1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/ialloc.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * BSD ufs-inspired inode and directory allocation by 11 * Stephen Tweedie (sct@redhat.com), 1993 12 * Big-endian to little-endian byte-swapping/bitmaps by 13 * David S. Miller (davem@caip.rutgers.edu), 1995 14 */ 15 16 #include <linux/time.h> 17 #include <linux/fs.h> 18 #include <linux/stat.h> 19 #include <linux/string.h> 20 #include <linux/quotaops.h> 21 #include <linux/buffer_head.h> 22 #include <linux/random.h> 23 #include <linux/bitops.h> 24 #include <linux/blkdev.h> 25 #include <linux/cred.h> 26 27 #include <asm/byteorder.h> 28 29 #include "ext4.h" 30 #include "ext4_jbd2.h" 31 #include "xattr.h" 32 #include "acl.h" 33 34 #include <trace/events/ext4.h> 35 36 /* 37 * ialloc.c contains the inodes allocation and deallocation routines 38 */ 39 40 /* 41 * The free inodes are managed by bitmaps. A file system contains several 42 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap 43 * block for inodes, N blocks for the inode table and data blocks. 44 * 45 * The file system contains group descriptors which are located after the 46 * super block. Each descriptor contains the number of the bitmap block and 47 * the free blocks count in the block. 48 */ 49 50 /* 51 * To avoid calling the atomic setbit hundreds or thousands of times, we only 52 * need to use it within a single byte (to ensure we get endianness right). 53 * We can use memset for the rest of the bitmap as there are no other users. 54 */ 55 void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap) 56 { 57 int i; 58 59 if (start_bit >= end_bit) 60 return; 61 62 ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit); 63 for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++) 64 ext4_set_bit(i, bitmap); 65 if (i < end_bit) 66 memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3); 67 } 68 69 void ext4_end_bitmap_read(struct buffer_head *bh, int uptodate) 70 { 71 if (uptodate) { 72 set_buffer_uptodate(bh); 73 set_bitmap_uptodate(bh); 74 } 75 unlock_buffer(bh); 76 put_bh(bh); 77 } 78 79 static int ext4_validate_inode_bitmap(struct super_block *sb, 80 struct ext4_group_desc *desc, 81 ext4_group_t block_group, 82 struct buffer_head *bh) 83 { 84 ext4_fsblk_t blk; 85 struct ext4_group_info *grp = ext4_get_group_info(sb, block_group); 86 87 if (buffer_verified(bh)) 88 return 0; 89 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) 90 return -EFSCORRUPTED; 91 92 ext4_lock_group(sb, block_group); 93 blk = ext4_inode_bitmap(sb, desc); 94 if (!ext4_inode_bitmap_csum_verify(sb, block_group, desc, bh, 95 EXT4_INODES_PER_GROUP(sb) / 8)) { 96 ext4_unlock_group(sb, block_group); 97 ext4_error(sb, "Corrupt inode bitmap - block_group = %u, " 98 "inode_bitmap = %llu", block_group, blk); 99 ext4_mark_group_bitmap_corrupted(sb, block_group, 100 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 101 return -EFSBADCRC; 102 } 103 set_buffer_verified(bh); 104 ext4_unlock_group(sb, block_group); 105 return 0; 106 } 107 108 /* 109 * Read the inode allocation bitmap for a given block_group, reading 110 * into the specified slot in the superblock's bitmap cache. 111 * 112 * Return buffer_head of bitmap on success or NULL. 113 */ 114 static struct buffer_head * 115 ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group) 116 { 117 struct ext4_group_desc *desc; 118 struct ext4_sb_info *sbi = EXT4_SB(sb); 119 struct buffer_head *bh = NULL; 120 ext4_fsblk_t bitmap_blk; 121 int err; 122 123 desc = ext4_get_group_desc(sb, block_group, NULL); 124 if (!desc) 125 return ERR_PTR(-EFSCORRUPTED); 126 127 bitmap_blk = ext4_inode_bitmap(sb, desc); 128 if ((bitmap_blk <= le32_to_cpu(sbi->s_es->s_first_data_block)) || 129 (bitmap_blk >= ext4_blocks_count(sbi->s_es))) { 130 ext4_error(sb, "Invalid inode bitmap blk %llu in " 131 "block_group %u", bitmap_blk, block_group); 132 ext4_mark_group_bitmap_corrupted(sb, block_group, 133 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 134 return ERR_PTR(-EFSCORRUPTED); 135 } 136 bh = sb_getblk(sb, bitmap_blk); 137 if (unlikely(!bh)) { 138 ext4_error(sb, "Cannot read inode bitmap - " 139 "block_group = %u, inode_bitmap = %llu", 140 block_group, bitmap_blk); 141 return ERR_PTR(-ENOMEM); 142 } 143 if (bitmap_uptodate(bh)) 144 goto verify; 145 146 lock_buffer(bh); 147 if (bitmap_uptodate(bh)) { 148 unlock_buffer(bh); 149 goto verify; 150 } 151 152 ext4_lock_group(sb, block_group); 153 if (ext4_has_group_desc_csum(sb) && 154 (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT))) { 155 if (block_group == 0) { 156 ext4_unlock_group(sb, block_group); 157 unlock_buffer(bh); 158 ext4_error(sb, "Inode bitmap for bg 0 marked " 159 "uninitialized"); 160 err = -EFSCORRUPTED; 161 goto out; 162 } 163 memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8); 164 ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb), 165 sb->s_blocksize * 8, bh->b_data); 166 set_bitmap_uptodate(bh); 167 set_buffer_uptodate(bh); 168 set_buffer_verified(bh); 169 ext4_unlock_group(sb, block_group); 170 unlock_buffer(bh); 171 return bh; 172 } 173 ext4_unlock_group(sb, block_group); 174 175 if (buffer_uptodate(bh)) { 176 /* 177 * if not uninit if bh is uptodate, 178 * bitmap is also uptodate 179 */ 180 set_bitmap_uptodate(bh); 181 unlock_buffer(bh); 182 goto verify; 183 } 184 /* 185 * submit the buffer_head for reading 186 */ 187 trace_ext4_load_inode_bitmap(sb, block_group); 188 bh->b_end_io = ext4_end_bitmap_read; 189 get_bh(bh); 190 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh); 191 wait_on_buffer(bh); 192 if (!buffer_uptodate(bh)) { 193 put_bh(bh); 194 ext4_error(sb, "Cannot read inode bitmap - " 195 "block_group = %u, inode_bitmap = %llu", 196 block_group, bitmap_blk); 197 ext4_mark_group_bitmap_corrupted(sb, block_group, 198 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 199 return ERR_PTR(-EIO); 200 } 201 202 verify: 203 err = ext4_validate_inode_bitmap(sb, desc, block_group, bh); 204 if (err) 205 goto out; 206 return bh; 207 out: 208 put_bh(bh); 209 return ERR_PTR(err); 210 } 211 212 /* 213 * NOTE! When we get the inode, we're the only people 214 * that have access to it, and as such there are no 215 * race conditions we have to worry about. The inode 216 * is not on the hash-lists, and it cannot be reached 217 * through the filesystem because the directory entry 218 * has been deleted earlier. 219 * 220 * HOWEVER: we must make sure that we get no aliases, 221 * which means that we have to call "clear_inode()" 222 * _before_ we mark the inode not in use in the inode 223 * bitmaps. Otherwise a newly created file might use 224 * the same inode number (not actually the same pointer 225 * though), and then we'd have two inodes sharing the 226 * same inode number and space on the harddisk. 227 */ 228 void ext4_free_inode(handle_t *handle, struct inode *inode) 229 { 230 struct super_block *sb = inode->i_sb; 231 int is_directory; 232 unsigned long ino; 233 struct buffer_head *bitmap_bh = NULL; 234 struct buffer_head *bh2; 235 ext4_group_t block_group; 236 unsigned long bit; 237 struct ext4_group_desc *gdp; 238 struct ext4_super_block *es; 239 struct ext4_sb_info *sbi; 240 int fatal = 0, err, count, cleared; 241 struct ext4_group_info *grp; 242 243 if (!sb) { 244 printk(KERN_ERR "EXT4-fs: %s:%d: inode on " 245 "nonexistent device\n", __func__, __LINE__); 246 return; 247 } 248 if (atomic_read(&inode->i_count) > 1) { 249 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: count=%d", 250 __func__, __LINE__, inode->i_ino, 251 atomic_read(&inode->i_count)); 252 return; 253 } 254 if (inode->i_nlink) { 255 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: nlink=%d\n", 256 __func__, __LINE__, inode->i_ino, inode->i_nlink); 257 return; 258 } 259 sbi = EXT4_SB(sb); 260 261 ino = inode->i_ino; 262 ext4_debug("freeing inode %lu\n", ino); 263 trace_ext4_free_inode(inode); 264 265 /* 266 * Note: we must free any quota before locking the superblock, 267 * as writing the quota to disk may need the lock as well. 268 */ 269 dquot_initialize(inode); 270 dquot_free_inode(inode); 271 dquot_drop(inode); 272 273 is_directory = S_ISDIR(inode->i_mode); 274 275 /* Do this BEFORE marking the inode not in use or returning an error */ 276 ext4_clear_inode(inode); 277 278 es = sbi->s_es; 279 if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) { 280 ext4_error(sb, "reserved or nonexistent inode %lu", ino); 281 goto error_return; 282 } 283 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 284 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb); 285 bitmap_bh = ext4_read_inode_bitmap(sb, block_group); 286 /* Don't bother if the inode bitmap is corrupt. */ 287 grp = ext4_get_group_info(sb, block_group); 288 if (IS_ERR(bitmap_bh)) { 289 fatal = PTR_ERR(bitmap_bh); 290 bitmap_bh = NULL; 291 goto error_return; 292 } 293 if (unlikely(EXT4_MB_GRP_IBITMAP_CORRUPT(grp))) { 294 fatal = -EFSCORRUPTED; 295 goto error_return; 296 } 297 298 BUFFER_TRACE(bitmap_bh, "get_write_access"); 299 fatal = ext4_journal_get_write_access(handle, bitmap_bh); 300 if (fatal) 301 goto error_return; 302 303 fatal = -ESRCH; 304 gdp = ext4_get_group_desc(sb, block_group, &bh2); 305 if (gdp) { 306 BUFFER_TRACE(bh2, "get_write_access"); 307 fatal = ext4_journal_get_write_access(handle, bh2); 308 } 309 ext4_lock_group(sb, block_group); 310 cleared = ext4_test_and_clear_bit(bit, bitmap_bh->b_data); 311 if (fatal || !cleared) { 312 ext4_unlock_group(sb, block_group); 313 goto out; 314 } 315 316 count = ext4_free_inodes_count(sb, gdp) + 1; 317 ext4_free_inodes_set(sb, gdp, count); 318 if (is_directory) { 319 count = ext4_used_dirs_count(sb, gdp) - 1; 320 ext4_used_dirs_set(sb, gdp, count); 321 percpu_counter_dec(&sbi->s_dirs_counter); 322 } 323 ext4_inode_bitmap_csum_set(sb, block_group, gdp, bitmap_bh, 324 EXT4_INODES_PER_GROUP(sb) / 8); 325 ext4_group_desc_csum_set(sb, block_group, gdp); 326 ext4_unlock_group(sb, block_group); 327 328 percpu_counter_inc(&sbi->s_freeinodes_counter); 329 if (sbi->s_log_groups_per_flex) { 330 ext4_group_t f = ext4_flex_group(sbi, block_group); 331 332 atomic_inc(&sbi->s_flex_groups[f].free_inodes); 333 if (is_directory) 334 atomic_dec(&sbi->s_flex_groups[f].used_dirs); 335 } 336 BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata"); 337 fatal = ext4_handle_dirty_metadata(handle, NULL, bh2); 338 out: 339 if (cleared) { 340 BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata"); 341 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 342 if (!fatal) 343 fatal = err; 344 } else { 345 ext4_error(sb, "bit already cleared for inode %lu", ino); 346 ext4_mark_group_bitmap_corrupted(sb, block_group, 347 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 348 } 349 350 error_return: 351 brelse(bitmap_bh); 352 ext4_std_error(sb, fatal); 353 } 354 355 struct orlov_stats { 356 __u64 free_clusters; 357 __u32 free_inodes; 358 __u32 used_dirs; 359 }; 360 361 /* 362 * Helper function for Orlov's allocator; returns critical information 363 * for a particular block group or flex_bg. If flex_size is 1, then g 364 * is a block group number; otherwise it is flex_bg number. 365 */ 366 static void get_orlov_stats(struct super_block *sb, ext4_group_t g, 367 int flex_size, struct orlov_stats *stats) 368 { 369 struct ext4_group_desc *desc; 370 struct flex_groups *flex_group = EXT4_SB(sb)->s_flex_groups; 371 372 if (flex_size > 1) { 373 stats->free_inodes = atomic_read(&flex_group[g].free_inodes); 374 stats->free_clusters = atomic64_read(&flex_group[g].free_clusters); 375 stats->used_dirs = atomic_read(&flex_group[g].used_dirs); 376 return; 377 } 378 379 desc = ext4_get_group_desc(sb, g, NULL); 380 if (desc) { 381 stats->free_inodes = ext4_free_inodes_count(sb, desc); 382 stats->free_clusters = ext4_free_group_clusters(sb, desc); 383 stats->used_dirs = ext4_used_dirs_count(sb, desc); 384 } else { 385 stats->free_inodes = 0; 386 stats->free_clusters = 0; 387 stats->used_dirs = 0; 388 } 389 } 390 391 /* 392 * Orlov's allocator for directories. 393 * 394 * We always try to spread first-level directories. 395 * 396 * If there are blockgroups with both free inodes and free blocks counts 397 * not worse than average we return one with smallest directory count. 398 * Otherwise we simply return a random group. 399 * 400 * For the rest rules look so: 401 * 402 * It's OK to put directory into a group unless 403 * it has too many directories already (max_dirs) or 404 * it has too few free inodes left (min_inodes) or 405 * it has too few free blocks left (min_blocks) or 406 * Parent's group is preferred, if it doesn't satisfy these 407 * conditions we search cyclically through the rest. If none 408 * of the groups look good we just look for a group with more 409 * free inodes than average (starting at parent's group). 410 */ 411 412 static int find_group_orlov(struct super_block *sb, struct inode *parent, 413 ext4_group_t *group, umode_t mode, 414 const struct qstr *qstr) 415 { 416 ext4_group_t parent_group = EXT4_I(parent)->i_block_group; 417 struct ext4_sb_info *sbi = EXT4_SB(sb); 418 ext4_group_t real_ngroups = ext4_get_groups_count(sb); 419 int inodes_per_group = EXT4_INODES_PER_GROUP(sb); 420 unsigned int freei, avefreei, grp_free; 421 ext4_fsblk_t freeb, avefreec; 422 unsigned int ndirs; 423 int max_dirs, min_inodes; 424 ext4_grpblk_t min_clusters; 425 ext4_group_t i, grp, g, ngroups; 426 struct ext4_group_desc *desc; 427 struct orlov_stats stats; 428 int flex_size = ext4_flex_bg_size(sbi); 429 struct dx_hash_info hinfo; 430 431 ngroups = real_ngroups; 432 if (flex_size > 1) { 433 ngroups = (real_ngroups + flex_size - 1) >> 434 sbi->s_log_groups_per_flex; 435 parent_group >>= sbi->s_log_groups_per_flex; 436 } 437 438 freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter); 439 avefreei = freei / ngroups; 440 freeb = EXT4_C2B(sbi, 441 percpu_counter_read_positive(&sbi->s_freeclusters_counter)); 442 avefreec = freeb; 443 do_div(avefreec, ngroups); 444 ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter); 445 446 if (S_ISDIR(mode) && 447 ((parent == d_inode(sb->s_root)) || 448 (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) { 449 int best_ndir = inodes_per_group; 450 int ret = -1; 451 452 if (qstr) { 453 hinfo.hash_version = DX_HASH_HALF_MD4; 454 hinfo.seed = sbi->s_hash_seed; 455 ext4fs_dirhash(qstr->name, qstr->len, &hinfo); 456 grp = hinfo.hash; 457 } else 458 grp = prandom_u32(); 459 parent_group = (unsigned)grp % ngroups; 460 for (i = 0; i < ngroups; i++) { 461 g = (parent_group + i) % ngroups; 462 get_orlov_stats(sb, g, flex_size, &stats); 463 if (!stats.free_inodes) 464 continue; 465 if (stats.used_dirs >= best_ndir) 466 continue; 467 if (stats.free_inodes < avefreei) 468 continue; 469 if (stats.free_clusters < avefreec) 470 continue; 471 grp = g; 472 ret = 0; 473 best_ndir = stats.used_dirs; 474 } 475 if (ret) 476 goto fallback; 477 found_flex_bg: 478 if (flex_size == 1) { 479 *group = grp; 480 return 0; 481 } 482 483 /* 484 * We pack inodes at the beginning of the flexgroup's 485 * inode tables. Block allocation decisions will do 486 * something similar, although regular files will 487 * start at 2nd block group of the flexgroup. See 488 * ext4_ext_find_goal() and ext4_find_near(). 489 */ 490 grp *= flex_size; 491 for (i = 0; i < flex_size; i++) { 492 if (grp+i >= real_ngroups) 493 break; 494 desc = ext4_get_group_desc(sb, grp+i, NULL); 495 if (desc && ext4_free_inodes_count(sb, desc)) { 496 *group = grp+i; 497 return 0; 498 } 499 } 500 goto fallback; 501 } 502 503 max_dirs = ndirs / ngroups + inodes_per_group / 16; 504 min_inodes = avefreei - inodes_per_group*flex_size / 4; 505 if (min_inodes < 1) 506 min_inodes = 1; 507 min_clusters = avefreec - EXT4_CLUSTERS_PER_GROUP(sb)*flex_size / 4; 508 509 /* 510 * Start looking in the flex group where we last allocated an 511 * inode for this parent directory 512 */ 513 if (EXT4_I(parent)->i_last_alloc_group != ~0) { 514 parent_group = EXT4_I(parent)->i_last_alloc_group; 515 if (flex_size > 1) 516 parent_group >>= sbi->s_log_groups_per_flex; 517 } 518 519 for (i = 0; i < ngroups; i++) { 520 grp = (parent_group + i) % ngroups; 521 get_orlov_stats(sb, grp, flex_size, &stats); 522 if (stats.used_dirs >= max_dirs) 523 continue; 524 if (stats.free_inodes < min_inodes) 525 continue; 526 if (stats.free_clusters < min_clusters) 527 continue; 528 goto found_flex_bg; 529 } 530 531 fallback: 532 ngroups = real_ngroups; 533 avefreei = freei / ngroups; 534 fallback_retry: 535 parent_group = EXT4_I(parent)->i_block_group; 536 for (i = 0; i < ngroups; i++) { 537 grp = (parent_group + i) % ngroups; 538 desc = ext4_get_group_desc(sb, grp, NULL); 539 if (desc) { 540 grp_free = ext4_free_inodes_count(sb, desc); 541 if (grp_free && grp_free >= avefreei) { 542 *group = grp; 543 return 0; 544 } 545 } 546 } 547 548 if (avefreei) { 549 /* 550 * The free-inodes counter is approximate, and for really small 551 * filesystems the above test can fail to find any blockgroups 552 */ 553 avefreei = 0; 554 goto fallback_retry; 555 } 556 557 return -1; 558 } 559 560 static int find_group_other(struct super_block *sb, struct inode *parent, 561 ext4_group_t *group, umode_t mode) 562 { 563 ext4_group_t parent_group = EXT4_I(parent)->i_block_group; 564 ext4_group_t i, last, ngroups = ext4_get_groups_count(sb); 565 struct ext4_group_desc *desc; 566 int flex_size = ext4_flex_bg_size(EXT4_SB(sb)); 567 568 /* 569 * Try to place the inode is the same flex group as its 570 * parent. If we can't find space, use the Orlov algorithm to 571 * find another flex group, and store that information in the 572 * parent directory's inode information so that use that flex 573 * group for future allocations. 574 */ 575 if (flex_size > 1) { 576 int retry = 0; 577 578 try_again: 579 parent_group &= ~(flex_size-1); 580 last = parent_group + flex_size; 581 if (last > ngroups) 582 last = ngroups; 583 for (i = parent_group; i < last; i++) { 584 desc = ext4_get_group_desc(sb, i, NULL); 585 if (desc && ext4_free_inodes_count(sb, desc)) { 586 *group = i; 587 return 0; 588 } 589 } 590 if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) { 591 retry = 1; 592 parent_group = EXT4_I(parent)->i_last_alloc_group; 593 goto try_again; 594 } 595 /* 596 * If this didn't work, use the Orlov search algorithm 597 * to find a new flex group; we pass in the mode to 598 * avoid the topdir algorithms. 599 */ 600 *group = parent_group + flex_size; 601 if (*group > ngroups) 602 *group = 0; 603 return find_group_orlov(sb, parent, group, mode, NULL); 604 } 605 606 /* 607 * Try to place the inode in its parent directory 608 */ 609 *group = parent_group; 610 desc = ext4_get_group_desc(sb, *group, NULL); 611 if (desc && ext4_free_inodes_count(sb, desc) && 612 ext4_free_group_clusters(sb, desc)) 613 return 0; 614 615 /* 616 * We're going to place this inode in a different blockgroup from its 617 * parent. We want to cause files in a common directory to all land in 618 * the same blockgroup. But we want files which are in a different 619 * directory which shares a blockgroup with our parent to land in a 620 * different blockgroup. 621 * 622 * So add our directory's i_ino into the starting point for the hash. 623 */ 624 *group = (*group + parent->i_ino) % ngroups; 625 626 /* 627 * Use a quadratic hash to find a group with a free inode and some free 628 * blocks. 629 */ 630 for (i = 1; i < ngroups; i <<= 1) { 631 *group += i; 632 if (*group >= ngroups) 633 *group -= ngroups; 634 desc = ext4_get_group_desc(sb, *group, NULL); 635 if (desc && ext4_free_inodes_count(sb, desc) && 636 ext4_free_group_clusters(sb, desc)) 637 return 0; 638 } 639 640 /* 641 * That failed: try linear search for a free inode, even if that group 642 * has no free blocks. 643 */ 644 *group = parent_group; 645 for (i = 0; i < ngroups; i++) { 646 if (++*group >= ngroups) 647 *group = 0; 648 desc = ext4_get_group_desc(sb, *group, NULL); 649 if (desc && ext4_free_inodes_count(sb, desc)) 650 return 0; 651 } 652 653 return -1; 654 } 655 656 /* 657 * In no journal mode, if an inode has recently been deleted, we want 658 * to avoid reusing it until we're reasonably sure the inode table 659 * block has been written back to disk. (Yes, these values are 660 * somewhat arbitrary...) 661 */ 662 #define RECENTCY_MIN 5 663 #define RECENTCY_DIRTY 300 664 665 static int recently_deleted(struct super_block *sb, ext4_group_t group, int ino) 666 { 667 struct ext4_group_desc *gdp; 668 struct ext4_inode *raw_inode; 669 struct buffer_head *bh; 670 int inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 671 int offset, ret = 0; 672 int recentcy = RECENTCY_MIN; 673 u32 dtime, now; 674 675 gdp = ext4_get_group_desc(sb, group, NULL); 676 if (unlikely(!gdp)) 677 return 0; 678 679 bh = sb_find_get_block(sb, ext4_inode_table(sb, gdp) + 680 (ino / inodes_per_block)); 681 if (!bh || !buffer_uptodate(bh)) 682 /* 683 * If the block is not in the buffer cache, then it 684 * must have been written out. 685 */ 686 goto out; 687 688 offset = (ino % inodes_per_block) * EXT4_INODE_SIZE(sb); 689 raw_inode = (struct ext4_inode *) (bh->b_data + offset); 690 691 /* i_dtime is only 32 bits on disk, but we only care about relative 692 * times in the range of a few minutes (i.e. long enough to sync a 693 * recently-deleted inode to disk), so using the low 32 bits of the 694 * clock (a 68 year range) is enough, see time_before32() */ 695 dtime = le32_to_cpu(raw_inode->i_dtime); 696 now = ktime_get_real_seconds(); 697 if (buffer_dirty(bh)) 698 recentcy += RECENTCY_DIRTY; 699 700 if (dtime && time_before32(dtime, now) && 701 time_before32(now, dtime + recentcy)) 702 ret = 1; 703 out: 704 brelse(bh); 705 return ret; 706 } 707 708 static int find_inode_bit(struct super_block *sb, ext4_group_t group, 709 struct buffer_head *bitmap, unsigned long *ino) 710 { 711 next: 712 *ino = ext4_find_next_zero_bit((unsigned long *) 713 bitmap->b_data, 714 EXT4_INODES_PER_GROUP(sb), *ino); 715 if (*ino >= EXT4_INODES_PER_GROUP(sb)) 716 return 0; 717 718 if ((EXT4_SB(sb)->s_journal == NULL) && 719 recently_deleted(sb, group, *ino)) { 720 *ino = *ino + 1; 721 if (*ino < EXT4_INODES_PER_GROUP(sb)) 722 goto next; 723 return 0; 724 } 725 726 return 1; 727 } 728 729 /* 730 * There are two policies for allocating an inode. If the new inode is 731 * a directory, then a forward search is made for a block group with both 732 * free space and a low directory-to-inode ratio; if that fails, then of 733 * the groups with above-average free space, that group with the fewest 734 * directories already is chosen. 735 * 736 * For other inodes, search forward from the parent directory's block 737 * group to find a free inode. 738 */ 739 struct inode *__ext4_new_inode(handle_t *handle, struct inode *dir, 740 umode_t mode, const struct qstr *qstr, 741 __u32 goal, uid_t *owner, __u32 i_flags, 742 int handle_type, unsigned int line_no, 743 int nblocks) 744 { 745 struct super_block *sb; 746 struct buffer_head *inode_bitmap_bh = NULL; 747 struct buffer_head *group_desc_bh; 748 ext4_group_t ngroups, group = 0; 749 unsigned long ino = 0; 750 struct inode *inode; 751 struct ext4_group_desc *gdp = NULL; 752 struct ext4_inode_info *ei; 753 struct ext4_sb_info *sbi; 754 int ret2, err; 755 struct inode *ret; 756 ext4_group_t i; 757 ext4_group_t flex_group; 758 struct ext4_group_info *grp; 759 int encrypt = 0; 760 761 /* Cannot create files in a deleted directory */ 762 if (!dir || !dir->i_nlink) 763 return ERR_PTR(-EPERM); 764 765 sb = dir->i_sb; 766 sbi = EXT4_SB(sb); 767 768 if (unlikely(ext4_forced_shutdown(sbi))) 769 return ERR_PTR(-EIO); 770 771 if ((ext4_encrypted_inode(dir) || DUMMY_ENCRYPTION_ENABLED(sbi)) && 772 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)) && 773 !(i_flags & EXT4_EA_INODE_FL)) { 774 err = fscrypt_get_encryption_info(dir); 775 if (err) 776 return ERR_PTR(err); 777 if (!fscrypt_has_encryption_key(dir)) 778 return ERR_PTR(-ENOKEY); 779 encrypt = 1; 780 } 781 782 if (!handle && sbi->s_journal && !(i_flags & EXT4_EA_INODE_FL)) { 783 #ifdef CONFIG_EXT4_FS_POSIX_ACL 784 struct posix_acl *p = get_acl(dir, ACL_TYPE_DEFAULT); 785 786 if (IS_ERR(p)) 787 return ERR_CAST(p); 788 if (p) { 789 int acl_size = p->a_count * sizeof(ext4_acl_entry); 790 791 nblocks += (S_ISDIR(mode) ? 2 : 1) * 792 __ext4_xattr_set_credits(sb, NULL /* inode */, 793 NULL /* block_bh */, acl_size, 794 true /* is_create */); 795 posix_acl_release(p); 796 } 797 #endif 798 799 #ifdef CONFIG_SECURITY 800 { 801 int num_security_xattrs = 1; 802 803 #ifdef CONFIG_INTEGRITY 804 num_security_xattrs++; 805 #endif 806 /* 807 * We assume that security xattrs are never 808 * more than 1k. In practice they are under 809 * 128 bytes. 810 */ 811 nblocks += num_security_xattrs * 812 __ext4_xattr_set_credits(sb, NULL /* inode */, 813 NULL /* block_bh */, 1024, 814 true /* is_create */); 815 } 816 #endif 817 if (encrypt) 818 nblocks += __ext4_xattr_set_credits(sb, 819 NULL /* inode */, NULL /* block_bh */, 820 FSCRYPT_SET_CONTEXT_MAX_SIZE, 821 true /* is_create */); 822 } 823 824 ngroups = ext4_get_groups_count(sb); 825 trace_ext4_request_inode(dir, mode); 826 inode = new_inode(sb); 827 if (!inode) 828 return ERR_PTR(-ENOMEM); 829 ei = EXT4_I(inode); 830 831 /* 832 * Initialize owners and quota early so that we don't have to account 833 * for quota initialization worst case in standard inode creating 834 * transaction 835 */ 836 if (owner) { 837 inode->i_mode = mode; 838 i_uid_write(inode, owner[0]); 839 i_gid_write(inode, owner[1]); 840 } else if (test_opt(sb, GRPID)) { 841 inode->i_mode = mode; 842 inode->i_uid = current_fsuid(); 843 inode->i_gid = dir->i_gid; 844 } else 845 inode_init_owner(inode, dir, mode); 846 847 if (ext4_has_feature_project(sb) && 848 ext4_test_inode_flag(dir, EXT4_INODE_PROJINHERIT)) 849 ei->i_projid = EXT4_I(dir)->i_projid; 850 else 851 ei->i_projid = make_kprojid(&init_user_ns, EXT4_DEF_PROJID); 852 853 err = dquot_initialize(inode); 854 if (err) 855 goto out; 856 857 if (!goal) 858 goal = sbi->s_inode_goal; 859 860 if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) { 861 group = (goal - 1) / EXT4_INODES_PER_GROUP(sb); 862 ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb); 863 ret2 = 0; 864 goto got_group; 865 } 866 867 if (S_ISDIR(mode)) 868 ret2 = find_group_orlov(sb, dir, &group, mode, qstr); 869 else 870 ret2 = find_group_other(sb, dir, &group, mode); 871 872 got_group: 873 EXT4_I(dir)->i_last_alloc_group = group; 874 err = -ENOSPC; 875 if (ret2 == -1) 876 goto out; 877 878 /* 879 * Normally we will only go through one pass of this loop, 880 * unless we get unlucky and it turns out the group we selected 881 * had its last inode grabbed by someone else. 882 */ 883 for (i = 0; i < ngroups; i++, ino = 0) { 884 err = -EIO; 885 886 gdp = ext4_get_group_desc(sb, group, &group_desc_bh); 887 if (!gdp) 888 goto out; 889 890 /* 891 * Check free inodes count before loading bitmap. 892 */ 893 if (ext4_free_inodes_count(sb, gdp) == 0) 894 goto next_group; 895 896 grp = ext4_get_group_info(sb, group); 897 /* Skip groups with already-known suspicious inode tables */ 898 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) 899 goto next_group; 900 901 brelse(inode_bitmap_bh); 902 inode_bitmap_bh = ext4_read_inode_bitmap(sb, group); 903 /* Skip groups with suspicious inode tables */ 904 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp) || 905 IS_ERR(inode_bitmap_bh)) { 906 inode_bitmap_bh = NULL; 907 goto next_group; 908 } 909 910 repeat_in_this_group: 911 ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino); 912 if (!ret2) 913 goto next_group; 914 915 if (group == 0 && (ino + 1) < EXT4_FIRST_INO(sb)) { 916 ext4_error(sb, "reserved inode found cleared - " 917 "inode=%lu", ino + 1); 918 ext4_mark_group_bitmap_corrupted(sb, group, 919 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 920 goto next_group; 921 } 922 923 if (!handle) { 924 BUG_ON(nblocks <= 0); 925 handle = __ext4_journal_start_sb(dir->i_sb, line_no, 926 handle_type, nblocks, 927 0); 928 if (IS_ERR(handle)) { 929 err = PTR_ERR(handle); 930 ext4_std_error(sb, err); 931 goto out; 932 } 933 } 934 BUFFER_TRACE(inode_bitmap_bh, "get_write_access"); 935 err = ext4_journal_get_write_access(handle, inode_bitmap_bh); 936 if (err) { 937 ext4_std_error(sb, err); 938 goto out; 939 } 940 ext4_lock_group(sb, group); 941 ret2 = ext4_test_and_set_bit(ino, inode_bitmap_bh->b_data); 942 if (ret2) { 943 /* Someone already took the bit. Repeat the search 944 * with lock held. 945 */ 946 ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino); 947 if (ret2) { 948 ext4_set_bit(ino, inode_bitmap_bh->b_data); 949 ret2 = 0; 950 } else { 951 ret2 = 1; /* we didn't grab the inode */ 952 } 953 } 954 ext4_unlock_group(sb, group); 955 ino++; /* the inode bitmap is zero-based */ 956 if (!ret2) 957 goto got; /* we grabbed the inode! */ 958 959 if (ino < EXT4_INODES_PER_GROUP(sb)) 960 goto repeat_in_this_group; 961 next_group: 962 if (++group == ngroups) 963 group = 0; 964 } 965 err = -ENOSPC; 966 goto out; 967 968 got: 969 BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata"); 970 err = ext4_handle_dirty_metadata(handle, NULL, inode_bitmap_bh); 971 if (err) { 972 ext4_std_error(sb, err); 973 goto out; 974 } 975 976 BUFFER_TRACE(group_desc_bh, "get_write_access"); 977 err = ext4_journal_get_write_access(handle, group_desc_bh); 978 if (err) { 979 ext4_std_error(sb, err); 980 goto out; 981 } 982 983 /* We may have to initialize the block bitmap if it isn't already */ 984 if (ext4_has_group_desc_csum(sb) && 985 gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 986 struct buffer_head *block_bitmap_bh; 987 988 block_bitmap_bh = ext4_read_block_bitmap(sb, group); 989 if (IS_ERR(block_bitmap_bh)) { 990 err = PTR_ERR(block_bitmap_bh); 991 goto out; 992 } 993 BUFFER_TRACE(block_bitmap_bh, "get block bitmap access"); 994 err = ext4_journal_get_write_access(handle, block_bitmap_bh); 995 if (err) { 996 brelse(block_bitmap_bh); 997 ext4_std_error(sb, err); 998 goto out; 999 } 1000 1001 BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap"); 1002 err = ext4_handle_dirty_metadata(handle, NULL, block_bitmap_bh); 1003 1004 /* recheck and clear flag under lock if we still need to */ 1005 ext4_lock_group(sb, group); 1006 if (ext4_has_group_desc_csum(sb) && 1007 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 1008 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 1009 ext4_free_group_clusters_set(sb, gdp, 1010 ext4_free_clusters_after_init(sb, group, gdp)); 1011 ext4_block_bitmap_csum_set(sb, group, gdp, 1012 block_bitmap_bh); 1013 ext4_group_desc_csum_set(sb, group, gdp); 1014 } 1015 ext4_unlock_group(sb, group); 1016 brelse(block_bitmap_bh); 1017 1018 if (err) { 1019 ext4_std_error(sb, err); 1020 goto out; 1021 } 1022 } 1023 1024 /* Update the relevant bg descriptor fields */ 1025 if (ext4_has_group_desc_csum(sb)) { 1026 int free; 1027 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 1028 1029 down_read(&grp->alloc_sem); /* protect vs itable lazyinit */ 1030 ext4_lock_group(sb, group); /* while we modify the bg desc */ 1031 free = EXT4_INODES_PER_GROUP(sb) - 1032 ext4_itable_unused_count(sb, gdp); 1033 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) { 1034 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT); 1035 free = 0; 1036 } 1037 /* 1038 * Check the relative inode number against the last used 1039 * relative inode number in this group. if it is greater 1040 * we need to update the bg_itable_unused count 1041 */ 1042 if (ino > free) 1043 ext4_itable_unused_set(sb, gdp, 1044 (EXT4_INODES_PER_GROUP(sb) - ino)); 1045 up_read(&grp->alloc_sem); 1046 } else { 1047 ext4_lock_group(sb, group); 1048 } 1049 1050 ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1); 1051 if (S_ISDIR(mode)) { 1052 ext4_used_dirs_set(sb, gdp, ext4_used_dirs_count(sb, gdp) + 1); 1053 if (sbi->s_log_groups_per_flex) { 1054 ext4_group_t f = ext4_flex_group(sbi, group); 1055 1056 atomic_inc(&sbi->s_flex_groups[f].used_dirs); 1057 } 1058 } 1059 if (ext4_has_group_desc_csum(sb)) { 1060 ext4_inode_bitmap_csum_set(sb, group, gdp, inode_bitmap_bh, 1061 EXT4_INODES_PER_GROUP(sb) / 8); 1062 ext4_group_desc_csum_set(sb, group, gdp); 1063 } 1064 ext4_unlock_group(sb, group); 1065 1066 BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata"); 1067 err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh); 1068 if (err) { 1069 ext4_std_error(sb, err); 1070 goto out; 1071 } 1072 1073 percpu_counter_dec(&sbi->s_freeinodes_counter); 1074 if (S_ISDIR(mode)) 1075 percpu_counter_inc(&sbi->s_dirs_counter); 1076 1077 if (sbi->s_log_groups_per_flex) { 1078 flex_group = ext4_flex_group(sbi, group); 1079 atomic_dec(&sbi->s_flex_groups[flex_group].free_inodes); 1080 } 1081 1082 inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb); 1083 /* This is the optimal IO size (for stat), not the fs block size */ 1084 inode->i_blocks = 0; 1085 inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode); 1086 ei->i_crtime = timespec64_to_timespec(inode->i_mtime); 1087 1088 memset(ei->i_data, 0, sizeof(ei->i_data)); 1089 ei->i_dir_start_lookup = 0; 1090 ei->i_disksize = 0; 1091 1092 /* Don't inherit extent flag from directory, amongst others. */ 1093 ei->i_flags = 1094 ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED); 1095 ei->i_flags |= i_flags; 1096 ei->i_file_acl = 0; 1097 ei->i_dtime = 0; 1098 ei->i_block_group = group; 1099 ei->i_last_alloc_group = ~0; 1100 1101 ext4_set_inode_flags(inode); 1102 if (IS_DIRSYNC(inode)) 1103 ext4_handle_sync(handle); 1104 if (insert_inode_locked(inode) < 0) { 1105 /* 1106 * Likely a bitmap corruption causing inode to be allocated 1107 * twice. 1108 */ 1109 err = -EIO; 1110 ext4_error(sb, "failed to insert inode %lu: doubly allocated?", 1111 inode->i_ino); 1112 ext4_mark_group_bitmap_corrupted(sb, group, 1113 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 1114 goto out; 1115 } 1116 inode->i_generation = prandom_u32(); 1117 1118 /* Precompute checksum seed for inode metadata */ 1119 if (ext4_has_metadata_csum(sb)) { 1120 __u32 csum; 1121 __le32 inum = cpu_to_le32(inode->i_ino); 1122 __le32 gen = cpu_to_le32(inode->i_generation); 1123 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 1124 sizeof(inum)); 1125 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 1126 sizeof(gen)); 1127 } 1128 1129 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 1130 ext4_set_inode_state(inode, EXT4_STATE_NEW); 1131 1132 ei->i_extra_isize = sbi->s_want_extra_isize; 1133 ei->i_inline_off = 0; 1134 if (ext4_has_feature_inline_data(sb)) 1135 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); 1136 ret = inode; 1137 err = dquot_alloc_inode(inode); 1138 if (err) 1139 goto fail_drop; 1140 1141 /* 1142 * Since the encryption xattr will always be unique, create it first so 1143 * that it's less likely to end up in an external xattr block and 1144 * prevent its deduplication. 1145 */ 1146 if (encrypt) { 1147 err = fscrypt_inherit_context(dir, inode, handle, true); 1148 if (err) 1149 goto fail_free_drop; 1150 } 1151 1152 if (!(ei->i_flags & EXT4_EA_INODE_FL)) { 1153 err = ext4_init_acl(handle, inode, dir); 1154 if (err) 1155 goto fail_free_drop; 1156 1157 err = ext4_init_security(handle, inode, dir, qstr); 1158 if (err) 1159 goto fail_free_drop; 1160 } 1161 1162 if (ext4_has_feature_extents(sb)) { 1163 /* set extent flag only for directory, file and normal symlink*/ 1164 if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) { 1165 ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS); 1166 ext4_ext_tree_init(handle, inode); 1167 } 1168 } 1169 1170 if (ext4_handle_valid(handle)) { 1171 ei->i_sync_tid = handle->h_transaction->t_tid; 1172 ei->i_datasync_tid = handle->h_transaction->t_tid; 1173 } 1174 1175 err = ext4_mark_inode_dirty(handle, inode); 1176 if (err) { 1177 ext4_std_error(sb, err); 1178 goto fail_free_drop; 1179 } 1180 1181 ext4_debug("allocating inode %lu\n", inode->i_ino); 1182 trace_ext4_allocate_inode(inode, dir, mode); 1183 brelse(inode_bitmap_bh); 1184 return ret; 1185 1186 fail_free_drop: 1187 dquot_free_inode(inode); 1188 fail_drop: 1189 clear_nlink(inode); 1190 unlock_new_inode(inode); 1191 out: 1192 dquot_drop(inode); 1193 inode->i_flags |= S_NOQUOTA; 1194 iput(inode); 1195 brelse(inode_bitmap_bh); 1196 return ERR_PTR(err); 1197 } 1198 1199 /* Verify that we are loading a valid orphan from disk */ 1200 struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino) 1201 { 1202 unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count); 1203 ext4_group_t block_group; 1204 int bit; 1205 struct buffer_head *bitmap_bh = NULL; 1206 struct inode *inode = NULL; 1207 int err = -EFSCORRUPTED; 1208 1209 if (ino < EXT4_FIRST_INO(sb) || ino > max_ino) 1210 goto bad_orphan; 1211 1212 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 1213 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb); 1214 bitmap_bh = ext4_read_inode_bitmap(sb, block_group); 1215 if (IS_ERR(bitmap_bh)) 1216 return (struct inode *) bitmap_bh; 1217 1218 /* Having the inode bit set should be a 100% indicator that this 1219 * is a valid orphan (no e2fsck run on fs). Orphans also include 1220 * inodes that were being truncated, so we can't check i_nlink==0. 1221 */ 1222 if (!ext4_test_bit(bit, bitmap_bh->b_data)) 1223 goto bad_orphan; 1224 1225 inode = ext4_iget(sb, ino); 1226 if (IS_ERR(inode)) { 1227 err = PTR_ERR(inode); 1228 ext4_error(sb, "couldn't read orphan inode %lu (err %d)", 1229 ino, err); 1230 return inode; 1231 } 1232 1233 /* 1234 * If the orphans has i_nlinks > 0 then it should be able to 1235 * be truncated, otherwise it won't be removed from the orphan 1236 * list during processing and an infinite loop will result. 1237 * Similarly, it must not be a bad inode. 1238 */ 1239 if ((inode->i_nlink && !ext4_can_truncate(inode)) || 1240 is_bad_inode(inode)) 1241 goto bad_orphan; 1242 1243 if (NEXT_ORPHAN(inode) > max_ino) 1244 goto bad_orphan; 1245 brelse(bitmap_bh); 1246 return inode; 1247 1248 bad_orphan: 1249 ext4_error(sb, "bad orphan inode %lu", ino); 1250 if (bitmap_bh) 1251 printk(KERN_ERR "ext4_test_bit(bit=%d, block=%llu) = %d\n", 1252 bit, (unsigned long long)bitmap_bh->b_blocknr, 1253 ext4_test_bit(bit, bitmap_bh->b_data)); 1254 if (inode) { 1255 printk(KERN_ERR "is_bad_inode(inode)=%d\n", 1256 is_bad_inode(inode)); 1257 printk(KERN_ERR "NEXT_ORPHAN(inode)=%u\n", 1258 NEXT_ORPHAN(inode)); 1259 printk(KERN_ERR "max_ino=%lu\n", max_ino); 1260 printk(KERN_ERR "i_nlink=%u\n", inode->i_nlink); 1261 /* Avoid freeing blocks if we got a bad deleted inode */ 1262 if (inode->i_nlink == 0) 1263 inode->i_blocks = 0; 1264 iput(inode); 1265 } 1266 brelse(bitmap_bh); 1267 return ERR_PTR(err); 1268 } 1269 1270 unsigned long ext4_count_free_inodes(struct super_block *sb) 1271 { 1272 unsigned long desc_count; 1273 struct ext4_group_desc *gdp; 1274 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 1275 #ifdef EXT4FS_DEBUG 1276 struct ext4_super_block *es; 1277 unsigned long bitmap_count, x; 1278 struct buffer_head *bitmap_bh = NULL; 1279 1280 es = EXT4_SB(sb)->s_es; 1281 desc_count = 0; 1282 bitmap_count = 0; 1283 gdp = NULL; 1284 for (i = 0; i < ngroups; i++) { 1285 gdp = ext4_get_group_desc(sb, i, NULL); 1286 if (!gdp) 1287 continue; 1288 desc_count += ext4_free_inodes_count(sb, gdp); 1289 brelse(bitmap_bh); 1290 bitmap_bh = ext4_read_inode_bitmap(sb, i); 1291 if (IS_ERR(bitmap_bh)) { 1292 bitmap_bh = NULL; 1293 continue; 1294 } 1295 1296 x = ext4_count_free(bitmap_bh->b_data, 1297 EXT4_INODES_PER_GROUP(sb) / 8); 1298 printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n", 1299 (unsigned long) i, ext4_free_inodes_count(sb, gdp), x); 1300 bitmap_count += x; 1301 } 1302 brelse(bitmap_bh); 1303 printk(KERN_DEBUG "ext4_count_free_inodes: " 1304 "stored = %u, computed = %lu, %lu\n", 1305 le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count); 1306 return desc_count; 1307 #else 1308 desc_count = 0; 1309 for (i = 0; i < ngroups; i++) { 1310 gdp = ext4_get_group_desc(sb, i, NULL); 1311 if (!gdp) 1312 continue; 1313 desc_count += ext4_free_inodes_count(sb, gdp); 1314 cond_resched(); 1315 } 1316 return desc_count; 1317 #endif 1318 } 1319 1320 /* Called at mount-time, super-block is locked */ 1321 unsigned long ext4_count_dirs(struct super_block * sb) 1322 { 1323 unsigned long count = 0; 1324 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 1325 1326 for (i = 0; i < ngroups; i++) { 1327 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 1328 if (!gdp) 1329 continue; 1330 count += ext4_used_dirs_count(sb, gdp); 1331 } 1332 return count; 1333 } 1334 1335 /* 1336 * Zeroes not yet zeroed inode table - just write zeroes through the whole 1337 * inode table. Must be called without any spinlock held. The only place 1338 * where it is called from on active part of filesystem is ext4lazyinit 1339 * thread, so we do not need any special locks, however we have to prevent 1340 * inode allocation from the current group, so we take alloc_sem lock, to 1341 * block ext4_new_inode() until we are finished. 1342 */ 1343 int ext4_init_inode_table(struct super_block *sb, ext4_group_t group, 1344 int barrier) 1345 { 1346 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 1347 struct ext4_sb_info *sbi = EXT4_SB(sb); 1348 struct ext4_group_desc *gdp = NULL; 1349 struct buffer_head *group_desc_bh; 1350 handle_t *handle; 1351 ext4_fsblk_t blk; 1352 int num, ret = 0, used_blks = 0; 1353 1354 /* This should not happen, but just to be sure check this */ 1355 if (sb_rdonly(sb)) { 1356 ret = 1; 1357 goto out; 1358 } 1359 1360 gdp = ext4_get_group_desc(sb, group, &group_desc_bh); 1361 if (!gdp) 1362 goto out; 1363 1364 /* 1365 * We do not need to lock this, because we are the only one 1366 * handling this flag. 1367 */ 1368 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)) 1369 goto out; 1370 1371 handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1); 1372 if (IS_ERR(handle)) { 1373 ret = PTR_ERR(handle); 1374 goto out; 1375 } 1376 1377 down_write(&grp->alloc_sem); 1378 /* 1379 * If inode bitmap was already initialized there may be some 1380 * used inodes so we need to skip blocks with used inodes in 1381 * inode table. 1382 */ 1383 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT))) 1384 used_blks = DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb) - 1385 ext4_itable_unused_count(sb, gdp)), 1386 sbi->s_inodes_per_block); 1387 1388 if ((used_blks < 0) || (used_blks > sbi->s_itb_per_group)) { 1389 ext4_error(sb, "Something is wrong with group %u: " 1390 "used itable blocks: %d; " 1391 "itable unused count: %u", 1392 group, used_blks, 1393 ext4_itable_unused_count(sb, gdp)); 1394 ret = 1; 1395 goto err_out; 1396 } 1397 1398 blk = ext4_inode_table(sb, gdp) + used_blks; 1399 num = sbi->s_itb_per_group - used_blks; 1400 1401 BUFFER_TRACE(group_desc_bh, "get_write_access"); 1402 ret = ext4_journal_get_write_access(handle, 1403 group_desc_bh); 1404 if (ret) 1405 goto err_out; 1406 1407 /* 1408 * Skip zeroout if the inode table is full. But we set the ZEROED 1409 * flag anyway, because obviously, when it is full it does not need 1410 * further zeroing. 1411 */ 1412 if (unlikely(num == 0)) 1413 goto skip_zeroout; 1414 1415 ext4_debug("going to zero out inode table in group %d\n", 1416 group); 1417 ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS); 1418 if (ret < 0) 1419 goto err_out; 1420 if (barrier) 1421 blkdev_issue_flush(sb->s_bdev, GFP_NOFS, NULL); 1422 1423 skip_zeroout: 1424 ext4_lock_group(sb, group); 1425 gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED); 1426 ext4_group_desc_csum_set(sb, group, gdp); 1427 ext4_unlock_group(sb, group); 1428 1429 BUFFER_TRACE(group_desc_bh, 1430 "call ext4_handle_dirty_metadata"); 1431 ret = ext4_handle_dirty_metadata(handle, NULL, 1432 group_desc_bh); 1433 1434 err_out: 1435 up_write(&grp->alloc_sem); 1436 ext4_journal_stop(handle); 1437 out: 1438 return ret; 1439 } 1440