1 /* 2 * linux/fs/ext4/ialloc.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * BSD ufs-inspired inode and directory allocation by 10 * Stephen Tweedie (sct@redhat.com), 1993 11 * Big-endian to little-endian byte-swapping/bitmaps by 12 * David S. Miller (davem@caip.rutgers.edu), 1995 13 */ 14 15 #include <linux/time.h> 16 #include <linux/fs.h> 17 #include <linux/stat.h> 18 #include <linux/string.h> 19 #include <linux/quotaops.h> 20 #include <linux/buffer_head.h> 21 #include <linux/random.h> 22 #include <linux/bitops.h> 23 #include <linux/blkdev.h> 24 #include <asm/byteorder.h> 25 26 #include "ext4.h" 27 #include "ext4_jbd2.h" 28 #include "xattr.h" 29 #include "acl.h" 30 31 #include <trace/events/ext4.h> 32 33 /* 34 * ialloc.c contains the inodes allocation and deallocation routines 35 */ 36 37 /* 38 * The free inodes are managed by bitmaps. A file system contains several 39 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap 40 * block for inodes, N blocks for the inode table and data blocks. 41 * 42 * The file system contains group descriptors which are located after the 43 * super block. Each descriptor contains the number of the bitmap block and 44 * the free blocks count in the block. 45 */ 46 47 /* 48 * To avoid calling the atomic setbit hundreds or thousands of times, we only 49 * need to use it within a single byte (to ensure we get endianness right). 50 * We can use memset for the rest of the bitmap as there are no other users. 51 */ 52 void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap) 53 { 54 int i; 55 56 if (start_bit >= end_bit) 57 return; 58 59 ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit); 60 for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++) 61 ext4_set_bit(i, bitmap); 62 if (i < end_bit) 63 memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3); 64 } 65 66 /* Initializes an uninitialized inode bitmap */ 67 static int ext4_init_inode_bitmap(struct super_block *sb, 68 struct buffer_head *bh, 69 ext4_group_t block_group, 70 struct ext4_group_desc *gdp) 71 { 72 struct ext4_group_info *grp; 73 struct ext4_sb_info *sbi = EXT4_SB(sb); 74 J_ASSERT_BH(bh, buffer_locked(bh)); 75 76 /* If checksum is bad mark all blocks and inodes use to prevent 77 * allocation, essentially implementing a per-group read-only flag. */ 78 if (!ext4_group_desc_csum_verify(sb, block_group, gdp)) { 79 ext4_error(sb, "Checksum bad for group %u", block_group); 80 grp = ext4_get_group_info(sb, block_group); 81 if (!EXT4_MB_GRP_BBITMAP_CORRUPT(grp)) 82 percpu_counter_sub(&sbi->s_freeclusters_counter, 83 grp->bb_free); 84 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, &grp->bb_state); 85 if (!EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) { 86 int count; 87 count = ext4_free_inodes_count(sb, gdp); 88 percpu_counter_sub(&sbi->s_freeinodes_counter, 89 count); 90 } 91 set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state); 92 return -EFSBADCRC; 93 } 94 95 memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8); 96 ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb), sb->s_blocksize * 8, 97 bh->b_data); 98 ext4_inode_bitmap_csum_set(sb, block_group, gdp, bh, 99 EXT4_INODES_PER_GROUP(sb) / 8); 100 ext4_group_desc_csum_set(sb, block_group, gdp); 101 102 return 0; 103 } 104 105 void ext4_end_bitmap_read(struct buffer_head *bh, int uptodate) 106 { 107 if (uptodate) { 108 set_buffer_uptodate(bh); 109 set_bitmap_uptodate(bh); 110 } 111 unlock_buffer(bh); 112 put_bh(bh); 113 } 114 115 static int ext4_validate_inode_bitmap(struct super_block *sb, 116 struct ext4_group_desc *desc, 117 ext4_group_t block_group, 118 struct buffer_head *bh) 119 { 120 ext4_fsblk_t blk; 121 struct ext4_group_info *grp = ext4_get_group_info(sb, block_group); 122 struct ext4_sb_info *sbi = EXT4_SB(sb); 123 124 if (buffer_verified(bh)) 125 return 0; 126 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) 127 return -EFSCORRUPTED; 128 129 ext4_lock_group(sb, block_group); 130 blk = ext4_inode_bitmap(sb, desc); 131 if (!ext4_inode_bitmap_csum_verify(sb, block_group, desc, bh, 132 EXT4_INODES_PER_GROUP(sb) / 8)) { 133 ext4_unlock_group(sb, block_group); 134 ext4_error(sb, "Corrupt inode bitmap - block_group = %u, " 135 "inode_bitmap = %llu", block_group, blk); 136 grp = ext4_get_group_info(sb, block_group); 137 if (!EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) { 138 int count; 139 count = ext4_free_inodes_count(sb, desc); 140 percpu_counter_sub(&sbi->s_freeinodes_counter, 141 count); 142 } 143 set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state); 144 return -EFSBADCRC; 145 } 146 set_buffer_verified(bh); 147 ext4_unlock_group(sb, block_group); 148 return 0; 149 } 150 151 /* 152 * Read the inode allocation bitmap for a given block_group, reading 153 * into the specified slot in the superblock's bitmap cache. 154 * 155 * Return buffer_head of bitmap on success or NULL. 156 */ 157 static struct buffer_head * 158 ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group) 159 { 160 struct ext4_group_desc *desc; 161 struct buffer_head *bh = NULL; 162 ext4_fsblk_t bitmap_blk; 163 int err; 164 165 desc = ext4_get_group_desc(sb, block_group, NULL); 166 if (!desc) 167 return ERR_PTR(-EFSCORRUPTED); 168 169 bitmap_blk = ext4_inode_bitmap(sb, desc); 170 bh = sb_getblk(sb, bitmap_blk); 171 if (unlikely(!bh)) { 172 ext4_error(sb, "Cannot read inode bitmap - " 173 "block_group = %u, inode_bitmap = %llu", 174 block_group, bitmap_blk); 175 return ERR_PTR(-EIO); 176 } 177 if (bitmap_uptodate(bh)) 178 goto verify; 179 180 lock_buffer(bh); 181 if (bitmap_uptodate(bh)) { 182 unlock_buffer(bh); 183 goto verify; 184 } 185 186 ext4_lock_group(sb, block_group); 187 if (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) { 188 err = ext4_init_inode_bitmap(sb, bh, block_group, desc); 189 set_bitmap_uptodate(bh); 190 set_buffer_uptodate(bh); 191 set_buffer_verified(bh); 192 ext4_unlock_group(sb, block_group); 193 unlock_buffer(bh); 194 if (err) 195 goto out; 196 return bh; 197 } 198 ext4_unlock_group(sb, block_group); 199 200 if (buffer_uptodate(bh)) { 201 /* 202 * if not uninit if bh is uptodate, 203 * bitmap is also uptodate 204 */ 205 set_bitmap_uptodate(bh); 206 unlock_buffer(bh); 207 goto verify; 208 } 209 /* 210 * submit the buffer_head for reading 211 */ 212 trace_ext4_load_inode_bitmap(sb, block_group); 213 bh->b_end_io = ext4_end_bitmap_read; 214 get_bh(bh); 215 submit_bh(READ | REQ_META | REQ_PRIO, bh); 216 wait_on_buffer(bh); 217 if (!buffer_uptodate(bh)) { 218 put_bh(bh); 219 ext4_error(sb, "Cannot read inode bitmap - " 220 "block_group = %u, inode_bitmap = %llu", 221 block_group, bitmap_blk); 222 return ERR_PTR(-EIO); 223 } 224 225 verify: 226 err = ext4_validate_inode_bitmap(sb, desc, block_group, bh); 227 if (err) 228 goto out; 229 return bh; 230 out: 231 put_bh(bh); 232 return ERR_PTR(err); 233 } 234 235 /* 236 * NOTE! When we get the inode, we're the only people 237 * that have access to it, and as such there are no 238 * race conditions we have to worry about. The inode 239 * is not on the hash-lists, and it cannot be reached 240 * through the filesystem because the directory entry 241 * has been deleted earlier. 242 * 243 * HOWEVER: we must make sure that we get no aliases, 244 * which means that we have to call "clear_inode()" 245 * _before_ we mark the inode not in use in the inode 246 * bitmaps. Otherwise a newly created file might use 247 * the same inode number (not actually the same pointer 248 * though), and then we'd have two inodes sharing the 249 * same inode number and space on the harddisk. 250 */ 251 void ext4_free_inode(handle_t *handle, struct inode *inode) 252 { 253 struct super_block *sb = inode->i_sb; 254 int is_directory; 255 unsigned long ino; 256 struct buffer_head *bitmap_bh = NULL; 257 struct buffer_head *bh2; 258 ext4_group_t block_group; 259 unsigned long bit; 260 struct ext4_group_desc *gdp; 261 struct ext4_super_block *es; 262 struct ext4_sb_info *sbi; 263 int fatal = 0, err, count, cleared; 264 struct ext4_group_info *grp; 265 266 if (!sb) { 267 printk(KERN_ERR "EXT4-fs: %s:%d: inode on " 268 "nonexistent device\n", __func__, __LINE__); 269 return; 270 } 271 if (atomic_read(&inode->i_count) > 1) { 272 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: count=%d", 273 __func__, __LINE__, inode->i_ino, 274 atomic_read(&inode->i_count)); 275 return; 276 } 277 if (inode->i_nlink) { 278 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: nlink=%d\n", 279 __func__, __LINE__, inode->i_ino, inode->i_nlink); 280 return; 281 } 282 sbi = EXT4_SB(sb); 283 284 ino = inode->i_ino; 285 ext4_debug("freeing inode %lu\n", ino); 286 trace_ext4_free_inode(inode); 287 288 /* 289 * Note: we must free any quota before locking the superblock, 290 * as writing the quota to disk may need the lock as well. 291 */ 292 dquot_initialize(inode); 293 ext4_xattr_delete_inode(handle, inode); 294 dquot_free_inode(inode); 295 dquot_drop(inode); 296 297 is_directory = S_ISDIR(inode->i_mode); 298 299 /* Do this BEFORE marking the inode not in use or returning an error */ 300 ext4_clear_inode(inode); 301 302 es = EXT4_SB(sb)->s_es; 303 if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) { 304 ext4_error(sb, "reserved or nonexistent inode %lu", ino); 305 goto error_return; 306 } 307 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 308 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb); 309 bitmap_bh = ext4_read_inode_bitmap(sb, block_group); 310 /* Don't bother if the inode bitmap is corrupt. */ 311 grp = ext4_get_group_info(sb, block_group); 312 if (IS_ERR(bitmap_bh)) { 313 fatal = PTR_ERR(bitmap_bh); 314 bitmap_bh = NULL; 315 goto error_return; 316 } 317 if (unlikely(EXT4_MB_GRP_IBITMAP_CORRUPT(grp))) { 318 fatal = -EFSCORRUPTED; 319 goto error_return; 320 } 321 322 BUFFER_TRACE(bitmap_bh, "get_write_access"); 323 fatal = ext4_journal_get_write_access(handle, bitmap_bh); 324 if (fatal) 325 goto error_return; 326 327 fatal = -ESRCH; 328 gdp = ext4_get_group_desc(sb, block_group, &bh2); 329 if (gdp) { 330 BUFFER_TRACE(bh2, "get_write_access"); 331 fatal = ext4_journal_get_write_access(handle, bh2); 332 } 333 ext4_lock_group(sb, block_group); 334 cleared = ext4_test_and_clear_bit(bit, bitmap_bh->b_data); 335 if (fatal || !cleared) { 336 ext4_unlock_group(sb, block_group); 337 goto out; 338 } 339 340 count = ext4_free_inodes_count(sb, gdp) + 1; 341 ext4_free_inodes_set(sb, gdp, count); 342 if (is_directory) { 343 count = ext4_used_dirs_count(sb, gdp) - 1; 344 ext4_used_dirs_set(sb, gdp, count); 345 percpu_counter_dec(&sbi->s_dirs_counter); 346 } 347 ext4_inode_bitmap_csum_set(sb, block_group, gdp, bitmap_bh, 348 EXT4_INODES_PER_GROUP(sb) / 8); 349 ext4_group_desc_csum_set(sb, block_group, gdp); 350 ext4_unlock_group(sb, block_group); 351 352 percpu_counter_inc(&sbi->s_freeinodes_counter); 353 if (sbi->s_log_groups_per_flex) { 354 ext4_group_t f = ext4_flex_group(sbi, block_group); 355 356 atomic_inc(&sbi->s_flex_groups[f].free_inodes); 357 if (is_directory) 358 atomic_dec(&sbi->s_flex_groups[f].used_dirs); 359 } 360 BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata"); 361 fatal = ext4_handle_dirty_metadata(handle, NULL, bh2); 362 out: 363 if (cleared) { 364 BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata"); 365 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 366 if (!fatal) 367 fatal = err; 368 } else { 369 ext4_error(sb, "bit already cleared for inode %lu", ino); 370 if (gdp && !EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) { 371 int count; 372 count = ext4_free_inodes_count(sb, gdp); 373 percpu_counter_sub(&sbi->s_freeinodes_counter, 374 count); 375 } 376 set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state); 377 } 378 379 error_return: 380 brelse(bitmap_bh); 381 ext4_std_error(sb, fatal); 382 } 383 384 struct orlov_stats { 385 __u64 free_clusters; 386 __u32 free_inodes; 387 __u32 used_dirs; 388 }; 389 390 /* 391 * Helper function for Orlov's allocator; returns critical information 392 * for a particular block group or flex_bg. If flex_size is 1, then g 393 * is a block group number; otherwise it is flex_bg number. 394 */ 395 static void get_orlov_stats(struct super_block *sb, ext4_group_t g, 396 int flex_size, struct orlov_stats *stats) 397 { 398 struct ext4_group_desc *desc; 399 struct flex_groups *flex_group = EXT4_SB(sb)->s_flex_groups; 400 401 if (flex_size > 1) { 402 stats->free_inodes = atomic_read(&flex_group[g].free_inodes); 403 stats->free_clusters = atomic64_read(&flex_group[g].free_clusters); 404 stats->used_dirs = atomic_read(&flex_group[g].used_dirs); 405 return; 406 } 407 408 desc = ext4_get_group_desc(sb, g, NULL); 409 if (desc) { 410 stats->free_inodes = ext4_free_inodes_count(sb, desc); 411 stats->free_clusters = ext4_free_group_clusters(sb, desc); 412 stats->used_dirs = ext4_used_dirs_count(sb, desc); 413 } else { 414 stats->free_inodes = 0; 415 stats->free_clusters = 0; 416 stats->used_dirs = 0; 417 } 418 } 419 420 /* 421 * Orlov's allocator for directories. 422 * 423 * We always try to spread first-level directories. 424 * 425 * If there are blockgroups with both free inodes and free blocks counts 426 * not worse than average we return one with smallest directory count. 427 * Otherwise we simply return a random group. 428 * 429 * For the rest rules look so: 430 * 431 * It's OK to put directory into a group unless 432 * it has too many directories already (max_dirs) or 433 * it has too few free inodes left (min_inodes) or 434 * it has too few free blocks left (min_blocks) or 435 * Parent's group is preferred, if it doesn't satisfy these 436 * conditions we search cyclically through the rest. If none 437 * of the groups look good we just look for a group with more 438 * free inodes than average (starting at parent's group). 439 */ 440 441 static int find_group_orlov(struct super_block *sb, struct inode *parent, 442 ext4_group_t *group, umode_t mode, 443 const struct qstr *qstr) 444 { 445 ext4_group_t parent_group = EXT4_I(parent)->i_block_group; 446 struct ext4_sb_info *sbi = EXT4_SB(sb); 447 ext4_group_t real_ngroups = ext4_get_groups_count(sb); 448 int inodes_per_group = EXT4_INODES_PER_GROUP(sb); 449 unsigned int freei, avefreei, grp_free; 450 ext4_fsblk_t freeb, avefreec; 451 unsigned int ndirs; 452 int max_dirs, min_inodes; 453 ext4_grpblk_t min_clusters; 454 ext4_group_t i, grp, g, ngroups; 455 struct ext4_group_desc *desc; 456 struct orlov_stats stats; 457 int flex_size = ext4_flex_bg_size(sbi); 458 struct dx_hash_info hinfo; 459 460 ngroups = real_ngroups; 461 if (flex_size > 1) { 462 ngroups = (real_ngroups + flex_size - 1) >> 463 sbi->s_log_groups_per_flex; 464 parent_group >>= sbi->s_log_groups_per_flex; 465 } 466 467 freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter); 468 avefreei = freei / ngroups; 469 freeb = EXT4_C2B(sbi, 470 percpu_counter_read_positive(&sbi->s_freeclusters_counter)); 471 avefreec = freeb; 472 do_div(avefreec, ngroups); 473 ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter); 474 475 if (S_ISDIR(mode) && 476 ((parent == d_inode(sb->s_root)) || 477 (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) { 478 int best_ndir = inodes_per_group; 479 int ret = -1; 480 481 if (qstr) { 482 hinfo.hash_version = DX_HASH_HALF_MD4; 483 hinfo.seed = sbi->s_hash_seed; 484 ext4fs_dirhash(qstr->name, qstr->len, &hinfo); 485 grp = hinfo.hash; 486 } else 487 grp = prandom_u32(); 488 parent_group = (unsigned)grp % ngroups; 489 for (i = 0; i < ngroups; i++) { 490 g = (parent_group + i) % ngroups; 491 get_orlov_stats(sb, g, flex_size, &stats); 492 if (!stats.free_inodes) 493 continue; 494 if (stats.used_dirs >= best_ndir) 495 continue; 496 if (stats.free_inodes < avefreei) 497 continue; 498 if (stats.free_clusters < avefreec) 499 continue; 500 grp = g; 501 ret = 0; 502 best_ndir = stats.used_dirs; 503 } 504 if (ret) 505 goto fallback; 506 found_flex_bg: 507 if (flex_size == 1) { 508 *group = grp; 509 return 0; 510 } 511 512 /* 513 * We pack inodes at the beginning of the flexgroup's 514 * inode tables. Block allocation decisions will do 515 * something similar, although regular files will 516 * start at 2nd block group of the flexgroup. See 517 * ext4_ext_find_goal() and ext4_find_near(). 518 */ 519 grp *= flex_size; 520 for (i = 0; i < flex_size; i++) { 521 if (grp+i >= real_ngroups) 522 break; 523 desc = ext4_get_group_desc(sb, grp+i, NULL); 524 if (desc && ext4_free_inodes_count(sb, desc)) { 525 *group = grp+i; 526 return 0; 527 } 528 } 529 goto fallback; 530 } 531 532 max_dirs = ndirs / ngroups + inodes_per_group / 16; 533 min_inodes = avefreei - inodes_per_group*flex_size / 4; 534 if (min_inodes < 1) 535 min_inodes = 1; 536 min_clusters = avefreec - EXT4_CLUSTERS_PER_GROUP(sb)*flex_size / 4; 537 538 /* 539 * Start looking in the flex group where we last allocated an 540 * inode for this parent directory 541 */ 542 if (EXT4_I(parent)->i_last_alloc_group != ~0) { 543 parent_group = EXT4_I(parent)->i_last_alloc_group; 544 if (flex_size > 1) 545 parent_group >>= sbi->s_log_groups_per_flex; 546 } 547 548 for (i = 0; i < ngroups; i++) { 549 grp = (parent_group + i) % ngroups; 550 get_orlov_stats(sb, grp, flex_size, &stats); 551 if (stats.used_dirs >= max_dirs) 552 continue; 553 if (stats.free_inodes < min_inodes) 554 continue; 555 if (stats.free_clusters < min_clusters) 556 continue; 557 goto found_flex_bg; 558 } 559 560 fallback: 561 ngroups = real_ngroups; 562 avefreei = freei / ngroups; 563 fallback_retry: 564 parent_group = EXT4_I(parent)->i_block_group; 565 for (i = 0; i < ngroups; i++) { 566 grp = (parent_group + i) % ngroups; 567 desc = ext4_get_group_desc(sb, grp, NULL); 568 if (desc) { 569 grp_free = ext4_free_inodes_count(sb, desc); 570 if (grp_free && grp_free >= avefreei) { 571 *group = grp; 572 return 0; 573 } 574 } 575 } 576 577 if (avefreei) { 578 /* 579 * The free-inodes counter is approximate, and for really small 580 * filesystems the above test can fail to find any blockgroups 581 */ 582 avefreei = 0; 583 goto fallback_retry; 584 } 585 586 return -1; 587 } 588 589 static int find_group_other(struct super_block *sb, struct inode *parent, 590 ext4_group_t *group, umode_t mode) 591 { 592 ext4_group_t parent_group = EXT4_I(parent)->i_block_group; 593 ext4_group_t i, last, ngroups = ext4_get_groups_count(sb); 594 struct ext4_group_desc *desc; 595 int flex_size = ext4_flex_bg_size(EXT4_SB(sb)); 596 597 /* 598 * Try to place the inode is the same flex group as its 599 * parent. If we can't find space, use the Orlov algorithm to 600 * find another flex group, and store that information in the 601 * parent directory's inode information so that use that flex 602 * group for future allocations. 603 */ 604 if (flex_size > 1) { 605 int retry = 0; 606 607 try_again: 608 parent_group &= ~(flex_size-1); 609 last = parent_group + flex_size; 610 if (last > ngroups) 611 last = ngroups; 612 for (i = parent_group; i < last; i++) { 613 desc = ext4_get_group_desc(sb, i, NULL); 614 if (desc && ext4_free_inodes_count(sb, desc)) { 615 *group = i; 616 return 0; 617 } 618 } 619 if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) { 620 retry = 1; 621 parent_group = EXT4_I(parent)->i_last_alloc_group; 622 goto try_again; 623 } 624 /* 625 * If this didn't work, use the Orlov search algorithm 626 * to find a new flex group; we pass in the mode to 627 * avoid the topdir algorithms. 628 */ 629 *group = parent_group + flex_size; 630 if (*group > ngroups) 631 *group = 0; 632 return find_group_orlov(sb, parent, group, mode, NULL); 633 } 634 635 /* 636 * Try to place the inode in its parent directory 637 */ 638 *group = parent_group; 639 desc = ext4_get_group_desc(sb, *group, NULL); 640 if (desc && ext4_free_inodes_count(sb, desc) && 641 ext4_free_group_clusters(sb, desc)) 642 return 0; 643 644 /* 645 * We're going to place this inode in a different blockgroup from its 646 * parent. We want to cause files in a common directory to all land in 647 * the same blockgroup. But we want files which are in a different 648 * directory which shares a blockgroup with our parent to land in a 649 * different blockgroup. 650 * 651 * So add our directory's i_ino into the starting point for the hash. 652 */ 653 *group = (*group + parent->i_ino) % ngroups; 654 655 /* 656 * Use a quadratic hash to find a group with a free inode and some free 657 * blocks. 658 */ 659 for (i = 1; i < ngroups; i <<= 1) { 660 *group += i; 661 if (*group >= ngroups) 662 *group -= ngroups; 663 desc = ext4_get_group_desc(sb, *group, NULL); 664 if (desc && ext4_free_inodes_count(sb, desc) && 665 ext4_free_group_clusters(sb, desc)) 666 return 0; 667 } 668 669 /* 670 * That failed: try linear search for a free inode, even if that group 671 * has no free blocks. 672 */ 673 *group = parent_group; 674 for (i = 0; i < ngroups; i++) { 675 if (++*group >= ngroups) 676 *group = 0; 677 desc = ext4_get_group_desc(sb, *group, NULL); 678 if (desc && ext4_free_inodes_count(sb, desc)) 679 return 0; 680 } 681 682 return -1; 683 } 684 685 /* 686 * In no journal mode, if an inode has recently been deleted, we want 687 * to avoid reusing it until we're reasonably sure the inode table 688 * block has been written back to disk. (Yes, these values are 689 * somewhat arbitrary...) 690 */ 691 #define RECENTCY_MIN 5 692 #define RECENTCY_DIRTY 30 693 694 static int recently_deleted(struct super_block *sb, ext4_group_t group, int ino) 695 { 696 struct ext4_group_desc *gdp; 697 struct ext4_inode *raw_inode; 698 struct buffer_head *bh; 699 unsigned long dtime, now; 700 int inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 701 int offset, ret = 0, recentcy = RECENTCY_MIN; 702 703 gdp = ext4_get_group_desc(sb, group, NULL); 704 if (unlikely(!gdp)) 705 return 0; 706 707 bh = sb_getblk(sb, ext4_inode_table(sb, gdp) + 708 (ino / inodes_per_block)); 709 if (unlikely(!bh) || !buffer_uptodate(bh)) 710 /* 711 * If the block is not in the buffer cache, then it 712 * must have been written out. 713 */ 714 goto out; 715 716 offset = (ino % inodes_per_block) * EXT4_INODE_SIZE(sb); 717 raw_inode = (struct ext4_inode *) (bh->b_data + offset); 718 dtime = le32_to_cpu(raw_inode->i_dtime); 719 now = get_seconds(); 720 if (buffer_dirty(bh)) 721 recentcy += RECENTCY_DIRTY; 722 723 if (dtime && (dtime < now) && (now < dtime + recentcy)) 724 ret = 1; 725 out: 726 brelse(bh); 727 return ret; 728 } 729 730 /* 731 * There are two policies for allocating an inode. If the new inode is 732 * a directory, then a forward search is made for a block group with both 733 * free space and a low directory-to-inode ratio; if that fails, then of 734 * the groups with above-average free space, that group with the fewest 735 * directories already is chosen. 736 * 737 * For other inodes, search forward from the parent directory's block 738 * group to find a free inode. 739 */ 740 struct inode *__ext4_new_inode(handle_t *handle, struct inode *dir, 741 umode_t mode, const struct qstr *qstr, 742 __u32 goal, uid_t *owner, int handle_type, 743 unsigned int line_no, int nblocks) 744 { 745 struct super_block *sb; 746 struct buffer_head *inode_bitmap_bh = NULL; 747 struct buffer_head *group_desc_bh; 748 ext4_group_t ngroups, group = 0; 749 unsigned long ino = 0; 750 struct inode *inode; 751 struct ext4_group_desc *gdp = NULL; 752 struct ext4_inode_info *ei; 753 struct ext4_sb_info *sbi; 754 int ret2, err; 755 struct inode *ret; 756 ext4_group_t i; 757 ext4_group_t flex_group; 758 struct ext4_group_info *grp; 759 int encrypt = 0; 760 761 /* Cannot create files in a deleted directory */ 762 if (!dir || !dir->i_nlink) 763 return ERR_PTR(-EPERM); 764 765 if ((ext4_encrypted_inode(dir) || 766 DUMMY_ENCRYPTION_ENABLED(EXT4_SB(dir->i_sb))) && 767 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 768 err = ext4_get_encryption_info(dir); 769 if (err) 770 return ERR_PTR(err); 771 if (ext4_encryption_info(dir) == NULL) 772 return ERR_PTR(-EPERM); 773 if (!handle) 774 nblocks += EXT4_DATA_TRANS_BLOCKS(dir->i_sb); 775 encrypt = 1; 776 } 777 778 sb = dir->i_sb; 779 ngroups = ext4_get_groups_count(sb); 780 trace_ext4_request_inode(dir, mode); 781 inode = new_inode(sb); 782 if (!inode) 783 return ERR_PTR(-ENOMEM); 784 ei = EXT4_I(inode); 785 sbi = EXT4_SB(sb); 786 787 /* 788 * Initalize owners and quota early so that we don't have to account 789 * for quota initialization worst case in standard inode creating 790 * transaction 791 */ 792 if (owner) { 793 inode->i_mode = mode; 794 i_uid_write(inode, owner[0]); 795 i_gid_write(inode, owner[1]); 796 } else if (test_opt(sb, GRPID)) { 797 inode->i_mode = mode; 798 inode->i_uid = current_fsuid(); 799 inode->i_gid = dir->i_gid; 800 } else 801 inode_init_owner(inode, dir, mode); 802 803 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_PROJECT) && 804 ext4_test_inode_flag(dir, EXT4_INODE_PROJINHERIT)) 805 ei->i_projid = EXT4_I(dir)->i_projid; 806 else 807 ei->i_projid = make_kprojid(&init_user_ns, EXT4_DEF_PROJID); 808 809 err = dquot_initialize(inode); 810 if (err) 811 goto out; 812 813 if (!goal) 814 goal = sbi->s_inode_goal; 815 816 if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) { 817 group = (goal - 1) / EXT4_INODES_PER_GROUP(sb); 818 ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb); 819 ret2 = 0; 820 goto got_group; 821 } 822 823 if (S_ISDIR(mode)) 824 ret2 = find_group_orlov(sb, dir, &group, mode, qstr); 825 else 826 ret2 = find_group_other(sb, dir, &group, mode); 827 828 got_group: 829 EXT4_I(dir)->i_last_alloc_group = group; 830 err = -ENOSPC; 831 if (ret2 == -1) 832 goto out; 833 834 /* 835 * Normally we will only go through one pass of this loop, 836 * unless we get unlucky and it turns out the group we selected 837 * had its last inode grabbed by someone else. 838 */ 839 for (i = 0; i < ngroups; i++, ino = 0) { 840 err = -EIO; 841 842 gdp = ext4_get_group_desc(sb, group, &group_desc_bh); 843 if (!gdp) 844 goto out; 845 846 /* 847 * Check free inodes count before loading bitmap. 848 */ 849 if (ext4_free_inodes_count(sb, gdp) == 0) { 850 if (++group == ngroups) 851 group = 0; 852 continue; 853 } 854 855 grp = ext4_get_group_info(sb, group); 856 /* Skip groups with already-known suspicious inode tables */ 857 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) { 858 if (++group == ngroups) 859 group = 0; 860 continue; 861 } 862 863 brelse(inode_bitmap_bh); 864 inode_bitmap_bh = ext4_read_inode_bitmap(sb, group); 865 /* Skip groups with suspicious inode tables */ 866 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp) || 867 IS_ERR(inode_bitmap_bh)) { 868 inode_bitmap_bh = NULL; 869 if (++group == ngroups) 870 group = 0; 871 continue; 872 } 873 874 repeat_in_this_group: 875 ino = ext4_find_next_zero_bit((unsigned long *) 876 inode_bitmap_bh->b_data, 877 EXT4_INODES_PER_GROUP(sb), ino); 878 if (ino >= EXT4_INODES_PER_GROUP(sb)) 879 goto next_group; 880 if (group == 0 && (ino+1) < EXT4_FIRST_INO(sb)) { 881 ext4_error(sb, "reserved inode found cleared - " 882 "inode=%lu", ino + 1); 883 continue; 884 } 885 if ((EXT4_SB(sb)->s_journal == NULL) && 886 recently_deleted(sb, group, ino)) { 887 ino++; 888 goto next_inode; 889 } 890 if (!handle) { 891 BUG_ON(nblocks <= 0); 892 handle = __ext4_journal_start_sb(dir->i_sb, line_no, 893 handle_type, nblocks, 894 0); 895 if (IS_ERR(handle)) { 896 err = PTR_ERR(handle); 897 ext4_std_error(sb, err); 898 goto out; 899 } 900 } 901 BUFFER_TRACE(inode_bitmap_bh, "get_write_access"); 902 err = ext4_journal_get_write_access(handle, inode_bitmap_bh); 903 if (err) { 904 ext4_std_error(sb, err); 905 goto out; 906 } 907 ext4_lock_group(sb, group); 908 ret2 = ext4_test_and_set_bit(ino, inode_bitmap_bh->b_data); 909 ext4_unlock_group(sb, group); 910 ino++; /* the inode bitmap is zero-based */ 911 if (!ret2) 912 goto got; /* we grabbed the inode! */ 913 next_inode: 914 if (ino < EXT4_INODES_PER_GROUP(sb)) 915 goto repeat_in_this_group; 916 next_group: 917 if (++group == ngroups) 918 group = 0; 919 } 920 err = -ENOSPC; 921 goto out; 922 923 got: 924 BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata"); 925 err = ext4_handle_dirty_metadata(handle, NULL, inode_bitmap_bh); 926 if (err) { 927 ext4_std_error(sb, err); 928 goto out; 929 } 930 931 BUFFER_TRACE(group_desc_bh, "get_write_access"); 932 err = ext4_journal_get_write_access(handle, group_desc_bh); 933 if (err) { 934 ext4_std_error(sb, err); 935 goto out; 936 } 937 938 /* We may have to initialize the block bitmap if it isn't already */ 939 if (ext4_has_group_desc_csum(sb) && 940 gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 941 struct buffer_head *block_bitmap_bh; 942 943 block_bitmap_bh = ext4_read_block_bitmap(sb, group); 944 if (IS_ERR(block_bitmap_bh)) { 945 err = PTR_ERR(block_bitmap_bh); 946 goto out; 947 } 948 BUFFER_TRACE(block_bitmap_bh, "get block bitmap access"); 949 err = ext4_journal_get_write_access(handle, block_bitmap_bh); 950 if (err) { 951 brelse(block_bitmap_bh); 952 ext4_std_error(sb, err); 953 goto out; 954 } 955 956 BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap"); 957 err = ext4_handle_dirty_metadata(handle, NULL, block_bitmap_bh); 958 959 /* recheck and clear flag under lock if we still need to */ 960 ext4_lock_group(sb, group); 961 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 962 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 963 ext4_free_group_clusters_set(sb, gdp, 964 ext4_free_clusters_after_init(sb, group, gdp)); 965 ext4_block_bitmap_csum_set(sb, group, gdp, 966 block_bitmap_bh); 967 ext4_group_desc_csum_set(sb, group, gdp); 968 } 969 ext4_unlock_group(sb, group); 970 brelse(block_bitmap_bh); 971 972 if (err) { 973 ext4_std_error(sb, err); 974 goto out; 975 } 976 } 977 978 /* Update the relevant bg descriptor fields */ 979 if (ext4_has_group_desc_csum(sb)) { 980 int free; 981 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 982 983 down_read(&grp->alloc_sem); /* protect vs itable lazyinit */ 984 ext4_lock_group(sb, group); /* while we modify the bg desc */ 985 free = EXT4_INODES_PER_GROUP(sb) - 986 ext4_itable_unused_count(sb, gdp); 987 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) { 988 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT); 989 free = 0; 990 } 991 /* 992 * Check the relative inode number against the last used 993 * relative inode number in this group. if it is greater 994 * we need to update the bg_itable_unused count 995 */ 996 if (ino > free) 997 ext4_itable_unused_set(sb, gdp, 998 (EXT4_INODES_PER_GROUP(sb) - ino)); 999 up_read(&grp->alloc_sem); 1000 } else { 1001 ext4_lock_group(sb, group); 1002 } 1003 1004 ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1); 1005 if (S_ISDIR(mode)) { 1006 ext4_used_dirs_set(sb, gdp, ext4_used_dirs_count(sb, gdp) + 1); 1007 if (sbi->s_log_groups_per_flex) { 1008 ext4_group_t f = ext4_flex_group(sbi, group); 1009 1010 atomic_inc(&sbi->s_flex_groups[f].used_dirs); 1011 } 1012 } 1013 if (ext4_has_group_desc_csum(sb)) { 1014 ext4_inode_bitmap_csum_set(sb, group, gdp, inode_bitmap_bh, 1015 EXT4_INODES_PER_GROUP(sb) / 8); 1016 ext4_group_desc_csum_set(sb, group, gdp); 1017 } 1018 ext4_unlock_group(sb, group); 1019 1020 BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata"); 1021 err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh); 1022 if (err) { 1023 ext4_std_error(sb, err); 1024 goto out; 1025 } 1026 1027 percpu_counter_dec(&sbi->s_freeinodes_counter); 1028 if (S_ISDIR(mode)) 1029 percpu_counter_inc(&sbi->s_dirs_counter); 1030 1031 if (sbi->s_log_groups_per_flex) { 1032 flex_group = ext4_flex_group(sbi, group); 1033 atomic_dec(&sbi->s_flex_groups[flex_group].free_inodes); 1034 } 1035 1036 inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb); 1037 /* This is the optimal IO size (for stat), not the fs block size */ 1038 inode->i_blocks = 0; 1039 inode->i_mtime = inode->i_atime = inode->i_ctime = ei->i_crtime = 1040 ext4_current_time(inode); 1041 1042 memset(ei->i_data, 0, sizeof(ei->i_data)); 1043 ei->i_dir_start_lookup = 0; 1044 ei->i_disksize = 0; 1045 1046 /* Don't inherit extent flag from directory, amongst others. */ 1047 ei->i_flags = 1048 ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED); 1049 ei->i_file_acl = 0; 1050 ei->i_dtime = 0; 1051 ei->i_block_group = group; 1052 ei->i_last_alloc_group = ~0; 1053 1054 ext4_set_inode_flags(inode); 1055 if (IS_DIRSYNC(inode)) 1056 ext4_handle_sync(handle); 1057 if (insert_inode_locked(inode) < 0) { 1058 /* 1059 * Likely a bitmap corruption causing inode to be allocated 1060 * twice. 1061 */ 1062 err = -EIO; 1063 ext4_error(sb, "failed to insert inode %lu: doubly allocated?", 1064 inode->i_ino); 1065 goto out; 1066 } 1067 spin_lock(&sbi->s_next_gen_lock); 1068 inode->i_generation = sbi->s_next_generation++; 1069 spin_unlock(&sbi->s_next_gen_lock); 1070 1071 /* Precompute checksum seed for inode metadata */ 1072 if (ext4_has_metadata_csum(sb)) { 1073 __u32 csum; 1074 __le32 inum = cpu_to_le32(inode->i_ino); 1075 __le32 gen = cpu_to_le32(inode->i_generation); 1076 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 1077 sizeof(inum)); 1078 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 1079 sizeof(gen)); 1080 } 1081 1082 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 1083 ext4_set_inode_state(inode, EXT4_STATE_NEW); 1084 1085 ei->i_extra_isize = EXT4_SB(sb)->s_want_extra_isize; 1086 ei->i_inline_off = 0; 1087 if (ext4_has_feature_inline_data(sb)) 1088 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); 1089 ret = inode; 1090 err = dquot_alloc_inode(inode); 1091 if (err) 1092 goto fail_drop; 1093 1094 err = ext4_init_acl(handle, inode, dir); 1095 if (err) 1096 goto fail_free_drop; 1097 1098 err = ext4_init_security(handle, inode, dir, qstr); 1099 if (err) 1100 goto fail_free_drop; 1101 1102 if (ext4_has_feature_extents(sb)) { 1103 /* set extent flag only for directory, file and normal symlink*/ 1104 if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) { 1105 ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS); 1106 ext4_ext_tree_init(handle, inode); 1107 } 1108 } 1109 1110 if (ext4_handle_valid(handle)) { 1111 ei->i_sync_tid = handle->h_transaction->t_tid; 1112 ei->i_datasync_tid = handle->h_transaction->t_tid; 1113 } 1114 1115 if (encrypt) { 1116 err = ext4_inherit_context(dir, inode); 1117 if (err) 1118 goto fail_free_drop; 1119 } 1120 1121 err = ext4_mark_inode_dirty(handle, inode); 1122 if (err) { 1123 ext4_std_error(sb, err); 1124 goto fail_free_drop; 1125 } 1126 1127 ext4_debug("allocating inode %lu\n", inode->i_ino); 1128 trace_ext4_allocate_inode(inode, dir, mode); 1129 brelse(inode_bitmap_bh); 1130 return ret; 1131 1132 fail_free_drop: 1133 dquot_free_inode(inode); 1134 fail_drop: 1135 clear_nlink(inode); 1136 unlock_new_inode(inode); 1137 out: 1138 dquot_drop(inode); 1139 inode->i_flags |= S_NOQUOTA; 1140 iput(inode); 1141 brelse(inode_bitmap_bh); 1142 return ERR_PTR(err); 1143 } 1144 1145 /* Verify that we are loading a valid orphan from disk */ 1146 struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino) 1147 { 1148 unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count); 1149 ext4_group_t block_group; 1150 int bit; 1151 struct buffer_head *bitmap_bh; 1152 struct inode *inode = NULL; 1153 long err = -EIO; 1154 1155 /* Error cases - e2fsck has already cleaned up for us */ 1156 if (ino > max_ino) { 1157 ext4_warning(sb, "bad orphan ino %lu! e2fsck was run?", ino); 1158 err = -EFSCORRUPTED; 1159 goto error; 1160 } 1161 1162 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 1163 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb); 1164 bitmap_bh = ext4_read_inode_bitmap(sb, block_group); 1165 if (IS_ERR(bitmap_bh)) { 1166 err = PTR_ERR(bitmap_bh); 1167 ext4_warning(sb, "inode bitmap error %ld for orphan %lu", 1168 ino, err); 1169 goto error; 1170 } 1171 1172 /* Having the inode bit set should be a 100% indicator that this 1173 * is a valid orphan (no e2fsck run on fs). Orphans also include 1174 * inodes that were being truncated, so we can't check i_nlink==0. 1175 */ 1176 if (!ext4_test_bit(bit, bitmap_bh->b_data)) 1177 goto bad_orphan; 1178 1179 inode = ext4_iget(sb, ino); 1180 if (IS_ERR(inode)) 1181 goto iget_failed; 1182 1183 /* 1184 * If the orphans has i_nlinks > 0 then it should be able to be 1185 * truncated, otherwise it won't be removed from the orphan list 1186 * during processing and an infinite loop will result. 1187 */ 1188 if (inode->i_nlink && !ext4_can_truncate(inode)) 1189 goto bad_orphan; 1190 1191 if (NEXT_ORPHAN(inode) > max_ino) 1192 goto bad_orphan; 1193 brelse(bitmap_bh); 1194 return inode; 1195 1196 iget_failed: 1197 err = PTR_ERR(inode); 1198 inode = NULL; 1199 bad_orphan: 1200 ext4_warning(sb, "bad orphan inode %lu! e2fsck was run?", ino); 1201 printk(KERN_WARNING "ext4_test_bit(bit=%d, block=%llu) = %d\n", 1202 bit, (unsigned long long)bitmap_bh->b_blocknr, 1203 ext4_test_bit(bit, bitmap_bh->b_data)); 1204 printk(KERN_WARNING "inode=%p\n", inode); 1205 if (inode) { 1206 printk(KERN_WARNING "is_bad_inode(inode)=%d\n", 1207 is_bad_inode(inode)); 1208 printk(KERN_WARNING "NEXT_ORPHAN(inode)=%u\n", 1209 NEXT_ORPHAN(inode)); 1210 printk(KERN_WARNING "max_ino=%lu\n", max_ino); 1211 printk(KERN_WARNING "i_nlink=%u\n", inode->i_nlink); 1212 /* Avoid freeing blocks if we got a bad deleted inode */ 1213 if (inode->i_nlink == 0) 1214 inode->i_blocks = 0; 1215 iput(inode); 1216 } 1217 brelse(bitmap_bh); 1218 error: 1219 return ERR_PTR(err); 1220 } 1221 1222 unsigned long ext4_count_free_inodes(struct super_block *sb) 1223 { 1224 unsigned long desc_count; 1225 struct ext4_group_desc *gdp; 1226 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 1227 #ifdef EXT4FS_DEBUG 1228 struct ext4_super_block *es; 1229 unsigned long bitmap_count, x; 1230 struct buffer_head *bitmap_bh = NULL; 1231 1232 es = EXT4_SB(sb)->s_es; 1233 desc_count = 0; 1234 bitmap_count = 0; 1235 gdp = NULL; 1236 for (i = 0; i < ngroups; i++) { 1237 gdp = ext4_get_group_desc(sb, i, NULL); 1238 if (!gdp) 1239 continue; 1240 desc_count += ext4_free_inodes_count(sb, gdp); 1241 brelse(bitmap_bh); 1242 bitmap_bh = ext4_read_inode_bitmap(sb, i); 1243 if (IS_ERR(bitmap_bh)) { 1244 bitmap_bh = NULL; 1245 continue; 1246 } 1247 1248 x = ext4_count_free(bitmap_bh->b_data, 1249 EXT4_INODES_PER_GROUP(sb) / 8); 1250 printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n", 1251 (unsigned long) i, ext4_free_inodes_count(sb, gdp), x); 1252 bitmap_count += x; 1253 } 1254 brelse(bitmap_bh); 1255 printk(KERN_DEBUG "ext4_count_free_inodes: " 1256 "stored = %u, computed = %lu, %lu\n", 1257 le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count); 1258 return desc_count; 1259 #else 1260 desc_count = 0; 1261 for (i = 0; i < ngroups; i++) { 1262 gdp = ext4_get_group_desc(sb, i, NULL); 1263 if (!gdp) 1264 continue; 1265 desc_count += ext4_free_inodes_count(sb, gdp); 1266 cond_resched(); 1267 } 1268 return desc_count; 1269 #endif 1270 } 1271 1272 /* Called at mount-time, super-block is locked */ 1273 unsigned long ext4_count_dirs(struct super_block * sb) 1274 { 1275 unsigned long count = 0; 1276 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 1277 1278 for (i = 0; i < ngroups; i++) { 1279 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 1280 if (!gdp) 1281 continue; 1282 count += ext4_used_dirs_count(sb, gdp); 1283 } 1284 return count; 1285 } 1286 1287 /* 1288 * Zeroes not yet zeroed inode table - just write zeroes through the whole 1289 * inode table. Must be called without any spinlock held. The only place 1290 * where it is called from on active part of filesystem is ext4lazyinit 1291 * thread, so we do not need any special locks, however we have to prevent 1292 * inode allocation from the current group, so we take alloc_sem lock, to 1293 * block ext4_new_inode() until we are finished. 1294 */ 1295 int ext4_init_inode_table(struct super_block *sb, ext4_group_t group, 1296 int barrier) 1297 { 1298 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 1299 struct ext4_sb_info *sbi = EXT4_SB(sb); 1300 struct ext4_group_desc *gdp = NULL; 1301 struct buffer_head *group_desc_bh; 1302 handle_t *handle; 1303 ext4_fsblk_t blk; 1304 int num, ret = 0, used_blks = 0; 1305 1306 /* This should not happen, but just to be sure check this */ 1307 if (sb->s_flags & MS_RDONLY) { 1308 ret = 1; 1309 goto out; 1310 } 1311 1312 gdp = ext4_get_group_desc(sb, group, &group_desc_bh); 1313 if (!gdp) 1314 goto out; 1315 1316 /* 1317 * We do not need to lock this, because we are the only one 1318 * handling this flag. 1319 */ 1320 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)) 1321 goto out; 1322 1323 handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1); 1324 if (IS_ERR(handle)) { 1325 ret = PTR_ERR(handle); 1326 goto out; 1327 } 1328 1329 down_write(&grp->alloc_sem); 1330 /* 1331 * If inode bitmap was already initialized there may be some 1332 * used inodes so we need to skip blocks with used inodes in 1333 * inode table. 1334 */ 1335 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT))) 1336 used_blks = DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb) - 1337 ext4_itable_unused_count(sb, gdp)), 1338 sbi->s_inodes_per_block); 1339 1340 if ((used_blks < 0) || (used_blks > sbi->s_itb_per_group)) { 1341 ext4_error(sb, "Something is wrong with group %u: " 1342 "used itable blocks: %d; " 1343 "itable unused count: %u", 1344 group, used_blks, 1345 ext4_itable_unused_count(sb, gdp)); 1346 ret = 1; 1347 goto err_out; 1348 } 1349 1350 blk = ext4_inode_table(sb, gdp) + used_blks; 1351 num = sbi->s_itb_per_group - used_blks; 1352 1353 BUFFER_TRACE(group_desc_bh, "get_write_access"); 1354 ret = ext4_journal_get_write_access(handle, 1355 group_desc_bh); 1356 if (ret) 1357 goto err_out; 1358 1359 /* 1360 * Skip zeroout if the inode table is full. But we set the ZEROED 1361 * flag anyway, because obviously, when it is full it does not need 1362 * further zeroing. 1363 */ 1364 if (unlikely(num == 0)) 1365 goto skip_zeroout; 1366 1367 ext4_debug("going to zero out inode table in group %d\n", 1368 group); 1369 ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS); 1370 if (ret < 0) 1371 goto err_out; 1372 if (barrier) 1373 blkdev_issue_flush(sb->s_bdev, GFP_NOFS, NULL); 1374 1375 skip_zeroout: 1376 ext4_lock_group(sb, group); 1377 gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED); 1378 ext4_group_desc_csum_set(sb, group, gdp); 1379 ext4_unlock_group(sb, group); 1380 1381 BUFFER_TRACE(group_desc_bh, 1382 "call ext4_handle_dirty_metadata"); 1383 ret = ext4_handle_dirty_metadata(handle, NULL, 1384 group_desc_bh); 1385 1386 err_out: 1387 up_write(&grp->alloc_sem); 1388 ext4_journal_stop(handle); 1389 out: 1390 return ret; 1391 } 1392