xref: /openbmc/linux/fs/ext4/ialloc.c (revision 80ecbd24)
1 /*
2  *  linux/fs/ext4/ialloc.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  BSD ufs-inspired inode and directory allocation by
10  *  Stephen Tweedie (sct@redhat.com), 1993
11  *  Big-endian to little-endian byte-swapping/bitmaps by
12  *        David S. Miller (davem@caip.rutgers.edu), 1995
13  */
14 
15 #include <linux/time.h>
16 #include <linux/fs.h>
17 #include <linux/jbd2.h>
18 #include <linux/stat.h>
19 #include <linux/string.h>
20 #include <linux/quotaops.h>
21 #include <linux/buffer_head.h>
22 #include <linux/random.h>
23 #include <linux/bitops.h>
24 #include <linux/blkdev.h>
25 #include <asm/byteorder.h>
26 
27 #include "ext4.h"
28 #include "ext4_jbd2.h"
29 #include "xattr.h"
30 #include "acl.h"
31 
32 #include <trace/events/ext4.h>
33 
34 /*
35  * ialloc.c contains the inodes allocation and deallocation routines
36  */
37 
38 /*
39  * The free inodes are managed by bitmaps.  A file system contains several
40  * blocks groups.  Each group contains 1 bitmap block for blocks, 1 bitmap
41  * block for inodes, N blocks for the inode table and data blocks.
42  *
43  * The file system contains group descriptors which are located after the
44  * super block.  Each descriptor contains the number of the bitmap block and
45  * the free blocks count in the block.
46  */
47 
48 /*
49  * To avoid calling the atomic setbit hundreds or thousands of times, we only
50  * need to use it within a single byte (to ensure we get endianness right).
51  * We can use memset for the rest of the bitmap as there are no other users.
52  */
53 void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap)
54 {
55 	int i;
56 
57 	if (start_bit >= end_bit)
58 		return;
59 
60 	ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit);
61 	for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++)
62 		ext4_set_bit(i, bitmap);
63 	if (i < end_bit)
64 		memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3);
65 }
66 
67 /* Initializes an uninitialized inode bitmap */
68 static unsigned ext4_init_inode_bitmap(struct super_block *sb,
69 				       struct buffer_head *bh,
70 				       ext4_group_t block_group,
71 				       struct ext4_group_desc *gdp)
72 {
73 	J_ASSERT_BH(bh, buffer_locked(bh));
74 
75 	/* If checksum is bad mark all blocks and inodes use to prevent
76 	 * allocation, essentially implementing a per-group read-only flag. */
77 	if (!ext4_group_desc_csum_verify(sb, block_group, gdp)) {
78 		ext4_error(sb, "Checksum bad for group %u", block_group);
79 		ext4_free_group_clusters_set(sb, gdp, 0);
80 		ext4_free_inodes_set(sb, gdp, 0);
81 		ext4_itable_unused_set(sb, gdp, 0);
82 		memset(bh->b_data, 0xff, sb->s_blocksize);
83 		ext4_inode_bitmap_csum_set(sb, block_group, gdp, bh,
84 					   EXT4_INODES_PER_GROUP(sb) / 8);
85 		return 0;
86 	}
87 
88 	memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8);
89 	ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb), sb->s_blocksize * 8,
90 			bh->b_data);
91 	ext4_inode_bitmap_csum_set(sb, block_group, gdp, bh,
92 				   EXT4_INODES_PER_GROUP(sb) / 8);
93 	ext4_group_desc_csum_set(sb, block_group, gdp);
94 
95 	return EXT4_INODES_PER_GROUP(sb);
96 }
97 
98 void ext4_end_bitmap_read(struct buffer_head *bh, int uptodate)
99 {
100 	if (uptodate) {
101 		set_buffer_uptodate(bh);
102 		set_bitmap_uptodate(bh);
103 	}
104 	unlock_buffer(bh);
105 	put_bh(bh);
106 }
107 
108 /*
109  * Read the inode allocation bitmap for a given block_group, reading
110  * into the specified slot in the superblock's bitmap cache.
111  *
112  * Return buffer_head of bitmap on success or NULL.
113  */
114 static struct buffer_head *
115 ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group)
116 {
117 	struct ext4_group_desc *desc;
118 	struct buffer_head *bh = NULL;
119 	ext4_fsblk_t bitmap_blk;
120 
121 	desc = ext4_get_group_desc(sb, block_group, NULL);
122 	if (!desc)
123 		return NULL;
124 
125 	bitmap_blk = ext4_inode_bitmap(sb, desc);
126 	bh = sb_getblk(sb, bitmap_blk);
127 	if (unlikely(!bh)) {
128 		ext4_error(sb, "Cannot read inode bitmap - "
129 			    "block_group = %u, inode_bitmap = %llu",
130 			    block_group, bitmap_blk);
131 		return NULL;
132 	}
133 	if (bitmap_uptodate(bh))
134 		goto verify;
135 
136 	lock_buffer(bh);
137 	if (bitmap_uptodate(bh)) {
138 		unlock_buffer(bh);
139 		goto verify;
140 	}
141 
142 	ext4_lock_group(sb, block_group);
143 	if (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
144 		ext4_init_inode_bitmap(sb, bh, block_group, desc);
145 		set_bitmap_uptodate(bh);
146 		set_buffer_uptodate(bh);
147 		set_buffer_verified(bh);
148 		ext4_unlock_group(sb, block_group);
149 		unlock_buffer(bh);
150 		return bh;
151 	}
152 	ext4_unlock_group(sb, block_group);
153 
154 	if (buffer_uptodate(bh)) {
155 		/*
156 		 * if not uninit if bh is uptodate,
157 		 * bitmap is also uptodate
158 		 */
159 		set_bitmap_uptodate(bh);
160 		unlock_buffer(bh);
161 		goto verify;
162 	}
163 	/*
164 	 * submit the buffer_head for reading
165 	 */
166 	trace_ext4_load_inode_bitmap(sb, block_group);
167 	bh->b_end_io = ext4_end_bitmap_read;
168 	get_bh(bh);
169 	submit_bh(READ | REQ_META | REQ_PRIO, bh);
170 	wait_on_buffer(bh);
171 	if (!buffer_uptodate(bh)) {
172 		put_bh(bh);
173 		ext4_error(sb, "Cannot read inode bitmap - "
174 			   "block_group = %u, inode_bitmap = %llu",
175 			   block_group, bitmap_blk);
176 		return NULL;
177 	}
178 
179 verify:
180 	ext4_lock_group(sb, block_group);
181 	if (!buffer_verified(bh) &&
182 	    !ext4_inode_bitmap_csum_verify(sb, block_group, desc, bh,
183 					   EXT4_INODES_PER_GROUP(sb) / 8)) {
184 		ext4_unlock_group(sb, block_group);
185 		put_bh(bh);
186 		ext4_error(sb, "Corrupt inode bitmap - block_group = %u, "
187 			   "inode_bitmap = %llu", block_group, bitmap_blk);
188 		return NULL;
189 	}
190 	ext4_unlock_group(sb, block_group);
191 	set_buffer_verified(bh);
192 	return bh;
193 }
194 
195 /*
196  * NOTE! When we get the inode, we're the only people
197  * that have access to it, and as such there are no
198  * race conditions we have to worry about. The inode
199  * is not on the hash-lists, and it cannot be reached
200  * through the filesystem because the directory entry
201  * has been deleted earlier.
202  *
203  * HOWEVER: we must make sure that we get no aliases,
204  * which means that we have to call "clear_inode()"
205  * _before_ we mark the inode not in use in the inode
206  * bitmaps. Otherwise a newly created file might use
207  * the same inode number (not actually the same pointer
208  * though), and then we'd have two inodes sharing the
209  * same inode number and space on the harddisk.
210  */
211 void ext4_free_inode(handle_t *handle, struct inode *inode)
212 {
213 	struct super_block *sb = inode->i_sb;
214 	int is_directory;
215 	unsigned long ino;
216 	struct buffer_head *bitmap_bh = NULL;
217 	struct buffer_head *bh2;
218 	ext4_group_t block_group;
219 	unsigned long bit;
220 	struct ext4_group_desc *gdp;
221 	struct ext4_super_block *es;
222 	struct ext4_sb_info *sbi;
223 	int fatal = 0, err, count, cleared;
224 
225 	if (!sb) {
226 		printk(KERN_ERR "EXT4-fs: %s:%d: inode on "
227 		       "nonexistent device\n", __func__, __LINE__);
228 		return;
229 	}
230 	if (atomic_read(&inode->i_count) > 1) {
231 		ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: count=%d",
232 			 __func__, __LINE__, inode->i_ino,
233 			 atomic_read(&inode->i_count));
234 		return;
235 	}
236 	if (inode->i_nlink) {
237 		ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: nlink=%d\n",
238 			 __func__, __LINE__, inode->i_ino, inode->i_nlink);
239 		return;
240 	}
241 	sbi = EXT4_SB(sb);
242 
243 	ino = inode->i_ino;
244 	ext4_debug("freeing inode %lu\n", ino);
245 	trace_ext4_free_inode(inode);
246 
247 	/*
248 	 * Note: we must free any quota before locking the superblock,
249 	 * as writing the quota to disk may need the lock as well.
250 	 */
251 	dquot_initialize(inode);
252 	ext4_xattr_delete_inode(handle, inode);
253 	dquot_free_inode(inode);
254 	dquot_drop(inode);
255 
256 	is_directory = S_ISDIR(inode->i_mode);
257 
258 	/* Do this BEFORE marking the inode not in use or returning an error */
259 	ext4_clear_inode(inode);
260 
261 	es = EXT4_SB(sb)->s_es;
262 	if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) {
263 		ext4_error(sb, "reserved or nonexistent inode %lu", ino);
264 		goto error_return;
265 	}
266 	block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
267 	bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
268 	bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
269 	if (!bitmap_bh)
270 		goto error_return;
271 
272 	BUFFER_TRACE(bitmap_bh, "get_write_access");
273 	fatal = ext4_journal_get_write_access(handle, bitmap_bh);
274 	if (fatal)
275 		goto error_return;
276 
277 	fatal = -ESRCH;
278 	gdp = ext4_get_group_desc(sb, block_group, &bh2);
279 	if (gdp) {
280 		BUFFER_TRACE(bh2, "get_write_access");
281 		fatal = ext4_journal_get_write_access(handle, bh2);
282 	}
283 	ext4_lock_group(sb, block_group);
284 	cleared = ext4_test_and_clear_bit(bit, bitmap_bh->b_data);
285 	if (fatal || !cleared) {
286 		ext4_unlock_group(sb, block_group);
287 		goto out;
288 	}
289 
290 	count = ext4_free_inodes_count(sb, gdp) + 1;
291 	ext4_free_inodes_set(sb, gdp, count);
292 	if (is_directory) {
293 		count = ext4_used_dirs_count(sb, gdp) - 1;
294 		ext4_used_dirs_set(sb, gdp, count);
295 		percpu_counter_dec(&sbi->s_dirs_counter);
296 	}
297 	ext4_inode_bitmap_csum_set(sb, block_group, gdp, bitmap_bh,
298 				   EXT4_INODES_PER_GROUP(sb) / 8);
299 	ext4_group_desc_csum_set(sb, block_group, gdp);
300 	ext4_unlock_group(sb, block_group);
301 
302 	percpu_counter_inc(&sbi->s_freeinodes_counter);
303 	if (sbi->s_log_groups_per_flex) {
304 		ext4_group_t f = ext4_flex_group(sbi, block_group);
305 
306 		atomic_inc(&sbi->s_flex_groups[f].free_inodes);
307 		if (is_directory)
308 			atomic_dec(&sbi->s_flex_groups[f].used_dirs);
309 	}
310 	BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata");
311 	fatal = ext4_handle_dirty_metadata(handle, NULL, bh2);
312 out:
313 	if (cleared) {
314 		BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata");
315 		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
316 		if (!fatal)
317 			fatal = err;
318 	} else
319 		ext4_error(sb, "bit already cleared for inode %lu", ino);
320 
321 error_return:
322 	brelse(bitmap_bh);
323 	ext4_std_error(sb, fatal);
324 }
325 
326 struct orlov_stats {
327 	__u64 free_clusters;
328 	__u32 free_inodes;
329 	__u32 used_dirs;
330 };
331 
332 /*
333  * Helper function for Orlov's allocator; returns critical information
334  * for a particular block group or flex_bg.  If flex_size is 1, then g
335  * is a block group number; otherwise it is flex_bg number.
336  */
337 static void get_orlov_stats(struct super_block *sb, ext4_group_t g,
338 			    int flex_size, struct orlov_stats *stats)
339 {
340 	struct ext4_group_desc *desc;
341 	struct flex_groups *flex_group = EXT4_SB(sb)->s_flex_groups;
342 
343 	if (flex_size > 1) {
344 		stats->free_inodes = atomic_read(&flex_group[g].free_inodes);
345 		stats->free_clusters = atomic64_read(&flex_group[g].free_clusters);
346 		stats->used_dirs = atomic_read(&flex_group[g].used_dirs);
347 		return;
348 	}
349 
350 	desc = ext4_get_group_desc(sb, g, NULL);
351 	if (desc) {
352 		stats->free_inodes = ext4_free_inodes_count(sb, desc);
353 		stats->free_clusters = ext4_free_group_clusters(sb, desc);
354 		stats->used_dirs = ext4_used_dirs_count(sb, desc);
355 	} else {
356 		stats->free_inodes = 0;
357 		stats->free_clusters = 0;
358 		stats->used_dirs = 0;
359 	}
360 }
361 
362 /*
363  * Orlov's allocator for directories.
364  *
365  * We always try to spread first-level directories.
366  *
367  * If there are blockgroups with both free inodes and free blocks counts
368  * not worse than average we return one with smallest directory count.
369  * Otherwise we simply return a random group.
370  *
371  * For the rest rules look so:
372  *
373  * It's OK to put directory into a group unless
374  * it has too many directories already (max_dirs) or
375  * it has too few free inodes left (min_inodes) or
376  * it has too few free blocks left (min_blocks) or
377  * Parent's group is preferred, if it doesn't satisfy these
378  * conditions we search cyclically through the rest. If none
379  * of the groups look good we just look for a group with more
380  * free inodes than average (starting at parent's group).
381  */
382 
383 static int find_group_orlov(struct super_block *sb, struct inode *parent,
384 			    ext4_group_t *group, umode_t mode,
385 			    const struct qstr *qstr)
386 {
387 	ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
388 	struct ext4_sb_info *sbi = EXT4_SB(sb);
389 	ext4_group_t real_ngroups = ext4_get_groups_count(sb);
390 	int inodes_per_group = EXT4_INODES_PER_GROUP(sb);
391 	unsigned int freei, avefreei, grp_free;
392 	ext4_fsblk_t freeb, avefreec;
393 	unsigned int ndirs;
394 	int max_dirs, min_inodes;
395 	ext4_grpblk_t min_clusters;
396 	ext4_group_t i, grp, g, ngroups;
397 	struct ext4_group_desc *desc;
398 	struct orlov_stats stats;
399 	int flex_size = ext4_flex_bg_size(sbi);
400 	struct dx_hash_info hinfo;
401 
402 	ngroups = real_ngroups;
403 	if (flex_size > 1) {
404 		ngroups = (real_ngroups + flex_size - 1) >>
405 			sbi->s_log_groups_per_flex;
406 		parent_group >>= sbi->s_log_groups_per_flex;
407 	}
408 
409 	freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter);
410 	avefreei = freei / ngroups;
411 	freeb = EXT4_C2B(sbi,
412 		percpu_counter_read_positive(&sbi->s_freeclusters_counter));
413 	avefreec = freeb;
414 	do_div(avefreec, ngroups);
415 	ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter);
416 
417 	if (S_ISDIR(mode) &&
418 	    ((parent == sb->s_root->d_inode) ||
419 	     (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) {
420 		int best_ndir = inodes_per_group;
421 		int ret = -1;
422 
423 		if (qstr) {
424 			hinfo.hash_version = DX_HASH_HALF_MD4;
425 			hinfo.seed = sbi->s_hash_seed;
426 			ext4fs_dirhash(qstr->name, qstr->len, &hinfo);
427 			grp = hinfo.hash;
428 		} else
429 			get_random_bytes(&grp, sizeof(grp));
430 		parent_group = (unsigned)grp % ngroups;
431 		for (i = 0; i < ngroups; i++) {
432 			g = (parent_group + i) % ngroups;
433 			get_orlov_stats(sb, g, flex_size, &stats);
434 			if (!stats.free_inodes)
435 				continue;
436 			if (stats.used_dirs >= best_ndir)
437 				continue;
438 			if (stats.free_inodes < avefreei)
439 				continue;
440 			if (stats.free_clusters < avefreec)
441 				continue;
442 			grp = g;
443 			ret = 0;
444 			best_ndir = stats.used_dirs;
445 		}
446 		if (ret)
447 			goto fallback;
448 	found_flex_bg:
449 		if (flex_size == 1) {
450 			*group = grp;
451 			return 0;
452 		}
453 
454 		/*
455 		 * We pack inodes at the beginning of the flexgroup's
456 		 * inode tables.  Block allocation decisions will do
457 		 * something similar, although regular files will
458 		 * start at 2nd block group of the flexgroup.  See
459 		 * ext4_ext_find_goal() and ext4_find_near().
460 		 */
461 		grp *= flex_size;
462 		for (i = 0; i < flex_size; i++) {
463 			if (grp+i >= real_ngroups)
464 				break;
465 			desc = ext4_get_group_desc(sb, grp+i, NULL);
466 			if (desc && ext4_free_inodes_count(sb, desc)) {
467 				*group = grp+i;
468 				return 0;
469 			}
470 		}
471 		goto fallback;
472 	}
473 
474 	max_dirs = ndirs / ngroups + inodes_per_group / 16;
475 	min_inodes = avefreei - inodes_per_group*flex_size / 4;
476 	if (min_inodes < 1)
477 		min_inodes = 1;
478 	min_clusters = avefreec - EXT4_CLUSTERS_PER_GROUP(sb)*flex_size / 4;
479 
480 	/*
481 	 * Start looking in the flex group where we last allocated an
482 	 * inode for this parent directory
483 	 */
484 	if (EXT4_I(parent)->i_last_alloc_group != ~0) {
485 		parent_group = EXT4_I(parent)->i_last_alloc_group;
486 		if (flex_size > 1)
487 			parent_group >>= sbi->s_log_groups_per_flex;
488 	}
489 
490 	for (i = 0; i < ngroups; i++) {
491 		grp = (parent_group + i) % ngroups;
492 		get_orlov_stats(sb, grp, flex_size, &stats);
493 		if (stats.used_dirs >= max_dirs)
494 			continue;
495 		if (stats.free_inodes < min_inodes)
496 			continue;
497 		if (stats.free_clusters < min_clusters)
498 			continue;
499 		goto found_flex_bg;
500 	}
501 
502 fallback:
503 	ngroups = real_ngroups;
504 	avefreei = freei / ngroups;
505 fallback_retry:
506 	parent_group = EXT4_I(parent)->i_block_group;
507 	for (i = 0; i < ngroups; i++) {
508 		grp = (parent_group + i) % ngroups;
509 		desc = ext4_get_group_desc(sb, grp, NULL);
510 		if (desc) {
511 			grp_free = ext4_free_inodes_count(sb, desc);
512 			if (grp_free && grp_free >= avefreei) {
513 				*group = grp;
514 				return 0;
515 			}
516 		}
517 	}
518 
519 	if (avefreei) {
520 		/*
521 		 * The free-inodes counter is approximate, and for really small
522 		 * filesystems the above test can fail to find any blockgroups
523 		 */
524 		avefreei = 0;
525 		goto fallback_retry;
526 	}
527 
528 	return -1;
529 }
530 
531 static int find_group_other(struct super_block *sb, struct inode *parent,
532 			    ext4_group_t *group, umode_t mode)
533 {
534 	ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
535 	ext4_group_t i, last, ngroups = ext4_get_groups_count(sb);
536 	struct ext4_group_desc *desc;
537 	int flex_size = ext4_flex_bg_size(EXT4_SB(sb));
538 
539 	/*
540 	 * Try to place the inode is the same flex group as its
541 	 * parent.  If we can't find space, use the Orlov algorithm to
542 	 * find another flex group, and store that information in the
543 	 * parent directory's inode information so that use that flex
544 	 * group for future allocations.
545 	 */
546 	if (flex_size > 1) {
547 		int retry = 0;
548 
549 	try_again:
550 		parent_group &= ~(flex_size-1);
551 		last = parent_group + flex_size;
552 		if (last > ngroups)
553 			last = ngroups;
554 		for  (i = parent_group; i < last; i++) {
555 			desc = ext4_get_group_desc(sb, i, NULL);
556 			if (desc && ext4_free_inodes_count(sb, desc)) {
557 				*group = i;
558 				return 0;
559 			}
560 		}
561 		if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) {
562 			retry = 1;
563 			parent_group = EXT4_I(parent)->i_last_alloc_group;
564 			goto try_again;
565 		}
566 		/*
567 		 * If this didn't work, use the Orlov search algorithm
568 		 * to find a new flex group; we pass in the mode to
569 		 * avoid the topdir algorithms.
570 		 */
571 		*group = parent_group + flex_size;
572 		if (*group > ngroups)
573 			*group = 0;
574 		return find_group_orlov(sb, parent, group, mode, NULL);
575 	}
576 
577 	/*
578 	 * Try to place the inode in its parent directory
579 	 */
580 	*group = parent_group;
581 	desc = ext4_get_group_desc(sb, *group, NULL);
582 	if (desc && ext4_free_inodes_count(sb, desc) &&
583 	    ext4_free_group_clusters(sb, desc))
584 		return 0;
585 
586 	/*
587 	 * We're going to place this inode in a different blockgroup from its
588 	 * parent.  We want to cause files in a common directory to all land in
589 	 * the same blockgroup.  But we want files which are in a different
590 	 * directory which shares a blockgroup with our parent to land in a
591 	 * different blockgroup.
592 	 *
593 	 * So add our directory's i_ino into the starting point for the hash.
594 	 */
595 	*group = (*group + parent->i_ino) % ngroups;
596 
597 	/*
598 	 * Use a quadratic hash to find a group with a free inode and some free
599 	 * blocks.
600 	 */
601 	for (i = 1; i < ngroups; i <<= 1) {
602 		*group += i;
603 		if (*group >= ngroups)
604 			*group -= ngroups;
605 		desc = ext4_get_group_desc(sb, *group, NULL);
606 		if (desc && ext4_free_inodes_count(sb, desc) &&
607 		    ext4_free_group_clusters(sb, desc))
608 			return 0;
609 	}
610 
611 	/*
612 	 * That failed: try linear search for a free inode, even if that group
613 	 * has no free blocks.
614 	 */
615 	*group = parent_group;
616 	for (i = 0; i < ngroups; i++) {
617 		if (++*group >= ngroups)
618 			*group = 0;
619 		desc = ext4_get_group_desc(sb, *group, NULL);
620 		if (desc && ext4_free_inodes_count(sb, desc))
621 			return 0;
622 	}
623 
624 	return -1;
625 }
626 
627 /*
628  * There are two policies for allocating an inode.  If the new inode is
629  * a directory, then a forward search is made for a block group with both
630  * free space and a low directory-to-inode ratio; if that fails, then of
631  * the groups with above-average free space, that group with the fewest
632  * directories already is chosen.
633  *
634  * For other inodes, search forward from the parent directory's block
635  * group to find a free inode.
636  */
637 struct inode *__ext4_new_inode(handle_t *handle, struct inode *dir,
638 			       umode_t mode, const struct qstr *qstr,
639 			       __u32 goal, uid_t *owner, int handle_type,
640 			       unsigned int line_no, int nblocks)
641 {
642 	struct super_block *sb;
643 	struct buffer_head *inode_bitmap_bh = NULL;
644 	struct buffer_head *group_desc_bh;
645 	ext4_group_t ngroups, group = 0;
646 	unsigned long ino = 0;
647 	struct inode *inode;
648 	struct ext4_group_desc *gdp = NULL;
649 	struct ext4_inode_info *ei;
650 	struct ext4_sb_info *sbi;
651 	int ret2, err = 0;
652 	struct inode *ret;
653 	ext4_group_t i;
654 	ext4_group_t flex_group;
655 
656 	/* Cannot create files in a deleted directory */
657 	if (!dir || !dir->i_nlink)
658 		return ERR_PTR(-EPERM);
659 
660 	sb = dir->i_sb;
661 	ngroups = ext4_get_groups_count(sb);
662 	trace_ext4_request_inode(dir, mode);
663 	inode = new_inode(sb);
664 	if (!inode)
665 		return ERR_PTR(-ENOMEM);
666 	ei = EXT4_I(inode);
667 	sbi = EXT4_SB(sb);
668 
669 	/*
670 	 * Initalize owners and quota early so that we don't have to account
671 	 * for quota initialization worst case in standard inode creating
672 	 * transaction
673 	 */
674 	if (owner) {
675 		inode->i_mode = mode;
676 		i_uid_write(inode, owner[0]);
677 		i_gid_write(inode, owner[1]);
678 	} else if (test_opt(sb, GRPID)) {
679 		inode->i_mode = mode;
680 		inode->i_uid = current_fsuid();
681 		inode->i_gid = dir->i_gid;
682 	} else
683 		inode_init_owner(inode, dir, mode);
684 	dquot_initialize(inode);
685 
686 	if (!goal)
687 		goal = sbi->s_inode_goal;
688 
689 	if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) {
690 		group = (goal - 1) / EXT4_INODES_PER_GROUP(sb);
691 		ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb);
692 		ret2 = 0;
693 		goto got_group;
694 	}
695 
696 	if (S_ISDIR(mode))
697 		ret2 = find_group_orlov(sb, dir, &group, mode, qstr);
698 	else
699 		ret2 = find_group_other(sb, dir, &group, mode);
700 
701 got_group:
702 	EXT4_I(dir)->i_last_alloc_group = group;
703 	err = -ENOSPC;
704 	if (ret2 == -1)
705 		goto out;
706 
707 	/*
708 	 * Normally we will only go through one pass of this loop,
709 	 * unless we get unlucky and it turns out the group we selected
710 	 * had its last inode grabbed by someone else.
711 	 */
712 	for (i = 0; i < ngroups; i++, ino = 0) {
713 		err = -EIO;
714 
715 		gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
716 		if (!gdp)
717 			goto out;
718 
719 		/*
720 		 * Check free inodes count before loading bitmap.
721 		 */
722 		if (ext4_free_inodes_count(sb, gdp) == 0) {
723 			if (++group == ngroups)
724 				group = 0;
725 			continue;
726 		}
727 
728 		brelse(inode_bitmap_bh);
729 		inode_bitmap_bh = ext4_read_inode_bitmap(sb, group);
730 		if (!inode_bitmap_bh)
731 			goto out;
732 
733 repeat_in_this_group:
734 		ino = ext4_find_next_zero_bit((unsigned long *)
735 					      inode_bitmap_bh->b_data,
736 					      EXT4_INODES_PER_GROUP(sb), ino);
737 		if (ino >= EXT4_INODES_PER_GROUP(sb))
738 			goto next_group;
739 		if (group == 0 && (ino+1) < EXT4_FIRST_INO(sb)) {
740 			ext4_error(sb, "reserved inode found cleared - "
741 				   "inode=%lu", ino + 1);
742 			continue;
743 		}
744 		if (!handle) {
745 			BUG_ON(nblocks <= 0);
746 			handle = __ext4_journal_start_sb(dir->i_sb, line_no,
747 							 handle_type, nblocks,
748 							 0);
749 			if (IS_ERR(handle)) {
750 				err = PTR_ERR(handle);
751 				ext4_std_error(sb, err);
752 				goto out;
753 			}
754 		}
755 		BUFFER_TRACE(inode_bitmap_bh, "get_write_access");
756 		err = ext4_journal_get_write_access(handle, inode_bitmap_bh);
757 		if (err) {
758 			ext4_std_error(sb, err);
759 			goto out;
760 		}
761 		ext4_lock_group(sb, group);
762 		ret2 = ext4_test_and_set_bit(ino, inode_bitmap_bh->b_data);
763 		ext4_unlock_group(sb, group);
764 		ino++;		/* the inode bitmap is zero-based */
765 		if (!ret2)
766 			goto got; /* we grabbed the inode! */
767 		if (ino < EXT4_INODES_PER_GROUP(sb))
768 			goto repeat_in_this_group;
769 next_group:
770 		if (++group == ngroups)
771 			group = 0;
772 	}
773 	err = -ENOSPC;
774 	goto out;
775 
776 got:
777 	BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata");
778 	err = ext4_handle_dirty_metadata(handle, NULL, inode_bitmap_bh);
779 	if (err) {
780 		ext4_std_error(sb, err);
781 		goto out;
782 	}
783 
784 	/* We may have to initialize the block bitmap if it isn't already */
785 	if (ext4_has_group_desc_csum(sb) &&
786 	    gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
787 		struct buffer_head *block_bitmap_bh;
788 
789 		block_bitmap_bh = ext4_read_block_bitmap(sb, group);
790 		BUFFER_TRACE(block_bitmap_bh, "get block bitmap access");
791 		err = ext4_journal_get_write_access(handle, block_bitmap_bh);
792 		if (err) {
793 			brelse(block_bitmap_bh);
794 			ext4_std_error(sb, err);
795 			goto out;
796 		}
797 
798 		BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap");
799 		err = ext4_handle_dirty_metadata(handle, NULL, block_bitmap_bh);
800 
801 		/* recheck and clear flag under lock if we still need to */
802 		ext4_lock_group(sb, group);
803 		if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
804 			gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
805 			ext4_free_group_clusters_set(sb, gdp,
806 				ext4_free_clusters_after_init(sb, group, gdp));
807 			ext4_block_bitmap_csum_set(sb, group, gdp,
808 						   block_bitmap_bh);
809 			ext4_group_desc_csum_set(sb, group, gdp);
810 		}
811 		ext4_unlock_group(sb, group);
812 		brelse(block_bitmap_bh);
813 
814 		if (err) {
815 			ext4_std_error(sb, err);
816 			goto out;
817 		}
818 	}
819 
820 	BUFFER_TRACE(group_desc_bh, "get_write_access");
821 	err = ext4_journal_get_write_access(handle, group_desc_bh);
822 	if (err) {
823 		ext4_std_error(sb, err);
824 		goto out;
825 	}
826 
827 	/* Update the relevant bg descriptor fields */
828 	if (ext4_has_group_desc_csum(sb)) {
829 		int free;
830 		struct ext4_group_info *grp = ext4_get_group_info(sb, group);
831 
832 		down_read(&grp->alloc_sem); /* protect vs itable lazyinit */
833 		ext4_lock_group(sb, group); /* while we modify the bg desc */
834 		free = EXT4_INODES_PER_GROUP(sb) -
835 			ext4_itable_unused_count(sb, gdp);
836 		if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
837 			gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT);
838 			free = 0;
839 		}
840 		/*
841 		 * Check the relative inode number against the last used
842 		 * relative inode number in this group. if it is greater
843 		 * we need to update the bg_itable_unused count
844 		 */
845 		if (ino > free)
846 			ext4_itable_unused_set(sb, gdp,
847 					(EXT4_INODES_PER_GROUP(sb) - ino));
848 		up_read(&grp->alloc_sem);
849 	} else {
850 		ext4_lock_group(sb, group);
851 	}
852 
853 	ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1);
854 	if (S_ISDIR(mode)) {
855 		ext4_used_dirs_set(sb, gdp, ext4_used_dirs_count(sb, gdp) + 1);
856 		if (sbi->s_log_groups_per_flex) {
857 			ext4_group_t f = ext4_flex_group(sbi, group);
858 
859 			atomic_inc(&sbi->s_flex_groups[f].used_dirs);
860 		}
861 	}
862 	if (ext4_has_group_desc_csum(sb)) {
863 		ext4_inode_bitmap_csum_set(sb, group, gdp, inode_bitmap_bh,
864 					   EXT4_INODES_PER_GROUP(sb) / 8);
865 		ext4_group_desc_csum_set(sb, group, gdp);
866 	}
867 	ext4_unlock_group(sb, group);
868 
869 	BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata");
870 	err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh);
871 	if (err) {
872 		ext4_std_error(sb, err);
873 		goto out;
874 	}
875 
876 	percpu_counter_dec(&sbi->s_freeinodes_counter);
877 	if (S_ISDIR(mode))
878 		percpu_counter_inc(&sbi->s_dirs_counter);
879 
880 	if (sbi->s_log_groups_per_flex) {
881 		flex_group = ext4_flex_group(sbi, group);
882 		atomic_dec(&sbi->s_flex_groups[flex_group].free_inodes);
883 	}
884 
885 	inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb);
886 	/* This is the optimal IO size (for stat), not the fs block size */
887 	inode->i_blocks = 0;
888 	inode->i_mtime = inode->i_atime = inode->i_ctime = ei->i_crtime =
889 						       ext4_current_time(inode);
890 
891 	memset(ei->i_data, 0, sizeof(ei->i_data));
892 	ei->i_dir_start_lookup = 0;
893 	ei->i_disksize = 0;
894 
895 	/* Don't inherit extent flag from directory, amongst others. */
896 	ei->i_flags =
897 		ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED);
898 	ei->i_file_acl = 0;
899 	ei->i_dtime = 0;
900 	ei->i_block_group = group;
901 	ei->i_last_alloc_group = ~0;
902 
903 	ext4_set_inode_flags(inode);
904 	if (IS_DIRSYNC(inode))
905 		ext4_handle_sync(handle);
906 	if (insert_inode_locked(inode) < 0) {
907 		/*
908 		 * Likely a bitmap corruption causing inode to be allocated
909 		 * twice.
910 		 */
911 		err = -EIO;
912 		ext4_error(sb, "failed to insert inode %lu: doubly allocated?",
913 			   inode->i_ino);
914 		goto out;
915 	}
916 	spin_lock(&sbi->s_next_gen_lock);
917 	inode->i_generation = sbi->s_next_generation++;
918 	spin_unlock(&sbi->s_next_gen_lock);
919 
920 	/* Precompute checksum seed for inode metadata */
921 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
922 			EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
923 		__u32 csum;
924 		__le32 inum = cpu_to_le32(inode->i_ino);
925 		__le32 gen = cpu_to_le32(inode->i_generation);
926 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
927 				   sizeof(inum));
928 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
929 					      sizeof(gen));
930 	}
931 
932 	ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
933 	ext4_set_inode_state(inode, EXT4_STATE_NEW);
934 
935 	ei->i_extra_isize = EXT4_SB(sb)->s_want_extra_isize;
936 
937 	ei->i_inline_off = 0;
938 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_INLINE_DATA))
939 		ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
940 
941 	ret = inode;
942 	err = dquot_alloc_inode(inode);
943 	if (err)
944 		goto fail_drop;
945 
946 	err = ext4_init_acl(handle, inode, dir);
947 	if (err)
948 		goto fail_free_drop;
949 
950 	err = ext4_init_security(handle, inode, dir, qstr);
951 	if (err)
952 		goto fail_free_drop;
953 
954 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
955 		/* set extent flag only for directory, file and normal symlink*/
956 		if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) {
957 			ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS);
958 			ext4_ext_tree_init(handle, inode);
959 		}
960 	}
961 
962 	if (ext4_handle_valid(handle)) {
963 		ei->i_sync_tid = handle->h_transaction->t_tid;
964 		ei->i_datasync_tid = handle->h_transaction->t_tid;
965 	}
966 
967 	err = ext4_mark_inode_dirty(handle, inode);
968 	if (err) {
969 		ext4_std_error(sb, err);
970 		goto fail_free_drop;
971 	}
972 
973 	ext4_debug("allocating inode %lu\n", inode->i_ino);
974 	trace_ext4_allocate_inode(inode, dir, mode);
975 	brelse(inode_bitmap_bh);
976 	return ret;
977 
978 fail_free_drop:
979 	dquot_free_inode(inode);
980 fail_drop:
981 	clear_nlink(inode);
982 	unlock_new_inode(inode);
983 out:
984 	dquot_drop(inode);
985 	inode->i_flags |= S_NOQUOTA;
986 	iput(inode);
987 	brelse(inode_bitmap_bh);
988 	return ERR_PTR(err);
989 }
990 
991 /* Verify that we are loading a valid orphan from disk */
992 struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino)
993 {
994 	unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count);
995 	ext4_group_t block_group;
996 	int bit;
997 	struct buffer_head *bitmap_bh;
998 	struct inode *inode = NULL;
999 	long err = -EIO;
1000 
1001 	/* Error cases - e2fsck has already cleaned up for us */
1002 	if (ino > max_ino) {
1003 		ext4_warning(sb, "bad orphan ino %lu!  e2fsck was run?", ino);
1004 		goto error;
1005 	}
1006 
1007 	block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
1008 	bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
1009 	bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
1010 	if (!bitmap_bh) {
1011 		ext4_warning(sb, "inode bitmap error for orphan %lu", ino);
1012 		goto error;
1013 	}
1014 
1015 	/* Having the inode bit set should be a 100% indicator that this
1016 	 * is a valid orphan (no e2fsck run on fs).  Orphans also include
1017 	 * inodes that were being truncated, so we can't check i_nlink==0.
1018 	 */
1019 	if (!ext4_test_bit(bit, bitmap_bh->b_data))
1020 		goto bad_orphan;
1021 
1022 	inode = ext4_iget(sb, ino);
1023 	if (IS_ERR(inode))
1024 		goto iget_failed;
1025 
1026 	/*
1027 	 * If the orphans has i_nlinks > 0 then it should be able to be
1028 	 * truncated, otherwise it won't be removed from the orphan list
1029 	 * during processing and an infinite loop will result.
1030 	 */
1031 	if (inode->i_nlink && !ext4_can_truncate(inode))
1032 		goto bad_orphan;
1033 
1034 	if (NEXT_ORPHAN(inode) > max_ino)
1035 		goto bad_orphan;
1036 	brelse(bitmap_bh);
1037 	return inode;
1038 
1039 iget_failed:
1040 	err = PTR_ERR(inode);
1041 	inode = NULL;
1042 bad_orphan:
1043 	ext4_warning(sb, "bad orphan inode %lu!  e2fsck was run?", ino);
1044 	printk(KERN_WARNING "ext4_test_bit(bit=%d, block=%llu) = %d\n",
1045 	       bit, (unsigned long long)bitmap_bh->b_blocknr,
1046 	       ext4_test_bit(bit, bitmap_bh->b_data));
1047 	printk(KERN_WARNING "inode=%p\n", inode);
1048 	if (inode) {
1049 		printk(KERN_WARNING "is_bad_inode(inode)=%d\n",
1050 		       is_bad_inode(inode));
1051 		printk(KERN_WARNING "NEXT_ORPHAN(inode)=%u\n",
1052 		       NEXT_ORPHAN(inode));
1053 		printk(KERN_WARNING "max_ino=%lu\n", max_ino);
1054 		printk(KERN_WARNING "i_nlink=%u\n", inode->i_nlink);
1055 		/* Avoid freeing blocks if we got a bad deleted inode */
1056 		if (inode->i_nlink == 0)
1057 			inode->i_blocks = 0;
1058 		iput(inode);
1059 	}
1060 	brelse(bitmap_bh);
1061 error:
1062 	return ERR_PTR(err);
1063 }
1064 
1065 unsigned long ext4_count_free_inodes(struct super_block *sb)
1066 {
1067 	unsigned long desc_count;
1068 	struct ext4_group_desc *gdp;
1069 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1070 #ifdef EXT4FS_DEBUG
1071 	struct ext4_super_block *es;
1072 	unsigned long bitmap_count, x;
1073 	struct buffer_head *bitmap_bh = NULL;
1074 
1075 	es = EXT4_SB(sb)->s_es;
1076 	desc_count = 0;
1077 	bitmap_count = 0;
1078 	gdp = NULL;
1079 	for (i = 0; i < ngroups; i++) {
1080 		gdp = ext4_get_group_desc(sb, i, NULL);
1081 		if (!gdp)
1082 			continue;
1083 		desc_count += ext4_free_inodes_count(sb, gdp);
1084 		brelse(bitmap_bh);
1085 		bitmap_bh = ext4_read_inode_bitmap(sb, i);
1086 		if (!bitmap_bh)
1087 			continue;
1088 
1089 		x = ext4_count_free(bitmap_bh->b_data,
1090 				    EXT4_INODES_PER_GROUP(sb) / 8);
1091 		printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n",
1092 			(unsigned long) i, ext4_free_inodes_count(sb, gdp), x);
1093 		bitmap_count += x;
1094 	}
1095 	brelse(bitmap_bh);
1096 	printk(KERN_DEBUG "ext4_count_free_inodes: "
1097 	       "stored = %u, computed = %lu, %lu\n",
1098 	       le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count);
1099 	return desc_count;
1100 #else
1101 	desc_count = 0;
1102 	for (i = 0; i < ngroups; i++) {
1103 		gdp = ext4_get_group_desc(sb, i, NULL);
1104 		if (!gdp)
1105 			continue;
1106 		desc_count += ext4_free_inodes_count(sb, gdp);
1107 		cond_resched();
1108 	}
1109 	return desc_count;
1110 #endif
1111 }
1112 
1113 /* Called at mount-time, super-block is locked */
1114 unsigned long ext4_count_dirs(struct super_block * sb)
1115 {
1116 	unsigned long count = 0;
1117 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1118 
1119 	for (i = 0; i < ngroups; i++) {
1120 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
1121 		if (!gdp)
1122 			continue;
1123 		count += ext4_used_dirs_count(sb, gdp);
1124 	}
1125 	return count;
1126 }
1127 
1128 /*
1129  * Zeroes not yet zeroed inode table - just write zeroes through the whole
1130  * inode table. Must be called without any spinlock held. The only place
1131  * where it is called from on active part of filesystem is ext4lazyinit
1132  * thread, so we do not need any special locks, however we have to prevent
1133  * inode allocation from the current group, so we take alloc_sem lock, to
1134  * block ext4_new_inode() until we are finished.
1135  */
1136 int ext4_init_inode_table(struct super_block *sb, ext4_group_t group,
1137 				 int barrier)
1138 {
1139 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1140 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1141 	struct ext4_group_desc *gdp = NULL;
1142 	struct buffer_head *group_desc_bh;
1143 	handle_t *handle;
1144 	ext4_fsblk_t blk;
1145 	int num, ret = 0, used_blks = 0;
1146 
1147 	/* This should not happen, but just to be sure check this */
1148 	if (sb->s_flags & MS_RDONLY) {
1149 		ret = 1;
1150 		goto out;
1151 	}
1152 
1153 	gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
1154 	if (!gdp)
1155 		goto out;
1156 
1157 	/*
1158 	 * We do not need to lock this, because we are the only one
1159 	 * handling this flag.
1160 	 */
1161 	if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))
1162 		goto out;
1163 
1164 	handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
1165 	if (IS_ERR(handle)) {
1166 		ret = PTR_ERR(handle);
1167 		goto out;
1168 	}
1169 
1170 	down_write(&grp->alloc_sem);
1171 	/*
1172 	 * If inode bitmap was already initialized there may be some
1173 	 * used inodes so we need to skip blocks with used inodes in
1174 	 * inode table.
1175 	 */
1176 	if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)))
1177 		used_blks = DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb) -
1178 			    ext4_itable_unused_count(sb, gdp)),
1179 			    sbi->s_inodes_per_block);
1180 
1181 	if ((used_blks < 0) || (used_blks > sbi->s_itb_per_group)) {
1182 		ext4_error(sb, "Something is wrong with group %u: "
1183 			   "used itable blocks: %d; "
1184 			   "itable unused count: %u",
1185 			   group, used_blks,
1186 			   ext4_itable_unused_count(sb, gdp));
1187 		ret = 1;
1188 		goto err_out;
1189 	}
1190 
1191 	blk = ext4_inode_table(sb, gdp) + used_blks;
1192 	num = sbi->s_itb_per_group - used_blks;
1193 
1194 	BUFFER_TRACE(group_desc_bh, "get_write_access");
1195 	ret = ext4_journal_get_write_access(handle,
1196 					    group_desc_bh);
1197 	if (ret)
1198 		goto err_out;
1199 
1200 	/*
1201 	 * Skip zeroout if the inode table is full. But we set the ZEROED
1202 	 * flag anyway, because obviously, when it is full it does not need
1203 	 * further zeroing.
1204 	 */
1205 	if (unlikely(num == 0))
1206 		goto skip_zeroout;
1207 
1208 	ext4_debug("going to zero out inode table in group %d\n",
1209 		   group);
1210 	ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS);
1211 	if (ret < 0)
1212 		goto err_out;
1213 	if (barrier)
1214 		blkdev_issue_flush(sb->s_bdev, GFP_NOFS, NULL);
1215 
1216 skip_zeroout:
1217 	ext4_lock_group(sb, group);
1218 	gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED);
1219 	ext4_group_desc_csum_set(sb, group, gdp);
1220 	ext4_unlock_group(sb, group);
1221 
1222 	BUFFER_TRACE(group_desc_bh,
1223 		     "call ext4_handle_dirty_metadata");
1224 	ret = ext4_handle_dirty_metadata(handle, NULL,
1225 					 group_desc_bh);
1226 
1227 err_out:
1228 	up_write(&grp->alloc_sem);
1229 	ext4_journal_stop(handle);
1230 out:
1231 	return ret;
1232 }
1233