1 /* 2 * linux/fs/ext4/ialloc.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * BSD ufs-inspired inode and directory allocation by 10 * Stephen Tweedie (sct@redhat.com), 1993 11 * Big-endian to little-endian byte-swapping/bitmaps by 12 * David S. Miller (davem@caip.rutgers.edu), 1995 13 */ 14 15 #include <linux/time.h> 16 #include <linux/fs.h> 17 #include <linux/stat.h> 18 #include <linux/string.h> 19 #include <linux/quotaops.h> 20 #include <linux/buffer_head.h> 21 #include <linux/random.h> 22 #include <linux/bitops.h> 23 #include <linux/blkdev.h> 24 #include <asm/byteorder.h> 25 26 #include "ext4.h" 27 #include "ext4_jbd2.h" 28 #include "xattr.h" 29 #include "acl.h" 30 31 #include <trace/events/ext4.h> 32 33 /* 34 * ialloc.c contains the inodes allocation and deallocation routines 35 */ 36 37 /* 38 * The free inodes are managed by bitmaps. A file system contains several 39 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap 40 * block for inodes, N blocks for the inode table and data blocks. 41 * 42 * The file system contains group descriptors which are located after the 43 * super block. Each descriptor contains the number of the bitmap block and 44 * the free blocks count in the block. 45 */ 46 47 /* 48 * To avoid calling the atomic setbit hundreds or thousands of times, we only 49 * need to use it within a single byte (to ensure we get endianness right). 50 * We can use memset for the rest of the bitmap as there are no other users. 51 */ 52 void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap) 53 { 54 int i; 55 56 if (start_bit >= end_bit) 57 return; 58 59 ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit); 60 for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++) 61 ext4_set_bit(i, bitmap); 62 if (i < end_bit) 63 memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3); 64 } 65 66 /* Initializes an uninitialized inode bitmap */ 67 static int ext4_init_inode_bitmap(struct super_block *sb, 68 struct buffer_head *bh, 69 ext4_group_t block_group, 70 struct ext4_group_desc *gdp) 71 { 72 struct ext4_group_info *grp; 73 struct ext4_sb_info *sbi = EXT4_SB(sb); 74 J_ASSERT_BH(bh, buffer_locked(bh)); 75 76 /* If checksum is bad mark all blocks and inodes use to prevent 77 * allocation, essentially implementing a per-group read-only flag. */ 78 if (!ext4_group_desc_csum_verify(sb, block_group, gdp)) { 79 grp = ext4_get_group_info(sb, block_group); 80 if (!EXT4_MB_GRP_BBITMAP_CORRUPT(grp)) 81 percpu_counter_sub(&sbi->s_freeclusters_counter, 82 grp->bb_free); 83 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, &grp->bb_state); 84 if (!EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) { 85 int count; 86 count = ext4_free_inodes_count(sb, gdp); 87 percpu_counter_sub(&sbi->s_freeinodes_counter, 88 count); 89 } 90 set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state); 91 return -EFSBADCRC; 92 } 93 94 memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8); 95 ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb), sb->s_blocksize * 8, 96 bh->b_data); 97 ext4_inode_bitmap_csum_set(sb, block_group, gdp, bh, 98 EXT4_INODES_PER_GROUP(sb) / 8); 99 ext4_group_desc_csum_set(sb, block_group, gdp); 100 101 return 0; 102 } 103 104 void ext4_end_bitmap_read(struct buffer_head *bh, int uptodate) 105 { 106 if (uptodate) { 107 set_buffer_uptodate(bh); 108 set_bitmap_uptodate(bh); 109 } 110 unlock_buffer(bh); 111 put_bh(bh); 112 } 113 114 static int ext4_validate_inode_bitmap(struct super_block *sb, 115 struct ext4_group_desc *desc, 116 ext4_group_t block_group, 117 struct buffer_head *bh) 118 { 119 ext4_fsblk_t blk; 120 struct ext4_group_info *grp = ext4_get_group_info(sb, block_group); 121 struct ext4_sb_info *sbi = EXT4_SB(sb); 122 123 if (buffer_verified(bh)) 124 return 0; 125 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) 126 return -EFSCORRUPTED; 127 128 ext4_lock_group(sb, block_group); 129 blk = ext4_inode_bitmap(sb, desc); 130 if (!ext4_inode_bitmap_csum_verify(sb, block_group, desc, bh, 131 EXT4_INODES_PER_GROUP(sb) / 8)) { 132 ext4_unlock_group(sb, block_group); 133 ext4_error(sb, "Corrupt inode bitmap - block_group = %u, " 134 "inode_bitmap = %llu", block_group, blk); 135 grp = ext4_get_group_info(sb, block_group); 136 if (!EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) { 137 int count; 138 count = ext4_free_inodes_count(sb, desc); 139 percpu_counter_sub(&sbi->s_freeinodes_counter, 140 count); 141 } 142 set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state); 143 return -EFSBADCRC; 144 } 145 set_buffer_verified(bh); 146 ext4_unlock_group(sb, block_group); 147 return 0; 148 } 149 150 /* 151 * Read the inode allocation bitmap for a given block_group, reading 152 * into the specified slot in the superblock's bitmap cache. 153 * 154 * Return buffer_head of bitmap on success or NULL. 155 */ 156 static struct buffer_head * 157 ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group) 158 { 159 struct ext4_group_desc *desc; 160 struct buffer_head *bh = NULL; 161 ext4_fsblk_t bitmap_blk; 162 int err; 163 164 desc = ext4_get_group_desc(sb, block_group, NULL); 165 if (!desc) 166 return ERR_PTR(-EFSCORRUPTED); 167 168 bitmap_blk = ext4_inode_bitmap(sb, desc); 169 bh = sb_getblk(sb, bitmap_blk); 170 if (unlikely(!bh)) { 171 ext4_error(sb, "Cannot read inode bitmap - " 172 "block_group = %u, inode_bitmap = %llu", 173 block_group, bitmap_blk); 174 return ERR_PTR(-EIO); 175 } 176 if (bitmap_uptodate(bh)) 177 goto verify; 178 179 lock_buffer(bh); 180 if (bitmap_uptodate(bh)) { 181 unlock_buffer(bh); 182 goto verify; 183 } 184 185 ext4_lock_group(sb, block_group); 186 if (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) { 187 err = ext4_init_inode_bitmap(sb, bh, block_group, desc); 188 set_bitmap_uptodate(bh); 189 set_buffer_uptodate(bh); 190 set_buffer_verified(bh); 191 ext4_unlock_group(sb, block_group); 192 unlock_buffer(bh); 193 if (err) { 194 ext4_error(sb, "Failed to init inode bitmap for group " 195 "%u: %d", block_group, err); 196 goto out; 197 } 198 return bh; 199 } 200 ext4_unlock_group(sb, block_group); 201 202 if (buffer_uptodate(bh)) { 203 /* 204 * if not uninit if bh is uptodate, 205 * bitmap is also uptodate 206 */ 207 set_bitmap_uptodate(bh); 208 unlock_buffer(bh); 209 goto verify; 210 } 211 /* 212 * submit the buffer_head for reading 213 */ 214 trace_ext4_load_inode_bitmap(sb, block_group); 215 bh->b_end_io = ext4_end_bitmap_read; 216 get_bh(bh); 217 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh); 218 wait_on_buffer(bh); 219 if (!buffer_uptodate(bh)) { 220 put_bh(bh); 221 ext4_error(sb, "Cannot read inode bitmap - " 222 "block_group = %u, inode_bitmap = %llu", 223 block_group, bitmap_blk); 224 return ERR_PTR(-EIO); 225 } 226 227 verify: 228 err = ext4_validate_inode_bitmap(sb, desc, block_group, bh); 229 if (err) 230 goto out; 231 return bh; 232 out: 233 put_bh(bh); 234 return ERR_PTR(err); 235 } 236 237 /* 238 * NOTE! When we get the inode, we're the only people 239 * that have access to it, and as such there are no 240 * race conditions we have to worry about. The inode 241 * is not on the hash-lists, and it cannot be reached 242 * through the filesystem because the directory entry 243 * has been deleted earlier. 244 * 245 * HOWEVER: we must make sure that we get no aliases, 246 * which means that we have to call "clear_inode()" 247 * _before_ we mark the inode not in use in the inode 248 * bitmaps. Otherwise a newly created file might use 249 * the same inode number (not actually the same pointer 250 * though), and then we'd have two inodes sharing the 251 * same inode number and space on the harddisk. 252 */ 253 void ext4_free_inode(handle_t *handle, struct inode *inode) 254 { 255 struct super_block *sb = inode->i_sb; 256 int is_directory; 257 unsigned long ino; 258 struct buffer_head *bitmap_bh = NULL; 259 struct buffer_head *bh2; 260 ext4_group_t block_group; 261 unsigned long bit; 262 struct ext4_group_desc *gdp; 263 struct ext4_super_block *es; 264 struct ext4_sb_info *sbi; 265 int fatal = 0, err, count, cleared; 266 struct ext4_group_info *grp; 267 268 if (!sb) { 269 printk(KERN_ERR "EXT4-fs: %s:%d: inode on " 270 "nonexistent device\n", __func__, __LINE__); 271 return; 272 } 273 if (atomic_read(&inode->i_count) > 1) { 274 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: count=%d", 275 __func__, __LINE__, inode->i_ino, 276 atomic_read(&inode->i_count)); 277 return; 278 } 279 if (inode->i_nlink) { 280 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: nlink=%d\n", 281 __func__, __LINE__, inode->i_ino, inode->i_nlink); 282 return; 283 } 284 sbi = EXT4_SB(sb); 285 286 ino = inode->i_ino; 287 ext4_debug("freeing inode %lu\n", ino); 288 trace_ext4_free_inode(inode); 289 290 /* 291 * Note: we must free any quota before locking the superblock, 292 * as writing the quota to disk may need the lock as well. 293 */ 294 dquot_initialize(inode); 295 ext4_xattr_delete_inode(handle, inode); 296 dquot_free_inode(inode); 297 dquot_drop(inode); 298 299 is_directory = S_ISDIR(inode->i_mode); 300 301 /* Do this BEFORE marking the inode not in use or returning an error */ 302 ext4_clear_inode(inode); 303 304 es = EXT4_SB(sb)->s_es; 305 if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) { 306 ext4_error(sb, "reserved or nonexistent inode %lu", ino); 307 goto error_return; 308 } 309 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 310 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb); 311 bitmap_bh = ext4_read_inode_bitmap(sb, block_group); 312 /* Don't bother if the inode bitmap is corrupt. */ 313 grp = ext4_get_group_info(sb, block_group); 314 if (IS_ERR(bitmap_bh)) { 315 fatal = PTR_ERR(bitmap_bh); 316 bitmap_bh = NULL; 317 goto error_return; 318 } 319 if (unlikely(EXT4_MB_GRP_IBITMAP_CORRUPT(grp))) { 320 fatal = -EFSCORRUPTED; 321 goto error_return; 322 } 323 324 BUFFER_TRACE(bitmap_bh, "get_write_access"); 325 fatal = ext4_journal_get_write_access(handle, bitmap_bh); 326 if (fatal) 327 goto error_return; 328 329 fatal = -ESRCH; 330 gdp = ext4_get_group_desc(sb, block_group, &bh2); 331 if (gdp) { 332 BUFFER_TRACE(bh2, "get_write_access"); 333 fatal = ext4_journal_get_write_access(handle, bh2); 334 } 335 ext4_lock_group(sb, block_group); 336 cleared = ext4_test_and_clear_bit(bit, bitmap_bh->b_data); 337 if (fatal || !cleared) { 338 ext4_unlock_group(sb, block_group); 339 goto out; 340 } 341 342 count = ext4_free_inodes_count(sb, gdp) + 1; 343 ext4_free_inodes_set(sb, gdp, count); 344 if (is_directory) { 345 count = ext4_used_dirs_count(sb, gdp) - 1; 346 ext4_used_dirs_set(sb, gdp, count); 347 percpu_counter_dec(&sbi->s_dirs_counter); 348 } 349 ext4_inode_bitmap_csum_set(sb, block_group, gdp, bitmap_bh, 350 EXT4_INODES_PER_GROUP(sb) / 8); 351 ext4_group_desc_csum_set(sb, block_group, gdp); 352 ext4_unlock_group(sb, block_group); 353 354 percpu_counter_inc(&sbi->s_freeinodes_counter); 355 if (sbi->s_log_groups_per_flex) { 356 ext4_group_t f = ext4_flex_group(sbi, block_group); 357 358 atomic_inc(&sbi->s_flex_groups[f].free_inodes); 359 if (is_directory) 360 atomic_dec(&sbi->s_flex_groups[f].used_dirs); 361 } 362 BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata"); 363 fatal = ext4_handle_dirty_metadata(handle, NULL, bh2); 364 out: 365 if (cleared) { 366 BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata"); 367 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 368 if (!fatal) 369 fatal = err; 370 } else { 371 ext4_error(sb, "bit already cleared for inode %lu", ino); 372 if (gdp && !EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) { 373 int count; 374 count = ext4_free_inodes_count(sb, gdp); 375 percpu_counter_sub(&sbi->s_freeinodes_counter, 376 count); 377 } 378 set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state); 379 } 380 381 error_return: 382 brelse(bitmap_bh); 383 ext4_std_error(sb, fatal); 384 } 385 386 struct orlov_stats { 387 __u64 free_clusters; 388 __u32 free_inodes; 389 __u32 used_dirs; 390 }; 391 392 /* 393 * Helper function for Orlov's allocator; returns critical information 394 * for a particular block group or flex_bg. If flex_size is 1, then g 395 * is a block group number; otherwise it is flex_bg number. 396 */ 397 static void get_orlov_stats(struct super_block *sb, ext4_group_t g, 398 int flex_size, struct orlov_stats *stats) 399 { 400 struct ext4_group_desc *desc; 401 struct flex_groups *flex_group = EXT4_SB(sb)->s_flex_groups; 402 403 if (flex_size > 1) { 404 stats->free_inodes = atomic_read(&flex_group[g].free_inodes); 405 stats->free_clusters = atomic64_read(&flex_group[g].free_clusters); 406 stats->used_dirs = atomic_read(&flex_group[g].used_dirs); 407 return; 408 } 409 410 desc = ext4_get_group_desc(sb, g, NULL); 411 if (desc) { 412 stats->free_inodes = ext4_free_inodes_count(sb, desc); 413 stats->free_clusters = ext4_free_group_clusters(sb, desc); 414 stats->used_dirs = ext4_used_dirs_count(sb, desc); 415 } else { 416 stats->free_inodes = 0; 417 stats->free_clusters = 0; 418 stats->used_dirs = 0; 419 } 420 } 421 422 /* 423 * Orlov's allocator for directories. 424 * 425 * We always try to spread first-level directories. 426 * 427 * If there are blockgroups with both free inodes and free blocks counts 428 * not worse than average we return one with smallest directory count. 429 * Otherwise we simply return a random group. 430 * 431 * For the rest rules look so: 432 * 433 * It's OK to put directory into a group unless 434 * it has too many directories already (max_dirs) or 435 * it has too few free inodes left (min_inodes) or 436 * it has too few free blocks left (min_blocks) or 437 * Parent's group is preferred, if it doesn't satisfy these 438 * conditions we search cyclically through the rest. If none 439 * of the groups look good we just look for a group with more 440 * free inodes than average (starting at parent's group). 441 */ 442 443 static int find_group_orlov(struct super_block *sb, struct inode *parent, 444 ext4_group_t *group, umode_t mode, 445 const struct qstr *qstr) 446 { 447 ext4_group_t parent_group = EXT4_I(parent)->i_block_group; 448 struct ext4_sb_info *sbi = EXT4_SB(sb); 449 ext4_group_t real_ngroups = ext4_get_groups_count(sb); 450 int inodes_per_group = EXT4_INODES_PER_GROUP(sb); 451 unsigned int freei, avefreei, grp_free; 452 ext4_fsblk_t freeb, avefreec; 453 unsigned int ndirs; 454 int max_dirs, min_inodes; 455 ext4_grpblk_t min_clusters; 456 ext4_group_t i, grp, g, ngroups; 457 struct ext4_group_desc *desc; 458 struct orlov_stats stats; 459 int flex_size = ext4_flex_bg_size(sbi); 460 struct dx_hash_info hinfo; 461 462 ngroups = real_ngroups; 463 if (flex_size > 1) { 464 ngroups = (real_ngroups + flex_size - 1) >> 465 sbi->s_log_groups_per_flex; 466 parent_group >>= sbi->s_log_groups_per_flex; 467 } 468 469 freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter); 470 avefreei = freei / ngroups; 471 freeb = EXT4_C2B(sbi, 472 percpu_counter_read_positive(&sbi->s_freeclusters_counter)); 473 avefreec = freeb; 474 do_div(avefreec, ngroups); 475 ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter); 476 477 if (S_ISDIR(mode) && 478 ((parent == d_inode(sb->s_root)) || 479 (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) { 480 int best_ndir = inodes_per_group; 481 int ret = -1; 482 483 if (qstr) { 484 hinfo.hash_version = DX_HASH_HALF_MD4; 485 hinfo.seed = sbi->s_hash_seed; 486 ext4fs_dirhash(qstr->name, qstr->len, &hinfo); 487 grp = hinfo.hash; 488 } else 489 grp = prandom_u32(); 490 parent_group = (unsigned)grp % ngroups; 491 for (i = 0; i < ngroups; i++) { 492 g = (parent_group + i) % ngroups; 493 get_orlov_stats(sb, g, flex_size, &stats); 494 if (!stats.free_inodes) 495 continue; 496 if (stats.used_dirs >= best_ndir) 497 continue; 498 if (stats.free_inodes < avefreei) 499 continue; 500 if (stats.free_clusters < avefreec) 501 continue; 502 grp = g; 503 ret = 0; 504 best_ndir = stats.used_dirs; 505 } 506 if (ret) 507 goto fallback; 508 found_flex_bg: 509 if (flex_size == 1) { 510 *group = grp; 511 return 0; 512 } 513 514 /* 515 * We pack inodes at the beginning of the flexgroup's 516 * inode tables. Block allocation decisions will do 517 * something similar, although regular files will 518 * start at 2nd block group of the flexgroup. See 519 * ext4_ext_find_goal() and ext4_find_near(). 520 */ 521 grp *= flex_size; 522 for (i = 0; i < flex_size; i++) { 523 if (grp+i >= real_ngroups) 524 break; 525 desc = ext4_get_group_desc(sb, grp+i, NULL); 526 if (desc && ext4_free_inodes_count(sb, desc)) { 527 *group = grp+i; 528 return 0; 529 } 530 } 531 goto fallback; 532 } 533 534 max_dirs = ndirs / ngroups + inodes_per_group / 16; 535 min_inodes = avefreei - inodes_per_group*flex_size / 4; 536 if (min_inodes < 1) 537 min_inodes = 1; 538 min_clusters = avefreec - EXT4_CLUSTERS_PER_GROUP(sb)*flex_size / 4; 539 540 /* 541 * Start looking in the flex group where we last allocated an 542 * inode for this parent directory 543 */ 544 if (EXT4_I(parent)->i_last_alloc_group != ~0) { 545 parent_group = EXT4_I(parent)->i_last_alloc_group; 546 if (flex_size > 1) 547 parent_group >>= sbi->s_log_groups_per_flex; 548 } 549 550 for (i = 0; i < ngroups; i++) { 551 grp = (parent_group + i) % ngroups; 552 get_orlov_stats(sb, grp, flex_size, &stats); 553 if (stats.used_dirs >= max_dirs) 554 continue; 555 if (stats.free_inodes < min_inodes) 556 continue; 557 if (stats.free_clusters < min_clusters) 558 continue; 559 goto found_flex_bg; 560 } 561 562 fallback: 563 ngroups = real_ngroups; 564 avefreei = freei / ngroups; 565 fallback_retry: 566 parent_group = EXT4_I(parent)->i_block_group; 567 for (i = 0; i < ngroups; i++) { 568 grp = (parent_group + i) % ngroups; 569 desc = ext4_get_group_desc(sb, grp, NULL); 570 if (desc) { 571 grp_free = ext4_free_inodes_count(sb, desc); 572 if (grp_free && grp_free >= avefreei) { 573 *group = grp; 574 return 0; 575 } 576 } 577 } 578 579 if (avefreei) { 580 /* 581 * The free-inodes counter is approximate, and for really small 582 * filesystems the above test can fail to find any blockgroups 583 */ 584 avefreei = 0; 585 goto fallback_retry; 586 } 587 588 return -1; 589 } 590 591 static int find_group_other(struct super_block *sb, struct inode *parent, 592 ext4_group_t *group, umode_t mode) 593 { 594 ext4_group_t parent_group = EXT4_I(parent)->i_block_group; 595 ext4_group_t i, last, ngroups = ext4_get_groups_count(sb); 596 struct ext4_group_desc *desc; 597 int flex_size = ext4_flex_bg_size(EXT4_SB(sb)); 598 599 /* 600 * Try to place the inode is the same flex group as its 601 * parent. If we can't find space, use the Orlov algorithm to 602 * find another flex group, and store that information in the 603 * parent directory's inode information so that use that flex 604 * group for future allocations. 605 */ 606 if (flex_size > 1) { 607 int retry = 0; 608 609 try_again: 610 parent_group &= ~(flex_size-1); 611 last = parent_group + flex_size; 612 if (last > ngroups) 613 last = ngroups; 614 for (i = parent_group; i < last; i++) { 615 desc = ext4_get_group_desc(sb, i, NULL); 616 if (desc && ext4_free_inodes_count(sb, desc)) { 617 *group = i; 618 return 0; 619 } 620 } 621 if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) { 622 retry = 1; 623 parent_group = EXT4_I(parent)->i_last_alloc_group; 624 goto try_again; 625 } 626 /* 627 * If this didn't work, use the Orlov search algorithm 628 * to find a new flex group; we pass in the mode to 629 * avoid the topdir algorithms. 630 */ 631 *group = parent_group + flex_size; 632 if (*group > ngroups) 633 *group = 0; 634 return find_group_orlov(sb, parent, group, mode, NULL); 635 } 636 637 /* 638 * Try to place the inode in its parent directory 639 */ 640 *group = parent_group; 641 desc = ext4_get_group_desc(sb, *group, NULL); 642 if (desc && ext4_free_inodes_count(sb, desc) && 643 ext4_free_group_clusters(sb, desc)) 644 return 0; 645 646 /* 647 * We're going to place this inode in a different blockgroup from its 648 * parent. We want to cause files in a common directory to all land in 649 * the same blockgroup. But we want files which are in a different 650 * directory which shares a blockgroup with our parent to land in a 651 * different blockgroup. 652 * 653 * So add our directory's i_ino into the starting point for the hash. 654 */ 655 *group = (*group + parent->i_ino) % ngroups; 656 657 /* 658 * Use a quadratic hash to find a group with a free inode and some free 659 * blocks. 660 */ 661 for (i = 1; i < ngroups; i <<= 1) { 662 *group += i; 663 if (*group >= ngroups) 664 *group -= ngroups; 665 desc = ext4_get_group_desc(sb, *group, NULL); 666 if (desc && ext4_free_inodes_count(sb, desc) && 667 ext4_free_group_clusters(sb, desc)) 668 return 0; 669 } 670 671 /* 672 * That failed: try linear search for a free inode, even if that group 673 * has no free blocks. 674 */ 675 *group = parent_group; 676 for (i = 0; i < ngroups; i++) { 677 if (++*group >= ngroups) 678 *group = 0; 679 desc = ext4_get_group_desc(sb, *group, NULL); 680 if (desc && ext4_free_inodes_count(sb, desc)) 681 return 0; 682 } 683 684 return -1; 685 } 686 687 /* 688 * In no journal mode, if an inode has recently been deleted, we want 689 * to avoid reusing it until we're reasonably sure the inode table 690 * block has been written back to disk. (Yes, these values are 691 * somewhat arbitrary...) 692 */ 693 #define RECENTCY_MIN 5 694 #define RECENTCY_DIRTY 30 695 696 static int recently_deleted(struct super_block *sb, ext4_group_t group, int ino) 697 { 698 struct ext4_group_desc *gdp; 699 struct ext4_inode *raw_inode; 700 struct buffer_head *bh; 701 unsigned long dtime, now; 702 int inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 703 int offset, ret = 0, recentcy = RECENTCY_MIN; 704 705 gdp = ext4_get_group_desc(sb, group, NULL); 706 if (unlikely(!gdp)) 707 return 0; 708 709 bh = sb_getblk(sb, ext4_inode_table(sb, gdp) + 710 (ino / inodes_per_block)); 711 if (unlikely(!bh) || !buffer_uptodate(bh)) 712 /* 713 * If the block is not in the buffer cache, then it 714 * must have been written out. 715 */ 716 goto out; 717 718 offset = (ino % inodes_per_block) * EXT4_INODE_SIZE(sb); 719 raw_inode = (struct ext4_inode *) (bh->b_data + offset); 720 dtime = le32_to_cpu(raw_inode->i_dtime); 721 now = get_seconds(); 722 if (buffer_dirty(bh)) 723 recentcy += RECENTCY_DIRTY; 724 725 if (dtime && (dtime < now) && (now < dtime + recentcy)) 726 ret = 1; 727 out: 728 brelse(bh); 729 return ret; 730 } 731 732 /* 733 * There are two policies for allocating an inode. If the new inode is 734 * a directory, then a forward search is made for a block group with both 735 * free space and a low directory-to-inode ratio; if that fails, then of 736 * the groups with above-average free space, that group with the fewest 737 * directories already is chosen. 738 * 739 * For other inodes, search forward from the parent directory's block 740 * group to find a free inode. 741 */ 742 struct inode *__ext4_new_inode(handle_t *handle, struct inode *dir, 743 umode_t mode, const struct qstr *qstr, 744 __u32 goal, uid_t *owner, int handle_type, 745 unsigned int line_no, int nblocks) 746 { 747 struct super_block *sb; 748 struct buffer_head *inode_bitmap_bh = NULL; 749 struct buffer_head *group_desc_bh; 750 ext4_group_t ngroups, group = 0; 751 unsigned long ino = 0; 752 struct inode *inode; 753 struct ext4_group_desc *gdp = NULL; 754 struct ext4_inode_info *ei; 755 struct ext4_sb_info *sbi; 756 int ret2, err; 757 struct inode *ret; 758 ext4_group_t i; 759 ext4_group_t flex_group; 760 struct ext4_group_info *grp; 761 int encrypt = 0; 762 763 /* Cannot create files in a deleted directory */ 764 if (!dir || !dir->i_nlink) 765 return ERR_PTR(-EPERM); 766 767 if ((ext4_encrypted_inode(dir) || 768 DUMMY_ENCRYPTION_ENABLED(EXT4_SB(dir->i_sb))) && 769 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 770 err = fscrypt_get_encryption_info(dir); 771 if (err) 772 return ERR_PTR(err); 773 if (!fscrypt_has_encryption_key(dir)) 774 return ERR_PTR(-EPERM); 775 if (!handle) 776 nblocks += EXT4_DATA_TRANS_BLOCKS(dir->i_sb); 777 encrypt = 1; 778 } 779 780 sb = dir->i_sb; 781 ngroups = ext4_get_groups_count(sb); 782 trace_ext4_request_inode(dir, mode); 783 inode = new_inode(sb); 784 if (!inode) 785 return ERR_PTR(-ENOMEM); 786 ei = EXT4_I(inode); 787 sbi = EXT4_SB(sb); 788 789 /* 790 * Initialize owners and quota early so that we don't have to account 791 * for quota initialization worst case in standard inode creating 792 * transaction 793 */ 794 if (owner) { 795 inode->i_mode = mode; 796 i_uid_write(inode, owner[0]); 797 i_gid_write(inode, owner[1]); 798 } else if (test_opt(sb, GRPID)) { 799 inode->i_mode = mode; 800 inode->i_uid = current_fsuid(); 801 inode->i_gid = dir->i_gid; 802 } else 803 inode_init_owner(inode, dir, mode); 804 805 if (ext4_has_feature_project(sb) && 806 ext4_test_inode_flag(dir, EXT4_INODE_PROJINHERIT)) 807 ei->i_projid = EXT4_I(dir)->i_projid; 808 else 809 ei->i_projid = make_kprojid(&init_user_ns, EXT4_DEF_PROJID); 810 811 err = dquot_initialize(inode); 812 if (err) 813 goto out; 814 815 if (!goal) 816 goal = sbi->s_inode_goal; 817 818 if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) { 819 group = (goal - 1) / EXT4_INODES_PER_GROUP(sb); 820 ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb); 821 ret2 = 0; 822 goto got_group; 823 } 824 825 if (S_ISDIR(mode)) 826 ret2 = find_group_orlov(sb, dir, &group, mode, qstr); 827 else 828 ret2 = find_group_other(sb, dir, &group, mode); 829 830 got_group: 831 EXT4_I(dir)->i_last_alloc_group = group; 832 err = -ENOSPC; 833 if (ret2 == -1) 834 goto out; 835 836 /* 837 * Normally we will only go through one pass of this loop, 838 * unless we get unlucky and it turns out the group we selected 839 * had its last inode grabbed by someone else. 840 */ 841 for (i = 0; i < ngroups; i++, ino = 0) { 842 err = -EIO; 843 844 gdp = ext4_get_group_desc(sb, group, &group_desc_bh); 845 if (!gdp) 846 goto out; 847 848 /* 849 * Check free inodes count before loading bitmap. 850 */ 851 if (ext4_free_inodes_count(sb, gdp) == 0) { 852 if (++group == ngroups) 853 group = 0; 854 continue; 855 } 856 857 grp = ext4_get_group_info(sb, group); 858 /* Skip groups with already-known suspicious inode tables */ 859 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) { 860 if (++group == ngroups) 861 group = 0; 862 continue; 863 } 864 865 brelse(inode_bitmap_bh); 866 inode_bitmap_bh = ext4_read_inode_bitmap(sb, group); 867 /* Skip groups with suspicious inode tables */ 868 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp) || 869 IS_ERR(inode_bitmap_bh)) { 870 inode_bitmap_bh = NULL; 871 if (++group == ngroups) 872 group = 0; 873 continue; 874 } 875 876 repeat_in_this_group: 877 ino = ext4_find_next_zero_bit((unsigned long *) 878 inode_bitmap_bh->b_data, 879 EXT4_INODES_PER_GROUP(sb), ino); 880 if (ino >= EXT4_INODES_PER_GROUP(sb)) 881 goto next_group; 882 if (group == 0 && (ino+1) < EXT4_FIRST_INO(sb)) { 883 ext4_error(sb, "reserved inode found cleared - " 884 "inode=%lu", ino + 1); 885 continue; 886 } 887 if ((EXT4_SB(sb)->s_journal == NULL) && 888 recently_deleted(sb, group, ino)) { 889 ino++; 890 goto next_inode; 891 } 892 if (!handle) { 893 BUG_ON(nblocks <= 0); 894 handle = __ext4_journal_start_sb(dir->i_sb, line_no, 895 handle_type, nblocks, 896 0); 897 if (IS_ERR(handle)) { 898 err = PTR_ERR(handle); 899 ext4_std_error(sb, err); 900 goto out; 901 } 902 } 903 BUFFER_TRACE(inode_bitmap_bh, "get_write_access"); 904 err = ext4_journal_get_write_access(handle, inode_bitmap_bh); 905 if (err) { 906 ext4_std_error(sb, err); 907 goto out; 908 } 909 ext4_lock_group(sb, group); 910 ret2 = ext4_test_and_set_bit(ino, inode_bitmap_bh->b_data); 911 ext4_unlock_group(sb, group); 912 ino++; /* the inode bitmap is zero-based */ 913 if (!ret2) 914 goto got; /* we grabbed the inode! */ 915 next_inode: 916 if (ino < EXT4_INODES_PER_GROUP(sb)) 917 goto repeat_in_this_group; 918 next_group: 919 if (++group == ngroups) 920 group = 0; 921 } 922 err = -ENOSPC; 923 goto out; 924 925 got: 926 BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata"); 927 err = ext4_handle_dirty_metadata(handle, NULL, inode_bitmap_bh); 928 if (err) { 929 ext4_std_error(sb, err); 930 goto out; 931 } 932 933 BUFFER_TRACE(group_desc_bh, "get_write_access"); 934 err = ext4_journal_get_write_access(handle, group_desc_bh); 935 if (err) { 936 ext4_std_error(sb, err); 937 goto out; 938 } 939 940 /* We may have to initialize the block bitmap if it isn't already */ 941 if (ext4_has_group_desc_csum(sb) && 942 gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 943 struct buffer_head *block_bitmap_bh; 944 945 block_bitmap_bh = ext4_read_block_bitmap(sb, group); 946 if (IS_ERR(block_bitmap_bh)) { 947 err = PTR_ERR(block_bitmap_bh); 948 goto out; 949 } 950 BUFFER_TRACE(block_bitmap_bh, "get block bitmap access"); 951 err = ext4_journal_get_write_access(handle, block_bitmap_bh); 952 if (err) { 953 brelse(block_bitmap_bh); 954 ext4_std_error(sb, err); 955 goto out; 956 } 957 958 BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap"); 959 err = ext4_handle_dirty_metadata(handle, NULL, block_bitmap_bh); 960 961 /* recheck and clear flag under lock if we still need to */ 962 ext4_lock_group(sb, group); 963 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 964 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 965 ext4_free_group_clusters_set(sb, gdp, 966 ext4_free_clusters_after_init(sb, group, gdp)); 967 ext4_block_bitmap_csum_set(sb, group, gdp, 968 block_bitmap_bh); 969 ext4_group_desc_csum_set(sb, group, gdp); 970 } 971 ext4_unlock_group(sb, group); 972 brelse(block_bitmap_bh); 973 974 if (err) { 975 ext4_std_error(sb, err); 976 goto out; 977 } 978 } 979 980 /* Update the relevant bg descriptor fields */ 981 if (ext4_has_group_desc_csum(sb)) { 982 int free; 983 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 984 985 down_read(&grp->alloc_sem); /* protect vs itable lazyinit */ 986 ext4_lock_group(sb, group); /* while we modify the bg desc */ 987 free = EXT4_INODES_PER_GROUP(sb) - 988 ext4_itable_unused_count(sb, gdp); 989 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) { 990 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT); 991 free = 0; 992 } 993 /* 994 * Check the relative inode number against the last used 995 * relative inode number in this group. if it is greater 996 * we need to update the bg_itable_unused count 997 */ 998 if (ino > free) 999 ext4_itable_unused_set(sb, gdp, 1000 (EXT4_INODES_PER_GROUP(sb) - ino)); 1001 up_read(&grp->alloc_sem); 1002 } else { 1003 ext4_lock_group(sb, group); 1004 } 1005 1006 ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1); 1007 if (S_ISDIR(mode)) { 1008 ext4_used_dirs_set(sb, gdp, ext4_used_dirs_count(sb, gdp) + 1); 1009 if (sbi->s_log_groups_per_flex) { 1010 ext4_group_t f = ext4_flex_group(sbi, group); 1011 1012 atomic_inc(&sbi->s_flex_groups[f].used_dirs); 1013 } 1014 } 1015 if (ext4_has_group_desc_csum(sb)) { 1016 ext4_inode_bitmap_csum_set(sb, group, gdp, inode_bitmap_bh, 1017 EXT4_INODES_PER_GROUP(sb) / 8); 1018 ext4_group_desc_csum_set(sb, group, gdp); 1019 } 1020 ext4_unlock_group(sb, group); 1021 1022 BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata"); 1023 err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh); 1024 if (err) { 1025 ext4_std_error(sb, err); 1026 goto out; 1027 } 1028 1029 percpu_counter_dec(&sbi->s_freeinodes_counter); 1030 if (S_ISDIR(mode)) 1031 percpu_counter_inc(&sbi->s_dirs_counter); 1032 1033 if (sbi->s_log_groups_per_flex) { 1034 flex_group = ext4_flex_group(sbi, group); 1035 atomic_dec(&sbi->s_flex_groups[flex_group].free_inodes); 1036 } 1037 1038 inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb); 1039 /* This is the optimal IO size (for stat), not the fs block size */ 1040 inode->i_blocks = 0; 1041 inode->i_mtime = inode->i_atime = inode->i_ctime = ei->i_crtime = 1042 current_time(inode); 1043 1044 memset(ei->i_data, 0, sizeof(ei->i_data)); 1045 ei->i_dir_start_lookup = 0; 1046 ei->i_disksize = 0; 1047 1048 /* Don't inherit extent flag from directory, amongst others. */ 1049 ei->i_flags = 1050 ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED); 1051 ei->i_file_acl = 0; 1052 ei->i_dtime = 0; 1053 ei->i_block_group = group; 1054 ei->i_last_alloc_group = ~0; 1055 1056 ext4_set_inode_flags(inode); 1057 if (IS_DIRSYNC(inode)) 1058 ext4_handle_sync(handle); 1059 if (insert_inode_locked(inode) < 0) { 1060 /* 1061 * Likely a bitmap corruption causing inode to be allocated 1062 * twice. 1063 */ 1064 err = -EIO; 1065 ext4_error(sb, "failed to insert inode %lu: doubly allocated?", 1066 inode->i_ino); 1067 goto out; 1068 } 1069 spin_lock(&sbi->s_next_gen_lock); 1070 inode->i_generation = sbi->s_next_generation++; 1071 spin_unlock(&sbi->s_next_gen_lock); 1072 1073 /* Precompute checksum seed for inode metadata */ 1074 if (ext4_has_metadata_csum(sb)) { 1075 __u32 csum; 1076 __le32 inum = cpu_to_le32(inode->i_ino); 1077 __le32 gen = cpu_to_le32(inode->i_generation); 1078 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 1079 sizeof(inum)); 1080 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 1081 sizeof(gen)); 1082 } 1083 1084 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 1085 ext4_set_inode_state(inode, EXT4_STATE_NEW); 1086 1087 ei->i_extra_isize = EXT4_SB(sb)->s_want_extra_isize; 1088 ei->i_inline_off = 0; 1089 if (ext4_has_feature_inline_data(sb)) 1090 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); 1091 ret = inode; 1092 err = dquot_alloc_inode(inode); 1093 if (err) 1094 goto fail_drop; 1095 1096 err = ext4_init_acl(handle, inode, dir); 1097 if (err) 1098 goto fail_free_drop; 1099 1100 err = ext4_init_security(handle, inode, dir, qstr); 1101 if (err) 1102 goto fail_free_drop; 1103 1104 if (ext4_has_feature_extents(sb)) { 1105 /* set extent flag only for directory, file and normal symlink*/ 1106 if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) { 1107 ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS); 1108 ext4_ext_tree_init(handle, inode); 1109 } 1110 } 1111 1112 if (ext4_handle_valid(handle)) { 1113 ei->i_sync_tid = handle->h_transaction->t_tid; 1114 ei->i_datasync_tid = handle->h_transaction->t_tid; 1115 } 1116 1117 if (encrypt) { 1118 err = fscrypt_inherit_context(dir, inode, handle, true); 1119 if (err) 1120 goto fail_free_drop; 1121 } 1122 1123 err = ext4_mark_inode_dirty(handle, inode); 1124 if (err) { 1125 ext4_std_error(sb, err); 1126 goto fail_free_drop; 1127 } 1128 1129 ext4_debug("allocating inode %lu\n", inode->i_ino); 1130 trace_ext4_allocate_inode(inode, dir, mode); 1131 brelse(inode_bitmap_bh); 1132 return ret; 1133 1134 fail_free_drop: 1135 dquot_free_inode(inode); 1136 fail_drop: 1137 clear_nlink(inode); 1138 unlock_new_inode(inode); 1139 out: 1140 dquot_drop(inode); 1141 inode->i_flags |= S_NOQUOTA; 1142 iput(inode); 1143 brelse(inode_bitmap_bh); 1144 return ERR_PTR(err); 1145 } 1146 1147 /* Verify that we are loading a valid orphan from disk */ 1148 struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino) 1149 { 1150 unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count); 1151 ext4_group_t block_group; 1152 int bit; 1153 struct buffer_head *bitmap_bh = NULL; 1154 struct inode *inode = NULL; 1155 int err = -EFSCORRUPTED; 1156 1157 if (ino < EXT4_FIRST_INO(sb) || ino > max_ino) 1158 goto bad_orphan; 1159 1160 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 1161 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb); 1162 bitmap_bh = ext4_read_inode_bitmap(sb, block_group); 1163 if (IS_ERR(bitmap_bh)) { 1164 ext4_error(sb, "inode bitmap error %ld for orphan %lu", 1165 ino, PTR_ERR(bitmap_bh)); 1166 return (struct inode *) bitmap_bh; 1167 } 1168 1169 /* Having the inode bit set should be a 100% indicator that this 1170 * is a valid orphan (no e2fsck run on fs). Orphans also include 1171 * inodes that were being truncated, so we can't check i_nlink==0. 1172 */ 1173 if (!ext4_test_bit(bit, bitmap_bh->b_data)) 1174 goto bad_orphan; 1175 1176 inode = ext4_iget(sb, ino); 1177 if (IS_ERR(inode)) { 1178 err = PTR_ERR(inode); 1179 ext4_error(sb, "couldn't read orphan inode %lu (err %d)", 1180 ino, err); 1181 return inode; 1182 } 1183 1184 /* 1185 * If the orphans has i_nlinks > 0 then it should be able to 1186 * be truncated, otherwise it won't be removed from the orphan 1187 * list during processing and an infinite loop will result. 1188 * Similarly, it must not be a bad inode. 1189 */ 1190 if ((inode->i_nlink && !ext4_can_truncate(inode)) || 1191 is_bad_inode(inode)) 1192 goto bad_orphan; 1193 1194 if (NEXT_ORPHAN(inode) > max_ino) 1195 goto bad_orphan; 1196 brelse(bitmap_bh); 1197 return inode; 1198 1199 bad_orphan: 1200 ext4_error(sb, "bad orphan inode %lu", ino); 1201 if (bitmap_bh) 1202 printk(KERN_ERR "ext4_test_bit(bit=%d, block=%llu) = %d\n", 1203 bit, (unsigned long long)bitmap_bh->b_blocknr, 1204 ext4_test_bit(bit, bitmap_bh->b_data)); 1205 if (inode) { 1206 printk(KERN_ERR "is_bad_inode(inode)=%d\n", 1207 is_bad_inode(inode)); 1208 printk(KERN_ERR "NEXT_ORPHAN(inode)=%u\n", 1209 NEXT_ORPHAN(inode)); 1210 printk(KERN_ERR "max_ino=%lu\n", max_ino); 1211 printk(KERN_ERR "i_nlink=%u\n", inode->i_nlink); 1212 /* Avoid freeing blocks if we got a bad deleted inode */ 1213 if (inode->i_nlink == 0) 1214 inode->i_blocks = 0; 1215 iput(inode); 1216 } 1217 brelse(bitmap_bh); 1218 return ERR_PTR(err); 1219 } 1220 1221 unsigned long ext4_count_free_inodes(struct super_block *sb) 1222 { 1223 unsigned long desc_count; 1224 struct ext4_group_desc *gdp; 1225 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 1226 #ifdef EXT4FS_DEBUG 1227 struct ext4_super_block *es; 1228 unsigned long bitmap_count, x; 1229 struct buffer_head *bitmap_bh = NULL; 1230 1231 es = EXT4_SB(sb)->s_es; 1232 desc_count = 0; 1233 bitmap_count = 0; 1234 gdp = NULL; 1235 for (i = 0; i < ngroups; i++) { 1236 gdp = ext4_get_group_desc(sb, i, NULL); 1237 if (!gdp) 1238 continue; 1239 desc_count += ext4_free_inodes_count(sb, gdp); 1240 brelse(bitmap_bh); 1241 bitmap_bh = ext4_read_inode_bitmap(sb, i); 1242 if (IS_ERR(bitmap_bh)) { 1243 bitmap_bh = NULL; 1244 continue; 1245 } 1246 1247 x = ext4_count_free(bitmap_bh->b_data, 1248 EXT4_INODES_PER_GROUP(sb) / 8); 1249 printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n", 1250 (unsigned long) i, ext4_free_inodes_count(sb, gdp), x); 1251 bitmap_count += x; 1252 } 1253 brelse(bitmap_bh); 1254 printk(KERN_DEBUG "ext4_count_free_inodes: " 1255 "stored = %u, computed = %lu, %lu\n", 1256 le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count); 1257 return desc_count; 1258 #else 1259 desc_count = 0; 1260 for (i = 0; i < ngroups; i++) { 1261 gdp = ext4_get_group_desc(sb, i, NULL); 1262 if (!gdp) 1263 continue; 1264 desc_count += ext4_free_inodes_count(sb, gdp); 1265 cond_resched(); 1266 } 1267 return desc_count; 1268 #endif 1269 } 1270 1271 /* Called at mount-time, super-block is locked */ 1272 unsigned long ext4_count_dirs(struct super_block * sb) 1273 { 1274 unsigned long count = 0; 1275 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 1276 1277 for (i = 0; i < ngroups; i++) { 1278 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 1279 if (!gdp) 1280 continue; 1281 count += ext4_used_dirs_count(sb, gdp); 1282 } 1283 return count; 1284 } 1285 1286 /* 1287 * Zeroes not yet zeroed inode table - just write zeroes through the whole 1288 * inode table. Must be called without any spinlock held. The only place 1289 * where it is called from on active part of filesystem is ext4lazyinit 1290 * thread, so we do not need any special locks, however we have to prevent 1291 * inode allocation from the current group, so we take alloc_sem lock, to 1292 * block ext4_new_inode() until we are finished. 1293 */ 1294 int ext4_init_inode_table(struct super_block *sb, ext4_group_t group, 1295 int barrier) 1296 { 1297 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 1298 struct ext4_sb_info *sbi = EXT4_SB(sb); 1299 struct ext4_group_desc *gdp = NULL; 1300 struct buffer_head *group_desc_bh; 1301 handle_t *handle; 1302 ext4_fsblk_t blk; 1303 int num, ret = 0, used_blks = 0; 1304 1305 /* This should not happen, but just to be sure check this */ 1306 if (sb->s_flags & MS_RDONLY) { 1307 ret = 1; 1308 goto out; 1309 } 1310 1311 gdp = ext4_get_group_desc(sb, group, &group_desc_bh); 1312 if (!gdp) 1313 goto out; 1314 1315 /* 1316 * We do not need to lock this, because we are the only one 1317 * handling this flag. 1318 */ 1319 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)) 1320 goto out; 1321 1322 handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1); 1323 if (IS_ERR(handle)) { 1324 ret = PTR_ERR(handle); 1325 goto out; 1326 } 1327 1328 down_write(&grp->alloc_sem); 1329 /* 1330 * If inode bitmap was already initialized there may be some 1331 * used inodes so we need to skip blocks with used inodes in 1332 * inode table. 1333 */ 1334 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT))) 1335 used_blks = DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb) - 1336 ext4_itable_unused_count(sb, gdp)), 1337 sbi->s_inodes_per_block); 1338 1339 if ((used_blks < 0) || (used_blks > sbi->s_itb_per_group)) { 1340 ext4_error(sb, "Something is wrong with group %u: " 1341 "used itable blocks: %d; " 1342 "itable unused count: %u", 1343 group, used_blks, 1344 ext4_itable_unused_count(sb, gdp)); 1345 ret = 1; 1346 goto err_out; 1347 } 1348 1349 blk = ext4_inode_table(sb, gdp) + used_blks; 1350 num = sbi->s_itb_per_group - used_blks; 1351 1352 BUFFER_TRACE(group_desc_bh, "get_write_access"); 1353 ret = ext4_journal_get_write_access(handle, 1354 group_desc_bh); 1355 if (ret) 1356 goto err_out; 1357 1358 /* 1359 * Skip zeroout if the inode table is full. But we set the ZEROED 1360 * flag anyway, because obviously, when it is full it does not need 1361 * further zeroing. 1362 */ 1363 if (unlikely(num == 0)) 1364 goto skip_zeroout; 1365 1366 ext4_debug("going to zero out inode table in group %d\n", 1367 group); 1368 ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS); 1369 if (ret < 0) 1370 goto err_out; 1371 if (barrier) 1372 blkdev_issue_flush(sb->s_bdev, GFP_NOFS, NULL); 1373 1374 skip_zeroout: 1375 ext4_lock_group(sb, group); 1376 gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED); 1377 ext4_group_desc_csum_set(sb, group, gdp); 1378 ext4_unlock_group(sb, group); 1379 1380 BUFFER_TRACE(group_desc_bh, 1381 "call ext4_handle_dirty_metadata"); 1382 ret = ext4_handle_dirty_metadata(handle, NULL, 1383 group_desc_bh); 1384 1385 err_out: 1386 up_write(&grp->alloc_sem); 1387 ext4_journal_stop(handle); 1388 out: 1389 return ret; 1390 } 1391