlov search algorithm 597 * to find a new flex group; we pass in the mode to 598 * avoid the topdir algorithms. 599 */ 600 *group = parent_group + flex_size; 601 if (*group > ngroups) 602 *group = 0; 603 return find_group_orlov(sb, parent, group, mode, NULL); 604 } 605 606 /* 607 * Try to place the inode in its parent directory 608 */ 609 *group = parent_group; 610 desc = ext4_get_group_desc(sb, *group, NULL); 611 if (desc && ext4_free_inodes_count(sb, desc) && 612 ext4_free_group_clusters(sb, desc)) 613 return 0; 614 615 /* 616 * We're going to place this inode in a different blockgroup from its 617 * parent. We want to cause files in a common directory to all land in 618 * the same blockgroup. But we want files which are in a different 619 * directory which shares a blockgroup with our parent to land in a 620 * different blockgroup. 621 * 622 * So add our directory's i_ino into the starting point for the hash. 623 */ 624 *group = (*group + parent->i_ino) % ngroups; 625 626 /* 627 * Use a quadratic hash to find a group with a free inode and some free 628 * blocks. 629 */ 630 for (i = 1; i < ngroups; i <<= 1) { 631 *group += i; 632 if (*group >= ngroups) 633 *group -= ngroups; 634 desc = ext4_get_group_desc(sb, *group, NULL); 635 if (desc && ext4_free_inodes_count(sb, desc) && 636 ext4_free_group_clusters(sb, desc)) 637 return 0; 638 } 639 640 /* 641 * That failed: try linear search for a free inode, even if that group 642 * has no free blocks. 643 */ 644 *group = parent_group; 645 for (i = 0; i < ngroups; i++) { 646 if (++*group >= ngroups) 647 *group = 0; 648 desc = ext4_get_group_desc(sb, *group, NULL); 649 if (desc && ext4_free_inodes_count(sb, desc)) 650 return 0; 651 } 652 653 return -1; 654 } 655 656 /* 657 * In no journal mode, if an inode has recently been deleted, we want 658 * to avoid reusing it until we're reasonably sure the inode table 659 * block has been written back to disk. (Yes, these values are 660 * somewhat arbitrary...) 661 */ 662 #define RECENTCY_MIN 5 663 #define RECENTCY_DIRTY 30 664 665 static int recently_deleted(struct super_block *sb, ext4_group_t group, int ino) 666 { 667 struct ext4_group_desc *gdp; 668 struct ext4_inode *raw_inode; 669 struct buffer_head *bh; 670 unsigned long dtime, now; 671 int inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 672 int offset, ret = 0, recentcy = RECENTCY_MIN; 673 674 gdp = ext4_get_group_desc(sb, group, NULL); 675 if (unlikely(!gdp)) 676 return 0; 677 678 bh = sb_getblk(sb, ext4_inode_table(sb, gdp) + 679 (ino / inodes_per_block)); 680 if (unlikely(!bh) || !buffer_uptodate(bh)) 681 /* 682 * If the block is not in the buffer cache, then it 683 * must have been written out. 684 */ 685 goto out; 686 687 offset = (ino % inodes_per_block) * EXT4_INODE_SIZE(sb); 688 raw_inode = (struct ext4_inode *) (bh->b_data + offset); 689 dtime = le32_to_cpu(raw_inode->i_dtime); 690 now = get_seconds(); 691 if (buffer_dirty(bh)) 692 recentcy += RECENTCY_DIRTY; 693 694 if (dtime && (dtime < now) && (now < dtime + recentcy)) 695 ret = 1; 696 out: 697 brelse(bh); 698 return ret; 699 } 700 701 /* 702 * There are two policies for allocating an inode. If the new inode is 703 * a directory, then a forward search is made for a block group with both 704 * free space and a low directory-to-inode ratio; if that fails, then of 705 * the groups with above-average free space, that group with the fewest 706 * directories already is chosen. 707 * 708 * For other inodes, search forward from the parent directory's block 709 * group to find a free inode. 710 */ 711 struct inode *__ext4_new_inode(handle_t *handle, struct inode *dir, 712 umode_t mode, const struct qstr *qstr, 713 __u32 goal, uid_t *owner, int handle_type, 714 unsigned int line_no, int nblocks) 715 { 716 struct super_block *sb; 717 struct buffer_head *inode_bitmap_bh = NULL; 718 struct buffer_head *group_desc_bh; 719 ext4_group_t ngroups, group = 0; 720 unsigned long ino = 0; 721 struct inode *inode; 722 struct ext4_group_desc *gdp = NULL; 723 struct ext4_inode_info *ei; 724 struct ext4_sb_info *sbi; 725 int ret2, err = 0; 726 struct inode *ret; 727 ext4_group_t i; 728 ext4_group_t flex_group; 729 struct ext4_group_info *grp; 730 731 /* Cannot create files in a deleted directory */ 732 if (!dir || !dir->i_nlink) 733 return ERR_PTR(-EPERM); 734 735 sb = dir->i_sb; 736 ngroups = ext4_get_groups_count(sb); 737 trace_ext4_request_inode(dir, mode); 738 inode = new_inode(sb); 739 if (!inode) 740 return ERR_PTR(-ENOMEM); 741 ei = EXT4_I(inode); 742 sbi = EXT4_SB(sb); 743 744 /* 745 * Initalize owners and quota early so that we don't have to account 746 * for quota initialization worst case in standard inode creating 747 * transaction 748 */ 749 if (owner) { 750 inode->i_mode = mode; 751 i_uid_write(inode, owner[0]); 752 i_gid_write(inode, owner[1]); 753 } else if (test_opt(sb, GRPID)) { 754 inode->i_mode = mode; 755 inode->i_uid = current_fsuid(); 756 inode->i_gid = dir->i_gid; 757 } else 758 inode_init_owner(inode, dir, mode); 759 dquot_initialize(inode); 760 761 if (!goal) 762 goal = sbi->s_inode_goal; 763 764 if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) { 765 group = (goal - 1) / EXT4_INODES_PER_GROUP(sb); 766 ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb); 767 ret2 = 0; 768 goto got_group; 769 } 770 771 if (S_ISDIR(mode)) 772 ret2 = find_group_orlov(sb, dir, &group, mode, qstr); 773 else 774 ret2 = find_group_other(sb, dir, &group, mode); 775 776 got_group: 777 EXT4_I(dir)->i_last_alloc_group = group; 778 err = -ENOSPC; 779 if (ret2 == -1) 780 goto out; 781 782 /* 783 * Normally we will only go through one pass of this loop, 784 * unless we get unlucky and it turns out the group we selected 785 * had its last inode grabbed by someone else. 786 */ 787 for (i = 0; i < ngroups; i++, ino = 0) { 788 err = -EIO; 789 790 gdp = ext4_get_group_desc(sb, group, &group_desc_bh); 791 if (!gdp) 792 goto out; 793 794 /* 795 * Check free inodes count before loading bitmap. 796 */ 797 if (ext4_free_inodes_count(sb, gdp) == 0) { 798 if (++group == ngroups) 799 group = 0; 800 continue; 801 } 802 803 grp = ext4_get_group_info(sb, group); 804 /* Skip groups with already-known suspicious inode tables */ 805 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) { 806 if (++group == ngroups) 807 group = 0; 808 continue; 809 } 810 811 brelse(inode_bitmap_bh); 812 inode_bitmap_bh = ext4_read_inode_bitmap(sb, group); 813 /* Skip groups with suspicious inode tables */ 814 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp) || !inode_bitmap_bh) { 815 if (++group == ngroups) 816 group = 0; 817 continue; 818 } 819 820 repeat_in_this_group: 821 ino = ext4_find_next_zero_bit((unsigned long *) 822 inode_bitmap_bh->b_data, 823 EXT4_INODES_PER_GROUP(sb), ino); 824 if (ino >= EXT4_INODES_PER_GROUP(sb)) 825 goto next_group; 826 if (group == 0 && (ino+1) < EXT4_FIRST_INO(sb)) { 827 ext4_error(sb, "reserved inode found cleared - " 828 "inode=%lu", ino + 1); 829 continue; 830 } 831 if ((EXT4_SB(sb)->s_journal == NULL) && 832 recently_deleted(sb, group, ino)) { 833 ino++; 834 goto next_inode; 835 } 836 if (!handle) { 837 BUG_ON(nblocks <= 0); 838 handle = __ext4_journal_start_sb(dir->i_sb, line_no, 839 handle_type, nblocks, 840 0); 841 if (IS_ERR(handle)) { 842 err = PTR_ERR(handle); 843 ext4_std_error(sb, err); 844 goto out; 845 } 846 } 847 BUFFER_TRACE(inode_bitmap_bh, "get_write_access"); 848 err = ext4_journal_get_write_access(handle, inode_bitmap_bh); 849 if (err) { 850 ext4_std_error(sb, err); 851 goto out; 852 } 853 ext4_lock_group(sb, group); 854 ret2 = ext4_test_and_set_bit(ino, inode_bitmap_bh->b_data); 855 ext4_unlock_group(sb, group); 856 ino++; /* the inode bitmap is zero-based */ 857 if (!ret2) 858 goto got; /* we grabbed the inode! */ 859 next_inode: 860 if (ino < EXT4_INODES_PER_GROUP(sb)) 861 goto repeat_in_this_group; 862 next_group: 863 if (++group == ngroups) 864 group = 0; 865 } 866 err = -ENOSPC; 867 goto out; 868 869 got: 870 BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata"); 871 err = ext4_handle_dirty_metadata(handle, NULL, inode_bitmap_bh); 872 if (err) { 873 ext4_std_error(sb, err); 874 goto out; 875 } 876 877 BUFFER_TRACE(group_desc_bh, "get_write_access"); 878 err = ext4_journal_get_write_access(handle, group_desc_bh); 879 if (err) { 880 ext4_std_error(sb, err); 881 goto out; 882 } 883 884 /* We may have to initialize the block bitmap if it isn't already */ 885 if (ext4_has_group_desc_csum(sb) && 886 gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 887 struct buffer_head *block_bitmap_bh; 888 889 block_bitmap_bh = ext4_read_block_bitmap(sb, group); 890 BUFFER_TRACE(block_bitmap_bh, "get block bitmap access"); 891 err = ext4_journal_get_write_access(handle, block_bitmap_bh); 892 if (err) { 893 brelse(block_bitmap_bh); 894 ext4_std_error(sb, err); 895 goto out; 896 } 897 898 BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap"); 899 err = ext4_handle_dirty_metadata(handle, NULL, block_bitmap_bh); 900 901 /* recheck and clear flag under lock if we still need to */ 902 ext4_lock_group(sb, group); 903 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 904 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 905 ext4_free_group_clusters_set(sb, gdp, 906 ext4_free_clusters_after_init(sb, group, gdp)); 907 ext4_block_bitmap_csum_set(sb, group, gdp, 908 block_bitmap_bh); 909 ext4_group_desc_csum_set(sb, group, gdp); 910 } 911 ext4_unlock_group(sb, group); 912 brelse(block_bitmap_bh); 913 914 if (err) { 915 ext4_std_error(sb, err); 916 goto out; 917 } 918 } 919 920 /* Update the relevant bg descriptor fields */ 921 if (ext4_has_group_desc_csum(sb)) { 922 int free; 923 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 924 925 down_read(&grp->alloc_sem); /* protect vs itable lazyinit */ 926 ext4_lock_group(sb, group); /* while we modify the bg desc */ 927 free = EXT4_INODES_PER_GROUP(sb) - 928 ext4_itable_unused_count(sb, gdp); 929 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) { 930 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT); 931 free = 0; 932 } 933 /* 934 * Check the relative inode number against the last used 935 * relative inode number in this group. if it is greater 936 * we need to update the bg_itable_unused count 937 */ 938 if (ino > free) 939 ext4_itable_unused_set(sb, gdp, 940 (EXT4_INODES_PER_GROUP(sb) - ino)); 941 up_read(&grp->alloc_sem); 942 } else { 943 ext4_lock_group(sb, group); 944 } 945 946 ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1); 947 if (S_ISDIR(mode)) { 948 ext4_used_dirs_set(sb, gdp, ext4_used_dirs_count(sb, gdp) + 1); 949 if (sbi->s_log_groups_per_flex) { 950 ext4_group_t f = ext4_flex_group(sbi, group); 951 952 atomic_inc(&sbi->s_flex_groups[f].used_dirs); 953 } 954 } 955 if (ext4_has_group_desc_csum(sb)) { 956 ext4_inode_bitmap_csum_set(sb, group, gdp, inode_bitmap_bh, 957 EXT4_INODES_PER_GROUP(sb) / 8); 958 ext4_group_desc_csum_set(sb, group, gdp); 959 } 960 ext4_unlock_group(sb, group); 961 962 BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata"); 963 err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh); 964 if (err) { 965 ext4_std_error(sb, err); 966 goto out; 967 } 968 969 percpu_counter_dec(&sbi->s_freeinodes_counter); 970 if (S_ISDIR(mode)) 971 percpu_counter_inc(&sbi->s_dirs_counter); 972 973 if (sbi->s_log_groups_per_flex) { 974 flex_group = ext4_flex_group(sbi, group); 975 atomic_dec(&sbi->s_flex_groups[flex_group].free_inodes); 976 } 977 978 inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb); 979 /* This is the optimal IO size (for stat), not the fs block size */ 980 inode->i_blocks = 0; 981 inode->i_mtime = inode->i_atime = inode->i_ctime = ei->i_crtime = 982 ext4_current_time(inode); 983 984 memset(ei->i_data, 0, sizeof(ei->i_data)); 985 ei->i_dir_start_lookup = 0; 986 ei->i_disksize = 0; 987 988 /* Don't inherit extent flag from directory, amongst others. */ 989 ei->i_flags = 990 ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED); 991 ei->i_file_acl = 0; 992 ei->i_dtime = 0; 993 ei->i_block_group = group; 994 ei->i_last_alloc_group = ~0; 995 996 ext4_set_inode_flags(inode); 997 if (IS_DIRSYNC(inode)) 998 ext4_handle_sync(handle); 999 if (insert_inode_locked(inode) < 0) { 1000 /* 1001 * Likely a bitmap corruption causing inode to be allocated 1002 * twice. 1003 */ 1004 err = -EIO; 1005 ext4_error(sb, "failed to insert inode %lu: doubly allocated?", 1006 inode->i_ino); 1007 goto out; 1008 } 1009 spin_lock(&sbi->s_next_gen_lock); 1010 inode->i_generation = sbi->s_next_generation++; 1011 spin_unlock(&sbi->s_next_gen_lock); 1012 1013 /* Precompute checksum seed for inode metadata */ 1014 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 1015 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) { 1016 __u32 csum; 1017 __le32 inum = cpu_to_le32(inode->i_ino); 1018 __le32 gen = cpu_to_le32(inode->i_generation); 1019 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 1020 sizeof(inum)); 1021 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 1022 sizeof(gen)); 1023 } 1024 1025 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 1026 ext4_set_inode_state(inode, EXT4_STATE_NEW); 1027 1028 ei->i_extra_isize = EXT4_SB(sb)->s_want_extra_isize; 1029 1030 ei->i_inline_off = 0; 1031 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_INLINE_DATA)) 1032 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); 1033 1034 ret = inode; 1035 err = dquot_alloc_inode(inode); 1036 if (err) 1037 goto fail_drop; 1038 1039 err = ext4_init_acl(handle, inode, dir); 1040 if (err) 1041 goto fail_free_drop; 1042 1043 err = ext4_init_security(handle, inode, dir, qstr); 1044 if (err) 1045 goto fail_free_drop; 1046 1047 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) { 1048 /* set extent flag only for directory, file and normal symlink*/ 1049 if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) { 1050 ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS); 1051 ext4_ext_tree_init(handle, inode); 1052 } 1053 } 1054 1055 if (ext4_handle_valid(handle)) { 1056 ei->i_sync_tid = handle->h_transaction->t_tid; 1057 ei->i_datasync_tid = handle->h_transaction->t_tid; 1058 } 1059 1060 err = ext4_mark_inode_dirty(handle, inode); 1061 if (err) { 1062 ext4_std_error(sb, err); 1063 goto fail_free_drop; 1064 } 1065 1066 ext4_debug("allocating inode %lu\n", inode->i_ino); 1067 trace_ext4_allocate_inode(inode, dir, mode); 1068 brelse(inode_bitmap_bh); 1069 return ret; 1070 1071 fail_free_drop: 1072 dquot_free_inode(inode); 1073 fail_drop: 1074 clear_nlink(inode); 1075 unlock_new_inode(inode); 1076 out: 1077 dquot_drop(inode); 1078 inode->i_flags |= S_NOQUOTA; 1079 iput(inode); 1080 brelse(inode_bitmap_bh); 1081 return ERR_PTR(err); 1082 } 1083 1084 /* Verify that we are loading a valid orphan from disk */ 1085 struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino) 1086 { 1087 unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count); 1088 ext4_group_t block_group; 1089 int bit; 1090 struct buffer_head *bitmap_bh; 1091 struct inode *inode = NULL; 1092 long err = -EIO; 1093 1094 /* Error cases - e2fsck has already cleaned up for us */ 1095 if (ino > max_ino) { 1096 ext4_warning(sb, "bad orphan ino %lu! e2fsck was run?", ino); 1097 goto error; 1098 } 1099 1100 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 1101 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb); 1102 bitmap_bh = ext4_read_inode_bitmap(sb, block_group); 1103 if (!bitmap_bh) { 1104 ext4_warning(sb, "inode bitmap error for orphan %lu", ino); 1105 goto error; 1106 } 1107 1108 /* Having the inode bit set should be a 100% indicator that this 1109 * is a valid orphan (no e2fsck run on fs). Orphans also include 1110 * inodes that were being truncated, so we can't check i_nlink==0. 1111 */ 1112 if (!ext4_test_bit(bit, bitmap_bh->b_data)) 1113 goto bad_orphan; 1114 1115 inode = ext4_iget(sb, ino); 1116 if (IS_ERR(inode)) 1117 goto iget_failed; 1118 1119 /* 1120 * If the orphans has i_nlinks > 0 then it should be able to be 1121 * truncated, otherwise it won't be removed from the orphan list 1122 * during processing and an infinite loop will result. 1123 */ 1124 if (inode->i_nlink && !ext4_can_truncate(inode)) 1125 goto bad_orphan; 1126 1127 if (NEXT_ORPHAN(inode) > max_ino) 1128 goto bad_orphan; 1129 brelse(bitmap_bh); 1130 return inode; 1131 1132 iget_failed: 1133 err = PTR_ERR(inode); 1134 inode = NULL; 1135 bad_orphan: 1136 ext4_warning(sb, "bad orphan inode %lu! e2fsck was run?", ino); 1137 printk(KERN_WARNING "ext4_test_bit(bit=%d, block=%llu) = %d\n", 1138 bit, (unsigned long long)bitmap_bh->b_blocknr, 1139 ext4_test_bit(bit, bitmap_bh->b_data)); 1140 printk(KERN_WARNING "inode=%p\n", inode); 1141 if (inode) { 1142 printk(KERN_WARNING "is_bad_inode(inode)=%d\n", 1143 is_bad_inode(inode)); 1144 printk(KERN_WARNING "NEXT_ORPHAN(inode)=%u\n", 1145 NEXT_ORPHAN(inode)); 1146 printk(KERN_WARNING "max_ino=%lu\n", max_ino); 1147 printk(KERN_WARNING "i_nlink=%u\n", inode->i_nlink); 1148 /* Avoid freeing blocks if we got a bad deleted inode */ 1149 if (inode->i_nlink == 0) 1150 inode->i_blocks = 0; 1151 iput(inode); 1152 } 1153 brelse(bitmap_bh); 1154 error: 1155 return ERR_PTR(err); 1156 } 1157 1158 unsigned long ext4_count_free_inodes(struct super_block *sb) 1159 { 1160 unsigned long desc_count; 1161 struct ext4_group_desc *gdp; 1162 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 1163 #ifdef EXT4FS_DEBUG 1164 struct ext4_super_block *es; 1165 unsigned long bitmap_count, x; 1166 struct buffer_head *bitmap_bh = NULL; 1167 1168 es = EXT4_SB(sb)->s_es; 1169 desc_count = 0; 1170 bitmap_count = 0; 1171 gdp = NULL; 1172 for (i = 0; i < ngroups; i++) { 1173 gdp = ext4_get_group_desc(sb, i, NULL); 1174 if (!gdp) 1175 continue; 1176 desc_count += ext4_free_inodes_count(sb, gdp); 1177 brelse(bitmap_bh); 1178 bitmap_bh = ext4_read_inode_bitmap(sb, i); 1179 if (!bitmap_bh) 1180 continue; 1181 1182 x = ext4_count_free(bitmap_bh->b_data, 1183 EXT4_INODES_PER_GROUP(sb) / 8); 1184 printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n", 1185 (unsigned long) i, ext4_free_inodes_count(sb, gdp), x); 1186 bitmap_count += x; 1187 } 1188 brelse(bitmap_bh); 1189 printk(KERN_DEBUG "ext4_count_free_inodes: " 1190 "stored = %u, computed = %lu, %lu\n", 1191 le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count); 1192 return desc_count; 1193 #else 1194 desc_count = 0; 1195 for (i = 0; i < ngroups; i++) { 1196 gdp = ext4_get_group_desc(sb, i, NULL); 1197 if (!gdp) 1198 continue; 1199 desc_count += ext4_free_inodes_count(sb, gdp); 1200 cond_resched(); 1201 } 1202 return desc_count; 1203 #endif 1204 } 1205 1206 /* Called at mount-time, super-block is locked */ 1207 unsigned long ext4_count_dirs(struct super_block * sb) 1208 { 1209 unsigned long count = 0; 1210 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 1211 1212 for (i = 0; i < ngroups; i++) { 1213 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 1214 if (!gdp) 1215 continue; 1216 count += ext4_used_dirs_count(sb, gdp); 1217 } 1218 return count; 1219 } 1220 1221 /* 1222 * Zeroes not yet zeroed inode table - just write zeroes through the whole 1223 * inode table. Must be called without any spinlock held. The only place 1224 * where it is called from on active part of filesystem is ext4lazyinit 1225 * thread, so we do not need any special locks, however we have to prevent 1226 * inode allocation from the current group, so we take alloc_sem lock, to 1227 * block ext4_new_inode() until we are finished. 1228 */ 1229 int ext4_init_inode_table(struct super_block *sb, ext4_group_t group, 1230 int barrier) 1231 { 1232 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 1233 struct ext4_sb_info *sbi = EXT4_SB(sb); 1234 struct ext4_group_desc *gdp = NULL; 1235 struct buffer_head *group_desc_bh; 1236 handle_t *handle; 1237 ext4_fsblk_t blk; 1238 int num, ret = 0, used_blks = 0; 1239 1240 /* This should not happen, but just to be sure check this */ 1241 if (sb->s_flags & MS_RDONLY) { 1242 ret = 1; 1243 goto out; 1244 } 1245 1246 gdp = ext4_get_group_desc(sb, group, &group_desc_bh); 1247 if (!gdp) 1248 goto out; 1249 1250 /* 1251 * We do not need to lock this, because we are the only one 1252 * handling this flag. 1253 */ 1254 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)) 1255 goto out; 1256 1257 handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1); 1258 if (IS_ERR(handle)) { 1259 ret = PTR_ERR(handle); 1260 goto out; 1261 } 1262 1263 down_write(&grp->alloc_sem); 1264 /* 1265 * If inode bitmap was already initialized there may be some 1266 * used inodes so we need to skip blocks with used inodes in 1267 * inode table. 1268 */ 1269 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT))) 1270 used_blks = DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb) - 1271 ext4_itable_unused_count(sb, gdp)), 1272 sbi->s_inodes_per_block); 1273 1274 if ((used_blks < 0) || (used_blks > sbi->s_itb_per_group)) { 1275 ext4_error(sb, "Something is wrong with group %u: " 1276 "used itable blocks: %d; " 1277 "itable unused count: %u", 1278 group, used_blks, 1279 ext4_itable_unused_count(sb, gdp)); 1280 ret = 1; 1281 goto err_out; 1282 } 1283 1284 blk = ext4_inode_table(sb, gdp) + used_blks; 1285 num = sbi->s_itb_per_group - used_blks; 1286 1287 BUFFER_TRACE(group_desc_bh, "get_write_access"); 1288 ret = ext4_journal_get_write_access(handle, 1289 group_desc_bh); 1290 if (ret) 1291 goto err_out; 1292 1293 /* 1294 * Skip zeroout if the inode table is full. But we set the ZEROED 1295 * flag anyway, because obviously, when it is full it does not need 1296 * further zeroing. 1297 */ 1298 if (unlikely(num == 0)) 1299 goto skip_zeroout; 1300 1301 ext4_debug("going to zero out inode table in group %d\n", 1302 group); 1303 ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS); 1304 if (ret < 0) 1305 goto err_out; 1306 if (barrier) 1307 blkdev_issue_flush(sb->s_bdev, GFP_NOFS, NULL); 1308 1309 skip_zeroout: 1310 ext4_lock_group(sb, group); 1311 gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED); 1312 ext4_group_desc_csum_set(sb, group, gdp); 1313 ext4_unlock_group(sb, group); 1314 1315 BUFFER_TRACE(group_desc_bh, 1316 "call ext4_handle_dirty_metadata"); 1317 ret = ext4_handle_dirty_metadata(handle, NULL, 1318 group_desc_bh); 1319 1320 err_out: 1321 up_write(&grp->alloc_sem); 1322 ext4_journal_stop(handle); 1323 out: 1324 return ret; 1325 } 1326