xref: /openbmc/linux/fs/ext4/ialloc.c (revision 7bcae826)
1 /*
2  *  linux/fs/ext4/ialloc.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  BSD ufs-inspired inode and directory allocation by
10  *  Stephen Tweedie (sct@redhat.com), 1993
11  *  Big-endian to little-endian byte-swapping/bitmaps by
12  *        David S. Miller (davem@caip.rutgers.edu), 1995
13  */
14 
15 #include <linux/time.h>
16 #include <linux/fs.h>
17 #include <linux/stat.h>
18 #include <linux/string.h>
19 #include <linux/quotaops.h>
20 #include <linux/buffer_head.h>
21 #include <linux/random.h>
22 #include <linux/bitops.h>
23 #include <linux/blkdev.h>
24 #include <asm/byteorder.h>
25 
26 #include "ext4.h"
27 #include "ext4_jbd2.h"
28 #include "xattr.h"
29 #include "acl.h"
30 
31 #include <trace/events/ext4.h>
32 
33 /*
34  * ialloc.c contains the inodes allocation and deallocation routines
35  */
36 
37 /*
38  * The free inodes are managed by bitmaps.  A file system contains several
39  * blocks groups.  Each group contains 1 bitmap block for blocks, 1 bitmap
40  * block for inodes, N blocks for the inode table and data blocks.
41  *
42  * The file system contains group descriptors which are located after the
43  * super block.  Each descriptor contains the number of the bitmap block and
44  * the free blocks count in the block.
45  */
46 
47 /*
48  * To avoid calling the atomic setbit hundreds or thousands of times, we only
49  * need to use it within a single byte (to ensure we get endianness right).
50  * We can use memset for the rest of the bitmap as there are no other users.
51  */
52 void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap)
53 {
54 	int i;
55 
56 	if (start_bit >= end_bit)
57 		return;
58 
59 	ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit);
60 	for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++)
61 		ext4_set_bit(i, bitmap);
62 	if (i < end_bit)
63 		memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3);
64 }
65 
66 /* Initializes an uninitialized inode bitmap */
67 static int ext4_init_inode_bitmap(struct super_block *sb,
68 				       struct buffer_head *bh,
69 				       ext4_group_t block_group,
70 				       struct ext4_group_desc *gdp)
71 {
72 	struct ext4_group_info *grp;
73 	struct ext4_sb_info *sbi = EXT4_SB(sb);
74 	J_ASSERT_BH(bh, buffer_locked(bh));
75 
76 	/* If checksum is bad mark all blocks and inodes use to prevent
77 	 * allocation, essentially implementing a per-group read-only flag. */
78 	if (!ext4_group_desc_csum_verify(sb, block_group, gdp)) {
79 		grp = ext4_get_group_info(sb, block_group);
80 		if (!EXT4_MB_GRP_BBITMAP_CORRUPT(grp))
81 			percpu_counter_sub(&sbi->s_freeclusters_counter,
82 					   grp->bb_free);
83 		set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, &grp->bb_state);
84 		if (!EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
85 			int count;
86 			count = ext4_free_inodes_count(sb, gdp);
87 			percpu_counter_sub(&sbi->s_freeinodes_counter,
88 					   count);
89 		}
90 		set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state);
91 		return -EFSBADCRC;
92 	}
93 
94 	memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8);
95 	ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb), sb->s_blocksize * 8,
96 			bh->b_data);
97 	ext4_inode_bitmap_csum_set(sb, block_group, gdp, bh,
98 				   EXT4_INODES_PER_GROUP(sb) / 8);
99 	ext4_group_desc_csum_set(sb, block_group, gdp);
100 
101 	return 0;
102 }
103 
104 void ext4_end_bitmap_read(struct buffer_head *bh, int uptodate)
105 {
106 	if (uptodate) {
107 		set_buffer_uptodate(bh);
108 		set_bitmap_uptodate(bh);
109 	}
110 	unlock_buffer(bh);
111 	put_bh(bh);
112 }
113 
114 static int ext4_validate_inode_bitmap(struct super_block *sb,
115 				      struct ext4_group_desc *desc,
116 				      ext4_group_t block_group,
117 				      struct buffer_head *bh)
118 {
119 	ext4_fsblk_t	blk;
120 	struct ext4_group_info *grp = ext4_get_group_info(sb, block_group);
121 	struct ext4_sb_info *sbi = EXT4_SB(sb);
122 
123 	if (buffer_verified(bh))
124 		return 0;
125 	if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp))
126 		return -EFSCORRUPTED;
127 
128 	ext4_lock_group(sb, block_group);
129 	blk = ext4_inode_bitmap(sb, desc);
130 	if (!ext4_inode_bitmap_csum_verify(sb, block_group, desc, bh,
131 					   EXT4_INODES_PER_GROUP(sb) / 8)) {
132 		ext4_unlock_group(sb, block_group);
133 		ext4_error(sb, "Corrupt inode bitmap - block_group = %u, "
134 			   "inode_bitmap = %llu", block_group, blk);
135 		grp = ext4_get_group_info(sb, block_group);
136 		if (!EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
137 			int count;
138 			count = ext4_free_inodes_count(sb, desc);
139 			percpu_counter_sub(&sbi->s_freeinodes_counter,
140 					   count);
141 		}
142 		set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state);
143 		return -EFSBADCRC;
144 	}
145 	set_buffer_verified(bh);
146 	ext4_unlock_group(sb, block_group);
147 	return 0;
148 }
149 
150 /*
151  * Read the inode allocation bitmap for a given block_group, reading
152  * into the specified slot in the superblock's bitmap cache.
153  *
154  * Return buffer_head of bitmap on success or NULL.
155  */
156 static struct buffer_head *
157 ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group)
158 {
159 	struct ext4_group_desc *desc;
160 	struct buffer_head *bh = NULL;
161 	ext4_fsblk_t bitmap_blk;
162 	int err;
163 
164 	desc = ext4_get_group_desc(sb, block_group, NULL);
165 	if (!desc)
166 		return ERR_PTR(-EFSCORRUPTED);
167 
168 	bitmap_blk = ext4_inode_bitmap(sb, desc);
169 	bh = sb_getblk(sb, bitmap_blk);
170 	if (unlikely(!bh)) {
171 		ext4_error(sb, "Cannot read inode bitmap - "
172 			    "block_group = %u, inode_bitmap = %llu",
173 			    block_group, bitmap_blk);
174 		return ERR_PTR(-EIO);
175 	}
176 	if (bitmap_uptodate(bh))
177 		goto verify;
178 
179 	lock_buffer(bh);
180 	if (bitmap_uptodate(bh)) {
181 		unlock_buffer(bh);
182 		goto verify;
183 	}
184 
185 	ext4_lock_group(sb, block_group);
186 	if (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
187 		err = ext4_init_inode_bitmap(sb, bh, block_group, desc);
188 		set_bitmap_uptodate(bh);
189 		set_buffer_uptodate(bh);
190 		set_buffer_verified(bh);
191 		ext4_unlock_group(sb, block_group);
192 		unlock_buffer(bh);
193 		if (err) {
194 			ext4_error(sb, "Failed to init inode bitmap for group "
195 				   "%u: %d", block_group, err);
196 			goto out;
197 		}
198 		return bh;
199 	}
200 	ext4_unlock_group(sb, block_group);
201 
202 	if (buffer_uptodate(bh)) {
203 		/*
204 		 * if not uninit if bh is uptodate,
205 		 * bitmap is also uptodate
206 		 */
207 		set_bitmap_uptodate(bh);
208 		unlock_buffer(bh);
209 		goto verify;
210 	}
211 	/*
212 	 * submit the buffer_head for reading
213 	 */
214 	trace_ext4_load_inode_bitmap(sb, block_group);
215 	bh->b_end_io = ext4_end_bitmap_read;
216 	get_bh(bh);
217 	submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
218 	wait_on_buffer(bh);
219 	if (!buffer_uptodate(bh)) {
220 		put_bh(bh);
221 		ext4_error(sb, "Cannot read inode bitmap - "
222 			   "block_group = %u, inode_bitmap = %llu",
223 			   block_group, bitmap_blk);
224 		return ERR_PTR(-EIO);
225 	}
226 
227 verify:
228 	err = ext4_validate_inode_bitmap(sb, desc, block_group, bh);
229 	if (err)
230 		goto out;
231 	return bh;
232 out:
233 	put_bh(bh);
234 	return ERR_PTR(err);
235 }
236 
237 /*
238  * NOTE! When we get the inode, we're the only people
239  * that have access to it, and as such there are no
240  * race conditions we have to worry about. The inode
241  * is not on the hash-lists, and it cannot be reached
242  * through the filesystem because the directory entry
243  * has been deleted earlier.
244  *
245  * HOWEVER: we must make sure that we get no aliases,
246  * which means that we have to call "clear_inode()"
247  * _before_ we mark the inode not in use in the inode
248  * bitmaps. Otherwise a newly created file might use
249  * the same inode number (not actually the same pointer
250  * though), and then we'd have two inodes sharing the
251  * same inode number and space on the harddisk.
252  */
253 void ext4_free_inode(handle_t *handle, struct inode *inode)
254 {
255 	struct super_block *sb = inode->i_sb;
256 	int is_directory;
257 	unsigned long ino;
258 	struct buffer_head *bitmap_bh = NULL;
259 	struct buffer_head *bh2;
260 	ext4_group_t block_group;
261 	unsigned long bit;
262 	struct ext4_group_desc *gdp;
263 	struct ext4_super_block *es;
264 	struct ext4_sb_info *sbi;
265 	int fatal = 0, err, count, cleared;
266 	struct ext4_group_info *grp;
267 
268 	if (!sb) {
269 		printk(KERN_ERR "EXT4-fs: %s:%d: inode on "
270 		       "nonexistent device\n", __func__, __LINE__);
271 		return;
272 	}
273 	if (atomic_read(&inode->i_count) > 1) {
274 		ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: count=%d",
275 			 __func__, __LINE__, inode->i_ino,
276 			 atomic_read(&inode->i_count));
277 		return;
278 	}
279 	if (inode->i_nlink) {
280 		ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: nlink=%d\n",
281 			 __func__, __LINE__, inode->i_ino, inode->i_nlink);
282 		return;
283 	}
284 	sbi = EXT4_SB(sb);
285 
286 	ino = inode->i_ino;
287 	ext4_debug("freeing inode %lu\n", ino);
288 	trace_ext4_free_inode(inode);
289 
290 	/*
291 	 * Note: we must free any quota before locking the superblock,
292 	 * as writing the quota to disk may need the lock as well.
293 	 */
294 	dquot_initialize(inode);
295 	ext4_xattr_delete_inode(handle, inode);
296 	dquot_free_inode(inode);
297 	dquot_drop(inode);
298 
299 	is_directory = S_ISDIR(inode->i_mode);
300 
301 	/* Do this BEFORE marking the inode not in use or returning an error */
302 	ext4_clear_inode(inode);
303 
304 	es = EXT4_SB(sb)->s_es;
305 	if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) {
306 		ext4_error(sb, "reserved or nonexistent inode %lu", ino);
307 		goto error_return;
308 	}
309 	block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
310 	bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
311 	bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
312 	/* Don't bother if the inode bitmap is corrupt. */
313 	grp = ext4_get_group_info(sb, block_group);
314 	if (IS_ERR(bitmap_bh)) {
315 		fatal = PTR_ERR(bitmap_bh);
316 		bitmap_bh = NULL;
317 		goto error_return;
318 	}
319 	if (unlikely(EXT4_MB_GRP_IBITMAP_CORRUPT(grp))) {
320 		fatal = -EFSCORRUPTED;
321 		goto error_return;
322 	}
323 
324 	BUFFER_TRACE(bitmap_bh, "get_write_access");
325 	fatal = ext4_journal_get_write_access(handle, bitmap_bh);
326 	if (fatal)
327 		goto error_return;
328 
329 	fatal = -ESRCH;
330 	gdp = ext4_get_group_desc(sb, block_group, &bh2);
331 	if (gdp) {
332 		BUFFER_TRACE(bh2, "get_write_access");
333 		fatal = ext4_journal_get_write_access(handle, bh2);
334 	}
335 	ext4_lock_group(sb, block_group);
336 	cleared = ext4_test_and_clear_bit(bit, bitmap_bh->b_data);
337 	if (fatal || !cleared) {
338 		ext4_unlock_group(sb, block_group);
339 		goto out;
340 	}
341 
342 	count = ext4_free_inodes_count(sb, gdp) + 1;
343 	ext4_free_inodes_set(sb, gdp, count);
344 	if (is_directory) {
345 		count = ext4_used_dirs_count(sb, gdp) - 1;
346 		ext4_used_dirs_set(sb, gdp, count);
347 		percpu_counter_dec(&sbi->s_dirs_counter);
348 	}
349 	ext4_inode_bitmap_csum_set(sb, block_group, gdp, bitmap_bh,
350 				   EXT4_INODES_PER_GROUP(sb) / 8);
351 	ext4_group_desc_csum_set(sb, block_group, gdp);
352 	ext4_unlock_group(sb, block_group);
353 
354 	percpu_counter_inc(&sbi->s_freeinodes_counter);
355 	if (sbi->s_log_groups_per_flex) {
356 		ext4_group_t f = ext4_flex_group(sbi, block_group);
357 
358 		atomic_inc(&sbi->s_flex_groups[f].free_inodes);
359 		if (is_directory)
360 			atomic_dec(&sbi->s_flex_groups[f].used_dirs);
361 	}
362 	BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata");
363 	fatal = ext4_handle_dirty_metadata(handle, NULL, bh2);
364 out:
365 	if (cleared) {
366 		BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata");
367 		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
368 		if (!fatal)
369 			fatal = err;
370 	} else {
371 		ext4_error(sb, "bit already cleared for inode %lu", ino);
372 		if (gdp && !EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
373 			int count;
374 			count = ext4_free_inodes_count(sb, gdp);
375 			percpu_counter_sub(&sbi->s_freeinodes_counter,
376 					   count);
377 		}
378 		set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state);
379 	}
380 
381 error_return:
382 	brelse(bitmap_bh);
383 	ext4_std_error(sb, fatal);
384 }
385 
386 struct orlov_stats {
387 	__u64 free_clusters;
388 	__u32 free_inodes;
389 	__u32 used_dirs;
390 };
391 
392 /*
393  * Helper function for Orlov's allocator; returns critical information
394  * for a particular block group or flex_bg.  If flex_size is 1, then g
395  * is a block group number; otherwise it is flex_bg number.
396  */
397 static void get_orlov_stats(struct super_block *sb, ext4_group_t g,
398 			    int flex_size, struct orlov_stats *stats)
399 {
400 	struct ext4_group_desc *desc;
401 	struct flex_groups *flex_group = EXT4_SB(sb)->s_flex_groups;
402 
403 	if (flex_size > 1) {
404 		stats->free_inodes = atomic_read(&flex_group[g].free_inodes);
405 		stats->free_clusters = atomic64_read(&flex_group[g].free_clusters);
406 		stats->used_dirs = atomic_read(&flex_group[g].used_dirs);
407 		return;
408 	}
409 
410 	desc = ext4_get_group_desc(sb, g, NULL);
411 	if (desc) {
412 		stats->free_inodes = ext4_free_inodes_count(sb, desc);
413 		stats->free_clusters = ext4_free_group_clusters(sb, desc);
414 		stats->used_dirs = ext4_used_dirs_count(sb, desc);
415 	} else {
416 		stats->free_inodes = 0;
417 		stats->free_clusters = 0;
418 		stats->used_dirs = 0;
419 	}
420 }
421 
422 /*
423  * Orlov's allocator for directories.
424  *
425  * We always try to spread first-level directories.
426  *
427  * If there are blockgroups with both free inodes and free blocks counts
428  * not worse than average we return one with smallest directory count.
429  * Otherwise we simply return a random group.
430  *
431  * For the rest rules look so:
432  *
433  * It's OK to put directory into a group unless
434  * it has too many directories already (max_dirs) or
435  * it has too few free inodes left (min_inodes) or
436  * it has too few free blocks left (min_blocks) or
437  * Parent's group is preferred, if it doesn't satisfy these
438  * conditions we search cyclically through the rest. If none
439  * of the groups look good we just look for a group with more
440  * free inodes than average (starting at parent's group).
441  */
442 
443 static int find_group_orlov(struct super_block *sb, struct inode *parent,
444 			    ext4_group_t *group, umode_t mode,
445 			    const struct qstr *qstr)
446 {
447 	ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
448 	struct ext4_sb_info *sbi = EXT4_SB(sb);
449 	ext4_group_t real_ngroups = ext4_get_groups_count(sb);
450 	int inodes_per_group = EXT4_INODES_PER_GROUP(sb);
451 	unsigned int freei, avefreei, grp_free;
452 	ext4_fsblk_t freeb, avefreec;
453 	unsigned int ndirs;
454 	int max_dirs, min_inodes;
455 	ext4_grpblk_t min_clusters;
456 	ext4_group_t i, grp, g, ngroups;
457 	struct ext4_group_desc *desc;
458 	struct orlov_stats stats;
459 	int flex_size = ext4_flex_bg_size(sbi);
460 	struct dx_hash_info hinfo;
461 
462 	ngroups = real_ngroups;
463 	if (flex_size > 1) {
464 		ngroups = (real_ngroups + flex_size - 1) >>
465 			sbi->s_log_groups_per_flex;
466 		parent_group >>= sbi->s_log_groups_per_flex;
467 	}
468 
469 	freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter);
470 	avefreei = freei / ngroups;
471 	freeb = EXT4_C2B(sbi,
472 		percpu_counter_read_positive(&sbi->s_freeclusters_counter));
473 	avefreec = freeb;
474 	do_div(avefreec, ngroups);
475 	ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter);
476 
477 	if (S_ISDIR(mode) &&
478 	    ((parent == d_inode(sb->s_root)) ||
479 	     (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) {
480 		int best_ndir = inodes_per_group;
481 		int ret = -1;
482 
483 		if (qstr) {
484 			hinfo.hash_version = DX_HASH_HALF_MD4;
485 			hinfo.seed = sbi->s_hash_seed;
486 			ext4fs_dirhash(qstr->name, qstr->len, &hinfo);
487 			grp = hinfo.hash;
488 		} else
489 			grp = prandom_u32();
490 		parent_group = (unsigned)grp % ngroups;
491 		for (i = 0; i < ngroups; i++) {
492 			g = (parent_group + i) % ngroups;
493 			get_orlov_stats(sb, g, flex_size, &stats);
494 			if (!stats.free_inodes)
495 				continue;
496 			if (stats.used_dirs >= best_ndir)
497 				continue;
498 			if (stats.free_inodes < avefreei)
499 				continue;
500 			if (stats.free_clusters < avefreec)
501 				continue;
502 			grp = g;
503 			ret = 0;
504 			best_ndir = stats.used_dirs;
505 		}
506 		if (ret)
507 			goto fallback;
508 	found_flex_bg:
509 		if (flex_size == 1) {
510 			*group = grp;
511 			return 0;
512 		}
513 
514 		/*
515 		 * We pack inodes at the beginning of the flexgroup's
516 		 * inode tables.  Block allocation decisions will do
517 		 * something similar, although regular files will
518 		 * start at 2nd block group of the flexgroup.  See
519 		 * ext4_ext_find_goal() and ext4_find_near().
520 		 */
521 		grp *= flex_size;
522 		for (i = 0; i < flex_size; i++) {
523 			if (grp+i >= real_ngroups)
524 				break;
525 			desc = ext4_get_group_desc(sb, grp+i, NULL);
526 			if (desc && ext4_free_inodes_count(sb, desc)) {
527 				*group = grp+i;
528 				return 0;
529 			}
530 		}
531 		goto fallback;
532 	}
533 
534 	max_dirs = ndirs / ngroups + inodes_per_group / 16;
535 	min_inodes = avefreei - inodes_per_group*flex_size / 4;
536 	if (min_inodes < 1)
537 		min_inodes = 1;
538 	min_clusters = avefreec - EXT4_CLUSTERS_PER_GROUP(sb)*flex_size / 4;
539 
540 	/*
541 	 * Start looking in the flex group where we last allocated an
542 	 * inode for this parent directory
543 	 */
544 	if (EXT4_I(parent)->i_last_alloc_group != ~0) {
545 		parent_group = EXT4_I(parent)->i_last_alloc_group;
546 		if (flex_size > 1)
547 			parent_group >>= sbi->s_log_groups_per_flex;
548 	}
549 
550 	for (i = 0; i < ngroups; i++) {
551 		grp = (parent_group + i) % ngroups;
552 		get_orlov_stats(sb, grp, flex_size, &stats);
553 		if (stats.used_dirs >= max_dirs)
554 			continue;
555 		if (stats.free_inodes < min_inodes)
556 			continue;
557 		if (stats.free_clusters < min_clusters)
558 			continue;
559 		goto found_flex_bg;
560 	}
561 
562 fallback:
563 	ngroups = real_ngroups;
564 	avefreei = freei / ngroups;
565 fallback_retry:
566 	parent_group = EXT4_I(parent)->i_block_group;
567 	for (i = 0; i < ngroups; i++) {
568 		grp = (parent_group + i) % ngroups;
569 		desc = ext4_get_group_desc(sb, grp, NULL);
570 		if (desc) {
571 			grp_free = ext4_free_inodes_count(sb, desc);
572 			if (grp_free && grp_free >= avefreei) {
573 				*group = grp;
574 				return 0;
575 			}
576 		}
577 	}
578 
579 	if (avefreei) {
580 		/*
581 		 * The free-inodes counter is approximate, and for really small
582 		 * filesystems the above test can fail to find any blockgroups
583 		 */
584 		avefreei = 0;
585 		goto fallback_retry;
586 	}
587 
588 	return -1;
589 }
590 
591 static int find_group_other(struct super_block *sb, struct inode *parent,
592 			    ext4_group_t *group, umode_t mode)
593 {
594 	ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
595 	ext4_group_t i, last, ngroups = ext4_get_groups_count(sb);
596 	struct ext4_group_desc *desc;
597 	int flex_size = ext4_flex_bg_size(EXT4_SB(sb));
598 
599 	/*
600 	 * Try to place the inode is the same flex group as its
601 	 * parent.  If we can't find space, use the Orlov algorithm to
602 	 * find another flex group, and store that information in the
603 	 * parent directory's inode information so that use that flex
604 	 * group for future allocations.
605 	 */
606 	if (flex_size > 1) {
607 		int retry = 0;
608 
609 	try_again:
610 		parent_group &= ~(flex_size-1);
611 		last = parent_group + flex_size;
612 		if (last > ngroups)
613 			last = ngroups;
614 		for  (i = parent_group; i < last; i++) {
615 			desc = ext4_get_group_desc(sb, i, NULL);
616 			if (desc && ext4_free_inodes_count(sb, desc)) {
617 				*group = i;
618 				return 0;
619 			}
620 		}
621 		if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) {
622 			retry = 1;
623 			parent_group = EXT4_I(parent)->i_last_alloc_group;
624 			goto try_again;
625 		}
626 		/*
627 		 * If this didn't work, use the Orlov search algorithm
628 		 * to find a new flex group; we pass in the mode to
629 		 * avoid the topdir algorithms.
630 		 */
631 		*group = parent_group + flex_size;
632 		if (*group > ngroups)
633 			*group = 0;
634 		return find_group_orlov(sb, parent, group, mode, NULL);
635 	}
636 
637 	/*
638 	 * Try to place the inode in its parent directory
639 	 */
640 	*group = parent_group;
641 	desc = ext4_get_group_desc(sb, *group, NULL);
642 	if (desc && ext4_free_inodes_count(sb, desc) &&
643 	    ext4_free_group_clusters(sb, desc))
644 		return 0;
645 
646 	/*
647 	 * We're going to place this inode in a different blockgroup from its
648 	 * parent.  We want to cause files in a common directory to all land in
649 	 * the same blockgroup.  But we want files which are in a different
650 	 * directory which shares a blockgroup with our parent to land in a
651 	 * different blockgroup.
652 	 *
653 	 * So add our directory's i_ino into the starting point for the hash.
654 	 */
655 	*group = (*group + parent->i_ino) % ngroups;
656 
657 	/*
658 	 * Use a quadratic hash to find a group with a free inode and some free
659 	 * blocks.
660 	 */
661 	for (i = 1; i < ngroups; i <<= 1) {
662 		*group += i;
663 		if (*group >= ngroups)
664 			*group -= ngroups;
665 		desc = ext4_get_group_desc(sb, *group, NULL);
666 		if (desc && ext4_free_inodes_count(sb, desc) &&
667 		    ext4_free_group_clusters(sb, desc))
668 			return 0;
669 	}
670 
671 	/*
672 	 * That failed: try linear search for a free inode, even if that group
673 	 * has no free blocks.
674 	 */
675 	*group = parent_group;
676 	for (i = 0; i < ngroups; i++) {
677 		if (++*group >= ngroups)
678 			*group = 0;
679 		desc = ext4_get_group_desc(sb, *group, NULL);
680 		if (desc && ext4_free_inodes_count(sb, desc))
681 			return 0;
682 	}
683 
684 	return -1;
685 }
686 
687 /*
688  * In no journal mode, if an inode has recently been deleted, we want
689  * to avoid reusing it until we're reasonably sure the inode table
690  * block has been written back to disk.  (Yes, these values are
691  * somewhat arbitrary...)
692  */
693 #define RECENTCY_MIN	5
694 #define RECENTCY_DIRTY	30
695 
696 static int recently_deleted(struct super_block *sb, ext4_group_t group, int ino)
697 {
698 	struct ext4_group_desc	*gdp;
699 	struct ext4_inode	*raw_inode;
700 	struct buffer_head	*bh;
701 	unsigned long		dtime, now;
702 	int	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
703 	int	offset, ret = 0, recentcy = RECENTCY_MIN;
704 
705 	gdp = ext4_get_group_desc(sb, group, NULL);
706 	if (unlikely(!gdp))
707 		return 0;
708 
709 	bh = sb_getblk(sb, ext4_inode_table(sb, gdp) +
710 		       (ino / inodes_per_block));
711 	if (unlikely(!bh) || !buffer_uptodate(bh))
712 		/*
713 		 * If the block is not in the buffer cache, then it
714 		 * must have been written out.
715 		 */
716 		goto out;
717 
718 	offset = (ino % inodes_per_block) * EXT4_INODE_SIZE(sb);
719 	raw_inode = (struct ext4_inode *) (bh->b_data + offset);
720 	dtime = le32_to_cpu(raw_inode->i_dtime);
721 	now = get_seconds();
722 	if (buffer_dirty(bh))
723 		recentcy += RECENTCY_DIRTY;
724 
725 	if (dtime && (dtime < now) && (now < dtime + recentcy))
726 		ret = 1;
727 out:
728 	brelse(bh);
729 	return ret;
730 }
731 
732 /*
733  * There are two policies for allocating an inode.  If the new inode is
734  * a directory, then a forward search is made for a block group with both
735  * free space and a low directory-to-inode ratio; if that fails, then of
736  * the groups with above-average free space, that group with the fewest
737  * directories already is chosen.
738  *
739  * For other inodes, search forward from the parent directory's block
740  * group to find a free inode.
741  */
742 struct inode *__ext4_new_inode(handle_t *handle, struct inode *dir,
743 			       umode_t mode, const struct qstr *qstr,
744 			       __u32 goal, uid_t *owner, int handle_type,
745 			       unsigned int line_no, int nblocks)
746 {
747 	struct super_block *sb;
748 	struct buffer_head *inode_bitmap_bh = NULL;
749 	struct buffer_head *group_desc_bh;
750 	ext4_group_t ngroups, group = 0;
751 	unsigned long ino = 0;
752 	struct inode *inode;
753 	struct ext4_group_desc *gdp = NULL;
754 	struct ext4_inode_info *ei;
755 	struct ext4_sb_info *sbi;
756 	int ret2, err;
757 	struct inode *ret;
758 	ext4_group_t i;
759 	ext4_group_t flex_group;
760 	struct ext4_group_info *grp;
761 	int encrypt = 0;
762 
763 	/* Cannot create files in a deleted directory */
764 	if (!dir || !dir->i_nlink)
765 		return ERR_PTR(-EPERM);
766 
767 	if (unlikely(ext4_forced_shutdown(EXT4_SB(dir->i_sb))))
768 		return ERR_PTR(-EIO);
769 
770 	if ((ext4_encrypted_inode(dir) ||
771 	     DUMMY_ENCRYPTION_ENABLED(EXT4_SB(dir->i_sb))) &&
772 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
773 		err = fscrypt_get_encryption_info(dir);
774 		if (err)
775 			return ERR_PTR(err);
776 		if (!fscrypt_has_encryption_key(dir))
777 			return ERR_PTR(-ENOKEY);
778 		if (!handle)
779 			nblocks += EXT4_DATA_TRANS_BLOCKS(dir->i_sb);
780 		encrypt = 1;
781 	}
782 
783 	sb = dir->i_sb;
784 	ngroups = ext4_get_groups_count(sb);
785 	trace_ext4_request_inode(dir, mode);
786 	inode = new_inode(sb);
787 	if (!inode)
788 		return ERR_PTR(-ENOMEM);
789 	ei = EXT4_I(inode);
790 	sbi = EXT4_SB(sb);
791 
792 	/*
793 	 * Initialize owners and quota early so that we don't have to account
794 	 * for quota initialization worst case in standard inode creating
795 	 * transaction
796 	 */
797 	if (owner) {
798 		inode->i_mode = mode;
799 		i_uid_write(inode, owner[0]);
800 		i_gid_write(inode, owner[1]);
801 	} else if (test_opt(sb, GRPID)) {
802 		inode->i_mode = mode;
803 		inode->i_uid = current_fsuid();
804 		inode->i_gid = dir->i_gid;
805 	} else
806 		inode_init_owner(inode, dir, mode);
807 
808 	if (ext4_has_feature_project(sb) &&
809 	    ext4_test_inode_flag(dir, EXT4_INODE_PROJINHERIT))
810 		ei->i_projid = EXT4_I(dir)->i_projid;
811 	else
812 		ei->i_projid = make_kprojid(&init_user_ns, EXT4_DEF_PROJID);
813 
814 	err = dquot_initialize(inode);
815 	if (err)
816 		goto out;
817 
818 	if (!goal)
819 		goal = sbi->s_inode_goal;
820 
821 	if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) {
822 		group = (goal - 1) / EXT4_INODES_PER_GROUP(sb);
823 		ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb);
824 		ret2 = 0;
825 		goto got_group;
826 	}
827 
828 	if (S_ISDIR(mode))
829 		ret2 = find_group_orlov(sb, dir, &group, mode, qstr);
830 	else
831 		ret2 = find_group_other(sb, dir, &group, mode);
832 
833 got_group:
834 	EXT4_I(dir)->i_last_alloc_group = group;
835 	err = -ENOSPC;
836 	if (ret2 == -1)
837 		goto out;
838 
839 	/*
840 	 * Normally we will only go through one pass of this loop,
841 	 * unless we get unlucky and it turns out the group we selected
842 	 * had its last inode grabbed by someone else.
843 	 */
844 	for (i = 0; i < ngroups; i++, ino = 0) {
845 		err = -EIO;
846 
847 		gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
848 		if (!gdp)
849 			goto out;
850 
851 		/*
852 		 * Check free inodes count before loading bitmap.
853 		 */
854 		if (ext4_free_inodes_count(sb, gdp) == 0) {
855 			if (++group == ngroups)
856 				group = 0;
857 			continue;
858 		}
859 
860 		grp = ext4_get_group_info(sb, group);
861 		/* Skip groups with already-known suspicious inode tables */
862 		if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
863 			if (++group == ngroups)
864 				group = 0;
865 			continue;
866 		}
867 
868 		brelse(inode_bitmap_bh);
869 		inode_bitmap_bh = ext4_read_inode_bitmap(sb, group);
870 		/* Skip groups with suspicious inode tables */
871 		if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp) ||
872 		    IS_ERR(inode_bitmap_bh)) {
873 			inode_bitmap_bh = NULL;
874 			if (++group == ngroups)
875 				group = 0;
876 			continue;
877 		}
878 
879 repeat_in_this_group:
880 		ino = ext4_find_next_zero_bit((unsigned long *)
881 					      inode_bitmap_bh->b_data,
882 					      EXT4_INODES_PER_GROUP(sb), ino);
883 		if (ino >= EXT4_INODES_PER_GROUP(sb))
884 			goto next_group;
885 		if (group == 0 && (ino+1) < EXT4_FIRST_INO(sb)) {
886 			ext4_error(sb, "reserved inode found cleared - "
887 				   "inode=%lu", ino + 1);
888 			continue;
889 		}
890 		if ((EXT4_SB(sb)->s_journal == NULL) &&
891 		    recently_deleted(sb, group, ino)) {
892 			ino++;
893 			goto next_inode;
894 		}
895 		if (!handle) {
896 			BUG_ON(nblocks <= 0);
897 			handle = __ext4_journal_start_sb(dir->i_sb, line_no,
898 							 handle_type, nblocks,
899 							 0);
900 			if (IS_ERR(handle)) {
901 				err = PTR_ERR(handle);
902 				ext4_std_error(sb, err);
903 				goto out;
904 			}
905 		}
906 		BUFFER_TRACE(inode_bitmap_bh, "get_write_access");
907 		err = ext4_journal_get_write_access(handle, inode_bitmap_bh);
908 		if (err) {
909 			ext4_std_error(sb, err);
910 			goto out;
911 		}
912 		ext4_lock_group(sb, group);
913 		ret2 = ext4_test_and_set_bit(ino, inode_bitmap_bh->b_data);
914 		ext4_unlock_group(sb, group);
915 		ino++;		/* the inode bitmap is zero-based */
916 		if (!ret2)
917 			goto got; /* we grabbed the inode! */
918 next_inode:
919 		if (ino < EXT4_INODES_PER_GROUP(sb))
920 			goto repeat_in_this_group;
921 next_group:
922 		if (++group == ngroups)
923 			group = 0;
924 	}
925 	err = -ENOSPC;
926 	goto out;
927 
928 got:
929 	BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata");
930 	err = ext4_handle_dirty_metadata(handle, NULL, inode_bitmap_bh);
931 	if (err) {
932 		ext4_std_error(sb, err);
933 		goto out;
934 	}
935 
936 	BUFFER_TRACE(group_desc_bh, "get_write_access");
937 	err = ext4_journal_get_write_access(handle, group_desc_bh);
938 	if (err) {
939 		ext4_std_error(sb, err);
940 		goto out;
941 	}
942 
943 	/* We may have to initialize the block bitmap if it isn't already */
944 	if (ext4_has_group_desc_csum(sb) &&
945 	    gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
946 		struct buffer_head *block_bitmap_bh;
947 
948 		block_bitmap_bh = ext4_read_block_bitmap(sb, group);
949 		if (IS_ERR(block_bitmap_bh)) {
950 			err = PTR_ERR(block_bitmap_bh);
951 			goto out;
952 		}
953 		BUFFER_TRACE(block_bitmap_bh, "get block bitmap access");
954 		err = ext4_journal_get_write_access(handle, block_bitmap_bh);
955 		if (err) {
956 			brelse(block_bitmap_bh);
957 			ext4_std_error(sb, err);
958 			goto out;
959 		}
960 
961 		BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap");
962 		err = ext4_handle_dirty_metadata(handle, NULL, block_bitmap_bh);
963 
964 		/* recheck and clear flag under lock if we still need to */
965 		ext4_lock_group(sb, group);
966 		if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
967 			gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
968 			ext4_free_group_clusters_set(sb, gdp,
969 				ext4_free_clusters_after_init(sb, group, gdp));
970 			ext4_block_bitmap_csum_set(sb, group, gdp,
971 						   block_bitmap_bh);
972 			ext4_group_desc_csum_set(sb, group, gdp);
973 		}
974 		ext4_unlock_group(sb, group);
975 		brelse(block_bitmap_bh);
976 
977 		if (err) {
978 			ext4_std_error(sb, err);
979 			goto out;
980 		}
981 	}
982 
983 	/* Update the relevant bg descriptor fields */
984 	if (ext4_has_group_desc_csum(sb)) {
985 		int free;
986 		struct ext4_group_info *grp = ext4_get_group_info(sb, group);
987 
988 		down_read(&grp->alloc_sem); /* protect vs itable lazyinit */
989 		ext4_lock_group(sb, group); /* while we modify the bg desc */
990 		free = EXT4_INODES_PER_GROUP(sb) -
991 			ext4_itable_unused_count(sb, gdp);
992 		if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
993 			gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT);
994 			free = 0;
995 		}
996 		/*
997 		 * Check the relative inode number against the last used
998 		 * relative inode number in this group. if it is greater
999 		 * we need to update the bg_itable_unused count
1000 		 */
1001 		if (ino > free)
1002 			ext4_itable_unused_set(sb, gdp,
1003 					(EXT4_INODES_PER_GROUP(sb) - ino));
1004 		up_read(&grp->alloc_sem);
1005 	} else {
1006 		ext4_lock_group(sb, group);
1007 	}
1008 
1009 	ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1);
1010 	if (S_ISDIR(mode)) {
1011 		ext4_used_dirs_set(sb, gdp, ext4_used_dirs_count(sb, gdp) + 1);
1012 		if (sbi->s_log_groups_per_flex) {
1013 			ext4_group_t f = ext4_flex_group(sbi, group);
1014 
1015 			atomic_inc(&sbi->s_flex_groups[f].used_dirs);
1016 		}
1017 	}
1018 	if (ext4_has_group_desc_csum(sb)) {
1019 		ext4_inode_bitmap_csum_set(sb, group, gdp, inode_bitmap_bh,
1020 					   EXT4_INODES_PER_GROUP(sb) / 8);
1021 		ext4_group_desc_csum_set(sb, group, gdp);
1022 	}
1023 	ext4_unlock_group(sb, group);
1024 
1025 	BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata");
1026 	err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh);
1027 	if (err) {
1028 		ext4_std_error(sb, err);
1029 		goto out;
1030 	}
1031 
1032 	percpu_counter_dec(&sbi->s_freeinodes_counter);
1033 	if (S_ISDIR(mode))
1034 		percpu_counter_inc(&sbi->s_dirs_counter);
1035 
1036 	if (sbi->s_log_groups_per_flex) {
1037 		flex_group = ext4_flex_group(sbi, group);
1038 		atomic_dec(&sbi->s_flex_groups[flex_group].free_inodes);
1039 	}
1040 
1041 	inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb);
1042 	/* This is the optimal IO size (for stat), not the fs block size */
1043 	inode->i_blocks = 0;
1044 	inode->i_mtime = inode->i_atime = inode->i_ctime = ei->i_crtime =
1045 						       current_time(inode);
1046 
1047 	memset(ei->i_data, 0, sizeof(ei->i_data));
1048 	ei->i_dir_start_lookup = 0;
1049 	ei->i_disksize = 0;
1050 
1051 	/* Don't inherit extent flag from directory, amongst others. */
1052 	ei->i_flags =
1053 		ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED);
1054 	ei->i_file_acl = 0;
1055 	ei->i_dtime = 0;
1056 	ei->i_block_group = group;
1057 	ei->i_last_alloc_group = ~0;
1058 
1059 	ext4_set_inode_flags(inode);
1060 	if (IS_DIRSYNC(inode))
1061 		ext4_handle_sync(handle);
1062 	if (insert_inode_locked(inode) < 0) {
1063 		/*
1064 		 * Likely a bitmap corruption causing inode to be allocated
1065 		 * twice.
1066 		 */
1067 		err = -EIO;
1068 		ext4_error(sb, "failed to insert inode %lu: doubly allocated?",
1069 			   inode->i_ino);
1070 		goto out;
1071 	}
1072 	spin_lock(&sbi->s_next_gen_lock);
1073 	inode->i_generation = sbi->s_next_generation++;
1074 	spin_unlock(&sbi->s_next_gen_lock);
1075 
1076 	/* Precompute checksum seed for inode metadata */
1077 	if (ext4_has_metadata_csum(sb)) {
1078 		__u32 csum;
1079 		__le32 inum = cpu_to_le32(inode->i_ino);
1080 		__le32 gen = cpu_to_le32(inode->i_generation);
1081 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
1082 				   sizeof(inum));
1083 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
1084 					      sizeof(gen));
1085 	}
1086 
1087 	ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
1088 	ext4_set_inode_state(inode, EXT4_STATE_NEW);
1089 
1090 	ei->i_extra_isize = EXT4_SB(sb)->s_want_extra_isize;
1091 	ei->i_inline_off = 0;
1092 	if (ext4_has_feature_inline_data(sb))
1093 		ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
1094 	ret = inode;
1095 	err = dquot_alloc_inode(inode);
1096 	if (err)
1097 		goto fail_drop;
1098 
1099 	err = ext4_init_acl(handle, inode, dir);
1100 	if (err)
1101 		goto fail_free_drop;
1102 
1103 	err = ext4_init_security(handle, inode, dir, qstr);
1104 	if (err)
1105 		goto fail_free_drop;
1106 
1107 	if (ext4_has_feature_extents(sb)) {
1108 		/* set extent flag only for directory, file and normal symlink*/
1109 		if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) {
1110 			ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS);
1111 			ext4_ext_tree_init(handle, inode);
1112 		}
1113 	}
1114 
1115 	if (ext4_handle_valid(handle)) {
1116 		ei->i_sync_tid = handle->h_transaction->t_tid;
1117 		ei->i_datasync_tid = handle->h_transaction->t_tid;
1118 	}
1119 
1120 	if (encrypt) {
1121 		err = fscrypt_inherit_context(dir, inode, handle, true);
1122 		if (err)
1123 			goto fail_free_drop;
1124 	}
1125 
1126 	err = ext4_mark_inode_dirty(handle, inode);
1127 	if (err) {
1128 		ext4_std_error(sb, err);
1129 		goto fail_free_drop;
1130 	}
1131 
1132 	ext4_debug("allocating inode %lu\n", inode->i_ino);
1133 	trace_ext4_allocate_inode(inode, dir, mode);
1134 	brelse(inode_bitmap_bh);
1135 	return ret;
1136 
1137 fail_free_drop:
1138 	dquot_free_inode(inode);
1139 fail_drop:
1140 	clear_nlink(inode);
1141 	unlock_new_inode(inode);
1142 out:
1143 	dquot_drop(inode);
1144 	inode->i_flags |= S_NOQUOTA;
1145 	iput(inode);
1146 	brelse(inode_bitmap_bh);
1147 	return ERR_PTR(err);
1148 }
1149 
1150 /* Verify that we are loading a valid orphan from disk */
1151 struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino)
1152 {
1153 	unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count);
1154 	ext4_group_t block_group;
1155 	int bit;
1156 	struct buffer_head *bitmap_bh = NULL;
1157 	struct inode *inode = NULL;
1158 	int err = -EFSCORRUPTED;
1159 
1160 	if (ino < EXT4_FIRST_INO(sb) || ino > max_ino)
1161 		goto bad_orphan;
1162 
1163 	block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
1164 	bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
1165 	bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
1166 	if (IS_ERR(bitmap_bh)) {
1167 		ext4_error(sb, "inode bitmap error %ld for orphan %lu",
1168 			   ino, PTR_ERR(bitmap_bh));
1169 		return (struct inode *) bitmap_bh;
1170 	}
1171 
1172 	/* Having the inode bit set should be a 100% indicator that this
1173 	 * is a valid orphan (no e2fsck run on fs).  Orphans also include
1174 	 * inodes that were being truncated, so we can't check i_nlink==0.
1175 	 */
1176 	if (!ext4_test_bit(bit, bitmap_bh->b_data))
1177 		goto bad_orphan;
1178 
1179 	inode = ext4_iget(sb, ino);
1180 	if (IS_ERR(inode)) {
1181 		err = PTR_ERR(inode);
1182 		ext4_error(sb, "couldn't read orphan inode %lu (err %d)",
1183 			   ino, err);
1184 		return inode;
1185 	}
1186 
1187 	/*
1188 	 * If the orphans has i_nlinks > 0 then it should be able to
1189 	 * be truncated, otherwise it won't be removed from the orphan
1190 	 * list during processing and an infinite loop will result.
1191 	 * Similarly, it must not be a bad inode.
1192 	 */
1193 	if ((inode->i_nlink && !ext4_can_truncate(inode)) ||
1194 	    is_bad_inode(inode))
1195 		goto bad_orphan;
1196 
1197 	if (NEXT_ORPHAN(inode) > max_ino)
1198 		goto bad_orphan;
1199 	brelse(bitmap_bh);
1200 	return inode;
1201 
1202 bad_orphan:
1203 	ext4_error(sb, "bad orphan inode %lu", ino);
1204 	if (bitmap_bh)
1205 		printk(KERN_ERR "ext4_test_bit(bit=%d, block=%llu) = %d\n",
1206 		       bit, (unsigned long long)bitmap_bh->b_blocknr,
1207 		       ext4_test_bit(bit, bitmap_bh->b_data));
1208 	if (inode) {
1209 		printk(KERN_ERR "is_bad_inode(inode)=%d\n",
1210 		       is_bad_inode(inode));
1211 		printk(KERN_ERR "NEXT_ORPHAN(inode)=%u\n",
1212 		       NEXT_ORPHAN(inode));
1213 		printk(KERN_ERR "max_ino=%lu\n", max_ino);
1214 		printk(KERN_ERR "i_nlink=%u\n", inode->i_nlink);
1215 		/* Avoid freeing blocks if we got a bad deleted inode */
1216 		if (inode->i_nlink == 0)
1217 			inode->i_blocks = 0;
1218 		iput(inode);
1219 	}
1220 	brelse(bitmap_bh);
1221 	return ERR_PTR(err);
1222 }
1223 
1224 unsigned long ext4_count_free_inodes(struct super_block *sb)
1225 {
1226 	unsigned long desc_count;
1227 	struct ext4_group_desc *gdp;
1228 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1229 #ifdef EXT4FS_DEBUG
1230 	struct ext4_super_block *es;
1231 	unsigned long bitmap_count, x;
1232 	struct buffer_head *bitmap_bh = NULL;
1233 
1234 	es = EXT4_SB(sb)->s_es;
1235 	desc_count = 0;
1236 	bitmap_count = 0;
1237 	gdp = NULL;
1238 	for (i = 0; i < ngroups; i++) {
1239 		gdp = ext4_get_group_desc(sb, i, NULL);
1240 		if (!gdp)
1241 			continue;
1242 		desc_count += ext4_free_inodes_count(sb, gdp);
1243 		brelse(bitmap_bh);
1244 		bitmap_bh = ext4_read_inode_bitmap(sb, i);
1245 		if (IS_ERR(bitmap_bh)) {
1246 			bitmap_bh = NULL;
1247 			continue;
1248 		}
1249 
1250 		x = ext4_count_free(bitmap_bh->b_data,
1251 				    EXT4_INODES_PER_GROUP(sb) / 8);
1252 		printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n",
1253 			(unsigned long) i, ext4_free_inodes_count(sb, gdp), x);
1254 		bitmap_count += x;
1255 	}
1256 	brelse(bitmap_bh);
1257 	printk(KERN_DEBUG "ext4_count_free_inodes: "
1258 	       "stored = %u, computed = %lu, %lu\n",
1259 	       le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count);
1260 	return desc_count;
1261 #else
1262 	desc_count = 0;
1263 	for (i = 0; i < ngroups; i++) {
1264 		gdp = ext4_get_group_desc(sb, i, NULL);
1265 		if (!gdp)
1266 			continue;
1267 		desc_count += ext4_free_inodes_count(sb, gdp);
1268 		cond_resched();
1269 	}
1270 	return desc_count;
1271 #endif
1272 }
1273 
1274 /* Called at mount-time, super-block is locked */
1275 unsigned long ext4_count_dirs(struct super_block * sb)
1276 {
1277 	unsigned long count = 0;
1278 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1279 
1280 	for (i = 0; i < ngroups; i++) {
1281 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
1282 		if (!gdp)
1283 			continue;
1284 		count += ext4_used_dirs_count(sb, gdp);
1285 	}
1286 	return count;
1287 }
1288 
1289 /*
1290  * Zeroes not yet zeroed inode table - just write zeroes through the whole
1291  * inode table. Must be called without any spinlock held. The only place
1292  * where it is called from on active part of filesystem is ext4lazyinit
1293  * thread, so we do not need any special locks, however we have to prevent
1294  * inode allocation from the current group, so we take alloc_sem lock, to
1295  * block ext4_new_inode() until we are finished.
1296  */
1297 int ext4_init_inode_table(struct super_block *sb, ext4_group_t group,
1298 				 int barrier)
1299 {
1300 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1301 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1302 	struct ext4_group_desc *gdp = NULL;
1303 	struct buffer_head *group_desc_bh;
1304 	handle_t *handle;
1305 	ext4_fsblk_t blk;
1306 	int num, ret = 0, used_blks = 0;
1307 
1308 	/* This should not happen, but just to be sure check this */
1309 	if (sb->s_flags & MS_RDONLY) {
1310 		ret = 1;
1311 		goto out;
1312 	}
1313 
1314 	gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
1315 	if (!gdp)
1316 		goto out;
1317 
1318 	/*
1319 	 * We do not need to lock this, because we are the only one
1320 	 * handling this flag.
1321 	 */
1322 	if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))
1323 		goto out;
1324 
1325 	handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
1326 	if (IS_ERR(handle)) {
1327 		ret = PTR_ERR(handle);
1328 		goto out;
1329 	}
1330 
1331 	down_write(&grp->alloc_sem);
1332 	/*
1333 	 * If inode bitmap was already initialized there may be some
1334 	 * used inodes so we need to skip blocks with used inodes in
1335 	 * inode table.
1336 	 */
1337 	if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)))
1338 		used_blks = DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb) -
1339 			    ext4_itable_unused_count(sb, gdp)),
1340 			    sbi->s_inodes_per_block);
1341 
1342 	if ((used_blks < 0) || (used_blks > sbi->s_itb_per_group)) {
1343 		ext4_error(sb, "Something is wrong with group %u: "
1344 			   "used itable blocks: %d; "
1345 			   "itable unused count: %u",
1346 			   group, used_blks,
1347 			   ext4_itable_unused_count(sb, gdp));
1348 		ret = 1;
1349 		goto err_out;
1350 	}
1351 
1352 	blk = ext4_inode_table(sb, gdp) + used_blks;
1353 	num = sbi->s_itb_per_group - used_blks;
1354 
1355 	BUFFER_TRACE(group_desc_bh, "get_write_access");
1356 	ret = ext4_journal_get_write_access(handle,
1357 					    group_desc_bh);
1358 	if (ret)
1359 		goto err_out;
1360 
1361 	/*
1362 	 * Skip zeroout if the inode table is full. But we set the ZEROED
1363 	 * flag anyway, because obviously, when it is full it does not need
1364 	 * further zeroing.
1365 	 */
1366 	if (unlikely(num == 0))
1367 		goto skip_zeroout;
1368 
1369 	ext4_debug("going to zero out inode table in group %d\n",
1370 		   group);
1371 	ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS);
1372 	if (ret < 0)
1373 		goto err_out;
1374 	if (barrier)
1375 		blkdev_issue_flush(sb->s_bdev, GFP_NOFS, NULL);
1376 
1377 skip_zeroout:
1378 	ext4_lock_group(sb, group);
1379 	gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED);
1380 	ext4_group_desc_csum_set(sb, group, gdp);
1381 	ext4_unlock_group(sb, group);
1382 
1383 	BUFFER_TRACE(group_desc_bh,
1384 		     "call ext4_handle_dirty_metadata");
1385 	ret = ext4_handle_dirty_metadata(handle, NULL,
1386 					 group_desc_bh);
1387 
1388 err_out:
1389 	up_write(&grp->alloc_sem);
1390 	ext4_journal_stop(handle);
1391 out:
1392 	return ret;
1393 }
1394