xref: /openbmc/linux/fs/ext4/ialloc.c (revision af958a38)
1 /*
2  *  linux/fs/ext4/ialloc.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  BSD ufs-inspired inode and directory allocation by
10  *  Stephen Tweedie (sct@redhat.com), 1993
11  *  Big-endian to little-endian byte-swapping/bitmaps by
12  *        David S. Miller (davem@caip.rutgers.edu), 1995
13  */
14 
15 #include <linux/time.h>
16 #include <linux/fs.h>
17 #include <linux/jbd2.h>
18 #include <linux/stat.h>
19 #include <linux/string.h>
20 #include <linux/quotaops.h>
21 #include <linux/buffer_head.h>
22 #include <linux/random.h>
23 #include <linux/bitops.h>
24 #include <linux/blkdev.h>
25 #include <asm/byteorder.h>
26 
27 #include "ext4.h"
28 #include "ext4_jbd2.h"
29 #include "xattr.h"
30 #include "acl.h"
31 
32 #include <trace/events/ext4.h>
33 
34 /*
35  * ialloc.c contains the inodes allocation and deallocation routines
36  */
37 
38 /*
39  * The free inodes are managed by bitmaps.  A file system contains several
40  * blocks groups.  Each group contains 1 bitmap block for blocks, 1 bitmap
41  * block for inodes, N blocks for the inode table and data blocks.
42  *
43  * The file system contains group descriptors which are located after the
44  * super block.  Each descriptor contains the number of the bitmap block and
45  * the free blocks count in the block.
46  */
47 
48 /*
49  * To avoid calling the atomic setbit hundreds or thousands of times, we only
50  * need to use it within a single byte (to ensure we get endianness right).
51  * We can use memset for the rest of the bitmap as there are no other users.
52  */
53 void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap)
54 {
55 	int i;
56 
57 	if (start_bit >= end_bit)
58 		return;
59 
60 	ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit);
61 	for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++)
62 		ext4_set_bit(i, bitmap);
63 	if (i < end_bit)
64 		memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3);
65 }
66 
67 /* Initializes an uninitialized inode bitmap */
68 static unsigned ext4_init_inode_bitmap(struct super_block *sb,
69 				       struct buffer_head *bh,
70 				       ext4_group_t block_group,
71 				       struct ext4_group_desc *gdp)
72 {
73 	struct ext4_group_info *grp;
74 	struct ext4_sb_info *sbi = EXT4_SB(sb);
75 	J_ASSERT_BH(bh, buffer_locked(bh));
76 
77 	/* If checksum is bad mark all blocks and inodes use to prevent
78 	 * allocation, essentially implementing a per-group read-only flag. */
79 	if (!ext4_group_desc_csum_verify(sb, block_group, gdp)) {
80 		ext4_error(sb, "Checksum bad for group %u", block_group);
81 		grp = ext4_get_group_info(sb, block_group);
82 		if (!EXT4_MB_GRP_BBITMAP_CORRUPT(grp))
83 			percpu_counter_sub(&sbi->s_freeclusters_counter,
84 					   grp->bb_free);
85 		set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, &grp->bb_state);
86 		if (!EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
87 			int count;
88 			count = ext4_free_inodes_count(sb, gdp);
89 			percpu_counter_sub(&sbi->s_freeinodes_counter,
90 					   count);
91 		}
92 		set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state);
93 		return 0;
94 	}
95 
96 	memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8);
97 	ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb), sb->s_blocksize * 8,
98 			bh->b_data);
99 	ext4_inode_bitmap_csum_set(sb, block_group, gdp, bh,
100 				   EXT4_INODES_PER_GROUP(sb) / 8);
101 	ext4_group_desc_csum_set(sb, block_group, gdp);
102 
103 	return EXT4_INODES_PER_GROUP(sb);
104 }
105 
106 void ext4_end_bitmap_read(struct buffer_head *bh, int uptodate)
107 {
108 	if (uptodate) {
109 		set_buffer_uptodate(bh);
110 		set_bitmap_uptodate(bh);
111 	}
112 	unlock_buffer(bh);
113 	put_bh(bh);
114 }
115 
116 /*
117  * Read the inode allocation bitmap for a given block_group, reading
118  * into the specified slot in the superblock's bitmap cache.
119  *
120  * Return buffer_head of bitmap on success or NULL.
121  */
122 static struct buffer_head *
123 ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group)
124 {
125 	struct ext4_group_desc *desc;
126 	struct buffer_head *bh = NULL;
127 	ext4_fsblk_t bitmap_blk;
128 	struct ext4_group_info *grp;
129 	struct ext4_sb_info *sbi = EXT4_SB(sb);
130 
131 	desc = ext4_get_group_desc(sb, block_group, NULL);
132 	if (!desc)
133 		return NULL;
134 
135 	bitmap_blk = ext4_inode_bitmap(sb, desc);
136 	bh = sb_getblk(sb, bitmap_blk);
137 	if (unlikely(!bh)) {
138 		ext4_error(sb, "Cannot read inode bitmap - "
139 			    "block_group = %u, inode_bitmap = %llu",
140 			    block_group, bitmap_blk);
141 		return NULL;
142 	}
143 	if (bitmap_uptodate(bh))
144 		goto verify;
145 
146 	lock_buffer(bh);
147 	if (bitmap_uptodate(bh)) {
148 		unlock_buffer(bh);
149 		goto verify;
150 	}
151 
152 	ext4_lock_group(sb, block_group);
153 	if (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
154 		ext4_init_inode_bitmap(sb, bh, block_group, desc);
155 		set_bitmap_uptodate(bh);
156 		set_buffer_uptodate(bh);
157 		set_buffer_verified(bh);
158 		ext4_unlock_group(sb, block_group);
159 		unlock_buffer(bh);
160 		return bh;
161 	}
162 	ext4_unlock_group(sb, block_group);
163 
164 	if (buffer_uptodate(bh)) {
165 		/*
166 		 * if not uninit if bh is uptodate,
167 		 * bitmap is also uptodate
168 		 */
169 		set_bitmap_uptodate(bh);
170 		unlock_buffer(bh);
171 		goto verify;
172 	}
173 	/*
174 	 * submit the buffer_head for reading
175 	 */
176 	trace_ext4_load_inode_bitmap(sb, block_group);
177 	bh->b_end_io = ext4_end_bitmap_read;
178 	get_bh(bh);
179 	submit_bh(READ | REQ_META | REQ_PRIO, bh);
180 	wait_on_buffer(bh);
181 	if (!buffer_uptodate(bh)) {
182 		put_bh(bh);
183 		ext4_error(sb, "Cannot read inode bitmap - "
184 			   "block_group = %u, inode_bitmap = %llu",
185 			   block_group, bitmap_blk);
186 		return NULL;
187 	}
188 
189 verify:
190 	ext4_lock_group(sb, block_group);
191 	if (!buffer_verified(bh) &&
192 	    !ext4_inode_bitmap_csum_verify(sb, block_group, desc, bh,
193 					   EXT4_INODES_PER_GROUP(sb) / 8)) {
194 		ext4_unlock_group(sb, block_group);
195 		put_bh(bh);
196 		ext4_error(sb, "Corrupt inode bitmap - block_group = %u, "
197 			   "inode_bitmap = %llu", block_group, bitmap_blk);
198 		grp = ext4_get_group_info(sb, block_group);
199 		if (!EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
200 			int count;
201 			count = ext4_free_inodes_count(sb, desc);
202 			percpu_counter_sub(&sbi->s_freeinodes_counter,
203 					   count);
204 		}
205 		set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state);
206 		return NULL;
207 	}
208 	ext4_unlock_group(sb, block_group);
209 	set_buffer_verified(bh);
210 	return bh;
211 }
212 
213 /*
214  * NOTE! When we get the inode, we're the only people
215  * that have access to it, and as such there are no
216  * race conditions we have to worry about. The inode
217  * is not on the hash-lists, and it cannot be reached
218  * through the filesystem because the directory entry
219  * has been deleted earlier.
220  *
221  * HOWEVER: we must make sure that we get no aliases,
222  * which means that we have to call "clear_inode()"
223  * _before_ we mark the inode not in use in the inode
224  * bitmaps. Otherwise a newly created file might use
225  * the same inode number (not actually the same pointer
226  * though), and then we'd have two inodes sharing the
227  * same inode number and space on the harddisk.
228  */
229 void ext4_free_inode(handle_t *handle, struct inode *inode)
230 {
231 	struct super_block *sb = inode->i_sb;
232 	int is_directory;
233 	unsigned long ino;
234 	struct buffer_head *bitmap_bh = NULL;
235 	struct buffer_head *bh2;
236 	ext4_group_t block_group;
237 	unsigned long bit;
238 	struct ext4_group_desc *gdp;
239 	struct ext4_super_block *es;
240 	struct ext4_sb_info *sbi;
241 	int fatal = 0, err, count, cleared;
242 	struct ext4_group_info *grp;
243 
244 	if (!sb) {
245 		printk(KERN_ERR "EXT4-fs: %s:%d: inode on "
246 		       "nonexistent device\n", __func__, __LINE__);
247 		return;
248 	}
249 	if (atomic_read(&inode->i_count) > 1) {
250 		ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: count=%d",
251 			 __func__, __LINE__, inode->i_ino,
252 			 atomic_read(&inode->i_count));
253 		return;
254 	}
255 	if (inode->i_nlink) {
256 		ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: nlink=%d\n",
257 			 __func__, __LINE__, inode->i_ino, inode->i_nlink);
258 		return;
259 	}
260 	sbi = EXT4_SB(sb);
261 
262 	ino = inode->i_ino;
263 	ext4_debug("freeing inode %lu\n", ino);
264 	trace_ext4_free_inode(inode);
265 
266 	/*
267 	 * Note: we must free any quota before locking the superblock,
268 	 * as writing the quota to disk may need the lock as well.
269 	 */
270 	dquot_initialize(inode);
271 	ext4_xattr_delete_inode(handle, inode);
272 	dquot_free_inode(inode);
273 	dquot_drop(inode);
274 
275 	is_directory = S_ISDIR(inode->i_mode);
276 
277 	/* Do this BEFORE marking the inode not in use or returning an error */
278 	ext4_clear_inode(inode);
279 
280 	es = EXT4_SB(sb)->s_es;
281 	if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) {
282 		ext4_error(sb, "reserved or nonexistent inode %lu", ino);
283 		goto error_return;
284 	}
285 	block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
286 	bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
287 	bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
288 	/* Don't bother if the inode bitmap is corrupt. */
289 	grp = ext4_get_group_info(sb, block_group);
290 	if (unlikely(EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) || !bitmap_bh)
291 		goto error_return;
292 
293 	BUFFER_TRACE(bitmap_bh, "get_write_access");
294 	fatal = ext4_journal_get_write_access(handle, bitmap_bh);
295 	if (fatal)
296 		goto error_return;
297 
298 	fatal = -ESRCH;
299 	gdp = ext4_get_group_desc(sb, block_group, &bh2);
300 	if (gdp) {
301 		BUFFER_TRACE(bh2, "get_write_access");
302 		fatal = ext4_journal_get_write_access(handle, bh2);
303 	}
304 	ext4_lock_group(sb, block_group);
305 	cleared = ext4_test_and_clear_bit(bit, bitmap_bh->b_data);
306 	if (fatal || !cleared) {
307 		ext4_unlock_group(sb, block_group);
308 		goto out;
309 	}
310 
311 	count = ext4_free_inodes_count(sb, gdp) + 1;
312 	ext4_free_inodes_set(sb, gdp, count);
313 	if (is_directory) {
314 		count = ext4_used_dirs_count(sb, gdp) - 1;
315 		ext4_used_dirs_set(sb, gdp, count);
316 		percpu_counter_dec(&sbi->s_dirs_counter);
317 	}
318 	ext4_inode_bitmap_csum_set(sb, block_group, gdp, bitmap_bh,
319 				   EXT4_INODES_PER_GROUP(sb) / 8);
320 	ext4_group_desc_csum_set(sb, block_group, gdp);
321 	ext4_unlock_group(sb, block_group);
322 
323 	percpu_counter_inc(&sbi->s_freeinodes_counter);
324 	if (sbi->s_log_groups_per_flex) {
325 		ext4_group_t f = ext4_flex_group(sbi, block_group);
326 
327 		atomic_inc(&sbi->s_flex_groups[f].free_inodes);
328 		if (is_directory)
329 			atomic_dec(&sbi->s_flex_groups[f].used_dirs);
330 	}
331 	BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata");
332 	fatal = ext4_handle_dirty_metadata(handle, NULL, bh2);
333 out:
334 	if (cleared) {
335 		BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata");
336 		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
337 		if (!fatal)
338 			fatal = err;
339 	} else {
340 		ext4_error(sb, "bit already cleared for inode %lu", ino);
341 		if (gdp && !EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
342 			int count;
343 			count = ext4_free_inodes_count(sb, gdp);
344 			percpu_counter_sub(&sbi->s_freeinodes_counter,
345 					   count);
346 		}
347 		set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state);
348 	}
349 
350 error_return:
351 	brelse(bitmap_bh);
352 	ext4_std_error(sb, fatal);
353 }
354 
355 struct orlov_stats {
356 	__u64 free_clusters;
357 	__u32 free_inodes;
358 	__u32 used_dirs;
359 };
360 
361 /*
362  * Helper function for Orlov's allocator; returns critical information
363  * for a particular block group or flex_bg.  If flex_size is 1, then g
364  * is a block group number; otherwise it is flex_bg number.
365  */
366 static void get_orlov_stats(struct super_block *sb, ext4_group_t g,
367 			    int flex_size, struct orlov_stats *stats)
368 {
369 	struct ext4_group_desc *desc;
370 	struct flex_groups *flex_group = EXT4_SB(sb)->s_flex_groups;
371 
372 	if (flex_size > 1) {
373 		stats->free_inodes = atomic_read(&flex_group[g].free_inodes);
374 		stats->free_clusters = atomic64_read(&flex_group[g].free_clusters);
375 		stats->used_dirs = atomic_read(&flex_group[g].used_dirs);
376 		return;
377 	}
378 
379 	desc = ext4_get_group_desc(sb, g, NULL);
380 	if (desc) {
381 		stats->free_inodes = ext4_free_inodes_count(sb, desc);
382 		stats->free_clusters = ext4_free_group_clusters(sb, desc);
383 		stats->used_dirs = ext4_used_dirs_count(sb, desc);
384 	} else {
385 		stats->free_inodes = 0;
386 		stats->free_clusters = 0;
387 		stats->used_dirs = 0;
388 	}
389 }
390 
391 /*
392  * Orlov's allocator for directories.
393  *
394  * We always try to spread first-level directories.
395  *
396  * If there are blockgroups with both free inodes and free blocks counts
397  * not worse than average we return one with smallest directory count.
398  * Otherwise we simply return a random group.
399  *
400  * For the rest rules look so:
401  *
402  * It's OK to put directory into a group unless
403  * it has too many directories already (max_dirs) or
404  * it has too few free inodes left (min_inodes) or
405  * it has too few free blocks left (min_blocks) or
406  * Parent's group is preferred, if it doesn't satisfy these
407  * conditions we search cyclically through the rest. If none
408  * of the groups look good we just look for a group with more
409  * free inodes than average (starting at parent's group).
410  */
411 
412 static int find_group_orlov(struct super_block *sb, struct inode *parent,
413 			    ext4_group_t *group, umode_t mode,
414 			    const struct qstr *qstr)
415 {
416 	ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
417 	struct ext4_sb_info *sbi = EXT4_SB(sb);
418 	ext4_group_t real_ngroups = ext4_get_groups_count(sb);
419 	int inodes_per_group = EXT4_INODES_PER_GROUP(sb);
420 	unsigned int freei, avefreei, grp_free;
421 	ext4_fsblk_t freeb, avefreec;
422 	unsigned int ndirs;
423 	int max_dirs, min_inodes;
424 	ext4_grpblk_t min_clusters;
425 	ext4_group_t i, grp, g, ngroups;
426 	struct ext4_group_desc *desc;
427 	struct orlov_stats stats;
428 	int flex_size = ext4_flex_bg_size(sbi);
429 	struct dx_hash_info hinfo;
430 
431 	ngroups = real_ngroups;
432 	if (flex_size > 1) {
433 		ngroups = (real_ngroups + flex_size - 1) >>
434 			sbi->s_log_groups_per_flex;
435 		parent_group >>= sbi->s_log_groups_per_flex;
436 	}
437 
438 	freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter);
439 	avefreei = freei / ngroups;
440 	freeb = EXT4_C2B(sbi,
441 		percpu_counter_read_positive(&sbi->s_freeclusters_counter));
442 	avefreec = freeb;
443 	do_div(avefreec, ngroups);
444 	ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter);
445 
446 	if (S_ISDIR(mode) &&
447 	    ((parent == sb->s_root->d_inode) ||
448 	     (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) {
449 		int best_ndir = inodes_per_group;
450 		int ret = -1;
451 
452 		if (qstr) {
453 			hinfo.hash_version = DX_HASH_HALF_MD4;
454 			hinfo.seed = sbi->s_hash_seed;
455 			ext4fs_dirhash(qstr->name, qstr->len, &hinfo);
456 			grp = hinfo.hash;
457 		} else
458 			grp = prandom_u32();
459 		parent_group = (unsigned)grp % ngroups;
460 		for (i = 0; i < ngroups; i++) {
461 			g = (parent_group + i) % ngroups;
462 			get_orlov_stats(sb, g, flex_size, &stats);
463 			if (!stats.free_inodes)
464 				continue;
465 			if (stats.used_dirs >= best_ndir)
466 				continue;
467 			if (stats.free_inodes < avefreei)
468 				continue;
469 			if (stats.free_clusters < avefreec)
470 				continue;
471 			grp = g;
472 			ret = 0;
473 			best_ndir = stats.used_dirs;
474 		}
475 		if (ret)
476 			goto fallback;
477 	found_flex_bg:
478 		if (flex_size == 1) {
479 			*group = grp;
480 			return 0;
481 		}
482 
483 		/*
484 		 * We pack inodes at the beginning of the flexgroup's
485 		 * inode tables.  Block allocation decisions will do
486 		 * something similar, although regular files will
487 		 * start at 2nd block group of the flexgroup.  See
488 		 * ext4_ext_find_goal() and ext4_find_near().
489 		 */
490 		grp *= flex_size;
491 		for (i = 0; i < flex_size; i++) {
492 			if (grp+i >= real_ngroups)
493 				break;
494 			desc = ext4_get_group_desc(sb, grp+i, NULL);
495 			if (desc && ext4_free_inodes_count(sb, desc)) {
496 				*group = grp+i;
497 				return 0;
498 			}
499 		}
500 		goto fallback;
501 	}
502 
503 	max_dirs = ndirs / ngroups + inodes_per_group / 16;
504 	min_inodes = avefreei - inodes_per_group*flex_size / 4;
505 	if (min_inodes < 1)
506 		min_inodes = 1;
507 	min_clusters = avefreec - EXT4_CLUSTERS_PER_GROUP(sb)*flex_size / 4;
508 
509 	/*
510 	 * Start looking in the flex group where we last allocated an
511 	 * inode for this parent directory
512 	 */
513 	if (EXT4_I(parent)->i_last_alloc_group != ~0) {
514 		parent_group = EXT4_I(parent)->i_last_alloc_group;
515 		if (flex_size > 1)
516 			parent_group >>= sbi->s_log_groups_per_flex;
517 	}
518 
519 	for (i = 0; i < ngroups; i++) {
520 		grp = (parent_group + i) % ngroups;
521 		get_orlov_stats(sb, grp, flex_size, &stats);
522 		if (stats.used_dirs >= max_dirs)
523 			continue;
524 		if (stats.free_inodes < min_inodes)
525 			continue;
526 		if (stats.free_clusters < min_clusters)
527 			continue;
528 		goto found_flex_bg;
529 	}
530 
531 fallback:
532 	ngroups = real_ngroups;
533 	avefreei = freei / ngroups;
534 fallback_retry:
535 	parent_group = EXT4_I(parent)->i_block_group;
536 	for (i = 0; i < ngroups; i++) {
537 		grp = (parent_group + i) % ngroups;
538 		desc = ext4_get_group_desc(sb, grp, NULL);
539 		if (desc) {
540 			grp_free = ext4_free_inodes_count(sb, desc);
541 			if (grp_free && grp_free >= avefreei) {
542 				*group = grp;
543 				return 0;
544 			}
545 		}
546 	}
547 
548 	if (avefreei) {
549 		/*
550 		 * The free-inodes counter is approximate, and for really small
551 		 * filesystems the above test can fail to find any blockgroups
552 		 */
553 		avefreei = 0;
554 		goto fallback_retry;
555 	}
556 
557 	return -1;
558 }
559 
560 static int find_group_other(struct super_block *sb, struct inode *parent,
561 			    ext4_group_t *group, umode_t mode)
562 {
563 	ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
564 	ext4_group_t i, last, ngroups = ext4_get_groups_count(sb);
565 	struct ext4_group_desc *desc;
566 	int flex_size = ext4_flex_bg_size(EXT4_SB(sb));
567 
568 	/*
569 	 * Try to place the inode is the same flex group as its
570 	 * parent.  If we can't find space, use the Orlov algorithm to
571 	 * find another flex group, and store that information in the
572 	 * parent directory's inode information so that use that flex
573 	 * group for future allocations.
574 	 */
575 	if (flex_size > 1) {
576 		int retry = 0;
577 
578 	try_again:
579 		parent_group &= ~(flex_size-1);
580 		last = parent_group + flex_size;
581 		if (last > ngroups)
582 			last = ngroups;
583 		for  (i = parent_group; i < last; i++) {
584 			desc = ext4_get_group_desc(sb, i, NULL);
585 			if (desc && ext4_free_inodes_count(sb, desc)) {
586 				*group = i;
587 				return 0;
588 			}
589 		}
590 		if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) {
591 			retry = 1;
592 			parent_group = EXT4_I(parent)->i_last_alloc_group;
593 			goto try_again;
594 		}
595 		/*
596 		 * If this didn't work, use the Orlov search algorithm
597 		 * to find a new flex group; we pass in the mode to
598 		 * avoid the topdir algorithms.
599 		 */
600 		*group = parent_group + flex_size;
601 		if (*group > ngroups)
602 			*group = 0;
603 		return find_group_orlov(sb, parent, group, mode, NULL);
604 	}
605 
606 	/*
607 	 * Try to place the inode in its parent directory
608 	 */
609 	*group = parent_group;
610 	desc = ext4_get_group_desc(sb, *group, NULL);
611 	if (desc && ext4_free_inodes_count(sb, desc) &&
612 	    ext4_free_group_clusters(sb, desc))
613 		return 0;
614 
615 	/*
616 	 * We're going to place this inode in a different blockgroup from its
617 	 * parent.  We want to cause files in a common directory to all land in
618 	 * the same blockgroup.  But we want files which are in a different
619 	 * directory which shares a blockgroup with our parent to land in a
620 	 * different blockgroup.
621 	 *
622 	 * So add our directory's i_ino into the starting point for the hash.
623 	 */
624 	*group = (*group + parent->i_ino) % ngroups;
625 
626 	/*
627 	 * Use a quadratic hash to find a group with a free inode and some free
628 	 * blocks.
629 	 */
630 	for (i = 1; i < ngroups; i <<= 1) {
631 		*group += i;
632 		if (*group >= ngroups)
633 			*group -= ngroups;
634 		desc = ext4_get_group_desc(sb, *group, NULL);
635 		if (desc && ext4_free_inodes_count(sb, desc) &&
636 		    ext4_free_group_clusters(sb, desc))
637 			return 0;
638 	}
639 
640 	/*
641 	 * That failed: try linear search for a free inode, even if that group
642 	 * has no free blocks.
643 	 */
644 	*group = parent_group;
645 	for (i = 0; i < ngroups; i++) {
646 		if (++*group >= ngroups)
647 			*group = 0;
648 		desc = ext4_get_group_desc(sb, *group, NULL);
649 		if (desc && ext4_free_inodes_count(sb, desc))
650 			return 0;
651 	}
652 
653 	return -1;
654 }
655 
656 /*
657  * In no journal mode, if an inode has recently been deleted, we want
658  * to avoid reusing it until we're reasonably sure the inode table
659  * block has been written back to disk.  (Yes, these values are
660  * somewhat arbitrary...)
661  */
662 #define RECENTCY_MIN	5
663 #define RECENTCY_DIRTY	30
664 
665 static int recently_deleted(struct super_block *sb, ext4_group_t group, int ino)
666 {
667 	struct ext4_group_desc	*gdp;
668 	struct ext4_inode	*raw_inode;
669 	struct buffer_head	*bh;
670 	unsigned long		dtime, now;
671 	int	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
672 	int	offset, ret = 0, recentcy = RECENTCY_MIN;
673 
674 	gdp = ext4_get_group_desc(sb, group, NULL);
675 	if (unlikely(!gdp))
676 		return 0;
677 
678 	bh = sb_getblk(sb, ext4_inode_table(sb, gdp) +
679 		       (ino / inodes_per_block));
680 	if (unlikely(!bh) || !buffer_uptodate(bh))
681 		/*
682 		 * If the block is not in the buffer cache, then it
683 		 * must have been written out.
684 		 */
685 		goto out;
686 
687 	offset = (ino % inodes_per_block) * EXT4_INODE_SIZE(sb);
688 	raw_inode = (struct ext4_inode *) (bh->b_data + offset);
689 	dtime = le32_to_cpu(raw_inode->i_dtime);
690 	now = get_seconds();
691 	if (buffer_dirty(bh))
692 		recentcy += RECENTCY_DIRTY;
693 
694 	if (dtime && (dtime < now) && (now < dtime + recentcy))
695 		ret = 1;
696 out:
697 	brelse(bh);
698 	return ret;
699 }
700 
701 /*
702  * There are two policies for allocating an inode.  If the new inode is
703  * a directory, then a forward search is made for a block group with both
704  * free space and a low directory-to-inode ratio; if that fails, then of
705  * the groups with above-average free space, that group with the fewest
706  * directories already is chosen.
707  *
708  * For other inodes, search forward from the parent directory's block
709  * group to find a free inode.
710  */
711 struct inode *__ext4_new_inode(handle_t *handle, struct inode *dir,
712 			       umode_t mode, const struct qstr *qstr,
713 			       __u32 goal, uid_t *owner, int handle_type,
714 			       unsigned int line_no, int nblocks)
715 {
716 	struct super_block *sb;
717 	struct buffer_head *inode_bitmap_bh = NULL;
718 	struct buffer_head *group_desc_bh;
719 	ext4_group_t ngroups, group = 0;
720 	unsigned long ino = 0;
721 	struct inode *inode;
722 	struct ext4_group_desc *gdp = NULL;
723 	struct ext4_inode_info *ei;
724 	struct ext4_sb_info *sbi;
725 	int ret2, err = 0;
726 	struct inode *ret;
727 	ext4_group_t i;
728 	ext4_group_t flex_group;
729 	struct ext4_group_info *grp;
730 
731 	/* Cannot create files in a deleted directory */
732 	if (!dir || !dir->i_nlink)
733 		return ERR_PTR(-EPERM);
734 
735 	sb = dir->i_sb;
736 	ngroups = ext4_get_groups_count(sb);
737 	trace_ext4_request_inode(dir, mode);
738 	inode = new_inode(sb);
739 	if (!inode)
740 		return ERR_PTR(-ENOMEM);
741 	ei = EXT4_I(inode);
742 	sbi = EXT4_SB(sb);
743 
744 	/*
745 	 * Initalize owners and quota early so that we don't have to account
746 	 * for quota initialization worst case in standard inode creating
747 	 * transaction
748 	 */
749 	if (owner) {
750 		inode->i_mode = mode;
751 		i_uid_write(inode, owner[0]);
752 		i_gid_write(inode, owner[1]);
753 	} else if (test_opt(sb, GRPID)) {
754 		inode->i_mode = mode;
755 		inode->i_uid = current_fsuid();
756 		inode->i_gid = dir->i_gid;
757 	} else
758 		inode_init_owner(inode, dir, mode);
759 	dquot_initialize(inode);
760 
761 	if (!goal)
762 		goal = sbi->s_inode_goal;
763 
764 	if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) {
765 		group = (goal - 1) / EXT4_INODES_PER_GROUP(sb);
766 		ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb);
767 		ret2 = 0;
768 		goto got_group;
769 	}
770 
771 	if (S_ISDIR(mode))
772 		ret2 = find_group_orlov(sb, dir, &group, mode, qstr);
773 	else
774 		ret2 = find_group_other(sb, dir, &group, mode);
775 
776 got_group:
777 	EXT4_I(dir)->i_last_alloc_group = group;
778 	err = -ENOSPC;
779 	if (ret2 == -1)
780 		goto out;
781 
782 	/*
783 	 * Normally we will only go through one pass of this loop,
784 	 * unless we get unlucky and it turns out the group we selected
785 	 * had its last inode grabbed by someone else.
786 	 */
787 	for (i = 0; i < ngroups; i++, ino = 0) {
788 		err = -EIO;
789 
790 		gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
791 		if (!gdp)
792 			goto out;
793 
794 		/*
795 		 * Check free inodes count before loading bitmap.
796 		 */
797 		if (ext4_free_inodes_count(sb, gdp) == 0) {
798 			if (++group == ngroups)
799 				group = 0;
800 			continue;
801 		}
802 
803 		grp = ext4_get_group_info(sb, group);
804 		/* Skip groups with already-known suspicious inode tables */
805 		if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
806 			if (++group == ngroups)
807 				group = 0;
808 			continue;
809 		}
810 
811 		brelse(inode_bitmap_bh);
812 		inode_bitmap_bh = ext4_read_inode_bitmap(sb, group);
813 		/* Skip groups with suspicious inode tables */
814 		if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp) || !inode_bitmap_bh) {
815 			if (++group == ngroups)
816 				group = 0;
817 			continue;
818 		}
819 
820 repeat_in_this_group:
821 		ino = ext4_find_next_zero_bit((unsigned long *)
822 					      inode_bitmap_bh->b_data,
823 					      EXT4_INODES_PER_GROUP(sb), ino);
824 		if (ino >= EXT4_INODES_PER_GROUP(sb))
825 			goto next_group;
826 		if (group == 0 && (ino+1) < EXT4_FIRST_INO(sb)) {
827 			ext4_error(sb, "reserved inode found cleared - "
828 				   "inode=%lu", ino + 1);
829 			continue;
830 		}
831 		if ((EXT4_SB(sb)->s_journal == NULL) &&
832 		    recently_deleted(sb, group, ino)) {
833 			ino++;
834 			goto next_inode;
835 		}
836 		if (!handle) {
837 			BUG_ON(nblocks <= 0);
838 			handle = __ext4_journal_start_sb(dir->i_sb, line_no,
839 							 handle_type, nblocks,
840 							 0);
841 			if (IS_ERR(handle)) {
842 				err = PTR_ERR(handle);
843 				ext4_std_error(sb, err);
844 				goto out;
845 			}
846 		}
847 		BUFFER_TRACE(inode_bitmap_bh, "get_write_access");
848 		err = ext4_journal_get_write_access(handle, inode_bitmap_bh);
849 		if (err) {
850 			ext4_std_error(sb, err);
851 			goto out;
852 		}
853 		ext4_lock_group(sb, group);
854 		ret2 = ext4_test_and_set_bit(ino, inode_bitmap_bh->b_data);
855 		ext4_unlock_group(sb, group);
856 		ino++;		/* the inode bitmap is zero-based */
857 		if (!ret2)
858 			goto got; /* we grabbed the inode! */
859 next_inode:
860 		if (ino < EXT4_INODES_PER_GROUP(sb))
861 			goto repeat_in_this_group;
862 next_group:
863 		if (++group == ngroups)
864 			group = 0;
865 	}
866 	err = -ENOSPC;
867 	goto out;
868 
869 got:
870 	BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata");
871 	err = ext4_handle_dirty_metadata(handle, NULL, inode_bitmap_bh);
872 	if (err) {
873 		ext4_std_error(sb, err);
874 		goto out;
875 	}
876 
877 	BUFFER_TRACE(group_desc_bh, "get_write_access");
878 	err = ext4_journal_get_write_access(handle, group_desc_bh);
879 	if (err) {
880 		ext4_std_error(sb, err);
881 		goto out;
882 	}
883 
884 	/* We may have to initialize the block bitmap if it isn't already */
885 	if (ext4_has_group_desc_csum(sb) &&
886 	    gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
887 		struct buffer_head *block_bitmap_bh;
888 
889 		block_bitmap_bh = ext4_read_block_bitmap(sb, group);
890 		BUFFER_TRACE(block_bitmap_bh, "get block bitmap access");
891 		err = ext4_journal_get_write_access(handle, block_bitmap_bh);
892 		if (err) {
893 			brelse(block_bitmap_bh);
894 			ext4_std_error(sb, err);
895 			goto out;
896 		}
897 
898 		BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap");
899 		err = ext4_handle_dirty_metadata(handle, NULL, block_bitmap_bh);
900 
901 		/* recheck and clear flag under lock if we still need to */
902 		ext4_lock_group(sb, group);
903 		if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
904 			gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
905 			ext4_free_group_clusters_set(sb, gdp,
906 				ext4_free_clusters_after_init(sb, group, gdp));
907 			ext4_block_bitmap_csum_set(sb, group, gdp,
908 						   block_bitmap_bh);
909 			ext4_group_desc_csum_set(sb, group, gdp);
910 		}
911 		ext4_unlock_group(sb, group);
912 		brelse(block_bitmap_bh);
913 
914 		if (err) {
915 			ext4_std_error(sb, err);
916 			goto out;
917 		}
918 	}
919 
920 	/* Update the relevant bg descriptor fields */
921 	if (ext4_has_group_desc_csum(sb)) {
922 		int free;
923 		struct ext4_group_info *grp = ext4_get_group_info(sb, group);
924 
925 		down_read(&grp->alloc_sem); /* protect vs itable lazyinit */
926 		ext4_lock_group(sb, group); /* while we modify the bg desc */
927 		free = EXT4_INODES_PER_GROUP(sb) -
928 			ext4_itable_unused_count(sb, gdp);
929 		if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
930 			gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT);
931 			free = 0;
932 		}
933 		/*
934 		 * Check the relative inode number against the last used
935 		 * relative inode number in this group. if it is greater
936 		 * we need to update the bg_itable_unused count
937 		 */
938 		if (ino > free)
939 			ext4_itable_unused_set(sb, gdp,
940 					(EXT4_INODES_PER_GROUP(sb) - ino));
941 		up_read(&grp->alloc_sem);
942 	} else {
943 		ext4_lock_group(sb, group);
944 	}
945 
946 	ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1);
947 	if (S_ISDIR(mode)) {
948 		ext4_used_dirs_set(sb, gdp, ext4_used_dirs_count(sb, gdp) + 1);
949 		if (sbi->s_log_groups_per_flex) {
950 			ext4_group_t f = ext4_flex_group(sbi, group);
951 
952 			atomic_inc(&sbi->s_flex_groups[f].used_dirs);
953 		}
954 	}
955 	if (ext4_has_group_desc_csum(sb)) {
956 		ext4_inode_bitmap_csum_set(sb, group, gdp, inode_bitmap_bh,
957 					   EXT4_INODES_PER_GROUP(sb) / 8);
958 		ext4_group_desc_csum_set(sb, group, gdp);
959 	}
960 	ext4_unlock_group(sb, group);
961 
962 	BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata");
963 	err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh);
964 	if (err) {
965 		ext4_std_error(sb, err);
966 		goto out;
967 	}
968 
969 	percpu_counter_dec(&sbi->s_freeinodes_counter);
970 	if (S_ISDIR(mode))
971 		percpu_counter_inc(&sbi->s_dirs_counter);
972 
973 	if (sbi->s_log_groups_per_flex) {
974 		flex_group = ext4_flex_group(sbi, group);
975 		atomic_dec(&sbi->s_flex_groups[flex_group].free_inodes);
976 	}
977 
978 	inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb);
979 	/* This is the optimal IO size (for stat), not the fs block size */
980 	inode->i_blocks = 0;
981 	inode->i_mtime = inode->i_atime = inode->i_ctime = ei->i_crtime =
982 						       ext4_current_time(inode);
983 
984 	memset(ei->i_data, 0, sizeof(ei->i_data));
985 	ei->i_dir_start_lookup = 0;
986 	ei->i_disksize = 0;
987 
988 	/* Don't inherit extent flag from directory, amongst others. */
989 	ei->i_flags =
990 		ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED);
991 	ei->i_file_acl = 0;
992 	ei->i_dtime = 0;
993 	ei->i_block_group = group;
994 	ei->i_last_alloc_group = ~0;
995 
996 	ext4_set_inode_flags(inode);
997 	if (IS_DIRSYNC(inode))
998 		ext4_handle_sync(handle);
999 	if (insert_inode_locked(inode) < 0) {
1000 		/*
1001 		 * Likely a bitmap corruption causing inode to be allocated
1002 		 * twice.
1003 		 */
1004 		err = -EIO;
1005 		ext4_error(sb, "failed to insert inode %lu: doubly allocated?",
1006 			   inode->i_ino);
1007 		goto out;
1008 	}
1009 	spin_lock(&sbi->s_next_gen_lock);
1010 	inode->i_generation = sbi->s_next_generation++;
1011 	spin_unlock(&sbi->s_next_gen_lock);
1012 
1013 	/* Precompute checksum seed for inode metadata */
1014 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
1015 			EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
1016 		__u32 csum;
1017 		__le32 inum = cpu_to_le32(inode->i_ino);
1018 		__le32 gen = cpu_to_le32(inode->i_generation);
1019 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
1020 				   sizeof(inum));
1021 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
1022 					      sizeof(gen));
1023 	}
1024 
1025 	ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
1026 	ext4_set_inode_state(inode, EXT4_STATE_NEW);
1027 
1028 	ei->i_extra_isize = EXT4_SB(sb)->s_want_extra_isize;
1029 
1030 	ei->i_inline_off = 0;
1031 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_INLINE_DATA))
1032 		ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
1033 
1034 	ret = inode;
1035 	err = dquot_alloc_inode(inode);
1036 	if (err)
1037 		goto fail_drop;
1038 
1039 	err = ext4_init_acl(handle, inode, dir);
1040 	if (err)
1041 		goto fail_free_drop;
1042 
1043 	err = ext4_init_security(handle, inode, dir, qstr);
1044 	if (err)
1045 		goto fail_free_drop;
1046 
1047 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
1048 		/* set extent flag only for directory, file and normal symlink*/
1049 		if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) {
1050 			ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS);
1051 			ext4_ext_tree_init(handle, inode);
1052 		}
1053 	}
1054 
1055 	if (ext4_handle_valid(handle)) {
1056 		ei->i_sync_tid = handle->h_transaction->t_tid;
1057 		ei->i_datasync_tid = handle->h_transaction->t_tid;
1058 	}
1059 
1060 	err = ext4_mark_inode_dirty(handle, inode);
1061 	if (err) {
1062 		ext4_std_error(sb, err);
1063 		goto fail_free_drop;
1064 	}
1065 
1066 	ext4_debug("allocating inode %lu\n", inode->i_ino);
1067 	trace_ext4_allocate_inode(inode, dir, mode);
1068 	brelse(inode_bitmap_bh);
1069 	return ret;
1070 
1071 fail_free_drop:
1072 	dquot_free_inode(inode);
1073 fail_drop:
1074 	clear_nlink(inode);
1075 	unlock_new_inode(inode);
1076 out:
1077 	dquot_drop(inode);
1078 	inode->i_flags |= S_NOQUOTA;
1079 	iput(inode);
1080 	brelse(inode_bitmap_bh);
1081 	return ERR_PTR(err);
1082 }
1083 
1084 /* Verify that we are loading a valid orphan from disk */
1085 struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino)
1086 {
1087 	unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count);
1088 	ext4_group_t block_group;
1089 	int bit;
1090 	struct buffer_head *bitmap_bh;
1091 	struct inode *inode = NULL;
1092 	long err = -EIO;
1093 
1094 	/* Error cases - e2fsck has already cleaned up for us */
1095 	if (ino > max_ino) {
1096 		ext4_warning(sb, "bad orphan ino %lu!  e2fsck was run?", ino);
1097 		goto error;
1098 	}
1099 
1100 	block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
1101 	bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
1102 	bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
1103 	if (!bitmap_bh) {
1104 		ext4_warning(sb, "inode bitmap error for orphan %lu", ino);
1105 		goto error;
1106 	}
1107 
1108 	/* Having the inode bit set should be a 100% indicator that this
1109 	 * is a valid orphan (no e2fsck run on fs).  Orphans also include
1110 	 * inodes that were being truncated, so we can't check i_nlink==0.
1111 	 */
1112 	if (!ext4_test_bit(bit, bitmap_bh->b_data))
1113 		goto bad_orphan;
1114 
1115 	inode = ext4_iget(sb, ino);
1116 	if (IS_ERR(inode))
1117 		goto iget_failed;
1118 
1119 	/*
1120 	 * If the orphans has i_nlinks > 0 then it should be able to be
1121 	 * truncated, otherwise it won't be removed from the orphan list
1122 	 * during processing and an infinite loop will result.
1123 	 */
1124 	if (inode->i_nlink && !ext4_can_truncate(inode))
1125 		goto bad_orphan;
1126 
1127 	if (NEXT_ORPHAN(inode) > max_ino)
1128 		goto bad_orphan;
1129 	brelse(bitmap_bh);
1130 	return inode;
1131 
1132 iget_failed:
1133 	err = PTR_ERR(inode);
1134 	inode = NULL;
1135 bad_orphan:
1136 	ext4_warning(sb, "bad orphan inode %lu!  e2fsck was run?", ino);
1137 	printk(KERN_WARNING "ext4_test_bit(bit=%d, block=%llu) = %d\n",
1138 	       bit, (unsigned long long)bitmap_bh->b_blocknr,
1139 	       ext4_test_bit(bit, bitmap_bh->b_data));
1140 	printk(KERN_WARNING "inode=%p\n", inode);
1141 	if (inode) {
1142 		printk(KERN_WARNING "is_bad_inode(inode)=%d\n",
1143 		       is_bad_inode(inode));
1144 		printk(KERN_WARNING "NEXT_ORPHAN(inode)=%u\n",
1145 		       NEXT_ORPHAN(inode));
1146 		printk(KERN_WARNING "max_ino=%lu\n", max_ino);
1147 		printk(KERN_WARNING "i_nlink=%u\n", inode->i_nlink);
1148 		/* Avoid freeing blocks if we got a bad deleted inode */
1149 		if (inode->i_nlink == 0)
1150 			inode->i_blocks = 0;
1151 		iput(inode);
1152 	}
1153 	brelse(bitmap_bh);
1154 error:
1155 	return ERR_PTR(err);
1156 }
1157 
1158 unsigned long ext4_count_free_inodes(struct super_block *sb)
1159 {
1160 	unsigned long desc_count;
1161 	struct ext4_group_desc *gdp;
1162 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1163 #ifdef EXT4FS_DEBUG
1164 	struct ext4_super_block *es;
1165 	unsigned long bitmap_count, x;
1166 	struct buffer_head *bitmap_bh = NULL;
1167 
1168 	es = EXT4_SB(sb)->s_es;
1169 	desc_count = 0;
1170 	bitmap_count = 0;
1171 	gdp = NULL;
1172 	for (i = 0; i < ngroups; i++) {
1173 		gdp = ext4_get_group_desc(sb, i, NULL);
1174 		if (!gdp)
1175 			continue;
1176 		desc_count += ext4_free_inodes_count(sb, gdp);
1177 		brelse(bitmap_bh);
1178 		bitmap_bh = ext4_read_inode_bitmap(sb, i);
1179 		if (!bitmap_bh)
1180 			continue;
1181 
1182 		x = ext4_count_free(bitmap_bh->b_data,
1183 				    EXT4_INODES_PER_GROUP(sb) / 8);
1184 		printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n",
1185 			(unsigned long) i, ext4_free_inodes_count(sb, gdp), x);
1186 		bitmap_count += x;
1187 	}
1188 	brelse(bitmap_bh);
1189 	printk(KERN_DEBUG "ext4_count_free_inodes: "
1190 	       "stored = %u, computed = %lu, %lu\n",
1191 	       le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count);
1192 	return desc_count;
1193 #else
1194 	desc_count = 0;
1195 	for (i = 0; i < ngroups; i++) {
1196 		gdp = ext4_get_group_desc(sb, i, NULL);
1197 		if (!gdp)
1198 			continue;
1199 		desc_count += ext4_free_inodes_count(sb, gdp);
1200 		cond_resched();
1201 	}
1202 	return desc_count;
1203 #endif
1204 }
1205 
1206 /* Called at mount-time, super-block is locked */
1207 unsigned long ext4_count_dirs(struct super_block * sb)
1208 {
1209 	unsigned long count = 0;
1210 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1211 
1212 	for (i = 0; i < ngroups; i++) {
1213 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
1214 		if (!gdp)
1215 			continue;
1216 		count += ext4_used_dirs_count(sb, gdp);
1217 	}
1218 	return count;
1219 }
1220 
1221 /*
1222  * Zeroes not yet zeroed inode table - just write zeroes through the whole
1223  * inode table. Must be called without any spinlock held. The only place
1224  * where it is called from on active part of filesystem is ext4lazyinit
1225  * thread, so we do not need any special locks, however we have to prevent
1226  * inode allocation from the current group, so we take alloc_sem lock, to
1227  * block ext4_new_inode() until we are finished.
1228  */
1229 int ext4_init_inode_table(struct super_block *sb, ext4_group_t group,
1230 				 int barrier)
1231 {
1232 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1233 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1234 	struct ext4_group_desc *gdp = NULL;
1235 	struct buffer_head *group_desc_bh;
1236 	handle_t *handle;
1237 	ext4_fsblk_t blk;
1238 	int num, ret = 0, used_blks = 0;
1239 
1240 	/* This should not happen, but just to be sure check this */
1241 	if (sb->s_flags & MS_RDONLY) {
1242 		ret = 1;
1243 		goto out;
1244 	}
1245 
1246 	gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
1247 	if (!gdp)
1248 		goto out;
1249 
1250 	/*
1251 	 * We do not need to lock this, because we are the only one
1252 	 * handling this flag.
1253 	 */
1254 	if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))
1255 		goto out;
1256 
1257 	handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
1258 	if (IS_ERR(handle)) {
1259 		ret = PTR_ERR(handle);
1260 		goto out;
1261 	}
1262 
1263 	down_write(&grp->alloc_sem);
1264 	/*
1265 	 * If inode bitmap was already initialized there may be some
1266 	 * used inodes so we need to skip blocks with used inodes in
1267 	 * inode table.
1268 	 */
1269 	if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)))
1270 		used_blks = DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb) -
1271 			    ext4_itable_unused_count(sb, gdp)),
1272 			    sbi->s_inodes_per_block);
1273 
1274 	if ((used_blks < 0) || (used_blks > sbi->s_itb_per_group)) {
1275 		ext4_error(sb, "Something is wrong with group %u: "
1276 			   "used itable blocks: %d; "
1277 			   "itable unused count: %u",
1278 			   group, used_blks,
1279 			   ext4_itable_unused_count(sb, gdp));
1280 		ret = 1;
1281 		goto err_out;
1282 	}
1283 
1284 	blk = ext4_inode_table(sb, gdp) + used_blks;
1285 	num = sbi->s_itb_per_group - used_blks;
1286 
1287 	BUFFER_TRACE(group_desc_bh, "get_write_access");
1288 	ret = ext4_journal_get_write_access(handle,
1289 					    group_desc_bh);
1290 	if (ret)
1291 		goto err_out;
1292 
1293 	/*
1294 	 * Skip zeroout if the inode table is full. But we set the ZEROED
1295 	 * flag anyway, because obviously, when it is full it does not need
1296 	 * further zeroing.
1297 	 */
1298 	if (unlikely(num == 0))
1299 		goto skip_zeroout;
1300 
1301 	ext4_debug("going to zero out inode table in group %d\n",
1302 		   group);
1303 	ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS);
1304 	if (ret < 0)
1305 		goto err_out;
1306 	if (barrier)
1307 		blkdev_issue_flush(sb->s_bdev, GFP_NOFS, NULL);
1308 
1309 skip_zeroout:
1310 	ext4_lock_group(sb, group);
1311 	gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED);
1312 	ext4_group_desc_csum_set(sb, group, gdp);
1313 	ext4_unlock_group(sb, group);
1314 
1315 	BUFFER_TRACE(group_desc_bh,
1316 		     "call ext4_handle_dirty_metadata");
1317 	ret = ext4_handle_dirty_metadata(handle, NULL,
1318 					 group_desc_bh);
1319 
1320 err_out:
1321 	up_write(&grp->alloc_sem);
1322 	ext4_journal_stop(handle);
1323 out:
1324 	return ret;
1325 }
1326