1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/ialloc.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * BSD ufs-inspired inode and directory allocation by 11 * Stephen Tweedie (sct@redhat.com), 1993 12 * Big-endian to little-endian byte-swapping/bitmaps by 13 * David S. Miller (davem@caip.rutgers.edu), 1995 14 */ 15 16 #include <linux/time.h> 17 #include <linux/fs.h> 18 #include <linux/stat.h> 19 #include <linux/string.h> 20 #include <linux/quotaops.h> 21 #include <linux/buffer_head.h> 22 #include <linux/random.h> 23 #include <linux/bitops.h> 24 #include <linux/blkdev.h> 25 #include <linux/cred.h> 26 27 #include <asm/byteorder.h> 28 29 #include "ext4.h" 30 #include "ext4_jbd2.h" 31 #include "xattr.h" 32 #include "acl.h" 33 34 #include <trace/events/ext4.h> 35 36 /* 37 * ialloc.c contains the inodes allocation and deallocation routines 38 */ 39 40 /* 41 * The free inodes are managed by bitmaps. A file system contains several 42 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap 43 * block for inodes, N blocks for the inode table and data blocks. 44 * 45 * The file system contains group descriptors which are located after the 46 * super block. Each descriptor contains the number of the bitmap block and 47 * the free blocks count in the block. 48 */ 49 50 /* 51 * To avoid calling the atomic setbit hundreds or thousands of times, we only 52 * need to use it within a single byte (to ensure we get endianness right). 53 * We can use memset for the rest of the bitmap as there are no other users. 54 */ 55 void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap) 56 { 57 int i; 58 59 if (start_bit >= end_bit) 60 return; 61 62 ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit); 63 for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++) 64 ext4_set_bit(i, bitmap); 65 if (i < end_bit) 66 memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3); 67 } 68 69 void ext4_end_bitmap_read(struct buffer_head *bh, int uptodate) 70 { 71 if (uptodate) { 72 set_buffer_uptodate(bh); 73 set_bitmap_uptodate(bh); 74 } 75 unlock_buffer(bh); 76 put_bh(bh); 77 } 78 79 static int ext4_validate_inode_bitmap(struct super_block *sb, 80 struct ext4_group_desc *desc, 81 ext4_group_t block_group, 82 struct buffer_head *bh) 83 { 84 ext4_fsblk_t blk; 85 struct ext4_group_info *grp; 86 87 if (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) 88 return 0; 89 90 grp = ext4_get_group_info(sb, block_group); 91 92 if (buffer_verified(bh)) 93 return 0; 94 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) 95 return -EFSCORRUPTED; 96 97 ext4_lock_group(sb, block_group); 98 if (buffer_verified(bh)) 99 goto verified; 100 blk = ext4_inode_bitmap(sb, desc); 101 if (!ext4_inode_bitmap_csum_verify(sb, block_group, desc, bh, 102 EXT4_INODES_PER_GROUP(sb) / 8) || 103 ext4_simulate_fail(sb, EXT4_SIM_IBITMAP_CRC)) { 104 ext4_unlock_group(sb, block_group); 105 ext4_error(sb, "Corrupt inode bitmap - block_group = %u, " 106 "inode_bitmap = %llu", block_group, blk); 107 ext4_mark_group_bitmap_corrupted(sb, block_group, 108 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 109 return -EFSBADCRC; 110 } 111 set_buffer_verified(bh); 112 verified: 113 ext4_unlock_group(sb, block_group); 114 return 0; 115 } 116 117 /* 118 * Read the inode allocation bitmap for a given block_group, reading 119 * into the specified slot in the superblock's bitmap cache. 120 * 121 * Return buffer_head of bitmap on success, or an ERR_PTR on error. 122 */ 123 static struct buffer_head * 124 ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group) 125 { 126 struct ext4_group_desc *desc; 127 struct ext4_sb_info *sbi = EXT4_SB(sb); 128 struct buffer_head *bh = NULL; 129 ext4_fsblk_t bitmap_blk; 130 int err; 131 132 desc = ext4_get_group_desc(sb, block_group, NULL); 133 if (!desc) 134 return ERR_PTR(-EFSCORRUPTED); 135 136 bitmap_blk = ext4_inode_bitmap(sb, desc); 137 if ((bitmap_blk <= le32_to_cpu(sbi->s_es->s_first_data_block)) || 138 (bitmap_blk >= ext4_blocks_count(sbi->s_es))) { 139 ext4_error(sb, "Invalid inode bitmap blk %llu in " 140 "block_group %u", bitmap_blk, block_group); 141 ext4_mark_group_bitmap_corrupted(sb, block_group, 142 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 143 return ERR_PTR(-EFSCORRUPTED); 144 } 145 bh = sb_getblk(sb, bitmap_blk); 146 if (unlikely(!bh)) { 147 ext4_warning(sb, "Cannot read inode bitmap - " 148 "block_group = %u, inode_bitmap = %llu", 149 block_group, bitmap_blk); 150 return ERR_PTR(-ENOMEM); 151 } 152 if (bitmap_uptodate(bh)) 153 goto verify; 154 155 lock_buffer(bh); 156 if (bitmap_uptodate(bh)) { 157 unlock_buffer(bh); 158 goto verify; 159 } 160 161 ext4_lock_group(sb, block_group); 162 if (ext4_has_group_desc_csum(sb) && 163 (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT))) { 164 if (block_group == 0) { 165 ext4_unlock_group(sb, block_group); 166 unlock_buffer(bh); 167 ext4_error(sb, "Inode bitmap for bg 0 marked " 168 "uninitialized"); 169 err = -EFSCORRUPTED; 170 goto out; 171 } 172 memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8); 173 ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb), 174 sb->s_blocksize * 8, bh->b_data); 175 set_bitmap_uptodate(bh); 176 set_buffer_uptodate(bh); 177 set_buffer_verified(bh); 178 ext4_unlock_group(sb, block_group); 179 unlock_buffer(bh); 180 return bh; 181 } 182 ext4_unlock_group(sb, block_group); 183 184 if (buffer_uptodate(bh)) { 185 /* 186 * if not uninit if bh is uptodate, 187 * bitmap is also uptodate 188 */ 189 set_bitmap_uptodate(bh); 190 unlock_buffer(bh); 191 goto verify; 192 } 193 /* 194 * submit the buffer_head for reading 195 */ 196 trace_ext4_load_inode_bitmap(sb, block_group); 197 ext4_read_bh(bh, REQ_META | REQ_PRIO, ext4_end_bitmap_read); 198 ext4_simulate_fail_bh(sb, bh, EXT4_SIM_IBITMAP_EIO); 199 if (!buffer_uptodate(bh)) { 200 put_bh(bh); 201 ext4_error_err(sb, EIO, "Cannot read inode bitmap - " 202 "block_group = %u, inode_bitmap = %llu", 203 block_group, bitmap_blk); 204 ext4_mark_group_bitmap_corrupted(sb, block_group, 205 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 206 return ERR_PTR(-EIO); 207 } 208 209 verify: 210 err = ext4_validate_inode_bitmap(sb, desc, block_group, bh); 211 if (err) 212 goto out; 213 return bh; 214 out: 215 put_bh(bh); 216 return ERR_PTR(err); 217 } 218 219 /* 220 * NOTE! When we get the inode, we're the only people 221 * that have access to it, and as such there are no 222 * race conditions we have to worry about. The inode 223 * is not on the hash-lists, and it cannot be reached 224 * through the filesystem because the directory entry 225 * has been deleted earlier. 226 * 227 * HOWEVER: we must make sure that we get no aliases, 228 * which means that we have to call "clear_inode()" 229 * _before_ we mark the inode not in use in the inode 230 * bitmaps. Otherwise a newly created file might use 231 * the same inode number (not actually the same pointer 232 * though), and then we'd have two inodes sharing the 233 * same inode number and space on the harddisk. 234 */ 235 void ext4_free_inode(handle_t *handle, struct inode *inode) 236 { 237 struct super_block *sb = inode->i_sb; 238 int is_directory; 239 unsigned long ino; 240 struct buffer_head *bitmap_bh = NULL; 241 struct buffer_head *bh2; 242 ext4_group_t block_group; 243 unsigned long bit; 244 struct ext4_group_desc *gdp; 245 struct ext4_super_block *es; 246 struct ext4_sb_info *sbi; 247 int fatal = 0, err, count, cleared; 248 struct ext4_group_info *grp; 249 250 if (!sb) { 251 printk(KERN_ERR "EXT4-fs: %s:%d: inode on " 252 "nonexistent device\n", __func__, __LINE__); 253 return; 254 } 255 if (atomic_read(&inode->i_count) > 1) { 256 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: count=%d", 257 __func__, __LINE__, inode->i_ino, 258 atomic_read(&inode->i_count)); 259 return; 260 } 261 if (inode->i_nlink) { 262 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: nlink=%d\n", 263 __func__, __LINE__, inode->i_ino, inode->i_nlink); 264 return; 265 } 266 sbi = EXT4_SB(sb); 267 268 ino = inode->i_ino; 269 ext4_debug("freeing inode %lu\n", ino); 270 trace_ext4_free_inode(inode); 271 272 dquot_initialize(inode); 273 dquot_free_inode(inode); 274 275 is_directory = S_ISDIR(inode->i_mode); 276 277 /* Do this BEFORE marking the inode not in use or returning an error */ 278 ext4_clear_inode(inode); 279 280 es = sbi->s_es; 281 if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) { 282 ext4_error(sb, "reserved or nonexistent inode %lu", ino); 283 goto error_return; 284 } 285 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 286 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb); 287 bitmap_bh = ext4_read_inode_bitmap(sb, block_group); 288 /* Don't bother if the inode bitmap is corrupt. */ 289 if (IS_ERR(bitmap_bh)) { 290 fatal = PTR_ERR(bitmap_bh); 291 bitmap_bh = NULL; 292 goto error_return; 293 } 294 if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) { 295 grp = ext4_get_group_info(sb, block_group); 296 if (unlikely(EXT4_MB_GRP_IBITMAP_CORRUPT(grp))) { 297 fatal = -EFSCORRUPTED; 298 goto error_return; 299 } 300 } 301 302 BUFFER_TRACE(bitmap_bh, "get_write_access"); 303 fatal = ext4_journal_get_write_access(handle, bitmap_bh); 304 if (fatal) 305 goto error_return; 306 307 fatal = -ESRCH; 308 gdp = ext4_get_group_desc(sb, block_group, &bh2); 309 if (gdp) { 310 BUFFER_TRACE(bh2, "get_write_access"); 311 fatal = ext4_journal_get_write_access(handle, bh2); 312 } 313 ext4_lock_group(sb, block_group); 314 cleared = ext4_test_and_clear_bit(bit, bitmap_bh->b_data); 315 if (fatal || !cleared) { 316 ext4_unlock_group(sb, block_group); 317 goto out; 318 } 319 320 count = ext4_free_inodes_count(sb, gdp) + 1; 321 ext4_free_inodes_set(sb, gdp, count); 322 if (is_directory) { 323 count = ext4_used_dirs_count(sb, gdp) - 1; 324 ext4_used_dirs_set(sb, gdp, count); 325 if (percpu_counter_initialized(&sbi->s_dirs_counter)) 326 percpu_counter_dec(&sbi->s_dirs_counter); 327 } 328 ext4_inode_bitmap_csum_set(sb, block_group, gdp, bitmap_bh, 329 EXT4_INODES_PER_GROUP(sb) / 8); 330 ext4_group_desc_csum_set(sb, block_group, gdp); 331 ext4_unlock_group(sb, block_group); 332 333 if (percpu_counter_initialized(&sbi->s_freeinodes_counter)) 334 percpu_counter_inc(&sbi->s_freeinodes_counter); 335 if (sbi->s_log_groups_per_flex) { 336 struct flex_groups *fg; 337 338 fg = sbi_array_rcu_deref(sbi, s_flex_groups, 339 ext4_flex_group(sbi, block_group)); 340 atomic_inc(&fg->free_inodes); 341 if (is_directory) 342 atomic_dec(&fg->used_dirs); 343 } 344 BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata"); 345 fatal = ext4_handle_dirty_metadata(handle, NULL, bh2); 346 out: 347 if (cleared) { 348 BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata"); 349 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 350 if (!fatal) 351 fatal = err; 352 } else { 353 ext4_error(sb, "bit already cleared for inode %lu", ino); 354 ext4_mark_group_bitmap_corrupted(sb, block_group, 355 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 356 } 357 358 error_return: 359 brelse(bitmap_bh); 360 ext4_std_error(sb, fatal); 361 } 362 363 struct orlov_stats { 364 __u64 free_clusters; 365 __u32 free_inodes; 366 __u32 used_dirs; 367 }; 368 369 /* 370 * Helper function for Orlov's allocator; returns critical information 371 * for a particular block group or flex_bg. If flex_size is 1, then g 372 * is a block group number; otherwise it is flex_bg number. 373 */ 374 static void get_orlov_stats(struct super_block *sb, ext4_group_t g, 375 int flex_size, struct orlov_stats *stats) 376 { 377 struct ext4_group_desc *desc; 378 379 if (flex_size > 1) { 380 struct flex_groups *fg = sbi_array_rcu_deref(EXT4_SB(sb), 381 s_flex_groups, g); 382 stats->free_inodes = atomic_read(&fg->free_inodes); 383 stats->free_clusters = atomic64_read(&fg->free_clusters); 384 stats->used_dirs = atomic_read(&fg->used_dirs); 385 return; 386 } 387 388 desc = ext4_get_group_desc(sb, g, NULL); 389 if (desc) { 390 stats->free_inodes = ext4_free_inodes_count(sb, desc); 391 stats->free_clusters = ext4_free_group_clusters(sb, desc); 392 stats->used_dirs = ext4_used_dirs_count(sb, desc); 393 } else { 394 stats->free_inodes = 0; 395 stats->free_clusters = 0; 396 stats->used_dirs = 0; 397 } 398 } 399 400 /* 401 * Orlov's allocator for directories. 402 * 403 * We always try to spread first-level directories. 404 * 405 * If there are blockgroups with both free inodes and free clusters counts 406 * not worse than average we return one with smallest directory count. 407 * Otherwise we simply return a random group. 408 * 409 * For the rest rules look so: 410 * 411 * It's OK to put directory into a group unless 412 * it has too many directories already (max_dirs) or 413 * it has too few free inodes left (min_inodes) or 414 * it has too few free clusters left (min_clusters) or 415 * Parent's group is preferred, if it doesn't satisfy these 416 * conditions we search cyclically through the rest. If none 417 * of the groups look good we just look for a group with more 418 * free inodes than average (starting at parent's group). 419 */ 420 421 static int find_group_orlov(struct super_block *sb, struct inode *parent, 422 ext4_group_t *group, umode_t mode, 423 const struct qstr *qstr) 424 { 425 ext4_group_t parent_group = EXT4_I(parent)->i_block_group; 426 struct ext4_sb_info *sbi = EXT4_SB(sb); 427 ext4_group_t real_ngroups = ext4_get_groups_count(sb); 428 int inodes_per_group = EXT4_INODES_PER_GROUP(sb); 429 unsigned int freei, avefreei, grp_free; 430 ext4_fsblk_t freec, avefreec; 431 unsigned int ndirs; 432 int max_dirs, min_inodes; 433 ext4_grpblk_t min_clusters; 434 ext4_group_t i, grp, g, ngroups; 435 struct ext4_group_desc *desc; 436 struct orlov_stats stats; 437 int flex_size = ext4_flex_bg_size(sbi); 438 struct dx_hash_info hinfo; 439 440 ngroups = real_ngroups; 441 if (flex_size > 1) { 442 ngroups = (real_ngroups + flex_size - 1) >> 443 sbi->s_log_groups_per_flex; 444 parent_group >>= sbi->s_log_groups_per_flex; 445 } 446 447 freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter); 448 avefreei = freei / ngroups; 449 freec = percpu_counter_read_positive(&sbi->s_freeclusters_counter); 450 avefreec = freec; 451 do_div(avefreec, ngroups); 452 ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter); 453 454 if (S_ISDIR(mode) && 455 ((parent == d_inode(sb->s_root)) || 456 (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) { 457 int best_ndir = inodes_per_group; 458 int ret = -1; 459 460 if (qstr) { 461 hinfo.hash_version = DX_HASH_HALF_MD4; 462 hinfo.seed = sbi->s_hash_seed; 463 ext4fs_dirhash(parent, qstr->name, qstr->len, &hinfo); 464 grp = hinfo.hash; 465 } else 466 grp = prandom_u32(); 467 parent_group = (unsigned)grp % ngroups; 468 for (i = 0; i < ngroups; i++) { 469 g = (parent_group + i) % ngroups; 470 get_orlov_stats(sb, g, flex_size, &stats); 471 if (!stats.free_inodes) 472 continue; 473 if (stats.used_dirs >= best_ndir) 474 continue; 475 if (stats.free_inodes < avefreei) 476 continue; 477 if (stats.free_clusters < avefreec) 478 continue; 479 grp = g; 480 ret = 0; 481 best_ndir = stats.used_dirs; 482 } 483 if (ret) 484 goto fallback; 485 found_flex_bg: 486 if (flex_size == 1) { 487 *group = grp; 488 return 0; 489 } 490 491 /* 492 * We pack inodes at the beginning of the flexgroup's 493 * inode tables. Block allocation decisions will do 494 * something similar, although regular files will 495 * start at 2nd block group of the flexgroup. See 496 * ext4_ext_find_goal() and ext4_find_near(). 497 */ 498 grp *= flex_size; 499 for (i = 0; i < flex_size; i++) { 500 if (grp+i >= real_ngroups) 501 break; 502 desc = ext4_get_group_desc(sb, grp+i, NULL); 503 if (desc && ext4_free_inodes_count(sb, desc)) { 504 *group = grp+i; 505 return 0; 506 } 507 } 508 goto fallback; 509 } 510 511 max_dirs = ndirs / ngroups + inodes_per_group / 16; 512 min_inodes = avefreei - inodes_per_group*flex_size / 4; 513 if (min_inodes < 1) 514 min_inodes = 1; 515 min_clusters = avefreec - EXT4_CLUSTERS_PER_GROUP(sb)*flex_size / 4; 516 517 /* 518 * Start looking in the flex group where we last allocated an 519 * inode for this parent directory 520 */ 521 if (EXT4_I(parent)->i_last_alloc_group != ~0) { 522 parent_group = EXT4_I(parent)->i_last_alloc_group; 523 if (flex_size > 1) 524 parent_group >>= sbi->s_log_groups_per_flex; 525 } 526 527 for (i = 0; i < ngroups; i++) { 528 grp = (parent_group + i) % ngroups; 529 get_orlov_stats(sb, grp, flex_size, &stats); 530 if (stats.used_dirs >= max_dirs) 531 continue; 532 if (stats.free_inodes < min_inodes) 533 continue; 534 if (stats.free_clusters < min_clusters) 535 continue; 536 goto found_flex_bg; 537 } 538 539 fallback: 540 ngroups = real_ngroups; 541 avefreei = freei / ngroups; 542 fallback_retry: 543 parent_group = EXT4_I(parent)->i_block_group; 544 for (i = 0; i < ngroups; i++) { 545 grp = (parent_group + i) % ngroups; 546 desc = ext4_get_group_desc(sb, grp, NULL); 547 if (desc) { 548 grp_free = ext4_free_inodes_count(sb, desc); 549 if (grp_free && grp_free >= avefreei) { 550 *group = grp; 551 return 0; 552 } 553 } 554 } 555 556 if (avefreei) { 557 /* 558 * The free-inodes counter is approximate, and for really small 559 * filesystems the above test can fail to find any blockgroups 560 */ 561 avefreei = 0; 562 goto fallback_retry; 563 } 564 565 return -1; 566 } 567 568 static int find_group_other(struct super_block *sb, struct inode *parent, 569 ext4_group_t *group, umode_t mode) 570 { 571 ext4_group_t parent_group = EXT4_I(parent)->i_block_group; 572 ext4_group_t i, last, ngroups = ext4_get_groups_count(sb); 573 struct ext4_group_desc *desc; 574 int flex_size = ext4_flex_bg_size(EXT4_SB(sb)); 575 576 /* 577 * Try to place the inode is the same flex group as its 578 * parent. If we can't find space, use the Orlov algorithm to 579 * find another flex group, and store that information in the 580 * parent directory's inode information so that use that flex 581 * group for future allocations. 582 */ 583 if (flex_size > 1) { 584 int retry = 0; 585 586 try_again: 587 parent_group &= ~(flex_size-1); 588 last = parent_group + flex_size; 589 if (last > ngroups) 590 last = ngroups; 591 for (i = parent_group; i < last; i++) { 592 desc = ext4_get_group_desc(sb, i, NULL); 593 if (desc && ext4_free_inodes_count(sb, desc)) { 594 *group = i; 595 return 0; 596 } 597 } 598 if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) { 599 retry = 1; 600 parent_group = EXT4_I(parent)->i_last_alloc_group; 601 goto try_again; 602 } 603 /* 604 * If this didn't work, use the Orlov search algorithm 605 * to find a new flex group; we pass in the mode to 606 * avoid the topdir algorithms. 607 */ 608 *group = parent_group + flex_size; 609 if (*group > ngroups) 610 *group = 0; 611 return find_group_orlov(sb, parent, group, mode, NULL); 612 } 613 614 /* 615 * Try to place the inode in its parent directory 616 */ 617 *group = parent_group; 618 desc = ext4_get_group_desc(sb, *group, NULL); 619 if (desc && ext4_free_inodes_count(sb, desc) && 620 ext4_free_group_clusters(sb, desc)) 621 return 0; 622 623 /* 624 * We're going to place this inode in a different blockgroup from its 625 * parent. We want to cause files in a common directory to all land in 626 * the same blockgroup. But we want files which are in a different 627 * directory which shares a blockgroup with our parent to land in a 628 * different blockgroup. 629 * 630 * So add our directory's i_ino into the starting point for the hash. 631 */ 632 *group = (*group + parent->i_ino) % ngroups; 633 634 /* 635 * Use a quadratic hash to find a group with a free inode and some free 636 * blocks. 637 */ 638 for (i = 1; i < ngroups; i <<= 1) { 639 *group += i; 640 if (*group >= ngroups) 641 *group -= ngroups; 642 desc = ext4_get_group_desc(sb, *group, NULL); 643 if (desc && ext4_free_inodes_count(sb, desc) && 644 ext4_free_group_clusters(sb, desc)) 645 return 0; 646 } 647 648 /* 649 * That failed: try linear search for a free inode, even if that group 650 * has no free blocks. 651 */ 652 *group = parent_group; 653 for (i = 0; i < ngroups; i++) { 654 if (++*group >= ngroups) 655 *group = 0; 656 desc = ext4_get_group_desc(sb, *group, NULL); 657 if (desc && ext4_free_inodes_count(sb, desc)) 658 return 0; 659 } 660 661 return -1; 662 } 663 664 /* 665 * In no journal mode, if an inode has recently been deleted, we want 666 * to avoid reusing it until we're reasonably sure the inode table 667 * block has been written back to disk. (Yes, these values are 668 * somewhat arbitrary...) 669 */ 670 #define RECENTCY_MIN 60 671 #define RECENTCY_DIRTY 300 672 673 static int recently_deleted(struct super_block *sb, ext4_group_t group, int ino) 674 { 675 struct ext4_group_desc *gdp; 676 struct ext4_inode *raw_inode; 677 struct buffer_head *bh; 678 int inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 679 int offset, ret = 0; 680 int recentcy = RECENTCY_MIN; 681 u32 dtime, now; 682 683 gdp = ext4_get_group_desc(sb, group, NULL); 684 if (unlikely(!gdp)) 685 return 0; 686 687 bh = sb_find_get_block(sb, ext4_inode_table(sb, gdp) + 688 (ino / inodes_per_block)); 689 if (!bh || !buffer_uptodate(bh)) 690 /* 691 * If the block is not in the buffer cache, then it 692 * must have been written out. 693 */ 694 goto out; 695 696 offset = (ino % inodes_per_block) * EXT4_INODE_SIZE(sb); 697 raw_inode = (struct ext4_inode *) (bh->b_data + offset); 698 699 /* i_dtime is only 32 bits on disk, but we only care about relative 700 * times in the range of a few minutes (i.e. long enough to sync a 701 * recently-deleted inode to disk), so using the low 32 bits of the 702 * clock (a 68 year range) is enough, see time_before32() */ 703 dtime = le32_to_cpu(raw_inode->i_dtime); 704 now = ktime_get_real_seconds(); 705 if (buffer_dirty(bh)) 706 recentcy += RECENTCY_DIRTY; 707 708 if (dtime && time_before32(dtime, now) && 709 time_before32(now, dtime + recentcy)) 710 ret = 1; 711 out: 712 brelse(bh); 713 return ret; 714 } 715 716 static int find_inode_bit(struct super_block *sb, ext4_group_t group, 717 struct buffer_head *bitmap, unsigned long *ino) 718 { 719 bool check_recently_deleted = EXT4_SB(sb)->s_journal == NULL; 720 unsigned long recently_deleted_ino = EXT4_INODES_PER_GROUP(sb); 721 722 next: 723 *ino = ext4_find_next_zero_bit((unsigned long *) 724 bitmap->b_data, 725 EXT4_INODES_PER_GROUP(sb), *ino); 726 if (*ino >= EXT4_INODES_PER_GROUP(sb)) 727 goto not_found; 728 729 if (check_recently_deleted && recently_deleted(sb, group, *ino)) { 730 recently_deleted_ino = *ino; 731 *ino = *ino + 1; 732 if (*ino < EXT4_INODES_PER_GROUP(sb)) 733 goto next; 734 goto not_found; 735 } 736 return 1; 737 not_found: 738 if (recently_deleted_ino >= EXT4_INODES_PER_GROUP(sb)) 739 return 0; 740 /* 741 * Not reusing recently deleted inodes is mostly a preference. We don't 742 * want to report ENOSPC or skew allocation patterns because of that. 743 * So return even recently deleted inode if we could find better in the 744 * given range. 745 */ 746 *ino = recently_deleted_ino; 747 return 1; 748 } 749 750 int ext4_mark_inode_used(struct super_block *sb, int ino) 751 { 752 unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count); 753 struct buffer_head *inode_bitmap_bh = NULL, *group_desc_bh = NULL; 754 struct ext4_group_desc *gdp; 755 ext4_group_t group; 756 int bit; 757 int err = -EFSCORRUPTED; 758 759 if (ino < EXT4_FIRST_INO(sb) || ino > max_ino) 760 goto out; 761 762 group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 763 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb); 764 inode_bitmap_bh = ext4_read_inode_bitmap(sb, group); 765 if (IS_ERR(inode_bitmap_bh)) 766 return PTR_ERR(inode_bitmap_bh); 767 768 if (ext4_test_bit(bit, inode_bitmap_bh->b_data)) { 769 err = 0; 770 goto out; 771 } 772 773 gdp = ext4_get_group_desc(sb, group, &group_desc_bh); 774 if (!gdp || !group_desc_bh) { 775 err = -EINVAL; 776 goto out; 777 } 778 779 ext4_set_bit(bit, inode_bitmap_bh->b_data); 780 781 BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata"); 782 err = ext4_handle_dirty_metadata(NULL, NULL, inode_bitmap_bh); 783 if (err) { 784 ext4_std_error(sb, err); 785 goto out; 786 } 787 err = sync_dirty_buffer(inode_bitmap_bh); 788 if (err) { 789 ext4_std_error(sb, err); 790 goto out; 791 } 792 793 /* We may have to initialize the block bitmap if it isn't already */ 794 if (ext4_has_group_desc_csum(sb) && 795 gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 796 struct buffer_head *block_bitmap_bh; 797 798 block_bitmap_bh = ext4_read_block_bitmap(sb, group); 799 if (IS_ERR(block_bitmap_bh)) { 800 err = PTR_ERR(block_bitmap_bh); 801 goto out; 802 } 803 804 BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap"); 805 err = ext4_handle_dirty_metadata(NULL, NULL, block_bitmap_bh); 806 sync_dirty_buffer(block_bitmap_bh); 807 808 /* recheck and clear flag under lock if we still need to */ 809 ext4_lock_group(sb, group); 810 if (ext4_has_group_desc_csum(sb) && 811 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 812 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 813 ext4_free_group_clusters_set(sb, gdp, 814 ext4_free_clusters_after_init(sb, group, gdp)); 815 ext4_block_bitmap_csum_set(sb, group, gdp, 816 block_bitmap_bh); 817 ext4_group_desc_csum_set(sb, group, gdp); 818 } 819 ext4_unlock_group(sb, group); 820 brelse(block_bitmap_bh); 821 822 if (err) { 823 ext4_std_error(sb, err); 824 goto out; 825 } 826 } 827 828 /* Update the relevant bg descriptor fields */ 829 if (ext4_has_group_desc_csum(sb)) { 830 int free; 831 832 ext4_lock_group(sb, group); /* while we modify the bg desc */ 833 free = EXT4_INODES_PER_GROUP(sb) - 834 ext4_itable_unused_count(sb, gdp); 835 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) { 836 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT); 837 free = 0; 838 } 839 840 /* 841 * Check the relative inode number against the last used 842 * relative inode number in this group. if it is greater 843 * we need to update the bg_itable_unused count 844 */ 845 if (bit >= free) 846 ext4_itable_unused_set(sb, gdp, 847 (EXT4_INODES_PER_GROUP(sb) - bit - 1)); 848 } else { 849 ext4_lock_group(sb, group); 850 } 851 852 ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1); 853 if (ext4_has_group_desc_csum(sb)) { 854 ext4_inode_bitmap_csum_set(sb, group, gdp, inode_bitmap_bh, 855 EXT4_INODES_PER_GROUP(sb) / 8); 856 ext4_group_desc_csum_set(sb, group, gdp); 857 } 858 859 ext4_unlock_group(sb, group); 860 err = ext4_handle_dirty_metadata(NULL, NULL, group_desc_bh); 861 sync_dirty_buffer(group_desc_bh); 862 out: 863 return err; 864 } 865 866 static int ext4_xattr_credits_for_new_inode(struct inode *dir, mode_t mode, 867 bool encrypt) 868 { 869 struct super_block *sb = dir->i_sb; 870 int nblocks = 0; 871 #ifdef CONFIG_EXT4_FS_POSIX_ACL 872 struct posix_acl *p = get_acl(dir, ACL_TYPE_DEFAULT); 873 874 if (IS_ERR(p)) 875 return PTR_ERR(p); 876 if (p) { 877 int acl_size = p->a_count * sizeof(ext4_acl_entry); 878 879 nblocks += (S_ISDIR(mode) ? 2 : 1) * 880 __ext4_xattr_set_credits(sb, NULL /* inode */, 881 NULL /* block_bh */, acl_size, 882 true /* is_create */); 883 posix_acl_release(p); 884 } 885 #endif 886 887 #ifdef CONFIG_SECURITY 888 { 889 int num_security_xattrs = 1; 890 891 #ifdef CONFIG_INTEGRITY 892 num_security_xattrs++; 893 #endif 894 /* 895 * We assume that security xattrs are never more than 1k. 896 * In practice they are under 128 bytes. 897 */ 898 nblocks += num_security_xattrs * 899 __ext4_xattr_set_credits(sb, NULL /* inode */, 900 NULL /* block_bh */, 1024, 901 true /* is_create */); 902 } 903 #endif 904 if (encrypt) 905 nblocks += __ext4_xattr_set_credits(sb, 906 NULL /* inode */, 907 NULL /* block_bh */, 908 FSCRYPT_SET_CONTEXT_MAX_SIZE, 909 true /* is_create */); 910 return nblocks; 911 } 912 913 /* 914 * There are two policies for allocating an inode. If the new inode is 915 * a directory, then a forward search is made for a block group with both 916 * free space and a low directory-to-inode ratio; if that fails, then of 917 * the groups with above-average free space, that group with the fewest 918 * directories already is chosen. 919 * 920 * For other inodes, search forward from the parent directory's block 921 * group to find a free inode. 922 */ 923 struct inode *__ext4_new_inode(struct user_namespace *mnt_userns, 924 handle_t *handle, struct inode *dir, 925 umode_t mode, const struct qstr *qstr, 926 __u32 goal, uid_t *owner, __u32 i_flags, 927 int handle_type, unsigned int line_no, 928 int nblocks) 929 { 930 struct super_block *sb; 931 struct buffer_head *inode_bitmap_bh = NULL; 932 struct buffer_head *group_desc_bh; 933 ext4_group_t ngroups, group = 0; 934 unsigned long ino = 0; 935 struct inode *inode; 936 struct ext4_group_desc *gdp = NULL; 937 struct ext4_inode_info *ei; 938 struct ext4_sb_info *sbi; 939 int ret2, err; 940 struct inode *ret; 941 ext4_group_t i; 942 ext4_group_t flex_group; 943 struct ext4_group_info *grp = NULL; 944 bool encrypt = false; 945 946 /* Cannot create files in a deleted directory */ 947 if (!dir || !dir->i_nlink) 948 return ERR_PTR(-EPERM); 949 950 sb = dir->i_sb; 951 sbi = EXT4_SB(sb); 952 953 if (unlikely(ext4_forced_shutdown(sbi))) 954 return ERR_PTR(-EIO); 955 956 ngroups = ext4_get_groups_count(sb); 957 trace_ext4_request_inode(dir, mode); 958 inode = new_inode(sb); 959 if (!inode) 960 return ERR_PTR(-ENOMEM); 961 ei = EXT4_I(inode); 962 963 /* 964 * Initialize owners and quota early so that we don't have to account 965 * for quota initialization worst case in standard inode creating 966 * transaction 967 */ 968 if (owner) { 969 inode->i_mode = mode; 970 i_uid_write(inode, owner[0]); 971 i_gid_write(inode, owner[1]); 972 } else if (test_opt(sb, GRPID)) { 973 inode->i_mode = mode; 974 inode_fsuid_set(inode, mnt_userns); 975 inode->i_gid = dir->i_gid; 976 } else 977 inode_init_owner(mnt_userns, inode, dir, mode); 978 979 if (ext4_has_feature_project(sb) && 980 ext4_test_inode_flag(dir, EXT4_INODE_PROJINHERIT)) 981 ei->i_projid = EXT4_I(dir)->i_projid; 982 else 983 ei->i_projid = make_kprojid(&init_user_ns, EXT4_DEF_PROJID); 984 985 if (!(i_flags & EXT4_EA_INODE_FL)) { 986 err = fscrypt_prepare_new_inode(dir, inode, &encrypt); 987 if (err) 988 goto out; 989 } 990 991 err = dquot_initialize(inode); 992 if (err) 993 goto out; 994 995 if (!handle && sbi->s_journal && !(i_flags & EXT4_EA_INODE_FL)) { 996 ret2 = ext4_xattr_credits_for_new_inode(dir, mode, encrypt); 997 if (ret2 < 0) { 998 err = ret2; 999 goto out; 1000 } 1001 nblocks += ret2; 1002 } 1003 1004 if (!goal) 1005 goal = sbi->s_inode_goal; 1006 1007 if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) { 1008 group = (goal - 1) / EXT4_INODES_PER_GROUP(sb); 1009 ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb); 1010 ret2 = 0; 1011 goto got_group; 1012 } 1013 1014 if (S_ISDIR(mode)) 1015 ret2 = find_group_orlov(sb, dir, &group, mode, qstr); 1016 else 1017 ret2 = find_group_other(sb, dir, &group, mode); 1018 1019 got_group: 1020 EXT4_I(dir)->i_last_alloc_group = group; 1021 err = -ENOSPC; 1022 if (ret2 == -1) 1023 goto out; 1024 1025 /* 1026 * Normally we will only go through one pass of this loop, 1027 * unless we get unlucky and it turns out the group we selected 1028 * had its last inode grabbed by someone else. 1029 */ 1030 for (i = 0; i < ngroups; i++, ino = 0) { 1031 err = -EIO; 1032 1033 gdp = ext4_get_group_desc(sb, group, &group_desc_bh); 1034 if (!gdp) 1035 goto out; 1036 1037 /* 1038 * Check free inodes count before loading bitmap. 1039 */ 1040 if (ext4_free_inodes_count(sb, gdp) == 0) 1041 goto next_group; 1042 1043 if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) { 1044 grp = ext4_get_group_info(sb, group); 1045 /* 1046 * Skip groups with already-known suspicious inode 1047 * tables 1048 */ 1049 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) 1050 goto next_group; 1051 } 1052 1053 brelse(inode_bitmap_bh); 1054 inode_bitmap_bh = ext4_read_inode_bitmap(sb, group); 1055 /* Skip groups with suspicious inode tables */ 1056 if (((!(sbi->s_mount_state & EXT4_FC_REPLAY)) 1057 && EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) || 1058 IS_ERR(inode_bitmap_bh)) { 1059 inode_bitmap_bh = NULL; 1060 goto next_group; 1061 } 1062 1063 repeat_in_this_group: 1064 ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino); 1065 if (!ret2) 1066 goto next_group; 1067 1068 if (group == 0 && (ino + 1) < EXT4_FIRST_INO(sb)) { 1069 ext4_error(sb, "reserved inode found cleared - " 1070 "inode=%lu", ino + 1); 1071 ext4_mark_group_bitmap_corrupted(sb, group, 1072 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 1073 goto next_group; 1074 } 1075 1076 if ((!(sbi->s_mount_state & EXT4_FC_REPLAY)) && !handle) { 1077 BUG_ON(nblocks <= 0); 1078 handle = __ext4_journal_start_sb(dir->i_sb, line_no, 1079 handle_type, nblocks, 0, 1080 ext4_trans_default_revoke_credits(sb)); 1081 if (IS_ERR(handle)) { 1082 err = PTR_ERR(handle); 1083 ext4_std_error(sb, err); 1084 goto out; 1085 } 1086 } 1087 BUFFER_TRACE(inode_bitmap_bh, "get_write_access"); 1088 err = ext4_journal_get_write_access(handle, inode_bitmap_bh); 1089 if (err) { 1090 ext4_std_error(sb, err); 1091 goto out; 1092 } 1093 ext4_lock_group(sb, group); 1094 ret2 = ext4_test_and_set_bit(ino, inode_bitmap_bh->b_data); 1095 if (ret2) { 1096 /* Someone already took the bit. Repeat the search 1097 * with lock held. 1098 */ 1099 ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino); 1100 if (ret2) { 1101 ext4_set_bit(ino, inode_bitmap_bh->b_data); 1102 ret2 = 0; 1103 } else { 1104 ret2 = 1; /* we didn't grab the inode */ 1105 } 1106 } 1107 ext4_unlock_group(sb, group); 1108 ino++; /* the inode bitmap is zero-based */ 1109 if (!ret2) 1110 goto got; /* we grabbed the inode! */ 1111 1112 if (ino < EXT4_INODES_PER_GROUP(sb)) 1113 goto repeat_in_this_group; 1114 next_group: 1115 if (++group == ngroups) 1116 group = 0; 1117 } 1118 err = -ENOSPC; 1119 goto out; 1120 1121 got: 1122 BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata"); 1123 err = ext4_handle_dirty_metadata(handle, NULL, inode_bitmap_bh); 1124 if (err) { 1125 ext4_std_error(sb, err); 1126 goto out; 1127 } 1128 1129 BUFFER_TRACE(group_desc_bh, "get_write_access"); 1130 err = ext4_journal_get_write_access(handle, group_desc_bh); 1131 if (err) { 1132 ext4_std_error(sb, err); 1133 goto out; 1134 } 1135 1136 /* We may have to initialize the block bitmap if it isn't already */ 1137 if (ext4_has_group_desc_csum(sb) && 1138 gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 1139 struct buffer_head *block_bitmap_bh; 1140 1141 block_bitmap_bh = ext4_read_block_bitmap(sb, group); 1142 if (IS_ERR(block_bitmap_bh)) { 1143 err = PTR_ERR(block_bitmap_bh); 1144 goto out; 1145 } 1146 BUFFER_TRACE(block_bitmap_bh, "get block bitmap access"); 1147 err = ext4_journal_get_write_access(handle, block_bitmap_bh); 1148 if (err) { 1149 brelse(block_bitmap_bh); 1150 ext4_std_error(sb, err); 1151 goto out; 1152 } 1153 1154 BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap"); 1155 err = ext4_handle_dirty_metadata(handle, NULL, block_bitmap_bh); 1156 1157 /* recheck and clear flag under lock if we still need to */ 1158 ext4_lock_group(sb, group); 1159 if (ext4_has_group_desc_csum(sb) && 1160 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 1161 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 1162 ext4_free_group_clusters_set(sb, gdp, 1163 ext4_free_clusters_after_init(sb, group, gdp)); 1164 ext4_block_bitmap_csum_set(sb, group, gdp, 1165 block_bitmap_bh); 1166 ext4_group_desc_csum_set(sb, group, gdp); 1167 } 1168 ext4_unlock_group(sb, group); 1169 brelse(block_bitmap_bh); 1170 1171 if (err) { 1172 ext4_std_error(sb, err); 1173 goto out; 1174 } 1175 } 1176 1177 /* Update the relevant bg descriptor fields */ 1178 if (ext4_has_group_desc_csum(sb)) { 1179 int free; 1180 struct ext4_group_info *grp = NULL; 1181 1182 if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) { 1183 grp = ext4_get_group_info(sb, group); 1184 down_read(&grp->alloc_sem); /* 1185 * protect vs itable 1186 * lazyinit 1187 */ 1188 } 1189 ext4_lock_group(sb, group); /* while we modify the bg desc */ 1190 free = EXT4_INODES_PER_GROUP(sb) - 1191 ext4_itable_unused_count(sb, gdp); 1192 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) { 1193 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT); 1194 free = 0; 1195 } 1196 /* 1197 * Check the relative inode number against the last used 1198 * relative inode number in this group. if it is greater 1199 * we need to update the bg_itable_unused count 1200 */ 1201 if (ino > free) 1202 ext4_itable_unused_set(sb, gdp, 1203 (EXT4_INODES_PER_GROUP(sb) - ino)); 1204 if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) 1205 up_read(&grp->alloc_sem); 1206 } else { 1207 ext4_lock_group(sb, group); 1208 } 1209 1210 ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1); 1211 if (S_ISDIR(mode)) { 1212 ext4_used_dirs_set(sb, gdp, ext4_used_dirs_count(sb, gdp) + 1); 1213 if (sbi->s_log_groups_per_flex) { 1214 ext4_group_t f = ext4_flex_group(sbi, group); 1215 1216 atomic_inc(&sbi_array_rcu_deref(sbi, s_flex_groups, 1217 f)->used_dirs); 1218 } 1219 } 1220 if (ext4_has_group_desc_csum(sb)) { 1221 ext4_inode_bitmap_csum_set(sb, group, gdp, inode_bitmap_bh, 1222 EXT4_INODES_PER_GROUP(sb) / 8); 1223 ext4_group_desc_csum_set(sb, group, gdp); 1224 } 1225 ext4_unlock_group(sb, group); 1226 1227 BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata"); 1228 err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh); 1229 if (err) { 1230 ext4_std_error(sb, err); 1231 goto out; 1232 } 1233 1234 percpu_counter_dec(&sbi->s_freeinodes_counter); 1235 if (S_ISDIR(mode)) 1236 percpu_counter_inc(&sbi->s_dirs_counter); 1237 1238 if (sbi->s_log_groups_per_flex) { 1239 flex_group = ext4_flex_group(sbi, group); 1240 atomic_dec(&sbi_array_rcu_deref(sbi, s_flex_groups, 1241 flex_group)->free_inodes); 1242 } 1243 1244 inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb); 1245 /* This is the optimal IO size (for stat), not the fs block size */ 1246 inode->i_blocks = 0; 1247 inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode); 1248 ei->i_crtime = inode->i_mtime; 1249 1250 memset(ei->i_data, 0, sizeof(ei->i_data)); 1251 ei->i_dir_start_lookup = 0; 1252 ei->i_disksize = 0; 1253 1254 /* Don't inherit extent flag from directory, amongst others. */ 1255 ei->i_flags = 1256 ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED); 1257 ei->i_flags |= i_flags; 1258 ei->i_file_acl = 0; 1259 ei->i_dtime = 0; 1260 ei->i_block_group = group; 1261 ei->i_last_alloc_group = ~0; 1262 1263 ext4_set_inode_flags(inode, true); 1264 if (IS_DIRSYNC(inode)) 1265 ext4_handle_sync(handle); 1266 if (insert_inode_locked(inode) < 0) { 1267 /* 1268 * Likely a bitmap corruption causing inode to be allocated 1269 * twice. 1270 */ 1271 err = -EIO; 1272 ext4_error(sb, "failed to insert inode %lu: doubly allocated?", 1273 inode->i_ino); 1274 ext4_mark_group_bitmap_corrupted(sb, group, 1275 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 1276 goto out; 1277 } 1278 inode->i_generation = prandom_u32(); 1279 1280 /* Precompute checksum seed for inode metadata */ 1281 if (ext4_has_metadata_csum(sb)) { 1282 __u32 csum; 1283 __le32 inum = cpu_to_le32(inode->i_ino); 1284 __le32 gen = cpu_to_le32(inode->i_generation); 1285 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 1286 sizeof(inum)); 1287 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 1288 sizeof(gen)); 1289 } 1290 1291 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 1292 ext4_set_inode_state(inode, EXT4_STATE_NEW); 1293 1294 ei->i_extra_isize = sbi->s_want_extra_isize; 1295 ei->i_inline_off = 0; 1296 if (ext4_has_feature_inline_data(sb) && 1297 (!(ei->i_flags & EXT4_DAX_FL) || S_ISDIR(mode))) 1298 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); 1299 ret = inode; 1300 err = dquot_alloc_inode(inode); 1301 if (err) 1302 goto fail_drop; 1303 1304 /* 1305 * Since the encryption xattr will always be unique, create it first so 1306 * that it's less likely to end up in an external xattr block and 1307 * prevent its deduplication. 1308 */ 1309 if (encrypt) { 1310 err = fscrypt_set_context(inode, handle); 1311 if (err) 1312 goto fail_free_drop; 1313 } 1314 1315 if (!(ei->i_flags & EXT4_EA_INODE_FL)) { 1316 err = ext4_init_acl(handle, inode, dir); 1317 if (err) 1318 goto fail_free_drop; 1319 1320 err = ext4_init_security(handle, inode, dir, qstr); 1321 if (err) 1322 goto fail_free_drop; 1323 } 1324 1325 if (ext4_has_feature_extents(sb)) { 1326 /* set extent flag only for directory, file and normal symlink*/ 1327 if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) { 1328 ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS); 1329 ext4_ext_tree_init(handle, inode); 1330 } 1331 } 1332 1333 if (ext4_handle_valid(handle)) { 1334 ei->i_sync_tid = handle->h_transaction->t_tid; 1335 ei->i_datasync_tid = handle->h_transaction->t_tid; 1336 } 1337 1338 err = ext4_mark_inode_dirty(handle, inode); 1339 if (err) { 1340 ext4_std_error(sb, err); 1341 goto fail_free_drop; 1342 } 1343 1344 ext4_debug("allocating inode %lu\n", inode->i_ino); 1345 trace_ext4_allocate_inode(inode, dir, mode); 1346 brelse(inode_bitmap_bh); 1347 return ret; 1348 1349 fail_free_drop: 1350 dquot_free_inode(inode); 1351 fail_drop: 1352 clear_nlink(inode); 1353 unlock_new_inode(inode); 1354 out: 1355 dquot_drop(inode); 1356 inode->i_flags |= S_NOQUOTA; 1357 iput(inode); 1358 brelse(inode_bitmap_bh); 1359 return ERR_PTR(err); 1360 } 1361 1362 /* Verify that we are loading a valid orphan from disk */ 1363 struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino) 1364 { 1365 unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count); 1366 ext4_group_t block_group; 1367 int bit; 1368 struct buffer_head *bitmap_bh = NULL; 1369 struct inode *inode = NULL; 1370 int err = -EFSCORRUPTED; 1371 1372 if (ino < EXT4_FIRST_INO(sb) || ino > max_ino) 1373 goto bad_orphan; 1374 1375 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 1376 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb); 1377 bitmap_bh = ext4_read_inode_bitmap(sb, block_group); 1378 if (IS_ERR(bitmap_bh)) 1379 return ERR_CAST(bitmap_bh); 1380 1381 /* Having the inode bit set should be a 100% indicator that this 1382 * is a valid orphan (no e2fsck run on fs). Orphans also include 1383 * inodes that were being truncated, so we can't check i_nlink==0. 1384 */ 1385 if (!ext4_test_bit(bit, bitmap_bh->b_data)) 1386 goto bad_orphan; 1387 1388 inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL); 1389 if (IS_ERR(inode)) { 1390 err = PTR_ERR(inode); 1391 ext4_error_err(sb, -err, 1392 "couldn't read orphan inode %lu (err %d)", 1393 ino, err); 1394 brelse(bitmap_bh); 1395 return inode; 1396 } 1397 1398 /* 1399 * If the orphans has i_nlinks > 0 then it should be able to 1400 * be truncated, otherwise it won't be removed from the orphan 1401 * list during processing and an infinite loop will result. 1402 * Similarly, it must not be a bad inode. 1403 */ 1404 if ((inode->i_nlink && !ext4_can_truncate(inode)) || 1405 is_bad_inode(inode)) 1406 goto bad_orphan; 1407 1408 if (NEXT_ORPHAN(inode) > max_ino) 1409 goto bad_orphan; 1410 brelse(bitmap_bh); 1411 return inode; 1412 1413 bad_orphan: 1414 ext4_error(sb, "bad orphan inode %lu", ino); 1415 if (bitmap_bh) 1416 printk(KERN_ERR "ext4_test_bit(bit=%d, block=%llu) = %d\n", 1417 bit, (unsigned long long)bitmap_bh->b_blocknr, 1418 ext4_test_bit(bit, bitmap_bh->b_data)); 1419 if (inode) { 1420 printk(KERN_ERR "is_bad_inode(inode)=%d\n", 1421 is_bad_inode(inode)); 1422 printk(KERN_ERR "NEXT_ORPHAN(inode)=%u\n", 1423 NEXT_ORPHAN(inode)); 1424 printk(KERN_ERR "max_ino=%lu\n", max_ino); 1425 printk(KERN_ERR "i_nlink=%u\n", inode->i_nlink); 1426 /* Avoid freeing blocks if we got a bad deleted inode */ 1427 if (inode->i_nlink == 0) 1428 inode->i_blocks = 0; 1429 iput(inode); 1430 } 1431 brelse(bitmap_bh); 1432 return ERR_PTR(err); 1433 } 1434 1435 unsigned long ext4_count_free_inodes(struct super_block *sb) 1436 { 1437 unsigned long desc_count; 1438 struct ext4_group_desc *gdp; 1439 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 1440 #ifdef EXT4FS_DEBUG 1441 struct ext4_super_block *es; 1442 unsigned long bitmap_count, x; 1443 struct buffer_head *bitmap_bh = NULL; 1444 1445 es = EXT4_SB(sb)->s_es; 1446 desc_count = 0; 1447 bitmap_count = 0; 1448 gdp = NULL; 1449 for (i = 0; i < ngroups; i++) { 1450 gdp = ext4_get_group_desc(sb, i, NULL); 1451 if (!gdp) 1452 continue; 1453 desc_count += ext4_free_inodes_count(sb, gdp); 1454 brelse(bitmap_bh); 1455 bitmap_bh = ext4_read_inode_bitmap(sb, i); 1456 if (IS_ERR(bitmap_bh)) { 1457 bitmap_bh = NULL; 1458 continue; 1459 } 1460 1461 x = ext4_count_free(bitmap_bh->b_data, 1462 EXT4_INODES_PER_GROUP(sb) / 8); 1463 printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n", 1464 (unsigned long) i, ext4_free_inodes_count(sb, gdp), x); 1465 bitmap_count += x; 1466 } 1467 brelse(bitmap_bh); 1468 printk(KERN_DEBUG "ext4_count_free_inodes: " 1469 "stored = %u, computed = %lu, %lu\n", 1470 le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count); 1471 return desc_count; 1472 #else 1473 desc_count = 0; 1474 for (i = 0; i < ngroups; i++) { 1475 gdp = ext4_get_group_desc(sb, i, NULL); 1476 if (!gdp) 1477 continue; 1478 desc_count += ext4_free_inodes_count(sb, gdp); 1479 cond_resched(); 1480 } 1481 return desc_count; 1482 #endif 1483 } 1484 1485 /* Called at mount-time, super-block is locked */ 1486 unsigned long ext4_count_dirs(struct super_block * sb) 1487 { 1488 unsigned long count = 0; 1489 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 1490 1491 for (i = 0; i < ngroups; i++) { 1492 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 1493 if (!gdp) 1494 continue; 1495 count += ext4_used_dirs_count(sb, gdp); 1496 } 1497 return count; 1498 } 1499 1500 /* 1501 * Zeroes not yet zeroed inode table - just write zeroes through the whole 1502 * inode table. Must be called without any spinlock held. The only place 1503 * where it is called from on active part of filesystem is ext4lazyinit 1504 * thread, so we do not need any special locks, however we have to prevent 1505 * inode allocation from the current group, so we take alloc_sem lock, to 1506 * block ext4_new_inode() until we are finished. 1507 */ 1508 int ext4_init_inode_table(struct super_block *sb, ext4_group_t group, 1509 int barrier) 1510 { 1511 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 1512 struct ext4_sb_info *sbi = EXT4_SB(sb); 1513 struct ext4_group_desc *gdp = NULL; 1514 struct buffer_head *group_desc_bh; 1515 handle_t *handle; 1516 ext4_fsblk_t blk; 1517 int num, ret = 0, used_blks = 0; 1518 unsigned long used_inos = 0; 1519 1520 /* This should not happen, but just to be sure check this */ 1521 if (sb_rdonly(sb)) { 1522 ret = 1; 1523 goto out; 1524 } 1525 1526 gdp = ext4_get_group_desc(sb, group, &group_desc_bh); 1527 if (!gdp) 1528 goto out; 1529 1530 /* 1531 * We do not need to lock this, because we are the only one 1532 * handling this flag. 1533 */ 1534 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)) 1535 goto out; 1536 1537 handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1); 1538 if (IS_ERR(handle)) { 1539 ret = PTR_ERR(handle); 1540 goto out; 1541 } 1542 1543 down_write(&grp->alloc_sem); 1544 /* 1545 * If inode bitmap was already initialized there may be some 1546 * used inodes so we need to skip blocks with used inodes in 1547 * inode table. 1548 */ 1549 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT))) { 1550 used_inos = EXT4_INODES_PER_GROUP(sb) - 1551 ext4_itable_unused_count(sb, gdp); 1552 used_blks = DIV_ROUND_UP(used_inos, sbi->s_inodes_per_block); 1553 1554 /* Bogus inode unused count? */ 1555 if (used_blks < 0 || used_blks > sbi->s_itb_per_group) { 1556 ext4_error(sb, "Something is wrong with group %u: " 1557 "used itable blocks: %d; " 1558 "itable unused count: %u", 1559 group, used_blks, 1560 ext4_itable_unused_count(sb, gdp)); 1561 ret = 1; 1562 goto err_out; 1563 } 1564 1565 used_inos += group * EXT4_INODES_PER_GROUP(sb); 1566 /* 1567 * Are there some uninitialized inodes in the inode table 1568 * before the first normal inode? 1569 */ 1570 if ((used_blks != sbi->s_itb_per_group) && 1571 (used_inos < EXT4_FIRST_INO(sb))) { 1572 ext4_error(sb, "Something is wrong with group %u: " 1573 "itable unused count: %u; " 1574 "itables initialized count: %ld", 1575 group, ext4_itable_unused_count(sb, gdp), 1576 used_inos); 1577 ret = 1; 1578 goto err_out; 1579 } 1580 } 1581 1582 blk = ext4_inode_table(sb, gdp) + used_blks; 1583 num = sbi->s_itb_per_group - used_blks; 1584 1585 BUFFER_TRACE(group_desc_bh, "get_write_access"); 1586 ret = ext4_journal_get_write_access(handle, 1587 group_desc_bh); 1588 if (ret) 1589 goto err_out; 1590 1591 /* 1592 * Skip zeroout if the inode table is full. But we set the ZEROED 1593 * flag anyway, because obviously, when it is full it does not need 1594 * further zeroing. 1595 */ 1596 if (unlikely(num == 0)) 1597 goto skip_zeroout; 1598 1599 ext4_debug("going to zero out inode table in group %d\n", 1600 group); 1601 ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS); 1602 if (ret < 0) 1603 goto err_out; 1604 if (barrier) 1605 blkdev_issue_flush(sb->s_bdev); 1606 1607 skip_zeroout: 1608 ext4_lock_group(sb, group); 1609 gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED); 1610 ext4_group_desc_csum_set(sb, group, gdp); 1611 ext4_unlock_group(sb, group); 1612 1613 BUFFER_TRACE(group_desc_bh, 1614 "call ext4_handle_dirty_metadata"); 1615 ret = ext4_handle_dirty_metadata(handle, NULL, 1616 group_desc_bh); 1617 1618 err_out: 1619 up_write(&grp->alloc_sem); 1620 ext4_journal_stop(handle); 1621 out: 1622 return ret; 1623 } 1624