1 /* 2 * linux/fs/ext4/ialloc.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * BSD ufs-inspired inode and directory allocation by 10 * Stephen Tweedie (sct@redhat.com), 1993 11 * Big-endian to little-endian byte-swapping/bitmaps by 12 * David S. Miller (davem@caip.rutgers.edu), 1995 13 */ 14 15 #include <linux/time.h> 16 #include <linux/fs.h> 17 #include <linux/jbd2.h> 18 #include <linux/stat.h> 19 #include <linux/string.h> 20 #include <linux/quotaops.h> 21 #include <linux/buffer_head.h> 22 #include <linux/random.h> 23 #include <linux/bitops.h> 24 #include <linux/blkdev.h> 25 #include <asm/byteorder.h> 26 27 #include "ext4.h" 28 #include "ext4_jbd2.h" 29 #include "xattr.h" 30 #include "acl.h" 31 32 #include <trace/events/ext4.h> 33 34 /* 35 * ialloc.c contains the inodes allocation and deallocation routines 36 */ 37 38 /* 39 * The free inodes are managed by bitmaps. A file system contains several 40 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap 41 * block for inodes, N blocks for the inode table and data blocks. 42 * 43 * The file system contains group descriptors which are located after the 44 * super block. Each descriptor contains the number of the bitmap block and 45 * the free blocks count in the block. 46 */ 47 48 /* 49 * To avoid calling the atomic setbit hundreds or thousands of times, we only 50 * need to use it within a single byte (to ensure we get endianness right). 51 * We can use memset for the rest of the bitmap as there are no other users. 52 */ 53 void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap) 54 { 55 int i; 56 57 if (start_bit >= end_bit) 58 return; 59 60 ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit); 61 for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++) 62 ext4_set_bit(i, bitmap); 63 if (i < end_bit) 64 memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3); 65 } 66 67 /* Initializes an uninitialized inode bitmap */ 68 static unsigned ext4_init_inode_bitmap(struct super_block *sb, 69 struct buffer_head *bh, 70 ext4_group_t block_group, 71 struct ext4_group_desc *gdp) 72 { 73 struct ext4_sb_info *sbi = EXT4_SB(sb); 74 75 J_ASSERT_BH(bh, buffer_locked(bh)); 76 77 /* If checksum is bad mark all blocks and inodes use to prevent 78 * allocation, essentially implementing a per-group read-only flag. */ 79 if (!ext4_group_desc_csum_verify(sbi, block_group, gdp)) { 80 ext4_error(sb, "Checksum bad for group %u", block_group); 81 ext4_free_blks_set(sb, gdp, 0); 82 ext4_free_inodes_set(sb, gdp, 0); 83 ext4_itable_unused_set(sb, gdp, 0); 84 memset(bh->b_data, 0xff, sb->s_blocksize); 85 return 0; 86 } 87 88 memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8); 89 ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb), sb->s_blocksize * 8, 90 bh->b_data); 91 92 return EXT4_INODES_PER_GROUP(sb); 93 } 94 95 /* 96 * Read the inode allocation bitmap for a given block_group, reading 97 * into the specified slot in the superblock's bitmap cache. 98 * 99 * Return buffer_head of bitmap on success or NULL. 100 */ 101 static struct buffer_head * 102 ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group) 103 { 104 struct ext4_group_desc *desc; 105 struct buffer_head *bh = NULL; 106 ext4_fsblk_t bitmap_blk; 107 108 desc = ext4_get_group_desc(sb, block_group, NULL); 109 if (!desc) 110 return NULL; 111 112 bitmap_blk = ext4_inode_bitmap(sb, desc); 113 bh = sb_getblk(sb, bitmap_blk); 114 if (unlikely(!bh)) { 115 ext4_error(sb, "Cannot read inode bitmap - " 116 "block_group = %u, inode_bitmap = %llu", 117 block_group, bitmap_blk); 118 return NULL; 119 } 120 if (bitmap_uptodate(bh)) 121 return bh; 122 123 lock_buffer(bh); 124 if (bitmap_uptodate(bh)) { 125 unlock_buffer(bh); 126 return bh; 127 } 128 129 ext4_lock_group(sb, block_group); 130 if (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) { 131 ext4_init_inode_bitmap(sb, bh, block_group, desc); 132 set_bitmap_uptodate(bh); 133 set_buffer_uptodate(bh); 134 ext4_unlock_group(sb, block_group); 135 unlock_buffer(bh); 136 return bh; 137 } 138 ext4_unlock_group(sb, block_group); 139 140 if (buffer_uptodate(bh)) { 141 /* 142 * if not uninit if bh is uptodate, 143 * bitmap is also uptodate 144 */ 145 set_bitmap_uptodate(bh); 146 unlock_buffer(bh); 147 return bh; 148 } 149 /* 150 * submit the buffer_head for read. We can 151 * safely mark the bitmap as uptodate now. 152 * We do it here so the bitmap uptodate bit 153 * get set with buffer lock held. 154 */ 155 set_bitmap_uptodate(bh); 156 if (bh_submit_read(bh) < 0) { 157 put_bh(bh); 158 ext4_error(sb, "Cannot read inode bitmap - " 159 "block_group = %u, inode_bitmap = %llu", 160 block_group, bitmap_blk); 161 return NULL; 162 } 163 return bh; 164 } 165 166 /* 167 * NOTE! When we get the inode, we're the only people 168 * that have access to it, and as such there are no 169 * race conditions we have to worry about. The inode 170 * is not on the hash-lists, and it cannot be reached 171 * through the filesystem because the directory entry 172 * has been deleted earlier. 173 * 174 * HOWEVER: we must make sure that we get no aliases, 175 * which means that we have to call "clear_inode()" 176 * _before_ we mark the inode not in use in the inode 177 * bitmaps. Otherwise a newly created file might use 178 * the same inode number (not actually the same pointer 179 * though), and then we'd have two inodes sharing the 180 * same inode number and space on the harddisk. 181 */ 182 void ext4_free_inode(handle_t *handle, struct inode *inode) 183 { 184 struct super_block *sb = inode->i_sb; 185 int is_directory; 186 unsigned long ino; 187 struct buffer_head *bitmap_bh = NULL; 188 struct buffer_head *bh2; 189 ext4_group_t block_group; 190 unsigned long bit; 191 struct ext4_group_desc *gdp; 192 struct ext4_super_block *es; 193 struct ext4_sb_info *sbi; 194 int fatal = 0, err, count, cleared; 195 196 if (atomic_read(&inode->i_count) > 1) { 197 printk(KERN_ERR "ext4_free_inode: inode has count=%d\n", 198 atomic_read(&inode->i_count)); 199 return; 200 } 201 if (inode->i_nlink) { 202 printk(KERN_ERR "ext4_free_inode: inode has nlink=%d\n", 203 inode->i_nlink); 204 return; 205 } 206 if (!sb) { 207 printk(KERN_ERR "ext4_free_inode: inode on " 208 "nonexistent device\n"); 209 return; 210 } 211 sbi = EXT4_SB(sb); 212 213 ino = inode->i_ino; 214 ext4_debug("freeing inode %lu\n", ino); 215 trace_ext4_free_inode(inode); 216 217 /* 218 * Note: we must free any quota before locking the superblock, 219 * as writing the quota to disk may need the lock as well. 220 */ 221 dquot_initialize(inode); 222 ext4_xattr_delete_inode(handle, inode); 223 dquot_free_inode(inode); 224 dquot_drop(inode); 225 226 is_directory = S_ISDIR(inode->i_mode); 227 228 /* Do this BEFORE marking the inode not in use or returning an error */ 229 ext4_clear_inode(inode); 230 231 es = EXT4_SB(sb)->s_es; 232 if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) { 233 ext4_error(sb, "reserved or nonexistent inode %lu", ino); 234 goto error_return; 235 } 236 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 237 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb); 238 bitmap_bh = ext4_read_inode_bitmap(sb, block_group); 239 if (!bitmap_bh) 240 goto error_return; 241 242 BUFFER_TRACE(bitmap_bh, "get_write_access"); 243 fatal = ext4_journal_get_write_access(handle, bitmap_bh); 244 if (fatal) 245 goto error_return; 246 247 fatal = -ESRCH; 248 gdp = ext4_get_group_desc(sb, block_group, &bh2); 249 if (gdp) { 250 BUFFER_TRACE(bh2, "get_write_access"); 251 fatal = ext4_journal_get_write_access(handle, bh2); 252 } 253 ext4_lock_group(sb, block_group); 254 cleared = ext4_clear_bit(bit, bitmap_bh->b_data); 255 if (fatal || !cleared) { 256 ext4_unlock_group(sb, block_group); 257 goto out; 258 } 259 260 count = ext4_free_inodes_count(sb, gdp) + 1; 261 ext4_free_inodes_set(sb, gdp, count); 262 if (is_directory) { 263 count = ext4_used_dirs_count(sb, gdp) - 1; 264 ext4_used_dirs_set(sb, gdp, count); 265 percpu_counter_dec(&sbi->s_dirs_counter); 266 } 267 gdp->bg_checksum = ext4_group_desc_csum(sbi, block_group, gdp); 268 ext4_unlock_group(sb, block_group); 269 270 percpu_counter_inc(&sbi->s_freeinodes_counter); 271 if (sbi->s_log_groups_per_flex) { 272 ext4_group_t f = ext4_flex_group(sbi, block_group); 273 274 atomic_inc(&sbi->s_flex_groups[f].free_inodes); 275 if (is_directory) 276 atomic_dec(&sbi->s_flex_groups[f].used_dirs); 277 } 278 BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata"); 279 fatal = ext4_handle_dirty_metadata(handle, NULL, bh2); 280 out: 281 if (cleared) { 282 BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata"); 283 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 284 if (!fatal) 285 fatal = err; 286 ext4_mark_super_dirty(sb); 287 } else 288 ext4_error(sb, "bit already cleared for inode %lu", ino); 289 290 error_return: 291 brelse(bitmap_bh); 292 ext4_std_error(sb, fatal); 293 } 294 295 /* 296 * There are two policies for allocating an inode. If the new inode is 297 * a directory, then a forward search is made for a block group with both 298 * free space and a low directory-to-inode ratio; if that fails, then of 299 * the groups with above-average free space, that group with the fewest 300 * directories already is chosen. 301 * 302 * For other inodes, search forward from the parent directory\'s block 303 * group to find a free inode. 304 */ 305 static int find_group_dir(struct super_block *sb, struct inode *parent, 306 ext4_group_t *best_group) 307 { 308 ext4_group_t ngroups = ext4_get_groups_count(sb); 309 unsigned int freei, avefreei; 310 struct ext4_group_desc *desc, *best_desc = NULL; 311 ext4_group_t group; 312 int ret = -1; 313 314 freei = percpu_counter_read_positive(&EXT4_SB(sb)->s_freeinodes_counter); 315 avefreei = freei / ngroups; 316 317 for (group = 0; group < ngroups; group++) { 318 desc = ext4_get_group_desc(sb, group, NULL); 319 if (!desc || !ext4_free_inodes_count(sb, desc)) 320 continue; 321 if (ext4_free_inodes_count(sb, desc) < avefreei) 322 continue; 323 if (!best_desc || 324 (ext4_free_blks_count(sb, desc) > 325 ext4_free_blks_count(sb, best_desc))) { 326 *best_group = group; 327 best_desc = desc; 328 ret = 0; 329 } 330 } 331 return ret; 332 } 333 334 #define free_block_ratio 10 335 336 static int find_group_flex(struct super_block *sb, struct inode *parent, 337 ext4_group_t *best_group) 338 { 339 struct ext4_sb_info *sbi = EXT4_SB(sb); 340 struct ext4_group_desc *desc; 341 struct flex_groups *flex_group = sbi->s_flex_groups; 342 ext4_group_t parent_group = EXT4_I(parent)->i_block_group; 343 ext4_group_t parent_fbg_group = ext4_flex_group(sbi, parent_group); 344 ext4_group_t ngroups = ext4_get_groups_count(sb); 345 int flex_size = ext4_flex_bg_size(sbi); 346 ext4_group_t best_flex = parent_fbg_group; 347 int blocks_per_flex = sbi->s_blocks_per_group * flex_size; 348 int flexbg_free_blocks; 349 int flex_freeb_ratio; 350 ext4_group_t n_fbg_groups; 351 ext4_group_t i; 352 353 n_fbg_groups = (ngroups + flex_size - 1) >> 354 sbi->s_log_groups_per_flex; 355 356 find_close_to_parent: 357 flexbg_free_blocks = atomic_read(&flex_group[best_flex].free_blocks); 358 flex_freeb_ratio = flexbg_free_blocks * 100 / blocks_per_flex; 359 if (atomic_read(&flex_group[best_flex].free_inodes) && 360 flex_freeb_ratio > free_block_ratio) 361 goto found_flexbg; 362 363 if (best_flex && best_flex == parent_fbg_group) { 364 best_flex--; 365 goto find_close_to_parent; 366 } 367 368 for (i = 0; i < n_fbg_groups; i++) { 369 if (i == parent_fbg_group || i == parent_fbg_group - 1) 370 continue; 371 372 flexbg_free_blocks = atomic_read(&flex_group[i].free_blocks); 373 flex_freeb_ratio = flexbg_free_blocks * 100 / blocks_per_flex; 374 375 if (flex_freeb_ratio > free_block_ratio && 376 (atomic_read(&flex_group[i].free_inodes))) { 377 best_flex = i; 378 goto found_flexbg; 379 } 380 381 if ((atomic_read(&flex_group[best_flex].free_inodes) == 0) || 382 ((atomic_read(&flex_group[i].free_blocks) > 383 atomic_read(&flex_group[best_flex].free_blocks)) && 384 atomic_read(&flex_group[i].free_inodes))) 385 best_flex = i; 386 } 387 388 if (!atomic_read(&flex_group[best_flex].free_inodes) || 389 !atomic_read(&flex_group[best_flex].free_blocks)) 390 return -1; 391 392 found_flexbg: 393 for (i = best_flex * flex_size; i < ngroups && 394 i < (best_flex + 1) * flex_size; i++) { 395 desc = ext4_get_group_desc(sb, i, NULL); 396 if (ext4_free_inodes_count(sb, desc)) { 397 *best_group = i; 398 goto out; 399 } 400 } 401 402 return -1; 403 out: 404 return 0; 405 } 406 407 struct orlov_stats { 408 __u32 free_inodes; 409 __u32 free_blocks; 410 __u32 used_dirs; 411 }; 412 413 /* 414 * Helper function for Orlov's allocator; returns critical information 415 * for a particular block group or flex_bg. If flex_size is 1, then g 416 * is a block group number; otherwise it is flex_bg number. 417 */ 418 static void get_orlov_stats(struct super_block *sb, ext4_group_t g, 419 int flex_size, struct orlov_stats *stats) 420 { 421 struct ext4_group_desc *desc; 422 struct flex_groups *flex_group = EXT4_SB(sb)->s_flex_groups; 423 424 if (flex_size > 1) { 425 stats->free_inodes = atomic_read(&flex_group[g].free_inodes); 426 stats->free_blocks = atomic_read(&flex_group[g].free_blocks); 427 stats->used_dirs = atomic_read(&flex_group[g].used_dirs); 428 return; 429 } 430 431 desc = ext4_get_group_desc(sb, g, NULL); 432 if (desc) { 433 stats->free_inodes = ext4_free_inodes_count(sb, desc); 434 stats->free_blocks = ext4_free_blks_count(sb, desc); 435 stats->used_dirs = ext4_used_dirs_count(sb, desc); 436 } else { 437 stats->free_inodes = 0; 438 stats->free_blocks = 0; 439 stats->used_dirs = 0; 440 } 441 } 442 443 /* 444 * Orlov's allocator for directories. 445 * 446 * We always try to spread first-level directories. 447 * 448 * If there are blockgroups with both free inodes and free blocks counts 449 * not worse than average we return one with smallest directory count. 450 * Otherwise we simply return a random group. 451 * 452 * For the rest rules look so: 453 * 454 * It's OK to put directory into a group unless 455 * it has too many directories already (max_dirs) or 456 * it has too few free inodes left (min_inodes) or 457 * it has too few free blocks left (min_blocks) or 458 * Parent's group is preferred, if it doesn't satisfy these 459 * conditions we search cyclically through the rest. If none 460 * of the groups look good we just look for a group with more 461 * free inodes than average (starting at parent's group). 462 */ 463 464 static int find_group_orlov(struct super_block *sb, struct inode *parent, 465 ext4_group_t *group, int mode, 466 const struct qstr *qstr) 467 { 468 ext4_group_t parent_group = EXT4_I(parent)->i_block_group; 469 struct ext4_sb_info *sbi = EXT4_SB(sb); 470 ext4_group_t real_ngroups = ext4_get_groups_count(sb); 471 int inodes_per_group = EXT4_INODES_PER_GROUP(sb); 472 unsigned int freei, avefreei; 473 ext4_fsblk_t freeb, avefreeb; 474 unsigned int ndirs; 475 int max_dirs, min_inodes; 476 ext4_grpblk_t min_blocks; 477 ext4_group_t i, grp, g, ngroups; 478 struct ext4_group_desc *desc; 479 struct orlov_stats stats; 480 int flex_size = ext4_flex_bg_size(sbi); 481 struct dx_hash_info hinfo; 482 483 ngroups = real_ngroups; 484 if (flex_size > 1) { 485 ngroups = (real_ngroups + flex_size - 1) >> 486 sbi->s_log_groups_per_flex; 487 parent_group >>= sbi->s_log_groups_per_flex; 488 } 489 490 freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter); 491 avefreei = freei / ngroups; 492 freeb = percpu_counter_read_positive(&sbi->s_freeblocks_counter); 493 avefreeb = freeb; 494 do_div(avefreeb, ngroups); 495 ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter); 496 497 if (S_ISDIR(mode) && 498 ((parent == sb->s_root->d_inode) || 499 (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) { 500 int best_ndir = inodes_per_group; 501 int ret = -1; 502 503 if (qstr) { 504 hinfo.hash_version = DX_HASH_HALF_MD4; 505 hinfo.seed = sbi->s_hash_seed; 506 ext4fs_dirhash(qstr->name, qstr->len, &hinfo); 507 grp = hinfo.hash; 508 } else 509 get_random_bytes(&grp, sizeof(grp)); 510 parent_group = (unsigned)grp % ngroups; 511 for (i = 0; i < ngroups; i++) { 512 g = (parent_group + i) % ngroups; 513 get_orlov_stats(sb, g, flex_size, &stats); 514 if (!stats.free_inodes) 515 continue; 516 if (stats.used_dirs >= best_ndir) 517 continue; 518 if (stats.free_inodes < avefreei) 519 continue; 520 if (stats.free_blocks < avefreeb) 521 continue; 522 grp = g; 523 ret = 0; 524 best_ndir = stats.used_dirs; 525 } 526 if (ret) 527 goto fallback; 528 found_flex_bg: 529 if (flex_size == 1) { 530 *group = grp; 531 return 0; 532 } 533 534 /* 535 * We pack inodes at the beginning of the flexgroup's 536 * inode tables. Block allocation decisions will do 537 * something similar, although regular files will 538 * start at 2nd block group of the flexgroup. See 539 * ext4_ext_find_goal() and ext4_find_near(). 540 */ 541 grp *= flex_size; 542 for (i = 0; i < flex_size; i++) { 543 if (grp+i >= real_ngroups) 544 break; 545 desc = ext4_get_group_desc(sb, grp+i, NULL); 546 if (desc && ext4_free_inodes_count(sb, desc)) { 547 *group = grp+i; 548 return 0; 549 } 550 } 551 goto fallback; 552 } 553 554 max_dirs = ndirs / ngroups + inodes_per_group / 16; 555 min_inodes = avefreei - inodes_per_group*flex_size / 4; 556 if (min_inodes < 1) 557 min_inodes = 1; 558 min_blocks = avefreeb - EXT4_BLOCKS_PER_GROUP(sb)*flex_size / 4; 559 560 /* 561 * Start looking in the flex group where we last allocated an 562 * inode for this parent directory 563 */ 564 if (EXT4_I(parent)->i_last_alloc_group != ~0) { 565 parent_group = EXT4_I(parent)->i_last_alloc_group; 566 if (flex_size > 1) 567 parent_group >>= sbi->s_log_groups_per_flex; 568 } 569 570 for (i = 0; i < ngroups; i++) { 571 grp = (parent_group + i) % ngroups; 572 get_orlov_stats(sb, grp, flex_size, &stats); 573 if (stats.used_dirs >= max_dirs) 574 continue; 575 if (stats.free_inodes < min_inodes) 576 continue; 577 if (stats.free_blocks < min_blocks) 578 continue; 579 goto found_flex_bg; 580 } 581 582 fallback: 583 ngroups = real_ngroups; 584 avefreei = freei / ngroups; 585 fallback_retry: 586 parent_group = EXT4_I(parent)->i_block_group; 587 for (i = 0; i < ngroups; i++) { 588 grp = (parent_group + i) % ngroups; 589 desc = ext4_get_group_desc(sb, grp, NULL); 590 if (desc && ext4_free_inodes_count(sb, desc) && 591 ext4_free_inodes_count(sb, desc) >= avefreei) { 592 *group = grp; 593 return 0; 594 } 595 } 596 597 if (avefreei) { 598 /* 599 * The free-inodes counter is approximate, and for really small 600 * filesystems the above test can fail to find any blockgroups 601 */ 602 avefreei = 0; 603 goto fallback_retry; 604 } 605 606 return -1; 607 } 608 609 static int find_group_other(struct super_block *sb, struct inode *parent, 610 ext4_group_t *group, int mode) 611 { 612 ext4_group_t parent_group = EXT4_I(parent)->i_block_group; 613 ext4_group_t i, last, ngroups = ext4_get_groups_count(sb); 614 struct ext4_group_desc *desc; 615 int flex_size = ext4_flex_bg_size(EXT4_SB(sb)); 616 617 /* 618 * Try to place the inode is the same flex group as its 619 * parent. If we can't find space, use the Orlov algorithm to 620 * find another flex group, and store that information in the 621 * parent directory's inode information so that use that flex 622 * group for future allocations. 623 */ 624 if (flex_size > 1) { 625 int retry = 0; 626 627 try_again: 628 parent_group &= ~(flex_size-1); 629 last = parent_group + flex_size; 630 if (last > ngroups) 631 last = ngroups; 632 for (i = parent_group; i < last; i++) { 633 desc = ext4_get_group_desc(sb, i, NULL); 634 if (desc && ext4_free_inodes_count(sb, desc)) { 635 *group = i; 636 return 0; 637 } 638 } 639 if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) { 640 retry = 1; 641 parent_group = EXT4_I(parent)->i_last_alloc_group; 642 goto try_again; 643 } 644 /* 645 * If this didn't work, use the Orlov search algorithm 646 * to find a new flex group; we pass in the mode to 647 * avoid the topdir algorithms. 648 */ 649 *group = parent_group + flex_size; 650 if (*group > ngroups) 651 *group = 0; 652 return find_group_orlov(sb, parent, group, mode, 0); 653 } 654 655 /* 656 * Try to place the inode in its parent directory 657 */ 658 *group = parent_group; 659 desc = ext4_get_group_desc(sb, *group, NULL); 660 if (desc && ext4_free_inodes_count(sb, desc) && 661 ext4_free_blks_count(sb, desc)) 662 return 0; 663 664 /* 665 * We're going to place this inode in a different blockgroup from its 666 * parent. We want to cause files in a common directory to all land in 667 * the same blockgroup. But we want files which are in a different 668 * directory which shares a blockgroup with our parent to land in a 669 * different blockgroup. 670 * 671 * So add our directory's i_ino into the starting point for the hash. 672 */ 673 *group = (*group + parent->i_ino) % ngroups; 674 675 /* 676 * Use a quadratic hash to find a group with a free inode and some free 677 * blocks. 678 */ 679 for (i = 1; i < ngroups; i <<= 1) { 680 *group += i; 681 if (*group >= ngroups) 682 *group -= ngroups; 683 desc = ext4_get_group_desc(sb, *group, NULL); 684 if (desc && ext4_free_inodes_count(sb, desc) && 685 ext4_free_blks_count(sb, desc)) 686 return 0; 687 } 688 689 /* 690 * That failed: try linear search for a free inode, even if that group 691 * has no free blocks. 692 */ 693 *group = parent_group; 694 for (i = 0; i < ngroups; i++) { 695 if (++*group >= ngroups) 696 *group = 0; 697 desc = ext4_get_group_desc(sb, *group, NULL); 698 if (desc && ext4_free_inodes_count(sb, desc)) 699 return 0; 700 } 701 702 return -1; 703 } 704 705 /* 706 * claim the inode from the inode bitmap. If the group 707 * is uninit we need to take the groups's ext4_group_lock 708 * and clear the uninit flag. The inode bitmap update 709 * and group desc uninit flag clear should be done 710 * after holding ext4_group_lock so that ext4_read_inode_bitmap 711 * doesn't race with the ext4_claim_inode 712 */ 713 static int ext4_claim_inode(struct super_block *sb, 714 struct buffer_head *inode_bitmap_bh, 715 unsigned long ino, ext4_group_t group, int mode) 716 { 717 int free = 0, retval = 0, count; 718 struct ext4_sb_info *sbi = EXT4_SB(sb); 719 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 720 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL); 721 722 /* 723 * We have to be sure that new inode allocation does not race with 724 * inode table initialization, because otherwise we may end up 725 * allocating and writing new inode right before sb_issue_zeroout 726 * takes place and overwriting our new inode with zeroes. So we 727 * take alloc_sem to prevent it. 728 */ 729 down_read(&grp->alloc_sem); 730 ext4_lock_group(sb, group); 731 if (ext4_set_bit(ino, inode_bitmap_bh->b_data)) { 732 /* not a free inode */ 733 retval = 1; 734 goto err_ret; 735 } 736 ino++; 737 if ((group == 0 && ino < EXT4_FIRST_INO(sb)) || 738 ino > EXT4_INODES_PER_GROUP(sb)) { 739 ext4_unlock_group(sb, group); 740 up_read(&grp->alloc_sem); 741 ext4_error(sb, "reserved inode or inode > inodes count - " 742 "block_group = %u, inode=%lu", group, 743 ino + group * EXT4_INODES_PER_GROUP(sb)); 744 return 1; 745 } 746 /* If we didn't allocate from within the initialized part of the inode 747 * table then we need to initialize up to this inode. */ 748 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) { 749 750 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) { 751 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT); 752 /* When marking the block group with 753 * ~EXT4_BG_INODE_UNINIT we don't want to depend 754 * on the value of bg_itable_unused even though 755 * mke2fs could have initialized the same for us. 756 * Instead we calculated the value below 757 */ 758 759 free = 0; 760 } else { 761 free = EXT4_INODES_PER_GROUP(sb) - 762 ext4_itable_unused_count(sb, gdp); 763 } 764 765 /* 766 * Check the relative inode number against the last used 767 * relative inode number in this group. if it is greater 768 * we need to update the bg_itable_unused count 769 * 770 */ 771 if (ino > free) 772 ext4_itable_unused_set(sb, gdp, 773 (EXT4_INODES_PER_GROUP(sb) - ino)); 774 } 775 count = ext4_free_inodes_count(sb, gdp) - 1; 776 ext4_free_inodes_set(sb, gdp, count); 777 if (S_ISDIR(mode)) { 778 count = ext4_used_dirs_count(sb, gdp) + 1; 779 ext4_used_dirs_set(sb, gdp, count); 780 if (sbi->s_log_groups_per_flex) { 781 ext4_group_t f = ext4_flex_group(sbi, group); 782 783 atomic_inc(&sbi->s_flex_groups[f].used_dirs); 784 } 785 } 786 gdp->bg_checksum = ext4_group_desc_csum(sbi, group, gdp); 787 err_ret: 788 ext4_unlock_group(sb, group); 789 up_read(&grp->alloc_sem); 790 return retval; 791 } 792 793 /* 794 * There are two policies for allocating an inode. If the new inode is 795 * a directory, then a forward search is made for a block group with both 796 * free space and a low directory-to-inode ratio; if that fails, then of 797 * the groups with above-average free space, that group with the fewest 798 * directories already is chosen. 799 * 800 * For other inodes, search forward from the parent directory's block 801 * group to find a free inode. 802 */ 803 struct inode *ext4_new_inode(handle_t *handle, struct inode *dir, int mode, 804 const struct qstr *qstr, __u32 goal) 805 { 806 struct super_block *sb; 807 struct buffer_head *inode_bitmap_bh = NULL; 808 struct buffer_head *group_desc_bh; 809 ext4_group_t ngroups, group = 0; 810 unsigned long ino = 0; 811 struct inode *inode; 812 struct ext4_group_desc *gdp = NULL; 813 struct ext4_inode_info *ei; 814 struct ext4_sb_info *sbi; 815 int ret2, err = 0; 816 struct inode *ret; 817 ext4_group_t i; 818 int free = 0; 819 static int once = 1; 820 ext4_group_t flex_group; 821 822 /* Cannot create files in a deleted directory */ 823 if (!dir || !dir->i_nlink) 824 return ERR_PTR(-EPERM); 825 826 sb = dir->i_sb; 827 ngroups = ext4_get_groups_count(sb); 828 trace_ext4_request_inode(dir, mode); 829 inode = new_inode(sb); 830 if (!inode) 831 return ERR_PTR(-ENOMEM); 832 ei = EXT4_I(inode); 833 sbi = EXT4_SB(sb); 834 835 if (!goal) 836 goal = sbi->s_inode_goal; 837 838 if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) { 839 group = (goal - 1) / EXT4_INODES_PER_GROUP(sb); 840 ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb); 841 ret2 = 0; 842 goto got_group; 843 } 844 845 if (sbi->s_log_groups_per_flex && test_opt(sb, OLDALLOC)) { 846 ret2 = find_group_flex(sb, dir, &group); 847 if (ret2 == -1) { 848 ret2 = find_group_other(sb, dir, &group, mode); 849 if (ret2 == 0 && once) { 850 once = 0; 851 printk(KERN_NOTICE "ext4: find_group_flex " 852 "failed, fallback succeeded dir %lu\n", 853 dir->i_ino); 854 } 855 } 856 goto got_group; 857 } 858 859 if (S_ISDIR(mode)) { 860 if (test_opt(sb, OLDALLOC)) 861 ret2 = find_group_dir(sb, dir, &group); 862 else 863 ret2 = find_group_orlov(sb, dir, &group, mode, qstr); 864 } else 865 ret2 = find_group_other(sb, dir, &group, mode); 866 867 got_group: 868 EXT4_I(dir)->i_last_alloc_group = group; 869 err = -ENOSPC; 870 if (ret2 == -1) 871 goto out; 872 873 for (i = 0; i < ngroups; i++, ino = 0) { 874 err = -EIO; 875 876 gdp = ext4_get_group_desc(sb, group, &group_desc_bh); 877 if (!gdp) 878 goto fail; 879 880 brelse(inode_bitmap_bh); 881 inode_bitmap_bh = ext4_read_inode_bitmap(sb, group); 882 if (!inode_bitmap_bh) 883 goto fail; 884 885 repeat_in_this_group: 886 ino = ext4_find_next_zero_bit((unsigned long *) 887 inode_bitmap_bh->b_data, 888 EXT4_INODES_PER_GROUP(sb), ino); 889 890 if (ino < EXT4_INODES_PER_GROUP(sb)) { 891 892 BUFFER_TRACE(inode_bitmap_bh, "get_write_access"); 893 err = ext4_journal_get_write_access(handle, 894 inode_bitmap_bh); 895 if (err) 896 goto fail; 897 898 BUFFER_TRACE(group_desc_bh, "get_write_access"); 899 err = ext4_journal_get_write_access(handle, 900 group_desc_bh); 901 if (err) 902 goto fail; 903 if (!ext4_claim_inode(sb, inode_bitmap_bh, 904 ino, group, mode)) { 905 /* we won it */ 906 BUFFER_TRACE(inode_bitmap_bh, 907 "call ext4_handle_dirty_metadata"); 908 err = ext4_handle_dirty_metadata(handle, 909 NULL, 910 inode_bitmap_bh); 911 if (err) 912 goto fail; 913 /* zero bit is inode number 1*/ 914 ino++; 915 goto got; 916 } 917 /* we lost it */ 918 ext4_handle_release_buffer(handle, inode_bitmap_bh); 919 ext4_handle_release_buffer(handle, group_desc_bh); 920 921 if (++ino < EXT4_INODES_PER_GROUP(sb)) 922 goto repeat_in_this_group; 923 } 924 925 /* 926 * This case is possible in concurrent environment. It is very 927 * rare. We cannot repeat the find_group_xxx() call because 928 * that will simply return the same blockgroup, because the 929 * group descriptor metadata has not yet been updated. 930 * So we just go onto the next blockgroup. 931 */ 932 if (++group == ngroups) 933 group = 0; 934 } 935 err = -ENOSPC; 936 goto out; 937 938 got: 939 /* We may have to initialize the block bitmap if it isn't already */ 940 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM) && 941 gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 942 struct buffer_head *block_bitmap_bh; 943 944 block_bitmap_bh = ext4_read_block_bitmap(sb, group); 945 BUFFER_TRACE(block_bitmap_bh, "get block bitmap access"); 946 err = ext4_journal_get_write_access(handle, block_bitmap_bh); 947 if (err) { 948 brelse(block_bitmap_bh); 949 goto fail; 950 } 951 952 free = 0; 953 ext4_lock_group(sb, group); 954 /* recheck and clear flag under lock if we still need to */ 955 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 956 free = ext4_free_blocks_after_init(sb, group, gdp); 957 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 958 ext4_free_blks_set(sb, gdp, free); 959 gdp->bg_checksum = ext4_group_desc_csum(sbi, group, 960 gdp); 961 } 962 ext4_unlock_group(sb, group); 963 964 /* Don't need to dirty bitmap block if we didn't change it */ 965 if (free) { 966 BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap"); 967 err = ext4_handle_dirty_metadata(handle, 968 NULL, block_bitmap_bh); 969 } 970 971 brelse(block_bitmap_bh); 972 if (err) 973 goto fail; 974 } 975 BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata"); 976 err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh); 977 if (err) 978 goto fail; 979 980 percpu_counter_dec(&sbi->s_freeinodes_counter); 981 if (S_ISDIR(mode)) 982 percpu_counter_inc(&sbi->s_dirs_counter); 983 ext4_mark_super_dirty(sb); 984 985 if (sbi->s_log_groups_per_flex) { 986 flex_group = ext4_flex_group(sbi, group); 987 atomic_dec(&sbi->s_flex_groups[flex_group].free_inodes); 988 } 989 990 if (test_opt(sb, GRPID)) { 991 inode->i_mode = mode; 992 inode->i_uid = current_fsuid(); 993 inode->i_gid = dir->i_gid; 994 } else 995 inode_init_owner(inode, dir, mode); 996 997 inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb); 998 /* This is the optimal IO size (for stat), not the fs block size */ 999 inode->i_blocks = 0; 1000 inode->i_mtime = inode->i_atime = inode->i_ctime = ei->i_crtime = 1001 ext4_current_time(inode); 1002 1003 memset(ei->i_data, 0, sizeof(ei->i_data)); 1004 ei->i_dir_start_lookup = 0; 1005 ei->i_disksize = 0; 1006 1007 /* 1008 * Don't inherit extent flag from directory, amongst others. We set 1009 * extent flag on newly created directory and file only if -o extent 1010 * mount option is specified 1011 */ 1012 ei->i_flags = 1013 ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED); 1014 ei->i_file_acl = 0; 1015 ei->i_dtime = 0; 1016 ei->i_block_group = group; 1017 ei->i_last_alloc_group = ~0; 1018 1019 ext4_set_inode_flags(inode); 1020 if (IS_DIRSYNC(inode)) 1021 ext4_handle_sync(handle); 1022 if (insert_inode_locked(inode) < 0) { 1023 err = -EINVAL; 1024 goto fail_drop; 1025 } 1026 spin_lock(&sbi->s_next_gen_lock); 1027 inode->i_generation = sbi->s_next_generation++; 1028 spin_unlock(&sbi->s_next_gen_lock); 1029 1030 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 1031 ext4_set_inode_state(inode, EXT4_STATE_NEW); 1032 1033 ei->i_extra_isize = EXT4_SB(sb)->s_want_extra_isize; 1034 1035 ret = inode; 1036 dquot_initialize(inode); 1037 err = dquot_alloc_inode(inode); 1038 if (err) 1039 goto fail_drop; 1040 1041 err = ext4_init_acl(handle, inode, dir); 1042 if (err) 1043 goto fail_free_drop; 1044 1045 err = ext4_init_security(handle, inode, dir); 1046 if (err) 1047 goto fail_free_drop; 1048 1049 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) { 1050 /* set extent flag only for directory, file and normal symlink*/ 1051 if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) { 1052 ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS); 1053 ext4_ext_tree_init(handle, inode); 1054 } 1055 } 1056 1057 err = ext4_mark_inode_dirty(handle, inode); 1058 if (err) { 1059 ext4_std_error(sb, err); 1060 goto fail_free_drop; 1061 } 1062 1063 ext4_debug("allocating inode %lu\n", inode->i_ino); 1064 trace_ext4_allocate_inode(inode, dir, mode); 1065 goto really_out; 1066 fail: 1067 ext4_std_error(sb, err); 1068 out: 1069 iput(inode); 1070 ret = ERR_PTR(err); 1071 really_out: 1072 brelse(inode_bitmap_bh); 1073 return ret; 1074 1075 fail_free_drop: 1076 dquot_free_inode(inode); 1077 1078 fail_drop: 1079 dquot_drop(inode); 1080 inode->i_flags |= S_NOQUOTA; 1081 inode->i_nlink = 0; 1082 unlock_new_inode(inode); 1083 iput(inode); 1084 brelse(inode_bitmap_bh); 1085 return ERR_PTR(err); 1086 } 1087 1088 /* Verify that we are loading a valid orphan from disk */ 1089 struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino) 1090 { 1091 unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count); 1092 ext4_group_t block_group; 1093 int bit; 1094 struct buffer_head *bitmap_bh; 1095 struct inode *inode = NULL; 1096 long err = -EIO; 1097 1098 /* Error cases - e2fsck has already cleaned up for us */ 1099 if (ino > max_ino) { 1100 ext4_warning(sb, "bad orphan ino %lu! e2fsck was run?", ino); 1101 goto error; 1102 } 1103 1104 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 1105 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb); 1106 bitmap_bh = ext4_read_inode_bitmap(sb, block_group); 1107 if (!bitmap_bh) { 1108 ext4_warning(sb, "inode bitmap error for orphan %lu", ino); 1109 goto error; 1110 } 1111 1112 /* Having the inode bit set should be a 100% indicator that this 1113 * is a valid orphan (no e2fsck run on fs). Orphans also include 1114 * inodes that were being truncated, so we can't check i_nlink==0. 1115 */ 1116 if (!ext4_test_bit(bit, bitmap_bh->b_data)) 1117 goto bad_orphan; 1118 1119 inode = ext4_iget(sb, ino); 1120 if (IS_ERR(inode)) 1121 goto iget_failed; 1122 1123 /* 1124 * If the orphans has i_nlinks > 0 then it should be able to be 1125 * truncated, otherwise it won't be removed from the orphan list 1126 * during processing and an infinite loop will result. 1127 */ 1128 if (inode->i_nlink && !ext4_can_truncate(inode)) 1129 goto bad_orphan; 1130 1131 if (NEXT_ORPHAN(inode) > max_ino) 1132 goto bad_orphan; 1133 brelse(bitmap_bh); 1134 return inode; 1135 1136 iget_failed: 1137 err = PTR_ERR(inode); 1138 inode = NULL; 1139 bad_orphan: 1140 ext4_warning(sb, "bad orphan inode %lu! e2fsck was run?", ino); 1141 printk(KERN_NOTICE "ext4_test_bit(bit=%d, block=%llu) = %d\n", 1142 bit, (unsigned long long)bitmap_bh->b_blocknr, 1143 ext4_test_bit(bit, bitmap_bh->b_data)); 1144 printk(KERN_NOTICE "inode=%p\n", inode); 1145 if (inode) { 1146 printk(KERN_NOTICE "is_bad_inode(inode)=%d\n", 1147 is_bad_inode(inode)); 1148 printk(KERN_NOTICE "NEXT_ORPHAN(inode)=%u\n", 1149 NEXT_ORPHAN(inode)); 1150 printk(KERN_NOTICE "max_ino=%lu\n", max_ino); 1151 printk(KERN_NOTICE "i_nlink=%u\n", inode->i_nlink); 1152 /* Avoid freeing blocks if we got a bad deleted inode */ 1153 if (inode->i_nlink == 0) 1154 inode->i_blocks = 0; 1155 iput(inode); 1156 } 1157 brelse(bitmap_bh); 1158 error: 1159 return ERR_PTR(err); 1160 } 1161 1162 unsigned long ext4_count_free_inodes(struct super_block *sb) 1163 { 1164 unsigned long desc_count; 1165 struct ext4_group_desc *gdp; 1166 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 1167 #ifdef EXT4FS_DEBUG 1168 struct ext4_super_block *es; 1169 unsigned long bitmap_count, x; 1170 struct buffer_head *bitmap_bh = NULL; 1171 1172 es = EXT4_SB(sb)->s_es; 1173 desc_count = 0; 1174 bitmap_count = 0; 1175 gdp = NULL; 1176 for (i = 0; i < ngroups; i++) { 1177 gdp = ext4_get_group_desc(sb, i, NULL); 1178 if (!gdp) 1179 continue; 1180 desc_count += ext4_free_inodes_count(sb, gdp); 1181 brelse(bitmap_bh); 1182 bitmap_bh = ext4_read_inode_bitmap(sb, i); 1183 if (!bitmap_bh) 1184 continue; 1185 1186 x = ext4_count_free(bitmap_bh, EXT4_INODES_PER_GROUP(sb) / 8); 1187 printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n", 1188 (unsigned long) i, ext4_free_inodes_count(sb, gdp), x); 1189 bitmap_count += x; 1190 } 1191 brelse(bitmap_bh); 1192 printk(KERN_DEBUG "ext4_count_free_inodes: " 1193 "stored = %u, computed = %lu, %lu\n", 1194 le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count); 1195 return desc_count; 1196 #else 1197 desc_count = 0; 1198 for (i = 0; i < ngroups; i++) { 1199 gdp = ext4_get_group_desc(sb, i, NULL); 1200 if (!gdp) 1201 continue; 1202 desc_count += ext4_free_inodes_count(sb, gdp); 1203 cond_resched(); 1204 } 1205 return desc_count; 1206 #endif 1207 } 1208 1209 /* Called at mount-time, super-block is locked */ 1210 unsigned long ext4_count_dirs(struct super_block * sb) 1211 { 1212 unsigned long count = 0; 1213 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 1214 1215 for (i = 0; i < ngroups; i++) { 1216 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 1217 if (!gdp) 1218 continue; 1219 count += ext4_used_dirs_count(sb, gdp); 1220 } 1221 return count; 1222 } 1223 1224 /* 1225 * Zeroes not yet zeroed inode table - just write zeroes through the whole 1226 * inode table. Must be called without any spinlock held. The only place 1227 * where it is called from on active part of filesystem is ext4lazyinit 1228 * thread, so we do not need any special locks, however we have to prevent 1229 * inode allocation from the current group, so we take alloc_sem lock, to 1230 * block ext4_claim_inode until we are finished. 1231 */ 1232 extern int ext4_init_inode_table(struct super_block *sb, ext4_group_t group, 1233 int barrier) 1234 { 1235 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 1236 struct ext4_sb_info *sbi = EXT4_SB(sb); 1237 struct ext4_group_desc *gdp = NULL; 1238 struct buffer_head *group_desc_bh; 1239 handle_t *handle; 1240 ext4_fsblk_t blk; 1241 int num, ret = 0, used_blks = 0; 1242 1243 /* This should not happen, but just to be sure check this */ 1244 if (sb->s_flags & MS_RDONLY) { 1245 ret = 1; 1246 goto out; 1247 } 1248 1249 gdp = ext4_get_group_desc(sb, group, &group_desc_bh); 1250 if (!gdp) 1251 goto out; 1252 1253 /* 1254 * We do not need to lock this, because we are the only one 1255 * handling this flag. 1256 */ 1257 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)) 1258 goto out; 1259 1260 handle = ext4_journal_start_sb(sb, 1); 1261 if (IS_ERR(handle)) { 1262 ret = PTR_ERR(handle); 1263 goto out; 1264 } 1265 1266 down_write(&grp->alloc_sem); 1267 /* 1268 * If inode bitmap was already initialized there may be some 1269 * used inodes so we need to skip blocks with used inodes in 1270 * inode table. 1271 */ 1272 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT))) 1273 used_blks = DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb) - 1274 ext4_itable_unused_count(sb, gdp)), 1275 sbi->s_inodes_per_block); 1276 1277 if ((used_blks < 0) || (used_blks > sbi->s_itb_per_group)) { 1278 ext4_error(sb, "Something is wrong with group %u\n" 1279 "Used itable blocks: %d" 1280 "itable unused count: %u\n", 1281 group, used_blks, 1282 ext4_itable_unused_count(sb, gdp)); 1283 ret = 1; 1284 goto out; 1285 } 1286 1287 blk = ext4_inode_table(sb, gdp) + used_blks; 1288 num = sbi->s_itb_per_group - used_blks; 1289 1290 BUFFER_TRACE(group_desc_bh, "get_write_access"); 1291 ret = ext4_journal_get_write_access(handle, 1292 group_desc_bh); 1293 if (ret) 1294 goto err_out; 1295 1296 /* 1297 * Skip zeroout if the inode table is full. But we set the ZEROED 1298 * flag anyway, because obviously, when it is full it does not need 1299 * further zeroing. 1300 */ 1301 if (unlikely(num == 0)) 1302 goto skip_zeroout; 1303 1304 ext4_debug("going to zero out inode table in group %d\n", 1305 group); 1306 ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS); 1307 if (ret < 0) 1308 goto err_out; 1309 if (barrier) 1310 blkdev_issue_flush(sb->s_bdev, GFP_NOFS, NULL); 1311 1312 skip_zeroout: 1313 ext4_lock_group(sb, group); 1314 gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED); 1315 gdp->bg_checksum = ext4_group_desc_csum(sbi, group, gdp); 1316 ext4_unlock_group(sb, group); 1317 1318 BUFFER_TRACE(group_desc_bh, 1319 "call ext4_handle_dirty_metadata"); 1320 ret = ext4_handle_dirty_metadata(handle, NULL, 1321 group_desc_bh); 1322 1323 err_out: 1324 up_write(&grp->alloc_sem); 1325 ext4_journal_stop(handle); 1326 out: 1327 return ret; 1328 } 1329