1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/ialloc.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * BSD ufs-inspired inode and directory allocation by 11 * Stephen Tweedie (sct@redhat.com), 1993 12 * Big-endian to little-endian byte-swapping/bitmaps by 13 * David S. Miller (davem@caip.rutgers.edu), 1995 14 */ 15 16 #include <linux/time.h> 17 #include <linux/fs.h> 18 #include <linux/stat.h> 19 #include <linux/string.h> 20 #include <linux/quotaops.h> 21 #include <linux/buffer_head.h> 22 #include <linux/random.h> 23 #include <linux/bitops.h> 24 #include <linux/blkdev.h> 25 #include <linux/cred.h> 26 27 #include <asm/byteorder.h> 28 29 #include "ext4.h" 30 #include "ext4_jbd2.h" 31 #include "xattr.h" 32 #include "acl.h" 33 34 #include <trace/events/ext4.h> 35 36 /* 37 * ialloc.c contains the inodes allocation and deallocation routines 38 */ 39 40 /* 41 * The free inodes are managed by bitmaps. A file system contains several 42 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap 43 * block for inodes, N blocks for the inode table and data blocks. 44 * 45 * The file system contains group descriptors which are located after the 46 * super block. Each descriptor contains the number of the bitmap block and 47 * the free blocks count in the block. 48 */ 49 50 /* 51 * To avoid calling the atomic setbit hundreds or thousands of times, we only 52 * need to use it within a single byte (to ensure we get endianness right). 53 * We can use memset for the rest of the bitmap as there are no other users. 54 */ 55 void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap) 56 { 57 int i; 58 59 if (start_bit >= end_bit) 60 return; 61 62 ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit); 63 for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++) 64 ext4_set_bit(i, bitmap); 65 if (i < end_bit) 66 memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3); 67 } 68 69 void ext4_end_bitmap_read(struct buffer_head *bh, int uptodate) 70 { 71 if (uptodate) { 72 set_buffer_uptodate(bh); 73 set_bitmap_uptodate(bh); 74 } 75 unlock_buffer(bh); 76 put_bh(bh); 77 } 78 79 static int ext4_validate_inode_bitmap(struct super_block *sb, 80 struct ext4_group_desc *desc, 81 ext4_group_t block_group, 82 struct buffer_head *bh) 83 { 84 ext4_fsblk_t blk; 85 struct ext4_group_info *grp = ext4_get_group_info(sb, block_group); 86 87 if (buffer_verified(bh)) 88 return 0; 89 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) 90 return -EFSCORRUPTED; 91 92 ext4_lock_group(sb, block_group); 93 blk = ext4_inode_bitmap(sb, desc); 94 if (!ext4_inode_bitmap_csum_verify(sb, block_group, desc, bh, 95 EXT4_INODES_PER_GROUP(sb) / 8)) { 96 ext4_unlock_group(sb, block_group); 97 ext4_error(sb, "Corrupt inode bitmap - block_group = %u, " 98 "inode_bitmap = %llu", block_group, blk); 99 ext4_mark_group_bitmap_corrupted(sb, block_group, 100 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 101 return -EFSBADCRC; 102 } 103 set_buffer_verified(bh); 104 ext4_unlock_group(sb, block_group); 105 return 0; 106 } 107 108 /* 109 * Read the inode allocation bitmap for a given block_group, reading 110 * into the specified slot in the superblock's bitmap cache. 111 * 112 * Return buffer_head of bitmap on success or NULL. 113 */ 114 static struct buffer_head * 115 ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group) 116 { 117 struct ext4_group_desc *desc; 118 struct ext4_sb_info *sbi = EXT4_SB(sb); 119 struct buffer_head *bh = NULL; 120 ext4_fsblk_t bitmap_blk; 121 int err; 122 123 desc = ext4_get_group_desc(sb, block_group, NULL); 124 if (!desc) 125 return ERR_PTR(-EFSCORRUPTED); 126 127 bitmap_blk = ext4_inode_bitmap(sb, desc); 128 if ((bitmap_blk <= le32_to_cpu(sbi->s_es->s_first_data_block)) || 129 (bitmap_blk >= ext4_blocks_count(sbi->s_es))) { 130 ext4_error(sb, "Invalid inode bitmap blk %llu in " 131 "block_group %u", bitmap_blk, block_group); 132 ext4_mark_group_bitmap_corrupted(sb, block_group, 133 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 134 return ERR_PTR(-EFSCORRUPTED); 135 } 136 bh = sb_getblk(sb, bitmap_blk); 137 if (unlikely(!bh)) { 138 ext4_error(sb, "Cannot read inode bitmap - " 139 "block_group = %u, inode_bitmap = %llu", 140 block_group, bitmap_blk); 141 return ERR_PTR(-ENOMEM); 142 } 143 if (bitmap_uptodate(bh)) 144 goto verify; 145 146 lock_buffer(bh); 147 if (bitmap_uptodate(bh)) { 148 unlock_buffer(bh); 149 goto verify; 150 } 151 152 ext4_lock_group(sb, block_group); 153 if (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) { 154 memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8); 155 ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb), 156 sb->s_blocksize * 8, bh->b_data); 157 set_bitmap_uptodate(bh); 158 set_buffer_uptodate(bh); 159 set_buffer_verified(bh); 160 ext4_unlock_group(sb, block_group); 161 unlock_buffer(bh); 162 return bh; 163 } 164 ext4_unlock_group(sb, block_group); 165 166 if (buffer_uptodate(bh)) { 167 /* 168 * if not uninit if bh is uptodate, 169 * bitmap is also uptodate 170 */ 171 set_bitmap_uptodate(bh); 172 unlock_buffer(bh); 173 goto verify; 174 } 175 /* 176 * submit the buffer_head for reading 177 */ 178 trace_ext4_load_inode_bitmap(sb, block_group); 179 bh->b_end_io = ext4_end_bitmap_read; 180 get_bh(bh); 181 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh); 182 wait_on_buffer(bh); 183 if (!buffer_uptodate(bh)) { 184 put_bh(bh); 185 ext4_error(sb, "Cannot read inode bitmap - " 186 "block_group = %u, inode_bitmap = %llu", 187 block_group, bitmap_blk); 188 ext4_mark_group_bitmap_corrupted(sb, block_group, 189 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 190 return ERR_PTR(-EIO); 191 } 192 193 verify: 194 err = ext4_validate_inode_bitmap(sb, desc, block_group, bh); 195 if (err) 196 goto out; 197 return bh; 198 out: 199 put_bh(bh); 200 return ERR_PTR(err); 201 } 202 203 /* 204 * NOTE! When we get the inode, we're the only people 205 * that have access to it, and as such there are no 206 * race conditions we have to worry about. The inode 207 * is not on the hash-lists, and it cannot be reached 208 * through the filesystem because the directory entry 209 * has been deleted earlier. 210 * 211 * HOWEVER: we must make sure that we get no aliases, 212 * which means that we have to call "clear_inode()" 213 * _before_ we mark the inode not in use in the inode 214 * bitmaps. Otherwise a newly created file might use 215 * the same inode number (not actually the same pointer 216 * though), and then we'd have two inodes sharing the 217 * same inode number and space on the harddisk. 218 */ 219 void ext4_free_inode(handle_t *handle, struct inode *inode) 220 { 221 struct super_block *sb = inode->i_sb; 222 int is_directory; 223 unsigned long ino; 224 struct buffer_head *bitmap_bh = NULL; 225 struct buffer_head *bh2; 226 ext4_group_t block_group; 227 unsigned long bit; 228 struct ext4_group_desc *gdp; 229 struct ext4_super_block *es; 230 struct ext4_sb_info *sbi; 231 int fatal = 0, err, count, cleared; 232 struct ext4_group_info *grp; 233 234 if (!sb) { 235 printk(KERN_ERR "EXT4-fs: %s:%d: inode on " 236 "nonexistent device\n", __func__, __LINE__); 237 return; 238 } 239 if (atomic_read(&inode->i_count) > 1) { 240 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: count=%d", 241 __func__, __LINE__, inode->i_ino, 242 atomic_read(&inode->i_count)); 243 return; 244 } 245 if (inode->i_nlink) { 246 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: nlink=%d\n", 247 __func__, __LINE__, inode->i_ino, inode->i_nlink); 248 return; 249 } 250 sbi = EXT4_SB(sb); 251 252 ino = inode->i_ino; 253 ext4_debug("freeing inode %lu\n", ino); 254 trace_ext4_free_inode(inode); 255 256 /* 257 * Note: we must free any quota before locking the superblock, 258 * as writing the quota to disk may need the lock as well. 259 */ 260 dquot_initialize(inode); 261 dquot_free_inode(inode); 262 dquot_drop(inode); 263 264 is_directory = S_ISDIR(inode->i_mode); 265 266 /* Do this BEFORE marking the inode not in use or returning an error */ 267 ext4_clear_inode(inode); 268 269 es = sbi->s_es; 270 if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) { 271 ext4_error(sb, "reserved or nonexistent inode %lu", ino); 272 goto error_return; 273 } 274 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 275 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb); 276 bitmap_bh = ext4_read_inode_bitmap(sb, block_group); 277 /* Don't bother if the inode bitmap is corrupt. */ 278 grp = ext4_get_group_info(sb, block_group); 279 if (IS_ERR(bitmap_bh)) { 280 fatal = PTR_ERR(bitmap_bh); 281 bitmap_bh = NULL; 282 goto error_return; 283 } 284 if (unlikely(EXT4_MB_GRP_IBITMAP_CORRUPT(grp))) { 285 fatal = -EFSCORRUPTED; 286 goto error_return; 287 } 288 289 BUFFER_TRACE(bitmap_bh, "get_write_access"); 290 fatal = ext4_journal_get_write_access(handle, bitmap_bh); 291 if (fatal) 292 goto error_return; 293 294 fatal = -ESRCH; 295 gdp = ext4_get_group_desc(sb, block_group, &bh2); 296 if (gdp) { 297 BUFFER_TRACE(bh2, "get_write_access"); 298 fatal = ext4_journal_get_write_access(handle, bh2); 299 } 300 ext4_lock_group(sb, block_group); 301 cleared = ext4_test_and_clear_bit(bit, bitmap_bh->b_data); 302 if (fatal || !cleared) { 303 ext4_unlock_group(sb, block_group); 304 goto out; 305 } 306 307 count = ext4_free_inodes_count(sb, gdp) + 1; 308 ext4_free_inodes_set(sb, gdp, count); 309 if (is_directory) { 310 count = ext4_used_dirs_count(sb, gdp) - 1; 311 ext4_used_dirs_set(sb, gdp, count); 312 percpu_counter_dec(&sbi->s_dirs_counter); 313 } 314 ext4_inode_bitmap_csum_set(sb, block_group, gdp, bitmap_bh, 315 EXT4_INODES_PER_GROUP(sb) / 8); 316 ext4_group_desc_csum_set(sb, block_group, gdp); 317 ext4_unlock_group(sb, block_group); 318 319 percpu_counter_inc(&sbi->s_freeinodes_counter); 320 if (sbi->s_log_groups_per_flex) { 321 ext4_group_t f = ext4_flex_group(sbi, block_group); 322 323 atomic_inc(&sbi->s_flex_groups[f].free_inodes); 324 if (is_directory) 325 atomic_dec(&sbi->s_flex_groups[f].used_dirs); 326 } 327 BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata"); 328 fatal = ext4_handle_dirty_metadata(handle, NULL, bh2); 329 out: 330 if (cleared) { 331 BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata"); 332 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 333 if (!fatal) 334 fatal = err; 335 } else { 336 ext4_error(sb, "bit already cleared for inode %lu", ino); 337 ext4_mark_group_bitmap_corrupted(sb, block_group, 338 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 339 } 340 341 error_return: 342 brelse(bitmap_bh); 343 ext4_std_error(sb, fatal); 344 } 345 346 struct orlov_stats { 347 __u64 free_clusters; 348 __u32 free_inodes; 349 __u32 used_dirs; 350 }; 351 352 /* 353 * Helper function for Orlov's allocator; returns critical information 354 * for a particular block group or flex_bg. If flex_size is 1, then g 355 * is a block group number; otherwise it is flex_bg number. 356 */ 357 static void get_orlov_stats(struct super_block *sb, ext4_group_t g, 358 int flex_size, struct orlov_stats *stats) 359 { 360 struct ext4_group_desc *desc; 361 struct flex_groups *flex_group = EXT4_SB(sb)->s_flex_groups; 362 363 if (flex_size > 1) { 364 stats->free_inodes = atomic_read(&flex_group[g].free_inodes); 365 stats->free_clusters = atomic64_read(&flex_group[g].free_clusters); 366 stats->used_dirs = atomic_read(&flex_group[g].used_dirs); 367 return; 368 } 369 370 desc = ext4_get_group_desc(sb, g, NULL); 371 if (desc) { 372 stats->free_inodes = ext4_free_inodes_count(sb, desc); 373 stats->free_clusters = ext4_free_group_clusters(sb, desc); 374 stats->used_dirs = ext4_used_dirs_count(sb, desc); 375 } else { 376 stats->free_inodes = 0; 377 stats->free_clusters = 0; 378 stats->used_dirs = 0; 379 } 380 } 381 382 /* 383 * Orlov's allocator for directories. 384 * 385 * We always try to spread first-level directories. 386 * 387 * If there are blockgroups with both free inodes and free blocks counts 388 * not worse than average we return one with smallest directory count. 389 * Otherwise we simply return a random group. 390 * 391 * For the rest rules look so: 392 * 393 * It's OK to put directory into a group unless 394 * it has too many directories already (max_dirs) or 395 * it has too few free inodes left (min_inodes) or 396 * it has too few free blocks left (min_blocks) or 397 * Parent's group is preferred, if it doesn't satisfy these 398 * conditions we search cyclically through the rest. If none 399 * of the groups look good we just look for a group with more 400 * free inodes than average (starting at parent's group). 401 */ 402 403 static int find_group_orlov(struct super_block *sb, struct inode *parent, 404 ext4_group_t *group, umode_t mode, 405 const struct qstr *qstr) 406 { 407 ext4_group_t parent_group = EXT4_I(parent)->i_block_group; 408 struct ext4_sb_info *sbi = EXT4_SB(sb); 409 ext4_group_t real_ngroups = ext4_get_groups_count(sb); 410 int inodes_per_group = EXT4_INODES_PER_GROUP(sb); 411 unsigned int freei, avefreei, grp_free; 412 ext4_fsblk_t freeb, avefreec; 413 unsigned int ndirs; 414 int max_dirs, min_inodes; 415 ext4_grpblk_t min_clusters; 416 ext4_group_t i, grp, g, ngroups; 417 struct ext4_group_desc *desc; 418 struct orlov_stats stats; 419 int flex_size = ext4_flex_bg_size(sbi); 420 struct dx_hash_info hinfo; 421 422 ngroups = real_ngroups; 423 if (flex_size > 1) { 424 ngroups = (real_ngroups + flex_size - 1) >> 425 sbi->s_log_groups_per_flex; 426 parent_group >>= sbi->s_log_groups_per_flex; 427 } 428 429 freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter); 430 avefreei = freei / ngroups; 431 freeb = EXT4_C2B(sbi, 432 percpu_counter_read_positive(&sbi->s_freeclusters_counter)); 433 avefreec = freeb; 434 do_div(avefreec, ngroups); 435 ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter); 436 437 if (S_ISDIR(mode) && 438 ((parent == d_inode(sb->s_root)) || 439 (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) { 440 int best_ndir = inodes_per_group; 441 int ret = -1; 442 443 if (qstr) { 444 hinfo.hash_version = DX_HASH_HALF_MD4; 445 hinfo.seed = sbi->s_hash_seed; 446 ext4fs_dirhash(qstr->name, qstr->len, &hinfo); 447 grp = hinfo.hash; 448 } else 449 grp = prandom_u32(); 450 parent_group = (unsigned)grp % ngroups; 451 for (i = 0; i < ngroups; i++) { 452 g = (parent_group + i) % ngroups; 453 get_orlov_stats(sb, g, flex_size, &stats); 454 if (!stats.free_inodes) 455 continue; 456 if (stats.used_dirs >= best_ndir) 457 continue; 458 if (stats.free_inodes < avefreei) 459 continue; 460 if (stats.free_clusters < avefreec) 461 continue; 462 grp = g; 463 ret = 0; 464 best_ndir = stats.used_dirs; 465 } 466 if (ret) 467 goto fallback; 468 found_flex_bg: 469 if (flex_size == 1) { 470 *group = grp; 471 return 0; 472 } 473 474 /* 475 * We pack inodes at the beginning of the flexgroup's 476 * inode tables. Block allocation decisions will do 477 * something similar, although regular files will 478 * start at 2nd block group of the flexgroup. See 479 * ext4_ext_find_goal() and ext4_find_near(). 480 */ 481 grp *= flex_size; 482 for (i = 0; i < flex_size; i++) { 483 if (grp+i >= real_ngroups) 484 break; 485 desc = ext4_get_group_desc(sb, grp+i, NULL); 486 if (desc && ext4_free_inodes_count(sb, desc)) { 487 *group = grp+i; 488 return 0; 489 } 490 } 491 goto fallback; 492 } 493 494 max_dirs = ndirs / ngroups + inodes_per_group / 16; 495 min_inodes = avefreei - inodes_per_group*flex_size / 4; 496 if (min_inodes < 1) 497 min_inodes = 1; 498 min_clusters = avefreec - EXT4_CLUSTERS_PER_GROUP(sb)*flex_size / 4; 499 500 /* 501 * Start looking in the flex group where we last allocated an 502 * inode for this parent directory 503 */ 504 if (EXT4_I(parent)->i_last_alloc_group != ~0) { 505 parent_group = EXT4_I(parent)->i_last_alloc_group; 506 if (flex_size > 1) 507 parent_group >>= sbi->s_log_groups_per_flex; 508 } 509 510 for (i = 0; i < ngroups; i++) { 511 grp = (parent_group + i) % ngroups; 512 get_orlov_stats(sb, grp, flex_size, &stats); 513 if (stats.used_dirs >= max_dirs) 514 continue; 515 if (stats.free_inodes < min_inodes) 516 continue; 517 if (stats.free_clusters < min_clusters) 518 continue; 519 goto found_flex_bg; 520 } 521 522 fallback: 523 ngroups = real_ngroups; 524 avefreei = freei / ngroups; 525 fallback_retry: 526 parent_group = EXT4_I(parent)->i_block_group; 527 for (i = 0; i < ngroups; i++) { 528 grp = (parent_group + i) % ngroups; 529 desc = ext4_get_group_desc(sb, grp, NULL); 530 if (desc) { 531 grp_free = ext4_free_inodes_count(sb, desc); 532 if (grp_free && grp_free >= avefreei) { 533 *group = grp; 534 return 0; 535 } 536 } 537 } 538 539 if (avefreei) { 540 /* 541 * The free-inodes counter is approximate, and for really small 542 * filesystems the above test can fail to find any blockgroups 543 */ 544 avefreei = 0; 545 goto fallback_retry; 546 } 547 548 return -1; 549 } 550 551 static int find_group_other(struct super_block *sb, struct inode *parent, 552 ext4_group_t *group, umode_t mode) 553 { 554 ext4_group_t parent_group = EXT4_I(parent)->i_block_group; 555 ext4_group_t i, last, ngroups = ext4_get_groups_count(sb); 556 struct ext4_group_desc *desc; 557 int flex_size = ext4_flex_bg_size(EXT4_SB(sb)); 558 559 /* 560 * Try to place the inode is the same flex group as its 561 * parent. If we can't find space, use the Orlov algorithm to 562 * find another flex group, and store that information in the 563 * parent directory's inode information so that use that flex 564 * group for future allocations. 565 */ 566 if (flex_size > 1) { 567 int retry = 0; 568 569 try_again: 570 parent_group &= ~(flex_size-1); 571 last = parent_group + flex_size; 572 if (last > ngroups) 573 last = ngroups; 574 for (i = parent_group; i < last; i++) { 575 desc = ext4_get_group_desc(sb, i, NULL); 576 if (desc && ext4_free_inodes_count(sb, desc)) { 577 *group = i; 578 return 0; 579 } 580 } 581 if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) { 582 retry = 1; 583 parent_group = EXT4_I(parent)->i_last_alloc_group; 584 goto try_again; 585 } 586 /* 587 * If this didn't work, use the Orlov search algorithm 588 * to find a new flex group; we pass in the mode to 589 * avoid the topdir algorithms. 590 */ 591 *group = parent_group + flex_size; 592 if (*group > ngroups) 593 *group = 0; 594 return find_group_orlov(sb, parent, group, mode, NULL); 595 } 596 597 /* 598 * Try to place the inode in its parent directory 599 */ 600 *group = parent_group; 601 desc = ext4_get_group_desc(sb, *group, NULL); 602 if (desc && ext4_free_inodes_count(sb, desc) && 603 ext4_free_group_clusters(sb, desc)) 604 return 0; 605 606 /* 607 * We're going to place this inode in a different blockgroup from its 608 * parent. We want to cause files in a common directory to all land in 609 * the same blockgroup. But we want files which are in a different 610 * directory which shares a blockgroup with our parent to land in a 611 * different blockgroup. 612 * 613 * So add our directory's i_ino into the starting point for the hash. 614 */ 615 *group = (*group + parent->i_ino) % ngroups; 616 617 /* 618 * Use a quadratic hash to find a group with a free inode and some free 619 * blocks. 620 */ 621 for (i = 1; i < ngroups; i <<= 1) { 622 *group += i; 623 if (*group >= ngroups) 624 *group -= ngroups; 625 desc = ext4_get_group_desc(sb, *group, NULL); 626 if (desc && ext4_free_inodes_count(sb, desc) && 627 ext4_free_group_clusters(sb, desc)) 628 return 0; 629 } 630 631 /* 632 * That failed: try linear search for a free inode, even if that group 633 * has no free blocks. 634 */ 635 *group = parent_group; 636 for (i = 0; i < ngroups; i++) { 637 if (++*group >= ngroups) 638 *group = 0; 639 desc = ext4_get_group_desc(sb, *group, NULL); 640 if (desc && ext4_free_inodes_count(sb, desc)) 641 return 0; 642 } 643 644 return -1; 645 } 646 647 /* 648 * In no journal mode, if an inode has recently been deleted, we want 649 * to avoid reusing it until we're reasonably sure the inode table 650 * block has been written back to disk. (Yes, these values are 651 * somewhat arbitrary...) 652 */ 653 #define RECENTCY_MIN 5 654 #define RECENTCY_DIRTY 300 655 656 static int recently_deleted(struct super_block *sb, ext4_group_t group, int ino) 657 { 658 struct ext4_group_desc *gdp; 659 struct ext4_inode *raw_inode; 660 struct buffer_head *bh; 661 int inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 662 int offset, ret = 0; 663 int recentcy = RECENTCY_MIN; 664 u32 dtime, now; 665 666 gdp = ext4_get_group_desc(sb, group, NULL); 667 if (unlikely(!gdp)) 668 return 0; 669 670 bh = sb_find_get_block(sb, ext4_inode_table(sb, gdp) + 671 (ino / inodes_per_block)); 672 if (!bh || !buffer_uptodate(bh)) 673 /* 674 * If the block is not in the buffer cache, then it 675 * must have been written out. 676 */ 677 goto out; 678 679 offset = (ino % inodes_per_block) * EXT4_INODE_SIZE(sb); 680 raw_inode = (struct ext4_inode *) (bh->b_data + offset); 681 682 /* i_dtime is only 32 bits on disk, but we only care about relative 683 * times in the range of a few minutes (i.e. long enough to sync a 684 * recently-deleted inode to disk), so using the low 32 bits of the 685 * clock (a 68 year range) is enough, see time_before32() */ 686 dtime = le32_to_cpu(raw_inode->i_dtime); 687 now = ktime_get_real_seconds(); 688 if (buffer_dirty(bh)) 689 recentcy += RECENTCY_DIRTY; 690 691 if (dtime && time_before32(dtime, now) && 692 time_before32(now, dtime + recentcy)) 693 ret = 1; 694 out: 695 brelse(bh); 696 return ret; 697 } 698 699 static int find_inode_bit(struct super_block *sb, ext4_group_t group, 700 struct buffer_head *bitmap, unsigned long *ino) 701 { 702 next: 703 *ino = ext4_find_next_zero_bit((unsigned long *) 704 bitmap->b_data, 705 EXT4_INODES_PER_GROUP(sb), *ino); 706 if (*ino >= EXT4_INODES_PER_GROUP(sb)) 707 return 0; 708 709 if ((EXT4_SB(sb)->s_journal == NULL) && 710 recently_deleted(sb, group, *ino)) { 711 *ino = *ino + 1; 712 if (*ino < EXT4_INODES_PER_GROUP(sb)) 713 goto next; 714 return 0; 715 } 716 717 return 1; 718 } 719 720 /* 721 * There are two policies for allocating an inode. If the new inode is 722 * a directory, then a forward search is made for a block group with both 723 * free space and a low directory-to-inode ratio; if that fails, then of 724 * the groups with above-average free space, that group with the fewest 725 * directories already is chosen. 726 * 727 * For other inodes, search forward from the parent directory's block 728 * group to find a free inode. 729 */ 730 struct inode *__ext4_new_inode(handle_t *handle, struct inode *dir, 731 umode_t mode, const struct qstr *qstr, 732 __u32 goal, uid_t *owner, __u32 i_flags, 733 int handle_type, unsigned int line_no, 734 int nblocks) 735 { 736 struct super_block *sb; 737 struct buffer_head *inode_bitmap_bh = NULL; 738 struct buffer_head *group_desc_bh; 739 ext4_group_t ngroups, group = 0; 740 unsigned long ino = 0; 741 struct inode *inode; 742 struct ext4_group_desc *gdp = NULL; 743 struct ext4_inode_info *ei; 744 struct ext4_sb_info *sbi; 745 int ret2, err; 746 struct inode *ret; 747 ext4_group_t i; 748 ext4_group_t flex_group; 749 struct ext4_group_info *grp; 750 int encrypt = 0; 751 752 /* Cannot create files in a deleted directory */ 753 if (!dir || !dir->i_nlink) 754 return ERR_PTR(-EPERM); 755 756 sb = dir->i_sb; 757 sbi = EXT4_SB(sb); 758 759 if (unlikely(ext4_forced_shutdown(sbi))) 760 return ERR_PTR(-EIO); 761 762 if ((ext4_encrypted_inode(dir) || DUMMY_ENCRYPTION_ENABLED(sbi)) && 763 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)) && 764 !(i_flags & EXT4_EA_INODE_FL)) { 765 err = fscrypt_get_encryption_info(dir); 766 if (err) 767 return ERR_PTR(err); 768 if (!fscrypt_has_encryption_key(dir)) 769 return ERR_PTR(-ENOKEY); 770 encrypt = 1; 771 } 772 773 if (!handle && sbi->s_journal && !(i_flags & EXT4_EA_INODE_FL)) { 774 #ifdef CONFIG_EXT4_FS_POSIX_ACL 775 struct posix_acl *p = get_acl(dir, ACL_TYPE_DEFAULT); 776 777 if (IS_ERR(p)) 778 return ERR_CAST(p); 779 if (p) { 780 int acl_size = p->a_count * sizeof(ext4_acl_entry); 781 782 nblocks += (S_ISDIR(mode) ? 2 : 1) * 783 __ext4_xattr_set_credits(sb, NULL /* inode */, 784 NULL /* block_bh */, acl_size, 785 true /* is_create */); 786 posix_acl_release(p); 787 } 788 #endif 789 790 #ifdef CONFIG_SECURITY 791 { 792 int num_security_xattrs = 1; 793 794 #ifdef CONFIG_INTEGRITY 795 num_security_xattrs++; 796 #endif 797 /* 798 * We assume that security xattrs are never 799 * more than 1k. In practice they are under 800 * 128 bytes. 801 */ 802 nblocks += num_security_xattrs * 803 __ext4_xattr_set_credits(sb, NULL /* inode */, 804 NULL /* block_bh */, 1024, 805 true /* is_create */); 806 } 807 #endif 808 if (encrypt) 809 nblocks += __ext4_xattr_set_credits(sb, 810 NULL /* inode */, NULL /* block_bh */, 811 FSCRYPT_SET_CONTEXT_MAX_SIZE, 812 true /* is_create */); 813 } 814 815 ngroups = ext4_get_groups_count(sb); 816 trace_ext4_request_inode(dir, mode); 817 inode = new_inode(sb); 818 if (!inode) 819 return ERR_PTR(-ENOMEM); 820 ei = EXT4_I(inode); 821 822 /* 823 * Initialize owners and quota early so that we don't have to account 824 * for quota initialization worst case in standard inode creating 825 * transaction 826 */ 827 if (owner) { 828 inode->i_mode = mode; 829 i_uid_write(inode, owner[0]); 830 i_gid_write(inode, owner[1]); 831 } else if (test_opt(sb, GRPID)) { 832 inode->i_mode = mode; 833 inode->i_uid = current_fsuid(); 834 inode->i_gid = dir->i_gid; 835 } else 836 inode_init_owner(inode, dir, mode); 837 838 if (ext4_has_feature_project(sb) && 839 ext4_test_inode_flag(dir, EXT4_INODE_PROJINHERIT)) 840 ei->i_projid = EXT4_I(dir)->i_projid; 841 else 842 ei->i_projid = make_kprojid(&init_user_ns, EXT4_DEF_PROJID); 843 844 err = dquot_initialize(inode); 845 if (err) 846 goto out; 847 848 if (!goal) 849 goal = sbi->s_inode_goal; 850 851 if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) { 852 group = (goal - 1) / EXT4_INODES_PER_GROUP(sb); 853 ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb); 854 ret2 = 0; 855 goto got_group; 856 } 857 858 if (S_ISDIR(mode)) 859 ret2 = find_group_orlov(sb, dir, &group, mode, qstr); 860 else 861 ret2 = find_group_other(sb, dir, &group, mode); 862 863 got_group: 864 EXT4_I(dir)->i_last_alloc_group = group; 865 err = -ENOSPC; 866 if (ret2 == -1) 867 goto out; 868 869 /* 870 * Normally we will only go through one pass of this loop, 871 * unless we get unlucky and it turns out the group we selected 872 * had its last inode grabbed by someone else. 873 */ 874 for (i = 0; i < ngroups; i++, ino = 0) { 875 err = -EIO; 876 877 gdp = ext4_get_group_desc(sb, group, &group_desc_bh); 878 if (!gdp) 879 goto out; 880 881 /* 882 * Check free inodes count before loading bitmap. 883 */ 884 if (ext4_free_inodes_count(sb, gdp) == 0) 885 goto next_group; 886 887 grp = ext4_get_group_info(sb, group); 888 /* Skip groups with already-known suspicious inode tables */ 889 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) 890 goto next_group; 891 892 brelse(inode_bitmap_bh); 893 inode_bitmap_bh = ext4_read_inode_bitmap(sb, group); 894 /* Skip groups with suspicious inode tables */ 895 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp) || 896 IS_ERR(inode_bitmap_bh)) { 897 inode_bitmap_bh = NULL; 898 goto next_group; 899 } 900 901 repeat_in_this_group: 902 ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino); 903 if (!ret2) 904 goto next_group; 905 906 if (group == 0 && (ino + 1) < EXT4_FIRST_INO(sb)) { 907 ext4_error(sb, "reserved inode found cleared - " 908 "inode=%lu", ino + 1); 909 ext4_mark_group_bitmap_corrupted(sb, group, 910 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 911 goto next_group; 912 } 913 914 if (!handle) { 915 BUG_ON(nblocks <= 0); 916 handle = __ext4_journal_start_sb(dir->i_sb, line_no, 917 handle_type, nblocks, 918 0); 919 if (IS_ERR(handle)) { 920 err = PTR_ERR(handle); 921 ext4_std_error(sb, err); 922 goto out; 923 } 924 } 925 BUFFER_TRACE(inode_bitmap_bh, "get_write_access"); 926 err = ext4_journal_get_write_access(handle, inode_bitmap_bh); 927 if (err) { 928 ext4_std_error(sb, err); 929 goto out; 930 } 931 ext4_lock_group(sb, group); 932 ret2 = ext4_test_and_set_bit(ino, inode_bitmap_bh->b_data); 933 if (ret2) { 934 /* Someone already took the bit. Repeat the search 935 * with lock held. 936 */ 937 ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino); 938 if (ret2) { 939 ext4_set_bit(ino, inode_bitmap_bh->b_data); 940 ret2 = 0; 941 } else { 942 ret2 = 1; /* we didn't grab the inode */ 943 } 944 } 945 ext4_unlock_group(sb, group); 946 ino++; /* the inode bitmap is zero-based */ 947 if (!ret2) 948 goto got; /* we grabbed the inode! */ 949 950 if (ino < EXT4_INODES_PER_GROUP(sb)) 951 goto repeat_in_this_group; 952 next_group: 953 if (++group == ngroups) 954 group = 0; 955 } 956 err = -ENOSPC; 957 goto out; 958 959 got: 960 BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata"); 961 err = ext4_handle_dirty_metadata(handle, NULL, inode_bitmap_bh); 962 if (err) { 963 ext4_std_error(sb, err); 964 goto out; 965 } 966 967 BUFFER_TRACE(group_desc_bh, "get_write_access"); 968 err = ext4_journal_get_write_access(handle, group_desc_bh); 969 if (err) { 970 ext4_std_error(sb, err); 971 goto out; 972 } 973 974 /* We may have to initialize the block bitmap if it isn't already */ 975 if (ext4_has_group_desc_csum(sb) && 976 gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 977 struct buffer_head *block_bitmap_bh; 978 979 block_bitmap_bh = ext4_read_block_bitmap(sb, group); 980 if (IS_ERR(block_bitmap_bh)) { 981 err = PTR_ERR(block_bitmap_bh); 982 goto out; 983 } 984 BUFFER_TRACE(block_bitmap_bh, "get block bitmap access"); 985 err = ext4_journal_get_write_access(handle, block_bitmap_bh); 986 if (err) { 987 brelse(block_bitmap_bh); 988 ext4_std_error(sb, err); 989 goto out; 990 } 991 992 BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap"); 993 err = ext4_handle_dirty_metadata(handle, NULL, block_bitmap_bh); 994 995 /* recheck and clear flag under lock if we still need to */ 996 ext4_lock_group(sb, group); 997 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 998 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 999 ext4_free_group_clusters_set(sb, gdp, 1000 ext4_free_clusters_after_init(sb, group, gdp)); 1001 ext4_block_bitmap_csum_set(sb, group, gdp, 1002 block_bitmap_bh); 1003 ext4_group_desc_csum_set(sb, group, gdp); 1004 } 1005 ext4_unlock_group(sb, group); 1006 brelse(block_bitmap_bh); 1007 1008 if (err) { 1009 ext4_std_error(sb, err); 1010 goto out; 1011 } 1012 } 1013 1014 /* Update the relevant bg descriptor fields */ 1015 if (ext4_has_group_desc_csum(sb)) { 1016 int free; 1017 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 1018 1019 down_read(&grp->alloc_sem); /* protect vs itable lazyinit */ 1020 ext4_lock_group(sb, group); /* while we modify the bg desc */ 1021 free = EXT4_INODES_PER_GROUP(sb) - 1022 ext4_itable_unused_count(sb, gdp); 1023 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) { 1024 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT); 1025 free = 0; 1026 } 1027 /* 1028 * Check the relative inode number against the last used 1029 * relative inode number in this group. if it is greater 1030 * we need to update the bg_itable_unused count 1031 */ 1032 if (ino > free) 1033 ext4_itable_unused_set(sb, gdp, 1034 (EXT4_INODES_PER_GROUP(sb) - ino)); 1035 up_read(&grp->alloc_sem); 1036 } else { 1037 ext4_lock_group(sb, group); 1038 } 1039 1040 ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1); 1041 if (S_ISDIR(mode)) { 1042 ext4_used_dirs_set(sb, gdp, ext4_used_dirs_count(sb, gdp) + 1); 1043 if (sbi->s_log_groups_per_flex) { 1044 ext4_group_t f = ext4_flex_group(sbi, group); 1045 1046 atomic_inc(&sbi->s_flex_groups[f].used_dirs); 1047 } 1048 } 1049 if (ext4_has_group_desc_csum(sb)) { 1050 ext4_inode_bitmap_csum_set(sb, group, gdp, inode_bitmap_bh, 1051 EXT4_INODES_PER_GROUP(sb) / 8); 1052 ext4_group_desc_csum_set(sb, group, gdp); 1053 } 1054 ext4_unlock_group(sb, group); 1055 1056 BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata"); 1057 err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh); 1058 if (err) { 1059 ext4_std_error(sb, err); 1060 goto out; 1061 } 1062 1063 percpu_counter_dec(&sbi->s_freeinodes_counter); 1064 if (S_ISDIR(mode)) 1065 percpu_counter_inc(&sbi->s_dirs_counter); 1066 1067 if (sbi->s_log_groups_per_flex) { 1068 flex_group = ext4_flex_group(sbi, group); 1069 atomic_dec(&sbi->s_flex_groups[flex_group].free_inodes); 1070 } 1071 1072 inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb); 1073 /* This is the optimal IO size (for stat), not the fs block size */ 1074 inode->i_blocks = 0; 1075 inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode); 1076 ei->i_crtime = timespec64_to_timespec(inode->i_mtime); 1077 1078 memset(ei->i_data, 0, sizeof(ei->i_data)); 1079 ei->i_dir_start_lookup = 0; 1080 ei->i_disksize = 0; 1081 1082 /* Don't inherit extent flag from directory, amongst others. */ 1083 ei->i_flags = 1084 ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED); 1085 ei->i_flags |= i_flags; 1086 ei->i_file_acl = 0; 1087 ei->i_dtime = 0; 1088 ei->i_block_group = group; 1089 ei->i_last_alloc_group = ~0; 1090 1091 ext4_set_inode_flags(inode); 1092 if (IS_DIRSYNC(inode)) 1093 ext4_handle_sync(handle); 1094 if (insert_inode_locked(inode) < 0) { 1095 /* 1096 * Likely a bitmap corruption causing inode to be allocated 1097 * twice. 1098 */ 1099 err = -EIO; 1100 ext4_error(sb, "failed to insert inode %lu: doubly allocated?", 1101 inode->i_ino); 1102 ext4_mark_group_bitmap_corrupted(sb, group, 1103 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 1104 goto out; 1105 } 1106 inode->i_generation = prandom_u32(); 1107 1108 /* Precompute checksum seed for inode metadata */ 1109 if (ext4_has_metadata_csum(sb)) { 1110 __u32 csum; 1111 __le32 inum = cpu_to_le32(inode->i_ino); 1112 __le32 gen = cpu_to_le32(inode->i_generation); 1113 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 1114 sizeof(inum)); 1115 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 1116 sizeof(gen)); 1117 } 1118 1119 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 1120 ext4_set_inode_state(inode, EXT4_STATE_NEW); 1121 1122 ei->i_extra_isize = sbi->s_want_extra_isize; 1123 ei->i_inline_off = 0; 1124 if (ext4_has_feature_inline_data(sb)) 1125 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); 1126 ret = inode; 1127 err = dquot_alloc_inode(inode); 1128 if (err) 1129 goto fail_drop; 1130 1131 /* 1132 * Since the encryption xattr will always be unique, create it first so 1133 * that it's less likely to end up in an external xattr block and 1134 * prevent its deduplication. 1135 */ 1136 if (encrypt) { 1137 err = fscrypt_inherit_context(dir, inode, handle, true); 1138 if (err) 1139 goto fail_free_drop; 1140 } 1141 1142 if (!(ei->i_flags & EXT4_EA_INODE_FL)) { 1143 err = ext4_init_acl(handle, inode, dir); 1144 if (err) 1145 goto fail_free_drop; 1146 1147 err = ext4_init_security(handle, inode, dir, qstr); 1148 if (err) 1149 goto fail_free_drop; 1150 } 1151 1152 if (ext4_has_feature_extents(sb)) { 1153 /* set extent flag only for directory, file and normal symlink*/ 1154 if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) { 1155 ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS); 1156 ext4_ext_tree_init(handle, inode); 1157 } 1158 } 1159 1160 if (ext4_handle_valid(handle)) { 1161 ei->i_sync_tid = handle->h_transaction->t_tid; 1162 ei->i_datasync_tid = handle->h_transaction->t_tid; 1163 } 1164 1165 err = ext4_mark_inode_dirty(handle, inode); 1166 if (err) { 1167 ext4_std_error(sb, err); 1168 goto fail_free_drop; 1169 } 1170 1171 ext4_debug("allocating inode %lu\n", inode->i_ino); 1172 trace_ext4_allocate_inode(inode, dir, mode); 1173 brelse(inode_bitmap_bh); 1174 return ret; 1175 1176 fail_free_drop: 1177 dquot_free_inode(inode); 1178 fail_drop: 1179 clear_nlink(inode); 1180 unlock_new_inode(inode); 1181 out: 1182 dquot_drop(inode); 1183 inode->i_flags |= S_NOQUOTA; 1184 iput(inode); 1185 brelse(inode_bitmap_bh); 1186 return ERR_PTR(err); 1187 } 1188 1189 /* Verify that we are loading a valid orphan from disk */ 1190 struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino) 1191 { 1192 unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count); 1193 ext4_group_t block_group; 1194 int bit; 1195 struct buffer_head *bitmap_bh = NULL; 1196 struct inode *inode = NULL; 1197 int err = -EFSCORRUPTED; 1198 1199 if (ino < EXT4_FIRST_INO(sb) || ino > max_ino) 1200 goto bad_orphan; 1201 1202 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 1203 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb); 1204 bitmap_bh = ext4_read_inode_bitmap(sb, block_group); 1205 if (IS_ERR(bitmap_bh)) 1206 return (struct inode *) bitmap_bh; 1207 1208 /* Having the inode bit set should be a 100% indicator that this 1209 * is a valid orphan (no e2fsck run on fs). Orphans also include 1210 * inodes that were being truncated, so we can't check i_nlink==0. 1211 */ 1212 if (!ext4_test_bit(bit, bitmap_bh->b_data)) 1213 goto bad_orphan; 1214 1215 inode = ext4_iget(sb, ino); 1216 if (IS_ERR(inode)) { 1217 err = PTR_ERR(inode); 1218 ext4_error(sb, "couldn't read orphan inode %lu (err %d)", 1219 ino, err); 1220 return inode; 1221 } 1222 1223 /* 1224 * If the orphans has i_nlinks > 0 then it should be able to 1225 * be truncated, otherwise it won't be removed from the orphan 1226 * list during processing and an infinite loop will result. 1227 * Similarly, it must not be a bad inode. 1228 */ 1229 if ((inode->i_nlink && !ext4_can_truncate(inode)) || 1230 is_bad_inode(inode)) 1231 goto bad_orphan; 1232 1233 if (NEXT_ORPHAN(inode) > max_ino) 1234 goto bad_orphan; 1235 brelse(bitmap_bh); 1236 return inode; 1237 1238 bad_orphan: 1239 ext4_error(sb, "bad orphan inode %lu", ino); 1240 if (bitmap_bh) 1241 printk(KERN_ERR "ext4_test_bit(bit=%d, block=%llu) = %d\n", 1242 bit, (unsigned long long)bitmap_bh->b_blocknr, 1243 ext4_test_bit(bit, bitmap_bh->b_data)); 1244 if (inode) { 1245 printk(KERN_ERR "is_bad_inode(inode)=%d\n", 1246 is_bad_inode(inode)); 1247 printk(KERN_ERR "NEXT_ORPHAN(inode)=%u\n", 1248 NEXT_ORPHAN(inode)); 1249 printk(KERN_ERR "max_ino=%lu\n", max_ino); 1250 printk(KERN_ERR "i_nlink=%u\n", inode->i_nlink); 1251 /* Avoid freeing blocks if we got a bad deleted inode */ 1252 if (inode->i_nlink == 0) 1253 inode->i_blocks = 0; 1254 iput(inode); 1255 } 1256 brelse(bitmap_bh); 1257 return ERR_PTR(err); 1258 } 1259 1260 unsigned long ext4_count_free_inodes(struct super_block *sb) 1261 { 1262 unsigned long desc_count; 1263 struct ext4_group_desc *gdp; 1264 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 1265 #ifdef EXT4FS_DEBUG 1266 struct ext4_super_block *es; 1267 unsigned long bitmap_count, x; 1268 struct buffer_head *bitmap_bh = NULL; 1269 1270 es = EXT4_SB(sb)->s_es; 1271 desc_count = 0; 1272 bitmap_count = 0; 1273 gdp = NULL; 1274 for (i = 0; i < ngroups; i++) { 1275 gdp = ext4_get_group_desc(sb, i, NULL); 1276 if (!gdp) 1277 continue; 1278 desc_count += ext4_free_inodes_count(sb, gdp); 1279 brelse(bitmap_bh); 1280 bitmap_bh = ext4_read_inode_bitmap(sb, i); 1281 if (IS_ERR(bitmap_bh)) { 1282 bitmap_bh = NULL; 1283 continue; 1284 } 1285 1286 x = ext4_count_free(bitmap_bh->b_data, 1287 EXT4_INODES_PER_GROUP(sb) / 8); 1288 printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n", 1289 (unsigned long) i, ext4_free_inodes_count(sb, gdp), x); 1290 bitmap_count += x; 1291 } 1292 brelse(bitmap_bh); 1293 printk(KERN_DEBUG "ext4_count_free_inodes: " 1294 "stored = %u, computed = %lu, %lu\n", 1295 le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count); 1296 return desc_count; 1297 #else 1298 desc_count = 0; 1299 for (i = 0; i < ngroups; i++) { 1300 gdp = ext4_get_group_desc(sb, i, NULL); 1301 if (!gdp) 1302 continue; 1303 desc_count += ext4_free_inodes_count(sb, gdp); 1304 cond_resched(); 1305 } 1306 return desc_count; 1307 #endif 1308 } 1309 1310 /* Called at mount-time, super-block is locked */ 1311 unsigned long ext4_count_dirs(struct super_block * sb) 1312 { 1313 unsigned long count = 0; 1314 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 1315 1316 for (i = 0; i < ngroups; i++) { 1317 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 1318 if (!gdp) 1319 continue; 1320 count += ext4_used_dirs_count(sb, gdp); 1321 } 1322 return count; 1323 } 1324 1325 /* 1326 * Zeroes not yet zeroed inode table - just write zeroes through the whole 1327 * inode table. Must be called without any spinlock held. The only place 1328 * where it is called from on active part of filesystem is ext4lazyinit 1329 * thread, so we do not need any special locks, however we have to prevent 1330 * inode allocation from the current group, so we take alloc_sem lock, to 1331 * block ext4_new_inode() until we are finished. 1332 */ 1333 int ext4_init_inode_table(struct super_block *sb, ext4_group_t group, 1334 int barrier) 1335 { 1336 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 1337 struct ext4_sb_info *sbi = EXT4_SB(sb); 1338 struct ext4_group_desc *gdp = NULL; 1339 struct buffer_head *group_desc_bh; 1340 handle_t *handle; 1341 ext4_fsblk_t blk; 1342 int num, ret = 0, used_blks = 0; 1343 1344 /* This should not happen, but just to be sure check this */ 1345 if (sb_rdonly(sb)) { 1346 ret = 1; 1347 goto out; 1348 } 1349 1350 gdp = ext4_get_group_desc(sb, group, &group_desc_bh); 1351 if (!gdp) 1352 goto out; 1353 1354 /* 1355 * We do not need to lock this, because we are the only one 1356 * handling this flag. 1357 */ 1358 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)) 1359 goto out; 1360 1361 handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1); 1362 if (IS_ERR(handle)) { 1363 ret = PTR_ERR(handle); 1364 goto out; 1365 } 1366 1367 down_write(&grp->alloc_sem); 1368 /* 1369 * If inode bitmap was already initialized there may be some 1370 * used inodes so we need to skip blocks with used inodes in 1371 * inode table. 1372 */ 1373 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT))) 1374 used_blks = DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb) - 1375 ext4_itable_unused_count(sb, gdp)), 1376 sbi->s_inodes_per_block); 1377 1378 if ((used_blks < 0) || (used_blks > sbi->s_itb_per_group)) { 1379 ext4_error(sb, "Something is wrong with group %u: " 1380 "used itable blocks: %d; " 1381 "itable unused count: %u", 1382 group, used_blks, 1383 ext4_itable_unused_count(sb, gdp)); 1384 ret = 1; 1385 goto err_out; 1386 } 1387 1388 blk = ext4_inode_table(sb, gdp) + used_blks; 1389 num = sbi->s_itb_per_group - used_blks; 1390 1391 BUFFER_TRACE(group_desc_bh, "get_write_access"); 1392 ret = ext4_journal_get_write_access(handle, 1393 group_desc_bh); 1394 if (ret) 1395 goto err_out; 1396 1397 /* 1398 * Skip zeroout if the inode table is full. But we set the ZEROED 1399 * flag anyway, because obviously, when it is full it does not need 1400 * further zeroing. 1401 */ 1402 if (unlikely(num == 0)) 1403 goto skip_zeroout; 1404 1405 ext4_debug("going to zero out inode table in group %d\n", 1406 group); 1407 ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS); 1408 if (ret < 0) 1409 goto err_out; 1410 if (barrier) 1411 blkdev_issue_flush(sb->s_bdev, GFP_NOFS, NULL); 1412 1413 skip_zeroout: 1414 ext4_lock_group(sb, group); 1415 gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED); 1416 ext4_group_desc_csum_set(sb, group, gdp); 1417 ext4_unlock_group(sb, group); 1418 1419 BUFFER_TRACE(group_desc_bh, 1420 "call ext4_handle_dirty_metadata"); 1421 ret = ext4_handle_dirty_metadata(handle, NULL, 1422 group_desc_bh); 1423 1424 err_out: 1425 up_write(&grp->alloc_sem); 1426 ext4_journal_stop(handle); 1427 out: 1428 return ret; 1429 } 1430