xref: /openbmc/linux/fs/ext4/ialloc.c (revision a2cce7a9)
1 /*
2  *  linux/fs/ext4/ialloc.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  BSD ufs-inspired inode and directory allocation by
10  *  Stephen Tweedie (sct@redhat.com), 1993
11  *  Big-endian to little-endian byte-swapping/bitmaps by
12  *        David S. Miller (davem@caip.rutgers.edu), 1995
13  */
14 
15 #include <linux/time.h>
16 #include <linux/fs.h>
17 #include <linux/stat.h>
18 #include <linux/string.h>
19 #include <linux/quotaops.h>
20 #include <linux/buffer_head.h>
21 #include <linux/random.h>
22 #include <linux/bitops.h>
23 #include <linux/blkdev.h>
24 #include <asm/byteorder.h>
25 
26 #include "ext4.h"
27 #include "ext4_jbd2.h"
28 #include "xattr.h"
29 #include "acl.h"
30 
31 #include <trace/events/ext4.h>
32 
33 /*
34  * ialloc.c contains the inodes allocation and deallocation routines
35  */
36 
37 /*
38  * The free inodes are managed by bitmaps.  A file system contains several
39  * blocks groups.  Each group contains 1 bitmap block for blocks, 1 bitmap
40  * block for inodes, N blocks for the inode table and data blocks.
41  *
42  * The file system contains group descriptors which are located after the
43  * super block.  Each descriptor contains the number of the bitmap block and
44  * the free blocks count in the block.
45  */
46 
47 /*
48  * To avoid calling the atomic setbit hundreds or thousands of times, we only
49  * need to use it within a single byte (to ensure we get endianness right).
50  * We can use memset for the rest of the bitmap as there are no other users.
51  */
52 void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap)
53 {
54 	int i;
55 
56 	if (start_bit >= end_bit)
57 		return;
58 
59 	ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit);
60 	for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++)
61 		ext4_set_bit(i, bitmap);
62 	if (i < end_bit)
63 		memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3);
64 }
65 
66 /* Initializes an uninitialized inode bitmap */
67 static unsigned ext4_init_inode_bitmap(struct super_block *sb,
68 				       struct buffer_head *bh,
69 				       ext4_group_t block_group,
70 				       struct ext4_group_desc *gdp)
71 {
72 	struct ext4_group_info *grp;
73 	struct ext4_sb_info *sbi = EXT4_SB(sb);
74 	J_ASSERT_BH(bh, buffer_locked(bh));
75 
76 	/* If checksum is bad mark all blocks and inodes use to prevent
77 	 * allocation, essentially implementing a per-group read-only flag. */
78 	if (!ext4_group_desc_csum_verify(sb, block_group, gdp)) {
79 		ext4_error(sb, "Checksum bad for group %u", block_group);
80 		grp = ext4_get_group_info(sb, block_group);
81 		if (!EXT4_MB_GRP_BBITMAP_CORRUPT(grp))
82 			percpu_counter_sub(&sbi->s_freeclusters_counter,
83 					   grp->bb_free);
84 		set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, &grp->bb_state);
85 		if (!EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
86 			int count;
87 			count = ext4_free_inodes_count(sb, gdp);
88 			percpu_counter_sub(&sbi->s_freeinodes_counter,
89 					   count);
90 		}
91 		set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state);
92 		return 0;
93 	}
94 
95 	memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8);
96 	ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb), sb->s_blocksize * 8,
97 			bh->b_data);
98 	ext4_inode_bitmap_csum_set(sb, block_group, gdp, bh,
99 				   EXT4_INODES_PER_GROUP(sb) / 8);
100 	ext4_group_desc_csum_set(sb, block_group, gdp);
101 
102 	return EXT4_INODES_PER_GROUP(sb);
103 }
104 
105 void ext4_end_bitmap_read(struct buffer_head *bh, int uptodate)
106 {
107 	if (uptodate) {
108 		set_buffer_uptodate(bh);
109 		set_bitmap_uptodate(bh);
110 	}
111 	unlock_buffer(bh);
112 	put_bh(bh);
113 }
114 
115 /*
116  * Read the inode allocation bitmap for a given block_group, reading
117  * into the specified slot in the superblock's bitmap cache.
118  *
119  * Return buffer_head of bitmap on success or NULL.
120  */
121 static struct buffer_head *
122 ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group)
123 {
124 	struct ext4_group_desc *desc;
125 	struct buffer_head *bh = NULL;
126 	ext4_fsblk_t bitmap_blk;
127 	struct ext4_group_info *grp;
128 	struct ext4_sb_info *sbi = EXT4_SB(sb);
129 
130 	desc = ext4_get_group_desc(sb, block_group, NULL);
131 	if (!desc)
132 		return NULL;
133 
134 	bitmap_blk = ext4_inode_bitmap(sb, desc);
135 	bh = sb_getblk(sb, bitmap_blk);
136 	if (unlikely(!bh)) {
137 		ext4_error(sb, "Cannot read inode bitmap - "
138 			    "block_group = %u, inode_bitmap = %llu",
139 			    block_group, bitmap_blk);
140 		return NULL;
141 	}
142 	if (bitmap_uptodate(bh))
143 		goto verify;
144 
145 	lock_buffer(bh);
146 	if (bitmap_uptodate(bh)) {
147 		unlock_buffer(bh);
148 		goto verify;
149 	}
150 
151 	ext4_lock_group(sb, block_group);
152 	if (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
153 		ext4_init_inode_bitmap(sb, bh, block_group, desc);
154 		set_bitmap_uptodate(bh);
155 		set_buffer_uptodate(bh);
156 		set_buffer_verified(bh);
157 		ext4_unlock_group(sb, block_group);
158 		unlock_buffer(bh);
159 		return bh;
160 	}
161 	ext4_unlock_group(sb, block_group);
162 
163 	if (buffer_uptodate(bh)) {
164 		/*
165 		 * if not uninit if bh is uptodate,
166 		 * bitmap is also uptodate
167 		 */
168 		set_bitmap_uptodate(bh);
169 		unlock_buffer(bh);
170 		goto verify;
171 	}
172 	/*
173 	 * submit the buffer_head for reading
174 	 */
175 	trace_ext4_load_inode_bitmap(sb, block_group);
176 	bh->b_end_io = ext4_end_bitmap_read;
177 	get_bh(bh);
178 	submit_bh(READ | REQ_META | REQ_PRIO, bh);
179 	wait_on_buffer(bh);
180 	if (!buffer_uptodate(bh)) {
181 		put_bh(bh);
182 		ext4_error(sb, "Cannot read inode bitmap - "
183 			   "block_group = %u, inode_bitmap = %llu",
184 			   block_group, bitmap_blk);
185 		return NULL;
186 	}
187 
188 verify:
189 	ext4_lock_group(sb, block_group);
190 	if (!buffer_verified(bh) &&
191 	    !ext4_inode_bitmap_csum_verify(sb, block_group, desc, bh,
192 					   EXT4_INODES_PER_GROUP(sb) / 8)) {
193 		ext4_unlock_group(sb, block_group);
194 		put_bh(bh);
195 		ext4_error(sb, "Corrupt inode bitmap - block_group = %u, "
196 			   "inode_bitmap = %llu", block_group, bitmap_blk);
197 		grp = ext4_get_group_info(sb, block_group);
198 		if (!EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
199 			int count;
200 			count = ext4_free_inodes_count(sb, desc);
201 			percpu_counter_sub(&sbi->s_freeinodes_counter,
202 					   count);
203 		}
204 		set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state);
205 		return NULL;
206 	}
207 	ext4_unlock_group(sb, block_group);
208 	set_buffer_verified(bh);
209 	return bh;
210 }
211 
212 /*
213  * NOTE! When we get the inode, we're the only people
214  * that have access to it, and as such there are no
215  * race conditions we have to worry about. The inode
216  * is not on the hash-lists, and it cannot be reached
217  * through the filesystem because the directory entry
218  * has been deleted earlier.
219  *
220  * HOWEVER: we must make sure that we get no aliases,
221  * which means that we have to call "clear_inode()"
222  * _before_ we mark the inode not in use in the inode
223  * bitmaps. Otherwise a newly created file might use
224  * the same inode number (not actually the same pointer
225  * though), and then we'd have two inodes sharing the
226  * same inode number and space on the harddisk.
227  */
228 void ext4_free_inode(handle_t *handle, struct inode *inode)
229 {
230 	struct super_block *sb = inode->i_sb;
231 	int is_directory;
232 	unsigned long ino;
233 	struct buffer_head *bitmap_bh = NULL;
234 	struct buffer_head *bh2;
235 	ext4_group_t block_group;
236 	unsigned long bit;
237 	struct ext4_group_desc *gdp;
238 	struct ext4_super_block *es;
239 	struct ext4_sb_info *sbi;
240 	int fatal = 0, err, count, cleared;
241 	struct ext4_group_info *grp;
242 
243 	if (!sb) {
244 		printk(KERN_ERR "EXT4-fs: %s:%d: inode on "
245 		       "nonexistent device\n", __func__, __LINE__);
246 		return;
247 	}
248 	if (atomic_read(&inode->i_count) > 1) {
249 		ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: count=%d",
250 			 __func__, __LINE__, inode->i_ino,
251 			 atomic_read(&inode->i_count));
252 		return;
253 	}
254 	if (inode->i_nlink) {
255 		ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: nlink=%d\n",
256 			 __func__, __LINE__, inode->i_ino, inode->i_nlink);
257 		return;
258 	}
259 	sbi = EXT4_SB(sb);
260 
261 	ino = inode->i_ino;
262 	ext4_debug("freeing inode %lu\n", ino);
263 	trace_ext4_free_inode(inode);
264 
265 	/*
266 	 * Note: we must free any quota before locking the superblock,
267 	 * as writing the quota to disk may need the lock as well.
268 	 */
269 	dquot_initialize(inode);
270 	ext4_xattr_delete_inode(handle, inode);
271 	dquot_free_inode(inode);
272 	dquot_drop(inode);
273 
274 	is_directory = S_ISDIR(inode->i_mode);
275 
276 	/* Do this BEFORE marking the inode not in use or returning an error */
277 	ext4_clear_inode(inode);
278 
279 	es = EXT4_SB(sb)->s_es;
280 	if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) {
281 		ext4_error(sb, "reserved or nonexistent inode %lu", ino);
282 		goto error_return;
283 	}
284 	block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
285 	bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
286 	bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
287 	/* Don't bother if the inode bitmap is corrupt. */
288 	grp = ext4_get_group_info(sb, block_group);
289 	if (unlikely(EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) || !bitmap_bh)
290 		goto error_return;
291 
292 	BUFFER_TRACE(bitmap_bh, "get_write_access");
293 	fatal = ext4_journal_get_write_access(handle, bitmap_bh);
294 	if (fatal)
295 		goto error_return;
296 
297 	fatal = -ESRCH;
298 	gdp = ext4_get_group_desc(sb, block_group, &bh2);
299 	if (gdp) {
300 		BUFFER_TRACE(bh2, "get_write_access");
301 		fatal = ext4_journal_get_write_access(handle, bh2);
302 	}
303 	ext4_lock_group(sb, block_group);
304 	cleared = ext4_test_and_clear_bit(bit, bitmap_bh->b_data);
305 	if (fatal || !cleared) {
306 		ext4_unlock_group(sb, block_group);
307 		goto out;
308 	}
309 
310 	count = ext4_free_inodes_count(sb, gdp) + 1;
311 	ext4_free_inodes_set(sb, gdp, count);
312 	if (is_directory) {
313 		count = ext4_used_dirs_count(sb, gdp) - 1;
314 		ext4_used_dirs_set(sb, gdp, count);
315 		percpu_counter_dec(&sbi->s_dirs_counter);
316 	}
317 	ext4_inode_bitmap_csum_set(sb, block_group, gdp, bitmap_bh,
318 				   EXT4_INODES_PER_GROUP(sb) / 8);
319 	ext4_group_desc_csum_set(sb, block_group, gdp);
320 	ext4_unlock_group(sb, block_group);
321 
322 	percpu_counter_inc(&sbi->s_freeinodes_counter);
323 	if (sbi->s_log_groups_per_flex) {
324 		ext4_group_t f = ext4_flex_group(sbi, block_group);
325 
326 		atomic_inc(&sbi->s_flex_groups[f].free_inodes);
327 		if (is_directory)
328 			atomic_dec(&sbi->s_flex_groups[f].used_dirs);
329 	}
330 	BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata");
331 	fatal = ext4_handle_dirty_metadata(handle, NULL, bh2);
332 out:
333 	if (cleared) {
334 		BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata");
335 		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
336 		if (!fatal)
337 			fatal = err;
338 	} else {
339 		ext4_error(sb, "bit already cleared for inode %lu", ino);
340 		if (gdp && !EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
341 			int count;
342 			count = ext4_free_inodes_count(sb, gdp);
343 			percpu_counter_sub(&sbi->s_freeinodes_counter,
344 					   count);
345 		}
346 		set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state);
347 	}
348 
349 error_return:
350 	brelse(bitmap_bh);
351 	ext4_std_error(sb, fatal);
352 }
353 
354 struct orlov_stats {
355 	__u64 free_clusters;
356 	__u32 free_inodes;
357 	__u32 used_dirs;
358 };
359 
360 /*
361  * Helper function for Orlov's allocator; returns critical information
362  * for a particular block group or flex_bg.  If flex_size is 1, then g
363  * is a block group number; otherwise it is flex_bg number.
364  */
365 static void get_orlov_stats(struct super_block *sb, ext4_group_t g,
366 			    int flex_size, struct orlov_stats *stats)
367 {
368 	struct ext4_group_desc *desc;
369 	struct flex_groups *flex_group = EXT4_SB(sb)->s_flex_groups;
370 
371 	if (flex_size > 1) {
372 		stats->free_inodes = atomic_read(&flex_group[g].free_inodes);
373 		stats->free_clusters = atomic64_read(&flex_group[g].free_clusters);
374 		stats->used_dirs = atomic_read(&flex_group[g].used_dirs);
375 		return;
376 	}
377 
378 	desc = ext4_get_group_desc(sb, g, NULL);
379 	if (desc) {
380 		stats->free_inodes = ext4_free_inodes_count(sb, desc);
381 		stats->free_clusters = ext4_free_group_clusters(sb, desc);
382 		stats->used_dirs = ext4_used_dirs_count(sb, desc);
383 	} else {
384 		stats->free_inodes = 0;
385 		stats->free_clusters = 0;
386 		stats->used_dirs = 0;
387 	}
388 }
389 
390 /*
391  * Orlov's allocator for directories.
392  *
393  * We always try to spread first-level directories.
394  *
395  * If there are blockgroups with both free inodes and free blocks counts
396  * not worse than average we return one with smallest directory count.
397  * Otherwise we simply return a random group.
398  *
399  * For the rest rules look so:
400  *
401  * It's OK to put directory into a group unless
402  * it has too many directories already (max_dirs) or
403  * it has too few free inodes left (min_inodes) or
404  * it has too few free blocks left (min_blocks) or
405  * Parent's group is preferred, if it doesn't satisfy these
406  * conditions we search cyclically through the rest. If none
407  * of the groups look good we just look for a group with more
408  * free inodes than average (starting at parent's group).
409  */
410 
411 static int find_group_orlov(struct super_block *sb, struct inode *parent,
412 			    ext4_group_t *group, umode_t mode,
413 			    const struct qstr *qstr)
414 {
415 	ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
416 	struct ext4_sb_info *sbi = EXT4_SB(sb);
417 	ext4_group_t real_ngroups = ext4_get_groups_count(sb);
418 	int inodes_per_group = EXT4_INODES_PER_GROUP(sb);
419 	unsigned int freei, avefreei, grp_free;
420 	ext4_fsblk_t freeb, avefreec;
421 	unsigned int ndirs;
422 	int max_dirs, min_inodes;
423 	ext4_grpblk_t min_clusters;
424 	ext4_group_t i, grp, g, ngroups;
425 	struct ext4_group_desc *desc;
426 	struct orlov_stats stats;
427 	int flex_size = ext4_flex_bg_size(sbi);
428 	struct dx_hash_info hinfo;
429 
430 	ngroups = real_ngroups;
431 	if (flex_size > 1) {
432 		ngroups = (real_ngroups + flex_size - 1) >>
433 			sbi->s_log_groups_per_flex;
434 		parent_group >>= sbi->s_log_groups_per_flex;
435 	}
436 
437 	freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter);
438 	avefreei = freei / ngroups;
439 	freeb = EXT4_C2B(sbi,
440 		percpu_counter_read_positive(&sbi->s_freeclusters_counter));
441 	avefreec = freeb;
442 	do_div(avefreec, ngroups);
443 	ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter);
444 
445 	if (S_ISDIR(mode) &&
446 	    ((parent == d_inode(sb->s_root)) ||
447 	     (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) {
448 		int best_ndir = inodes_per_group;
449 		int ret = -1;
450 
451 		if (qstr) {
452 			hinfo.hash_version = DX_HASH_HALF_MD4;
453 			hinfo.seed = sbi->s_hash_seed;
454 			ext4fs_dirhash(qstr->name, qstr->len, &hinfo);
455 			grp = hinfo.hash;
456 		} else
457 			grp = prandom_u32();
458 		parent_group = (unsigned)grp % ngroups;
459 		for (i = 0; i < ngroups; i++) {
460 			g = (parent_group + i) % ngroups;
461 			get_orlov_stats(sb, g, flex_size, &stats);
462 			if (!stats.free_inodes)
463 				continue;
464 			if (stats.used_dirs >= best_ndir)
465 				continue;
466 			if (stats.free_inodes < avefreei)
467 				continue;
468 			if (stats.free_clusters < avefreec)
469 				continue;
470 			grp = g;
471 			ret = 0;
472 			best_ndir = stats.used_dirs;
473 		}
474 		if (ret)
475 			goto fallback;
476 	found_flex_bg:
477 		if (flex_size == 1) {
478 			*group = grp;
479 			return 0;
480 		}
481 
482 		/*
483 		 * We pack inodes at the beginning of the flexgroup's
484 		 * inode tables.  Block allocation decisions will do
485 		 * something similar, although regular files will
486 		 * start at 2nd block group of the flexgroup.  See
487 		 * ext4_ext_find_goal() and ext4_find_near().
488 		 */
489 		grp *= flex_size;
490 		for (i = 0; i < flex_size; i++) {
491 			if (grp+i >= real_ngroups)
492 				break;
493 			desc = ext4_get_group_desc(sb, grp+i, NULL);
494 			if (desc && ext4_free_inodes_count(sb, desc)) {
495 				*group = grp+i;
496 				return 0;
497 			}
498 		}
499 		goto fallback;
500 	}
501 
502 	max_dirs = ndirs / ngroups + inodes_per_group / 16;
503 	min_inodes = avefreei - inodes_per_group*flex_size / 4;
504 	if (min_inodes < 1)
505 		min_inodes = 1;
506 	min_clusters = avefreec - EXT4_CLUSTERS_PER_GROUP(sb)*flex_size / 4;
507 
508 	/*
509 	 * Start looking in the flex group where we last allocated an
510 	 * inode for this parent directory
511 	 */
512 	if (EXT4_I(parent)->i_last_alloc_group != ~0) {
513 		parent_group = EXT4_I(parent)->i_last_alloc_group;
514 		if (flex_size > 1)
515 			parent_group >>= sbi->s_log_groups_per_flex;
516 	}
517 
518 	for (i = 0; i < ngroups; i++) {
519 		grp = (parent_group + i) % ngroups;
520 		get_orlov_stats(sb, grp, flex_size, &stats);
521 		if (stats.used_dirs >= max_dirs)
522 			continue;
523 		if (stats.free_inodes < min_inodes)
524 			continue;
525 		if (stats.free_clusters < min_clusters)
526 			continue;
527 		goto found_flex_bg;
528 	}
529 
530 fallback:
531 	ngroups = real_ngroups;
532 	avefreei = freei / ngroups;
533 fallback_retry:
534 	parent_group = EXT4_I(parent)->i_block_group;
535 	for (i = 0; i < ngroups; i++) {
536 		grp = (parent_group + i) % ngroups;
537 		desc = ext4_get_group_desc(sb, grp, NULL);
538 		if (desc) {
539 			grp_free = ext4_free_inodes_count(sb, desc);
540 			if (grp_free && grp_free >= avefreei) {
541 				*group = grp;
542 				return 0;
543 			}
544 		}
545 	}
546 
547 	if (avefreei) {
548 		/*
549 		 * The free-inodes counter is approximate, and for really small
550 		 * filesystems the above test can fail to find any blockgroups
551 		 */
552 		avefreei = 0;
553 		goto fallback_retry;
554 	}
555 
556 	return -1;
557 }
558 
559 static int find_group_other(struct super_block *sb, struct inode *parent,
560 			    ext4_group_t *group, umode_t mode)
561 {
562 	ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
563 	ext4_group_t i, last, ngroups = ext4_get_groups_count(sb);
564 	struct ext4_group_desc *desc;
565 	int flex_size = ext4_flex_bg_size(EXT4_SB(sb));
566 
567 	/*
568 	 * Try to place the inode is the same flex group as its
569 	 * parent.  If we can't find space, use the Orlov algorithm to
570 	 * find another flex group, and store that information in the
571 	 * parent directory's inode information so that use that flex
572 	 * group for future allocations.
573 	 */
574 	if (flex_size > 1) {
575 		int retry = 0;
576 
577 	try_again:
578 		parent_group &= ~(flex_size-1);
579 		last = parent_group + flex_size;
580 		if (last > ngroups)
581 			last = ngroups;
582 		for  (i = parent_group; i < last; i++) {
583 			desc = ext4_get_group_desc(sb, i, NULL);
584 			if (desc && ext4_free_inodes_count(sb, desc)) {
585 				*group = i;
586 				return 0;
587 			}
588 		}
589 		if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) {
590 			retry = 1;
591 			parent_group = EXT4_I(parent)->i_last_alloc_group;
592 			goto try_again;
593 		}
594 		/*
595 		 * If this didn't work, use the Orlov search algorithm
596 		 * to find a new flex group; we pass in the mode to
597 		 * avoid the topdir algorithms.
598 		 */
599 		*group = parent_group + flex_size;
600 		if (*group > ngroups)
601 			*group = 0;
602 		return find_group_orlov(sb, parent, group, mode, NULL);
603 	}
604 
605 	/*
606 	 * Try to place the inode in its parent directory
607 	 */
608 	*group = parent_group;
609 	desc = ext4_get_group_desc(sb, *group, NULL);
610 	if (desc && ext4_free_inodes_count(sb, desc) &&
611 	    ext4_free_group_clusters(sb, desc))
612 		return 0;
613 
614 	/*
615 	 * We're going to place this inode in a different blockgroup from its
616 	 * parent.  We want to cause files in a common directory to all land in
617 	 * the same blockgroup.  But we want files which are in a different
618 	 * directory which shares a blockgroup with our parent to land in a
619 	 * different blockgroup.
620 	 *
621 	 * So add our directory's i_ino into the starting point for the hash.
622 	 */
623 	*group = (*group + parent->i_ino) % ngroups;
624 
625 	/*
626 	 * Use a quadratic hash to find a group with a free inode and some free
627 	 * blocks.
628 	 */
629 	for (i = 1; i < ngroups; i <<= 1) {
630 		*group += i;
631 		if (*group >= ngroups)
632 			*group -= ngroups;
633 		desc = ext4_get_group_desc(sb, *group, NULL);
634 		if (desc && ext4_free_inodes_count(sb, desc) &&
635 		    ext4_free_group_clusters(sb, desc))
636 			return 0;
637 	}
638 
639 	/*
640 	 * That failed: try linear search for a free inode, even if that group
641 	 * has no free blocks.
642 	 */
643 	*group = parent_group;
644 	for (i = 0; i < ngroups; i++) {
645 		if (++*group >= ngroups)
646 			*group = 0;
647 		desc = ext4_get_group_desc(sb, *group, NULL);
648 		if (desc && ext4_free_inodes_count(sb, desc))
649 			return 0;
650 	}
651 
652 	return -1;
653 }
654 
655 /*
656  * In no journal mode, if an inode has recently been deleted, we want
657  * to avoid reusing it until we're reasonably sure the inode table
658  * block has been written back to disk.  (Yes, these values are
659  * somewhat arbitrary...)
660  */
661 #define RECENTCY_MIN	5
662 #define RECENTCY_DIRTY	30
663 
664 static int recently_deleted(struct super_block *sb, ext4_group_t group, int ino)
665 {
666 	struct ext4_group_desc	*gdp;
667 	struct ext4_inode	*raw_inode;
668 	struct buffer_head	*bh;
669 	unsigned long		dtime, now;
670 	int	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
671 	int	offset, ret = 0, recentcy = RECENTCY_MIN;
672 
673 	gdp = ext4_get_group_desc(sb, group, NULL);
674 	if (unlikely(!gdp))
675 		return 0;
676 
677 	bh = sb_getblk(sb, ext4_inode_table(sb, gdp) +
678 		       (ino / inodes_per_block));
679 	if (unlikely(!bh) || !buffer_uptodate(bh))
680 		/*
681 		 * If the block is not in the buffer cache, then it
682 		 * must have been written out.
683 		 */
684 		goto out;
685 
686 	offset = (ino % inodes_per_block) * EXT4_INODE_SIZE(sb);
687 	raw_inode = (struct ext4_inode *) (bh->b_data + offset);
688 	dtime = le32_to_cpu(raw_inode->i_dtime);
689 	now = get_seconds();
690 	if (buffer_dirty(bh))
691 		recentcy += RECENTCY_DIRTY;
692 
693 	if (dtime && (dtime < now) && (now < dtime + recentcy))
694 		ret = 1;
695 out:
696 	brelse(bh);
697 	return ret;
698 }
699 
700 /*
701  * There are two policies for allocating an inode.  If the new inode is
702  * a directory, then a forward search is made for a block group with both
703  * free space and a low directory-to-inode ratio; if that fails, then of
704  * the groups with above-average free space, that group with the fewest
705  * directories already is chosen.
706  *
707  * For other inodes, search forward from the parent directory's block
708  * group to find a free inode.
709  */
710 struct inode *__ext4_new_inode(handle_t *handle, struct inode *dir,
711 			       umode_t mode, const struct qstr *qstr,
712 			       __u32 goal, uid_t *owner, int handle_type,
713 			       unsigned int line_no, int nblocks)
714 {
715 	struct super_block *sb;
716 	struct buffer_head *inode_bitmap_bh = NULL;
717 	struct buffer_head *group_desc_bh;
718 	ext4_group_t ngroups, group = 0;
719 	unsigned long ino = 0;
720 	struct inode *inode;
721 	struct ext4_group_desc *gdp = NULL;
722 	struct ext4_inode_info *ei;
723 	struct ext4_sb_info *sbi;
724 	int ret2, err;
725 	struct inode *ret;
726 	ext4_group_t i;
727 	ext4_group_t flex_group;
728 	struct ext4_group_info *grp;
729 	int encrypt = 0;
730 
731 	/* Cannot create files in a deleted directory */
732 	if (!dir || !dir->i_nlink)
733 		return ERR_PTR(-EPERM);
734 
735 	if ((ext4_encrypted_inode(dir) ||
736 	     DUMMY_ENCRYPTION_ENABLED(EXT4_SB(dir->i_sb))) &&
737 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
738 		err = ext4_get_encryption_info(dir);
739 		if (err)
740 			return ERR_PTR(err);
741 		if (ext4_encryption_info(dir) == NULL)
742 			return ERR_PTR(-EPERM);
743 		if (!handle)
744 			nblocks += EXT4_DATA_TRANS_BLOCKS(dir->i_sb);
745 		encrypt = 1;
746 	}
747 
748 	sb = dir->i_sb;
749 	ngroups = ext4_get_groups_count(sb);
750 	trace_ext4_request_inode(dir, mode);
751 	inode = new_inode(sb);
752 	if (!inode)
753 		return ERR_PTR(-ENOMEM);
754 	ei = EXT4_I(inode);
755 	sbi = EXT4_SB(sb);
756 
757 	/*
758 	 * Initalize owners and quota early so that we don't have to account
759 	 * for quota initialization worst case in standard inode creating
760 	 * transaction
761 	 */
762 	if (owner) {
763 		inode->i_mode = mode;
764 		i_uid_write(inode, owner[0]);
765 		i_gid_write(inode, owner[1]);
766 	} else if (test_opt(sb, GRPID)) {
767 		inode->i_mode = mode;
768 		inode->i_uid = current_fsuid();
769 		inode->i_gid = dir->i_gid;
770 	} else
771 		inode_init_owner(inode, dir, mode);
772 	err = dquot_initialize(inode);
773 	if (err)
774 		goto out;
775 
776 	if (!goal)
777 		goal = sbi->s_inode_goal;
778 
779 	if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) {
780 		group = (goal - 1) / EXT4_INODES_PER_GROUP(sb);
781 		ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb);
782 		ret2 = 0;
783 		goto got_group;
784 	}
785 
786 	if (S_ISDIR(mode))
787 		ret2 = find_group_orlov(sb, dir, &group, mode, qstr);
788 	else
789 		ret2 = find_group_other(sb, dir, &group, mode);
790 
791 got_group:
792 	EXT4_I(dir)->i_last_alloc_group = group;
793 	err = -ENOSPC;
794 	if (ret2 == -1)
795 		goto out;
796 
797 	/*
798 	 * Normally we will only go through one pass of this loop,
799 	 * unless we get unlucky and it turns out the group we selected
800 	 * had its last inode grabbed by someone else.
801 	 */
802 	for (i = 0; i < ngroups; i++, ino = 0) {
803 		err = -EIO;
804 
805 		gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
806 		if (!gdp)
807 			goto out;
808 
809 		/*
810 		 * Check free inodes count before loading bitmap.
811 		 */
812 		if (ext4_free_inodes_count(sb, gdp) == 0) {
813 			if (++group == ngroups)
814 				group = 0;
815 			continue;
816 		}
817 
818 		grp = ext4_get_group_info(sb, group);
819 		/* Skip groups with already-known suspicious inode tables */
820 		if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
821 			if (++group == ngroups)
822 				group = 0;
823 			continue;
824 		}
825 
826 		brelse(inode_bitmap_bh);
827 		inode_bitmap_bh = ext4_read_inode_bitmap(sb, group);
828 		/* Skip groups with suspicious inode tables */
829 		if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp) || !inode_bitmap_bh) {
830 			if (++group == ngroups)
831 				group = 0;
832 			continue;
833 		}
834 
835 repeat_in_this_group:
836 		ino = ext4_find_next_zero_bit((unsigned long *)
837 					      inode_bitmap_bh->b_data,
838 					      EXT4_INODES_PER_GROUP(sb), ino);
839 		if (ino >= EXT4_INODES_PER_GROUP(sb))
840 			goto next_group;
841 		if (group == 0 && (ino+1) < EXT4_FIRST_INO(sb)) {
842 			ext4_error(sb, "reserved inode found cleared - "
843 				   "inode=%lu", ino + 1);
844 			continue;
845 		}
846 		if ((EXT4_SB(sb)->s_journal == NULL) &&
847 		    recently_deleted(sb, group, ino)) {
848 			ino++;
849 			goto next_inode;
850 		}
851 		if (!handle) {
852 			BUG_ON(nblocks <= 0);
853 			handle = __ext4_journal_start_sb(dir->i_sb, line_no,
854 							 handle_type, nblocks,
855 							 0);
856 			if (IS_ERR(handle)) {
857 				err = PTR_ERR(handle);
858 				ext4_std_error(sb, err);
859 				goto out;
860 			}
861 		}
862 		BUFFER_TRACE(inode_bitmap_bh, "get_write_access");
863 		err = ext4_journal_get_write_access(handle, inode_bitmap_bh);
864 		if (err) {
865 			ext4_std_error(sb, err);
866 			goto out;
867 		}
868 		ext4_lock_group(sb, group);
869 		ret2 = ext4_test_and_set_bit(ino, inode_bitmap_bh->b_data);
870 		ext4_unlock_group(sb, group);
871 		ino++;		/* the inode bitmap is zero-based */
872 		if (!ret2)
873 			goto got; /* we grabbed the inode! */
874 next_inode:
875 		if (ino < EXT4_INODES_PER_GROUP(sb))
876 			goto repeat_in_this_group;
877 next_group:
878 		if (++group == ngroups)
879 			group = 0;
880 	}
881 	err = -ENOSPC;
882 	goto out;
883 
884 got:
885 	BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata");
886 	err = ext4_handle_dirty_metadata(handle, NULL, inode_bitmap_bh);
887 	if (err) {
888 		ext4_std_error(sb, err);
889 		goto out;
890 	}
891 
892 	BUFFER_TRACE(group_desc_bh, "get_write_access");
893 	err = ext4_journal_get_write_access(handle, group_desc_bh);
894 	if (err) {
895 		ext4_std_error(sb, err);
896 		goto out;
897 	}
898 
899 	/* We may have to initialize the block bitmap if it isn't already */
900 	if (ext4_has_group_desc_csum(sb) &&
901 	    gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
902 		struct buffer_head *block_bitmap_bh;
903 
904 		block_bitmap_bh = ext4_read_block_bitmap(sb, group);
905 		if (!block_bitmap_bh) {
906 			err = -EIO;
907 			goto out;
908 		}
909 		BUFFER_TRACE(block_bitmap_bh, "get block bitmap access");
910 		err = ext4_journal_get_write_access(handle, block_bitmap_bh);
911 		if (err) {
912 			brelse(block_bitmap_bh);
913 			ext4_std_error(sb, err);
914 			goto out;
915 		}
916 
917 		BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap");
918 		err = ext4_handle_dirty_metadata(handle, NULL, block_bitmap_bh);
919 
920 		/* recheck and clear flag under lock if we still need to */
921 		ext4_lock_group(sb, group);
922 		if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
923 			gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
924 			ext4_free_group_clusters_set(sb, gdp,
925 				ext4_free_clusters_after_init(sb, group, gdp));
926 			ext4_block_bitmap_csum_set(sb, group, gdp,
927 						   block_bitmap_bh);
928 			ext4_group_desc_csum_set(sb, group, gdp);
929 		}
930 		ext4_unlock_group(sb, group);
931 		brelse(block_bitmap_bh);
932 
933 		if (err) {
934 			ext4_std_error(sb, err);
935 			goto out;
936 		}
937 	}
938 
939 	/* Update the relevant bg descriptor fields */
940 	if (ext4_has_group_desc_csum(sb)) {
941 		int free;
942 		struct ext4_group_info *grp = ext4_get_group_info(sb, group);
943 
944 		down_read(&grp->alloc_sem); /* protect vs itable lazyinit */
945 		ext4_lock_group(sb, group); /* while we modify the bg desc */
946 		free = EXT4_INODES_PER_GROUP(sb) -
947 			ext4_itable_unused_count(sb, gdp);
948 		if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
949 			gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT);
950 			free = 0;
951 		}
952 		/*
953 		 * Check the relative inode number against the last used
954 		 * relative inode number in this group. if it is greater
955 		 * we need to update the bg_itable_unused count
956 		 */
957 		if (ino > free)
958 			ext4_itable_unused_set(sb, gdp,
959 					(EXT4_INODES_PER_GROUP(sb) - ino));
960 		up_read(&grp->alloc_sem);
961 	} else {
962 		ext4_lock_group(sb, group);
963 	}
964 
965 	ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1);
966 	if (S_ISDIR(mode)) {
967 		ext4_used_dirs_set(sb, gdp, ext4_used_dirs_count(sb, gdp) + 1);
968 		if (sbi->s_log_groups_per_flex) {
969 			ext4_group_t f = ext4_flex_group(sbi, group);
970 
971 			atomic_inc(&sbi->s_flex_groups[f].used_dirs);
972 		}
973 	}
974 	if (ext4_has_group_desc_csum(sb)) {
975 		ext4_inode_bitmap_csum_set(sb, group, gdp, inode_bitmap_bh,
976 					   EXT4_INODES_PER_GROUP(sb) / 8);
977 		ext4_group_desc_csum_set(sb, group, gdp);
978 	}
979 	ext4_unlock_group(sb, group);
980 
981 	BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata");
982 	err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh);
983 	if (err) {
984 		ext4_std_error(sb, err);
985 		goto out;
986 	}
987 
988 	percpu_counter_dec(&sbi->s_freeinodes_counter);
989 	if (S_ISDIR(mode))
990 		percpu_counter_inc(&sbi->s_dirs_counter);
991 
992 	if (sbi->s_log_groups_per_flex) {
993 		flex_group = ext4_flex_group(sbi, group);
994 		atomic_dec(&sbi->s_flex_groups[flex_group].free_inodes);
995 	}
996 
997 	inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb);
998 	/* This is the optimal IO size (for stat), not the fs block size */
999 	inode->i_blocks = 0;
1000 	inode->i_mtime = inode->i_atime = inode->i_ctime = ei->i_crtime =
1001 						       ext4_current_time(inode);
1002 
1003 	memset(ei->i_data, 0, sizeof(ei->i_data));
1004 	ei->i_dir_start_lookup = 0;
1005 	ei->i_disksize = 0;
1006 
1007 	/* Don't inherit extent flag from directory, amongst others. */
1008 	ei->i_flags =
1009 		ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED);
1010 	ei->i_file_acl = 0;
1011 	ei->i_dtime = 0;
1012 	ei->i_block_group = group;
1013 	ei->i_last_alloc_group = ~0;
1014 
1015 	ext4_set_inode_flags(inode);
1016 	if (IS_DIRSYNC(inode))
1017 		ext4_handle_sync(handle);
1018 	if (insert_inode_locked(inode) < 0) {
1019 		/*
1020 		 * Likely a bitmap corruption causing inode to be allocated
1021 		 * twice.
1022 		 */
1023 		err = -EIO;
1024 		ext4_error(sb, "failed to insert inode %lu: doubly allocated?",
1025 			   inode->i_ino);
1026 		goto out;
1027 	}
1028 	spin_lock(&sbi->s_next_gen_lock);
1029 	inode->i_generation = sbi->s_next_generation++;
1030 	spin_unlock(&sbi->s_next_gen_lock);
1031 
1032 	/* Precompute checksum seed for inode metadata */
1033 	if (ext4_has_metadata_csum(sb)) {
1034 		__u32 csum;
1035 		__le32 inum = cpu_to_le32(inode->i_ino);
1036 		__le32 gen = cpu_to_le32(inode->i_generation);
1037 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
1038 				   sizeof(inum));
1039 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
1040 					      sizeof(gen));
1041 	}
1042 
1043 	ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
1044 	ext4_set_inode_state(inode, EXT4_STATE_NEW);
1045 
1046 	ei->i_extra_isize = EXT4_SB(sb)->s_want_extra_isize;
1047 	ei->i_inline_off = 0;
1048 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_INLINE_DATA))
1049 		ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
1050 	ret = inode;
1051 	err = dquot_alloc_inode(inode);
1052 	if (err)
1053 		goto fail_drop;
1054 
1055 	err = ext4_init_acl(handle, inode, dir);
1056 	if (err)
1057 		goto fail_free_drop;
1058 
1059 	err = ext4_init_security(handle, inode, dir, qstr);
1060 	if (err)
1061 		goto fail_free_drop;
1062 
1063 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
1064 		/* set extent flag only for directory, file and normal symlink*/
1065 		if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) {
1066 			ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS);
1067 			ext4_ext_tree_init(handle, inode);
1068 		}
1069 	}
1070 
1071 	if (ext4_handle_valid(handle)) {
1072 		ei->i_sync_tid = handle->h_transaction->t_tid;
1073 		ei->i_datasync_tid = handle->h_transaction->t_tid;
1074 	}
1075 
1076 	if (encrypt) {
1077 		err = ext4_inherit_context(dir, inode);
1078 		if (err)
1079 			goto fail_free_drop;
1080 	}
1081 
1082 	err = ext4_mark_inode_dirty(handle, inode);
1083 	if (err) {
1084 		ext4_std_error(sb, err);
1085 		goto fail_free_drop;
1086 	}
1087 
1088 	ext4_debug("allocating inode %lu\n", inode->i_ino);
1089 	trace_ext4_allocate_inode(inode, dir, mode);
1090 	brelse(inode_bitmap_bh);
1091 	return ret;
1092 
1093 fail_free_drop:
1094 	dquot_free_inode(inode);
1095 fail_drop:
1096 	clear_nlink(inode);
1097 	unlock_new_inode(inode);
1098 out:
1099 	dquot_drop(inode);
1100 	inode->i_flags |= S_NOQUOTA;
1101 	iput(inode);
1102 	brelse(inode_bitmap_bh);
1103 	return ERR_PTR(err);
1104 }
1105 
1106 /* Verify that we are loading a valid orphan from disk */
1107 struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino)
1108 {
1109 	unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count);
1110 	ext4_group_t block_group;
1111 	int bit;
1112 	struct buffer_head *bitmap_bh;
1113 	struct inode *inode = NULL;
1114 	long err = -EIO;
1115 
1116 	/* Error cases - e2fsck has already cleaned up for us */
1117 	if (ino > max_ino) {
1118 		ext4_warning(sb, "bad orphan ino %lu!  e2fsck was run?", ino);
1119 		goto error;
1120 	}
1121 
1122 	block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
1123 	bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
1124 	bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
1125 	if (!bitmap_bh) {
1126 		ext4_warning(sb, "inode bitmap error for orphan %lu", ino);
1127 		goto error;
1128 	}
1129 
1130 	/* Having the inode bit set should be a 100% indicator that this
1131 	 * is a valid orphan (no e2fsck run on fs).  Orphans also include
1132 	 * inodes that were being truncated, so we can't check i_nlink==0.
1133 	 */
1134 	if (!ext4_test_bit(bit, bitmap_bh->b_data))
1135 		goto bad_orphan;
1136 
1137 	inode = ext4_iget(sb, ino);
1138 	if (IS_ERR(inode))
1139 		goto iget_failed;
1140 
1141 	/*
1142 	 * If the orphans has i_nlinks > 0 then it should be able to be
1143 	 * truncated, otherwise it won't be removed from the orphan list
1144 	 * during processing and an infinite loop will result.
1145 	 */
1146 	if (inode->i_nlink && !ext4_can_truncate(inode))
1147 		goto bad_orphan;
1148 
1149 	if (NEXT_ORPHAN(inode) > max_ino)
1150 		goto bad_orphan;
1151 	brelse(bitmap_bh);
1152 	return inode;
1153 
1154 iget_failed:
1155 	err = PTR_ERR(inode);
1156 	inode = NULL;
1157 bad_orphan:
1158 	ext4_warning(sb, "bad orphan inode %lu!  e2fsck was run?", ino);
1159 	printk(KERN_WARNING "ext4_test_bit(bit=%d, block=%llu) = %d\n",
1160 	       bit, (unsigned long long)bitmap_bh->b_blocknr,
1161 	       ext4_test_bit(bit, bitmap_bh->b_data));
1162 	printk(KERN_WARNING "inode=%p\n", inode);
1163 	if (inode) {
1164 		printk(KERN_WARNING "is_bad_inode(inode)=%d\n",
1165 		       is_bad_inode(inode));
1166 		printk(KERN_WARNING "NEXT_ORPHAN(inode)=%u\n",
1167 		       NEXT_ORPHAN(inode));
1168 		printk(KERN_WARNING "max_ino=%lu\n", max_ino);
1169 		printk(KERN_WARNING "i_nlink=%u\n", inode->i_nlink);
1170 		/* Avoid freeing blocks if we got a bad deleted inode */
1171 		if (inode->i_nlink == 0)
1172 			inode->i_blocks = 0;
1173 		iput(inode);
1174 	}
1175 	brelse(bitmap_bh);
1176 error:
1177 	return ERR_PTR(err);
1178 }
1179 
1180 unsigned long ext4_count_free_inodes(struct super_block *sb)
1181 {
1182 	unsigned long desc_count;
1183 	struct ext4_group_desc *gdp;
1184 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1185 #ifdef EXT4FS_DEBUG
1186 	struct ext4_super_block *es;
1187 	unsigned long bitmap_count, x;
1188 	struct buffer_head *bitmap_bh = NULL;
1189 
1190 	es = EXT4_SB(sb)->s_es;
1191 	desc_count = 0;
1192 	bitmap_count = 0;
1193 	gdp = NULL;
1194 	for (i = 0; i < ngroups; i++) {
1195 		gdp = ext4_get_group_desc(sb, i, NULL);
1196 		if (!gdp)
1197 			continue;
1198 		desc_count += ext4_free_inodes_count(sb, gdp);
1199 		brelse(bitmap_bh);
1200 		bitmap_bh = ext4_read_inode_bitmap(sb, i);
1201 		if (!bitmap_bh)
1202 			continue;
1203 
1204 		x = ext4_count_free(bitmap_bh->b_data,
1205 				    EXT4_INODES_PER_GROUP(sb) / 8);
1206 		printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n",
1207 			(unsigned long) i, ext4_free_inodes_count(sb, gdp), x);
1208 		bitmap_count += x;
1209 	}
1210 	brelse(bitmap_bh);
1211 	printk(KERN_DEBUG "ext4_count_free_inodes: "
1212 	       "stored = %u, computed = %lu, %lu\n",
1213 	       le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count);
1214 	return desc_count;
1215 #else
1216 	desc_count = 0;
1217 	for (i = 0; i < ngroups; i++) {
1218 		gdp = ext4_get_group_desc(sb, i, NULL);
1219 		if (!gdp)
1220 			continue;
1221 		desc_count += ext4_free_inodes_count(sb, gdp);
1222 		cond_resched();
1223 	}
1224 	return desc_count;
1225 #endif
1226 }
1227 
1228 /* Called at mount-time, super-block is locked */
1229 unsigned long ext4_count_dirs(struct super_block * sb)
1230 {
1231 	unsigned long count = 0;
1232 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1233 
1234 	for (i = 0; i < ngroups; i++) {
1235 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
1236 		if (!gdp)
1237 			continue;
1238 		count += ext4_used_dirs_count(sb, gdp);
1239 	}
1240 	return count;
1241 }
1242 
1243 /*
1244  * Zeroes not yet zeroed inode table - just write zeroes through the whole
1245  * inode table. Must be called without any spinlock held. The only place
1246  * where it is called from on active part of filesystem is ext4lazyinit
1247  * thread, so we do not need any special locks, however we have to prevent
1248  * inode allocation from the current group, so we take alloc_sem lock, to
1249  * block ext4_new_inode() until we are finished.
1250  */
1251 int ext4_init_inode_table(struct super_block *sb, ext4_group_t group,
1252 				 int barrier)
1253 {
1254 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1255 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1256 	struct ext4_group_desc *gdp = NULL;
1257 	struct buffer_head *group_desc_bh;
1258 	handle_t *handle;
1259 	ext4_fsblk_t blk;
1260 	int num, ret = 0, used_blks = 0;
1261 
1262 	/* This should not happen, but just to be sure check this */
1263 	if (sb->s_flags & MS_RDONLY) {
1264 		ret = 1;
1265 		goto out;
1266 	}
1267 
1268 	gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
1269 	if (!gdp)
1270 		goto out;
1271 
1272 	/*
1273 	 * We do not need to lock this, because we are the only one
1274 	 * handling this flag.
1275 	 */
1276 	if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))
1277 		goto out;
1278 
1279 	handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
1280 	if (IS_ERR(handle)) {
1281 		ret = PTR_ERR(handle);
1282 		goto out;
1283 	}
1284 
1285 	down_write(&grp->alloc_sem);
1286 	/*
1287 	 * If inode bitmap was already initialized there may be some
1288 	 * used inodes so we need to skip blocks with used inodes in
1289 	 * inode table.
1290 	 */
1291 	if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)))
1292 		used_blks = DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb) -
1293 			    ext4_itable_unused_count(sb, gdp)),
1294 			    sbi->s_inodes_per_block);
1295 
1296 	if ((used_blks < 0) || (used_blks > sbi->s_itb_per_group)) {
1297 		ext4_error(sb, "Something is wrong with group %u: "
1298 			   "used itable blocks: %d; "
1299 			   "itable unused count: %u",
1300 			   group, used_blks,
1301 			   ext4_itable_unused_count(sb, gdp));
1302 		ret = 1;
1303 		goto err_out;
1304 	}
1305 
1306 	blk = ext4_inode_table(sb, gdp) + used_blks;
1307 	num = sbi->s_itb_per_group - used_blks;
1308 
1309 	BUFFER_TRACE(group_desc_bh, "get_write_access");
1310 	ret = ext4_journal_get_write_access(handle,
1311 					    group_desc_bh);
1312 	if (ret)
1313 		goto err_out;
1314 
1315 	/*
1316 	 * Skip zeroout if the inode table is full. But we set the ZEROED
1317 	 * flag anyway, because obviously, when it is full it does not need
1318 	 * further zeroing.
1319 	 */
1320 	if (unlikely(num == 0))
1321 		goto skip_zeroout;
1322 
1323 	ext4_debug("going to zero out inode table in group %d\n",
1324 		   group);
1325 	ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS);
1326 	if (ret < 0)
1327 		goto err_out;
1328 	if (barrier)
1329 		blkdev_issue_flush(sb->s_bdev, GFP_NOFS, NULL);
1330 
1331 skip_zeroout:
1332 	ext4_lock_group(sb, group);
1333 	gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED);
1334 	ext4_group_desc_csum_set(sb, group, gdp);
1335 	ext4_unlock_group(sb, group);
1336 
1337 	BUFFER_TRACE(group_desc_bh,
1338 		     "call ext4_handle_dirty_metadata");
1339 	ret = ext4_handle_dirty_metadata(handle, NULL,
1340 					 group_desc_bh);
1341 
1342 err_out:
1343 	up_write(&grp->alloc_sem);
1344 	ext4_journal_stop(handle);
1345 out:
1346 	return ret;
1347 }
1348