1 /* 2 * linux/fs/ext4/ialloc.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * BSD ufs-inspired inode and directory allocation by 10 * Stephen Tweedie (sct@redhat.com), 1993 11 * Big-endian to little-endian byte-swapping/bitmaps by 12 * David S. Miller (davem@caip.rutgers.edu), 1995 13 */ 14 15 #include <linux/time.h> 16 #include <linux/fs.h> 17 #include <linux/jbd2.h> 18 #include <linux/stat.h> 19 #include <linux/string.h> 20 #include <linux/quotaops.h> 21 #include <linux/buffer_head.h> 22 #include <linux/random.h> 23 #include <linux/bitops.h> 24 #include <linux/blkdev.h> 25 #include <asm/byteorder.h> 26 #include "ext4.h" 27 #include "ext4_jbd2.h" 28 #include "xattr.h" 29 #include "acl.h" 30 31 /* 32 * ialloc.c contains the inodes allocation and deallocation routines 33 */ 34 35 /* 36 * The free inodes are managed by bitmaps. A file system contains several 37 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap 38 * block for inodes, N blocks for the inode table and data blocks. 39 * 40 * The file system contains group descriptors which are located after the 41 * super block. Each descriptor contains the number of the bitmap block and 42 * the free blocks count in the block. 43 */ 44 45 /* 46 * To avoid calling the atomic setbit hundreds or thousands of times, we only 47 * need to use it within a single byte (to ensure we get endianness right). 48 * We can use memset for the rest of the bitmap as there are no other users. 49 */ 50 void mark_bitmap_end(int start_bit, int end_bit, char *bitmap) 51 { 52 int i; 53 54 if (start_bit >= end_bit) 55 return; 56 57 ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit); 58 for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++) 59 ext4_set_bit(i, bitmap); 60 if (i < end_bit) 61 memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3); 62 } 63 64 /* Initializes an uninitialized inode bitmap */ 65 unsigned ext4_init_inode_bitmap(struct super_block *sb, struct buffer_head *bh, 66 ext4_group_t block_group, 67 struct ext4_group_desc *gdp) 68 { 69 struct ext4_sb_info *sbi = EXT4_SB(sb); 70 71 J_ASSERT_BH(bh, buffer_locked(bh)); 72 73 /* If checksum is bad mark all blocks and inodes use to prevent 74 * allocation, essentially implementing a per-group read-only flag. */ 75 if (!ext4_group_desc_csum_verify(sbi, block_group, gdp)) { 76 ext4_error(sb, __func__, "Checksum bad for group %u", 77 block_group); 78 ext4_free_blks_set(sb, gdp, 0); 79 ext4_free_inodes_set(sb, gdp, 0); 80 ext4_itable_unused_set(sb, gdp, 0); 81 memset(bh->b_data, 0xff, sb->s_blocksize); 82 return 0; 83 } 84 85 memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8); 86 mark_bitmap_end(EXT4_INODES_PER_GROUP(sb), sb->s_blocksize * 8, 87 bh->b_data); 88 89 return EXT4_INODES_PER_GROUP(sb); 90 } 91 92 /* 93 * Read the inode allocation bitmap for a given block_group, reading 94 * into the specified slot in the superblock's bitmap cache. 95 * 96 * Return buffer_head of bitmap on success or NULL. 97 */ 98 static struct buffer_head * 99 ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group) 100 { 101 struct ext4_group_desc *desc; 102 struct buffer_head *bh = NULL; 103 ext4_fsblk_t bitmap_blk; 104 105 desc = ext4_get_group_desc(sb, block_group, NULL); 106 if (!desc) 107 return NULL; 108 bitmap_blk = ext4_inode_bitmap(sb, desc); 109 bh = sb_getblk(sb, bitmap_blk); 110 if (unlikely(!bh)) { 111 ext4_error(sb, __func__, 112 "Cannot read inode bitmap - " 113 "block_group = %u, inode_bitmap = %llu", 114 block_group, bitmap_blk); 115 return NULL; 116 } 117 if (bitmap_uptodate(bh)) 118 return bh; 119 120 lock_buffer(bh); 121 if (bitmap_uptodate(bh)) { 122 unlock_buffer(bh); 123 return bh; 124 } 125 ext4_lock_group(sb, block_group); 126 if (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) { 127 ext4_init_inode_bitmap(sb, bh, block_group, desc); 128 set_bitmap_uptodate(bh); 129 set_buffer_uptodate(bh); 130 ext4_unlock_group(sb, block_group); 131 unlock_buffer(bh); 132 return bh; 133 } 134 ext4_unlock_group(sb, block_group); 135 if (buffer_uptodate(bh)) { 136 /* 137 * if not uninit if bh is uptodate, 138 * bitmap is also uptodate 139 */ 140 set_bitmap_uptodate(bh); 141 unlock_buffer(bh); 142 return bh; 143 } 144 /* 145 * submit the buffer_head for read. We can 146 * safely mark the bitmap as uptodate now. 147 * We do it here so the bitmap uptodate bit 148 * get set with buffer lock held. 149 */ 150 set_bitmap_uptodate(bh); 151 if (bh_submit_read(bh) < 0) { 152 put_bh(bh); 153 ext4_error(sb, __func__, 154 "Cannot read inode bitmap - " 155 "block_group = %u, inode_bitmap = %llu", 156 block_group, bitmap_blk); 157 return NULL; 158 } 159 return bh; 160 } 161 162 /* 163 * NOTE! When we get the inode, we're the only people 164 * that have access to it, and as such there are no 165 * race conditions we have to worry about. The inode 166 * is not on the hash-lists, and it cannot be reached 167 * through the filesystem because the directory entry 168 * has been deleted earlier. 169 * 170 * HOWEVER: we must make sure that we get no aliases, 171 * which means that we have to call "clear_inode()" 172 * _before_ we mark the inode not in use in the inode 173 * bitmaps. Otherwise a newly created file might use 174 * the same inode number (not actually the same pointer 175 * though), and then we'd have two inodes sharing the 176 * same inode number and space on the harddisk. 177 */ 178 void ext4_free_inode(handle_t *handle, struct inode *inode) 179 { 180 struct super_block *sb = inode->i_sb; 181 int is_directory; 182 unsigned long ino; 183 struct buffer_head *bitmap_bh = NULL; 184 struct buffer_head *bh2; 185 ext4_group_t block_group; 186 unsigned long bit; 187 struct ext4_group_desc *gdp; 188 struct ext4_super_block *es; 189 struct ext4_sb_info *sbi; 190 int fatal = 0, err, count, cleared; 191 192 if (atomic_read(&inode->i_count) > 1) { 193 printk(KERN_ERR "ext4_free_inode: inode has count=%d\n", 194 atomic_read(&inode->i_count)); 195 return; 196 } 197 if (inode->i_nlink) { 198 printk(KERN_ERR "ext4_free_inode: inode has nlink=%d\n", 199 inode->i_nlink); 200 return; 201 } 202 if (!sb) { 203 printk(KERN_ERR "ext4_free_inode: inode on " 204 "nonexistent device\n"); 205 return; 206 } 207 sbi = EXT4_SB(sb); 208 209 ino = inode->i_ino; 210 ext4_debug("freeing inode %lu\n", ino); 211 trace_mark(ext4_free_inode, 212 "dev %s ino %lu mode %d uid %lu gid %lu bocks %llu", 213 sb->s_id, inode->i_ino, inode->i_mode, 214 (unsigned long) inode->i_uid, (unsigned long) inode->i_gid, 215 (unsigned long long) inode->i_blocks); 216 217 /* 218 * Note: we must free any quota before locking the superblock, 219 * as writing the quota to disk may need the lock as well. 220 */ 221 vfs_dq_init(inode); 222 ext4_xattr_delete_inode(handle, inode); 223 vfs_dq_free_inode(inode); 224 vfs_dq_drop(inode); 225 226 is_directory = S_ISDIR(inode->i_mode); 227 228 /* Do this BEFORE marking the inode not in use or returning an error */ 229 clear_inode(inode); 230 231 es = EXT4_SB(sb)->s_es; 232 if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) { 233 ext4_error(sb, "ext4_free_inode", 234 "reserved or nonexistent inode %lu", ino); 235 goto error_return; 236 } 237 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 238 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb); 239 bitmap_bh = ext4_read_inode_bitmap(sb, block_group); 240 if (!bitmap_bh) 241 goto error_return; 242 243 BUFFER_TRACE(bitmap_bh, "get_write_access"); 244 fatal = ext4_journal_get_write_access(handle, bitmap_bh); 245 if (fatal) 246 goto error_return; 247 248 /* Ok, now we can actually update the inode bitmaps.. */ 249 cleared = ext4_clear_bit_atomic(ext4_group_lock_ptr(sb, block_group), 250 bit, bitmap_bh->b_data); 251 if (!cleared) 252 ext4_error(sb, "ext4_free_inode", 253 "bit already cleared for inode %lu", ino); 254 else { 255 gdp = ext4_get_group_desc(sb, block_group, &bh2); 256 257 BUFFER_TRACE(bh2, "get_write_access"); 258 fatal = ext4_journal_get_write_access(handle, bh2); 259 if (fatal) goto error_return; 260 261 if (gdp) { 262 ext4_lock_group(sb, block_group); 263 count = ext4_free_inodes_count(sb, gdp) + 1; 264 ext4_free_inodes_set(sb, gdp, count); 265 if (is_directory) { 266 count = ext4_used_dirs_count(sb, gdp) - 1; 267 ext4_used_dirs_set(sb, gdp, count); 268 if (sbi->s_log_groups_per_flex) { 269 ext4_group_t f; 270 271 f = ext4_flex_group(sbi, block_group); 272 atomic_dec(&sbi->s_flex_groups[f].free_inodes); 273 } 274 275 } 276 gdp->bg_checksum = ext4_group_desc_csum(sbi, 277 block_group, gdp); 278 ext4_unlock_group(sb, block_group); 279 percpu_counter_inc(&sbi->s_freeinodes_counter); 280 if (is_directory) 281 percpu_counter_dec(&sbi->s_dirs_counter); 282 283 if (sbi->s_log_groups_per_flex) { 284 ext4_group_t f; 285 286 f = ext4_flex_group(sbi, block_group); 287 atomic_inc(&sbi->s_flex_groups[f].free_inodes); 288 } 289 } 290 BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata"); 291 err = ext4_handle_dirty_metadata(handle, NULL, bh2); 292 if (!fatal) fatal = err; 293 } 294 BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata"); 295 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 296 if (!fatal) 297 fatal = err; 298 sb->s_dirt = 1; 299 error_return: 300 brelse(bitmap_bh); 301 ext4_std_error(sb, fatal); 302 } 303 304 /* 305 * There are two policies for allocating an inode. If the new inode is 306 * a directory, then a forward search is made for a block group with both 307 * free space and a low directory-to-inode ratio; if that fails, then of 308 * the groups with above-average free space, that group with the fewest 309 * directories already is chosen. 310 * 311 * For other inodes, search forward from the parent directory\'s block 312 * group to find a free inode. 313 */ 314 static int find_group_dir(struct super_block *sb, struct inode *parent, 315 ext4_group_t *best_group) 316 { 317 ext4_group_t ngroups = ext4_get_groups_count(sb); 318 unsigned int freei, avefreei; 319 struct ext4_group_desc *desc, *best_desc = NULL; 320 ext4_group_t group; 321 int ret = -1; 322 323 freei = percpu_counter_read_positive(&EXT4_SB(sb)->s_freeinodes_counter); 324 avefreei = freei / ngroups; 325 326 for (group = 0; group < ngroups; group++) { 327 desc = ext4_get_group_desc(sb, group, NULL); 328 if (!desc || !ext4_free_inodes_count(sb, desc)) 329 continue; 330 if (ext4_free_inodes_count(sb, desc) < avefreei) 331 continue; 332 if (!best_desc || 333 (ext4_free_blks_count(sb, desc) > 334 ext4_free_blks_count(sb, best_desc))) { 335 *best_group = group; 336 best_desc = desc; 337 ret = 0; 338 } 339 } 340 return ret; 341 } 342 343 #define free_block_ratio 10 344 345 static int find_group_flex(struct super_block *sb, struct inode *parent, 346 ext4_group_t *best_group) 347 { 348 struct ext4_sb_info *sbi = EXT4_SB(sb); 349 struct ext4_group_desc *desc; 350 struct flex_groups *flex_group = sbi->s_flex_groups; 351 ext4_group_t parent_group = EXT4_I(parent)->i_block_group; 352 ext4_group_t parent_fbg_group = ext4_flex_group(sbi, parent_group); 353 ext4_group_t ngroups = ext4_get_groups_count(sb); 354 int flex_size = ext4_flex_bg_size(sbi); 355 ext4_group_t best_flex = parent_fbg_group; 356 int blocks_per_flex = sbi->s_blocks_per_group * flex_size; 357 int flexbg_free_blocks; 358 int flex_freeb_ratio; 359 ext4_group_t n_fbg_groups; 360 ext4_group_t i; 361 362 n_fbg_groups = (ngroups + flex_size - 1) >> 363 sbi->s_log_groups_per_flex; 364 365 find_close_to_parent: 366 flexbg_free_blocks = atomic_read(&flex_group[best_flex].free_blocks); 367 flex_freeb_ratio = flexbg_free_blocks * 100 / blocks_per_flex; 368 if (atomic_read(&flex_group[best_flex].free_inodes) && 369 flex_freeb_ratio > free_block_ratio) 370 goto found_flexbg; 371 372 if (best_flex && best_flex == parent_fbg_group) { 373 best_flex--; 374 goto find_close_to_parent; 375 } 376 377 for (i = 0; i < n_fbg_groups; i++) { 378 if (i == parent_fbg_group || i == parent_fbg_group - 1) 379 continue; 380 381 flexbg_free_blocks = atomic_read(&flex_group[i].free_blocks); 382 flex_freeb_ratio = flexbg_free_blocks * 100 / blocks_per_flex; 383 384 if (flex_freeb_ratio > free_block_ratio && 385 (atomic_read(&flex_group[i].free_inodes))) { 386 best_flex = i; 387 goto found_flexbg; 388 } 389 390 if ((atomic_read(&flex_group[best_flex].free_inodes) == 0) || 391 ((atomic_read(&flex_group[i].free_blocks) > 392 atomic_read(&flex_group[best_flex].free_blocks)) && 393 atomic_read(&flex_group[i].free_inodes))) 394 best_flex = i; 395 } 396 397 if (!atomic_read(&flex_group[best_flex].free_inodes) || 398 !atomic_read(&flex_group[best_flex].free_blocks)) 399 return -1; 400 401 found_flexbg: 402 for (i = best_flex * flex_size; i < ngroups && 403 i < (best_flex + 1) * flex_size; i++) { 404 desc = ext4_get_group_desc(sb, i, NULL); 405 if (ext4_free_inodes_count(sb, desc)) { 406 *best_group = i; 407 goto out; 408 } 409 } 410 411 return -1; 412 out: 413 return 0; 414 } 415 416 struct orlov_stats { 417 __u32 free_inodes; 418 __u32 free_blocks; 419 __u32 used_dirs; 420 }; 421 422 /* 423 * Helper function for Orlov's allocator; returns critical information 424 * for a particular block group or flex_bg. If flex_size is 1, then g 425 * is a block group number; otherwise it is flex_bg number. 426 */ 427 void get_orlov_stats(struct super_block *sb, ext4_group_t g, 428 int flex_size, struct orlov_stats *stats) 429 { 430 struct ext4_group_desc *desc; 431 struct flex_groups *flex_group = EXT4_SB(sb)->s_flex_groups; 432 433 if (flex_size > 1) { 434 stats->free_inodes = atomic_read(&flex_group[g].free_inodes); 435 stats->free_blocks = atomic_read(&flex_group[g].free_blocks); 436 stats->used_dirs = atomic_read(&flex_group[g].used_dirs); 437 return; 438 } 439 440 desc = ext4_get_group_desc(sb, g, NULL); 441 if (desc) { 442 stats->free_inodes = ext4_free_inodes_count(sb, desc); 443 stats->free_blocks = ext4_free_blks_count(sb, desc); 444 stats->used_dirs = ext4_used_dirs_count(sb, desc); 445 } else { 446 stats->free_inodes = 0; 447 stats->free_blocks = 0; 448 stats->used_dirs = 0; 449 } 450 } 451 452 /* 453 * Orlov's allocator for directories. 454 * 455 * We always try to spread first-level directories. 456 * 457 * If there are blockgroups with both free inodes and free blocks counts 458 * not worse than average we return one with smallest directory count. 459 * Otherwise we simply return a random group. 460 * 461 * For the rest rules look so: 462 * 463 * It's OK to put directory into a group unless 464 * it has too many directories already (max_dirs) or 465 * it has too few free inodes left (min_inodes) or 466 * it has too few free blocks left (min_blocks) or 467 * Parent's group is preferred, if it doesn't satisfy these 468 * conditions we search cyclically through the rest. If none 469 * of the groups look good we just look for a group with more 470 * free inodes than average (starting at parent's group). 471 */ 472 473 static int find_group_orlov(struct super_block *sb, struct inode *parent, 474 ext4_group_t *group, int mode) 475 { 476 ext4_group_t parent_group = EXT4_I(parent)->i_block_group; 477 struct ext4_sb_info *sbi = EXT4_SB(sb); 478 ext4_group_t real_ngroups = ext4_get_groups_count(sb); 479 int inodes_per_group = EXT4_INODES_PER_GROUP(sb); 480 unsigned int freei, avefreei; 481 ext4_fsblk_t freeb, avefreeb; 482 unsigned int ndirs; 483 int max_dirs, min_inodes; 484 ext4_grpblk_t min_blocks; 485 ext4_group_t i, grp, g, ngroups; 486 struct ext4_group_desc *desc; 487 struct orlov_stats stats; 488 int flex_size = ext4_flex_bg_size(sbi); 489 490 ngroups = real_ngroups; 491 if (flex_size > 1) { 492 ngroups = (real_ngroups + flex_size - 1) >> 493 sbi->s_log_groups_per_flex; 494 parent_group >>= sbi->s_log_groups_per_flex; 495 } 496 497 freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter); 498 avefreei = freei / ngroups; 499 freeb = percpu_counter_read_positive(&sbi->s_freeblocks_counter); 500 avefreeb = freeb; 501 do_div(avefreeb, ngroups); 502 ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter); 503 504 if (S_ISDIR(mode) && 505 ((parent == sb->s_root->d_inode) || 506 (EXT4_I(parent)->i_flags & EXT4_TOPDIR_FL))) { 507 int best_ndir = inodes_per_group; 508 int ret = -1; 509 510 get_random_bytes(&grp, sizeof(grp)); 511 parent_group = (unsigned)grp % ngroups; 512 for (i = 0; i < ngroups; i++) { 513 g = (parent_group + i) % ngroups; 514 get_orlov_stats(sb, g, flex_size, &stats); 515 if (!stats.free_inodes) 516 continue; 517 if (stats.used_dirs >= best_ndir) 518 continue; 519 if (stats.free_inodes < avefreei) 520 continue; 521 if (stats.free_blocks < avefreeb) 522 continue; 523 grp = g; 524 ret = 0; 525 best_ndir = stats.used_dirs; 526 } 527 if (ret) 528 goto fallback; 529 found_flex_bg: 530 if (flex_size == 1) { 531 *group = grp; 532 return 0; 533 } 534 535 /* 536 * We pack inodes at the beginning of the flexgroup's 537 * inode tables. Block allocation decisions will do 538 * something similar, although regular files will 539 * start at 2nd block group of the flexgroup. See 540 * ext4_ext_find_goal() and ext4_find_near(). 541 */ 542 grp *= flex_size; 543 for (i = 0; i < flex_size; i++) { 544 if (grp+i >= real_ngroups) 545 break; 546 desc = ext4_get_group_desc(sb, grp+i, NULL); 547 if (desc && ext4_free_inodes_count(sb, desc)) { 548 *group = grp+i; 549 return 0; 550 } 551 } 552 goto fallback; 553 } 554 555 max_dirs = ndirs / ngroups + inodes_per_group / 16; 556 min_inodes = avefreei - inodes_per_group*flex_size / 4; 557 if (min_inodes < 1) 558 min_inodes = 1; 559 min_blocks = avefreeb - EXT4_BLOCKS_PER_GROUP(sb)*flex_size / 4; 560 561 /* 562 * Start looking in the flex group where we last allocated an 563 * inode for this parent directory 564 */ 565 if (EXT4_I(parent)->i_last_alloc_group != ~0) { 566 parent_group = EXT4_I(parent)->i_last_alloc_group; 567 if (flex_size > 1) 568 parent_group >>= sbi->s_log_groups_per_flex; 569 } 570 571 for (i = 0; i < ngroups; i++) { 572 grp = (parent_group + i) % ngroups; 573 get_orlov_stats(sb, grp, flex_size, &stats); 574 if (stats.used_dirs >= max_dirs) 575 continue; 576 if (stats.free_inodes < min_inodes) 577 continue; 578 if (stats.free_blocks < min_blocks) 579 continue; 580 goto found_flex_bg; 581 } 582 583 fallback: 584 ngroups = real_ngroups; 585 avefreei = freei / ngroups; 586 fallback_retry: 587 parent_group = EXT4_I(parent)->i_block_group; 588 for (i = 0; i < ngroups; i++) { 589 grp = (parent_group + i) % ngroups; 590 desc = ext4_get_group_desc(sb, grp, NULL); 591 if (desc && ext4_free_inodes_count(sb, desc) && 592 ext4_free_inodes_count(sb, desc) >= avefreei) { 593 *group = grp; 594 return 0; 595 } 596 } 597 598 if (avefreei) { 599 /* 600 * The free-inodes counter is approximate, and for really small 601 * filesystems the above test can fail to find any blockgroups 602 */ 603 avefreei = 0; 604 goto fallback_retry; 605 } 606 607 return -1; 608 } 609 610 static int find_group_other(struct super_block *sb, struct inode *parent, 611 ext4_group_t *group, int mode) 612 { 613 ext4_group_t parent_group = EXT4_I(parent)->i_block_group; 614 ext4_group_t i, last, ngroups = ext4_get_groups_count(sb); 615 struct ext4_group_desc *desc; 616 int flex_size = ext4_flex_bg_size(EXT4_SB(sb)); 617 618 /* 619 * Try to place the inode is the same flex group as its 620 * parent. If we can't find space, use the Orlov algorithm to 621 * find another flex group, and store that information in the 622 * parent directory's inode information so that use that flex 623 * group for future allocations. 624 */ 625 if (flex_size > 1) { 626 int retry = 0; 627 628 try_again: 629 parent_group &= ~(flex_size-1); 630 last = parent_group + flex_size; 631 if (last > ngroups) 632 last = ngroups; 633 for (i = parent_group; i < last; i++) { 634 desc = ext4_get_group_desc(sb, i, NULL); 635 if (desc && ext4_free_inodes_count(sb, desc)) { 636 *group = i; 637 return 0; 638 } 639 } 640 if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) { 641 retry = 1; 642 parent_group = EXT4_I(parent)->i_last_alloc_group; 643 goto try_again; 644 } 645 /* 646 * If this didn't work, use the Orlov search algorithm 647 * to find a new flex group; we pass in the mode to 648 * avoid the topdir algorithms. 649 */ 650 *group = parent_group + flex_size; 651 if (*group > ngroups) 652 *group = 0; 653 return find_group_orlov(sb, parent, group, mode); 654 } 655 656 /* 657 * Try to place the inode in its parent directory 658 */ 659 *group = parent_group; 660 desc = ext4_get_group_desc(sb, *group, NULL); 661 if (desc && ext4_free_inodes_count(sb, desc) && 662 ext4_free_blks_count(sb, desc)) 663 return 0; 664 665 /* 666 * We're going to place this inode in a different blockgroup from its 667 * parent. We want to cause files in a common directory to all land in 668 * the same blockgroup. But we want files which are in a different 669 * directory which shares a blockgroup with our parent to land in a 670 * different blockgroup. 671 * 672 * So add our directory's i_ino into the starting point for the hash. 673 */ 674 *group = (*group + parent->i_ino) % ngroups; 675 676 /* 677 * Use a quadratic hash to find a group with a free inode and some free 678 * blocks. 679 */ 680 for (i = 1; i < ngroups; i <<= 1) { 681 *group += i; 682 if (*group >= ngroups) 683 *group -= ngroups; 684 desc = ext4_get_group_desc(sb, *group, NULL); 685 if (desc && ext4_free_inodes_count(sb, desc) && 686 ext4_free_blks_count(sb, desc)) 687 return 0; 688 } 689 690 /* 691 * That failed: try linear search for a free inode, even if that group 692 * has no free blocks. 693 */ 694 *group = parent_group; 695 for (i = 0; i < ngroups; i++) { 696 if (++*group >= ngroups) 697 *group = 0; 698 desc = ext4_get_group_desc(sb, *group, NULL); 699 if (desc && ext4_free_inodes_count(sb, desc)) 700 return 0; 701 } 702 703 return -1; 704 } 705 706 /* 707 * claim the inode from the inode bitmap. If the group 708 * is uninit we need to take the groups's ext4_group_lock 709 * and clear the uninit flag. The inode bitmap update 710 * and group desc uninit flag clear should be done 711 * after holding ext4_group_lock so that ext4_read_inode_bitmap 712 * doesn't race with the ext4_claim_inode 713 */ 714 static int ext4_claim_inode(struct super_block *sb, 715 struct buffer_head *inode_bitmap_bh, 716 unsigned long ino, ext4_group_t group, int mode) 717 { 718 int free = 0, retval = 0, count; 719 struct ext4_sb_info *sbi = EXT4_SB(sb); 720 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL); 721 722 ext4_lock_group(sb, group); 723 if (ext4_set_bit(ino, inode_bitmap_bh->b_data)) { 724 /* not a free inode */ 725 retval = 1; 726 goto err_ret; 727 } 728 ino++; 729 if ((group == 0 && ino < EXT4_FIRST_INO(sb)) || 730 ino > EXT4_INODES_PER_GROUP(sb)) { 731 ext4_unlock_group(sb, group); 732 ext4_error(sb, __func__, 733 "reserved inode or inode > inodes count - " 734 "block_group = %u, inode=%lu", group, 735 ino + group * EXT4_INODES_PER_GROUP(sb)); 736 return 1; 737 } 738 /* If we didn't allocate from within the initialized part of the inode 739 * table then we need to initialize up to this inode. */ 740 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) { 741 742 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) { 743 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT); 744 /* When marking the block group with 745 * ~EXT4_BG_INODE_UNINIT we don't want to depend 746 * on the value of bg_itable_unused even though 747 * mke2fs could have initialized the same for us. 748 * Instead we calculated the value below 749 */ 750 751 free = 0; 752 } else { 753 free = EXT4_INODES_PER_GROUP(sb) - 754 ext4_itable_unused_count(sb, gdp); 755 } 756 757 /* 758 * Check the relative inode number against the last used 759 * relative inode number in this group. if it is greater 760 * we need to update the bg_itable_unused count 761 * 762 */ 763 if (ino > free) 764 ext4_itable_unused_set(sb, gdp, 765 (EXT4_INODES_PER_GROUP(sb) - ino)); 766 } 767 count = ext4_free_inodes_count(sb, gdp) - 1; 768 ext4_free_inodes_set(sb, gdp, count); 769 if (S_ISDIR(mode)) { 770 count = ext4_used_dirs_count(sb, gdp) + 1; 771 ext4_used_dirs_set(sb, gdp, count); 772 if (sbi->s_log_groups_per_flex) { 773 ext4_group_t f = ext4_flex_group(sbi, group); 774 775 atomic_inc(&sbi->s_flex_groups[f].free_inodes); 776 } 777 } 778 gdp->bg_checksum = ext4_group_desc_csum(sbi, group, gdp); 779 err_ret: 780 ext4_unlock_group(sb, group); 781 return retval; 782 } 783 784 /* 785 * There are two policies for allocating an inode. If the new inode is 786 * a directory, then a forward search is made for a block group with both 787 * free space and a low directory-to-inode ratio; if that fails, then of 788 * the groups with above-average free space, that group with the fewest 789 * directories already is chosen. 790 * 791 * For other inodes, search forward from the parent directory's block 792 * group to find a free inode. 793 */ 794 struct inode *ext4_new_inode(handle_t *handle, struct inode *dir, int mode) 795 { 796 struct super_block *sb; 797 struct buffer_head *inode_bitmap_bh = NULL; 798 struct buffer_head *group_desc_bh; 799 ext4_group_t ngroups, group = 0; 800 unsigned long ino = 0; 801 struct inode *inode; 802 struct ext4_group_desc *gdp = NULL; 803 struct ext4_inode_info *ei; 804 struct ext4_sb_info *sbi; 805 int ret2, err = 0; 806 struct inode *ret; 807 ext4_group_t i; 808 int free = 0; 809 static int once = 1; 810 ext4_group_t flex_group; 811 812 /* Cannot create files in a deleted directory */ 813 if (!dir || !dir->i_nlink) 814 return ERR_PTR(-EPERM); 815 816 sb = dir->i_sb; 817 ngroups = ext4_get_groups_count(sb); 818 trace_mark(ext4_request_inode, "dev %s dir %lu mode %d", sb->s_id, 819 dir->i_ino, mode); 820 inode = new_inode(sb); 821 if (!inode) 822 return ERR_PTR(-ENOMEM); 823 ei = EXT4_I(inode); 824 sbi = EXT4_SB(sb); 825 826 if (sbi->s_log_groups_per_flex && test_opt(sb, OLDALLOC)) { 827 ret2 = find_group_flex(sb, dir, &group); 828 if (ret2 == -1) { 829 ret2 = find_group_other(sb, dir, &group, mode); 830 if (ret2 == 0 && once) { 831 once = 0; 832 printk(KERN_NOTICE "ext4: find_group_flex " 833 "failed, fallback succeeded dir %lu\n", 834 dir->i_ino); 835 } 836 } 837 goto got_group; 838 } 839 840 if (S_ISDIR(mode)) { 841 if (test_opt(sb, OLDALLOC)) 842 ret2 = find_group_dir(sb, dir, &group); 843 else 844 ret2 = find_group_orlov(sb, dir, &group, mode); 845 } else 846 ret2 = find_group_other(sb, dir, &group, mode); 847 848 got_group: 849 EXT4_I(dir)->i_last_alloc_group = group; 850 err = -ENOSPC; 851 if (ret2 == -1) 852 goto out; 853 854 for (i = 0; i < ngroups; i++) { 855 err = -EIO; 856 857 gdp = ext4_get_group_desc(sb, group, &group_desc_bh); 858 if (!gdp) 859 goto fail; 860 861 brelse(inode_bitmap_bh); 862 inode_bitmap_bh = ext4_read_inode_bitmap(sb, group); 863 if (!inode_bitmap_bh) 864 goto fail; 865 866 ino = 0; 867 868 repeat_in_this_group: 869 ino = ext4_find_next_zero_bit((unsigned long *) 870 inode_bitmap_bh->b_data, 871 EXT4_INODES_PER_GROUP(sb), ino); 872 873 if (ino < EXT4_INODES_PER_GROUP(sb)) { 874 875 BUFFER_TRACE(inode_bitmap_bh, "get_write_access"); 876 err = ext4_journal_get_write_access(handle, 877 inode_bitmap_bh); 878 if (err) 879 goto fail; 880 881 BUFFER_TRACE(group_desc_bh, "get_write_access"); 882 err = ext4_journal_get_write_access(handle, 883 group_desc_bh); 884 if (err) 885 goto fail; 886 if (!ext4_claim_inode(sb, inode_bitmap_bh, 887 ino, group, mode)) { 888 /* we won it */ 889 BUFFER_TRACE(inode_bitmap_bh, 890 "call ext4_handle_dirty_metadata"); 891 err = ext4_handle_dirty_metadata(handle, 892 inode, 893 inode_bitmap_bh); 894 if (err) 895 goto fail; 896 /* zero bit is inode number 1*/ 897 ino++; 898 goto got; 899 } 900 /* we lost it */ 901 ext4_handle_release_buffer(handle, inode_bitmap_bh); 902 ext4_handle_release_buffer(handle, group_desc_bh); 903 904 if (++ino < EXT4_INODES_PER_GROUP(sb)) 905 goto repeat_in_this_group; 906 } 907 908 /* 909 * This case is possible in concurrent environment. It is very 910 * rare. We cannot repeat the find_group_xxx() call because 911 * that will simply return the same blockgroup, because the 912 * group descriptor metadata has not yet been updated. 913 * So we just go onto the next blockgroup. 914 */ 915 if (++group == ngroups) 916 group = 0; 917 } 918 err = -ENOSPC; 919 goto out; 920 921 got: 922 /* We may have to initialize the block bitmap if it isn't already */ 923 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM) && 924 gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 925 struct buffer_head *block_bitmap_bh; 926 927 block_bitmap_bh = ext4_read_block_bitmap(sb, group); 928 BUFFER_TRACE(block_bitmap_bh, "get block bitmap access"); 929 err = ext4_journal_get_write_access(handle, block_bitmap_bh); 930 if (err) { 931 brelse(block_bitmap_bh); 932 goto fail; 933 } 934 935 free = 0; 936 ext4_lock_group(sb, group); 937 /* recheck and clear flag under lock if we still need to */ 938 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 939 free = ext4_free_blocks_after_init(sb, group, gdp); 940 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 941 ext4_free_blks_set(sb, gdp, free); 942 gdp->bg_checksum = ext4_group_desc_csum(sbi, group, 943 gdp); 944 } 945 ext4_unlock_group(sb, group); 946 947 /* Don't need to dirty bitmap block if we didn't change it */ 948 if (free) { 949 BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap"); 950 err = ext4_handle_dirty_metadata(handle, 951 NULL, block_bitmap_bh); 952 } 953 954 brelse(block_bitmap_bh); 955 if (err) 956 goto fail; 957 } 958 BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata"); 959 err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh); 960 if (err) 961 goto fail; 962 963 percpu_counter_dec(&sbi->s_freeinodes_counter); 964 if (S_ISDIR(mode)) 965 percpu_counter_inc(&sbi->s_dirs_counter); 966 sb->s_dirt = 1; 967 968 if (sbi->s_log_groups_per_flex) { 969 flex_group = ext4_flex_group(sbi, group); 970 atomic_dec(&sbi->s_flex_groups[flex_group].free_inodes); 971 } 972 973 inode->i_uid = current_fsuid(); 974 if (test_opt(sb, GRPID)) 975 inode->i_gid = dir->i_gid; 976 else if (dir->i_mode & S_ISGID) { 977 inode->i_gid = dir->i_gid; 978 if (S_ISDIR(mode)) 979 mode |= S_ISGID; 980 } else 981 inode->i_gid = current_fsgid(); 982 inode->i_mode = mode; 983 984 inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb); 985 /* This is the optimal IO size (for stat), not the fs block size */ 986 inode->i_blocks = 0; 987 inode->i_mtime = inode->i_atime = inode->i_ctime = ei->i_crtime = 988 ext4_current_time(inode); 989 990 memset(ei->i_data, 0, sizeof(ei->i_data)); 991 ei->i_dir_start_lookup = 0; 992 ei->i_disksize = 0; 993 994 /* 995 * Don't inherit extent flag from directory, amongst others. We set 996 * extent flag on newly created directory and file only if -o extent 997 * mount option is specified 998 */ 999 ei->i_flags = 1000 ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED); 1001 ei->i_file_acl = 0; 1002 ei->i_dtime = 0; 1003 ei->i_block_group = group; 1004 ei->i_last_alloc_group = ~0; 1005 1006 ext4_set_inode_flags(inode); 1007 if (IS_DIRSYNC(inode)) 1008 ext4_handle_sync(handle); 1009 if (insert_inode_locked(inode) < 0) { 1010 err = -EINVAL; 1011 goto fail_drop; 1012 } 1013 spin_lock(&sbi->s_next_gen_lock); 1014 inode->i_generation = sbi->s_next_generation++; 1015 spin_unlock(&sbi->s_next_gen_lock); 1016 1017 ei->i_state = EXT4_STATE_NEW; 1018 1019 ei->i_extra_isize = EXT4_SB(sb)->s_want_extra_isize; 1020 1021 ret = inode; 1022 if (vfs_dq_alloc_inode(inode)) { 1023 err = -EDQUOT; 1024 goto fail_drop; 1025 } 1026 1027 err = ext4_init_acl(handle, inode, dir); 1028 if (err) 1029 goto fail_free_drop; 1030 1031 err = ext4_init_security(handle, inode, dir); 1032 if (err) 1033 goto fail_free_drop; 1034 1035 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) { 1036 /* set extent flag only for directory, file and normal symlink*/ 1037 if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) { 1038 EXT4_I(inode)->i_flags |= EXT4_EXTENTS_FL; 1039 ext4_ext_tree_init(handle, inode); 1040 } 1041 } 1042 1043 err = ext4_mark_inode_dirty(handle, inode); 1044 if (err) { 1045 ext4_std_error(sb, err); 1046 goto fail_free_drop; 1047 } 1048 1049 ext4_debug("allocating inode %lu\n", inode->i_ino); 1050 trace_mark(ext4_allocate_inode, "dev %s ino %lu dir %lu mode %d", 1051 sb->s_id, inode->i_ino, dir->i_ino, mode); 1052 goto really_out; 1053 fail: 1054 ext4_std_error(sb, err); 1055 out: 1056 iput(inode); 1057 ret = ERR_PTR(err); 1058 really_out: 1059 brelse(inode_bitmap_bh); 1060 return ret; 1061 1062 fail_free_drop: 1063 vfs_dq_free_inode(inode); 1064 1065 fail_drop: 1066 vfs_dq_drop(inode); 1067 inode->i_flags |= S_NOQUOTA; 1068 inode->i_nlink = 0; 1069 unlock_new_inode(inode); 1070 iput(inode); 1071 brelse(inode_bitmap_bh); 1072 return ERR_PTR(err); 1073 } 1074 1075 /* Verify that we are loading a valid orphan from disk */ 1076 struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino) 1077 { 1078 unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count); 1079 ext4_group_t block_group; 1080 int bit; 1081 struct buffer_head *bitmap_bh; 1082 struct inode *inode = NULL; 1083 long err = -EIO; 1084 1085 /* Error cases - e2fsck has already cleaned up for us */ 1086 if (ino > max_ino) { 1087 ext4_warning(sb, __func__, 1088 "bad orphan ino %lu! e2fsck was run?", ino); 1089 goto error; 1090 } 1091 1092 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 1093 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb); 1094 bitmap_bh = ext4_read_inode_bitmap(sb, block_group); 1095 if (!bitmap_bh) { 1096 ext4_warning(sb, __func__, 1097 "inode bitmap error for orphan %lu", ino); 1098 goto error; 1099 } 1100 1101 /* Having the inode bit set should be a 100% indicator that this 1102 * is a valid orphan (no e2fsck run on fs). Orphans also include 1103 * inodes that were being truncated, so we can't check i_nlink==0. 1104 */ 1105 if (!ext4_test_bit(bit, bitmap_bh->b_data)) 1106 goto bad_orphan; 1107 1108 inode = ext4_iget(sb, ino); 1109 if (IS_ERR(inode)) 1110 goto iget_failed; 1111 1112 /* 1113 * If the orphans has i_nlinks > 0 then it should be able to be 1114 * truncated, otherwise it won't be removed from the orphan list 1115 * during processing and an infinite loop will result. 1116 */ 1117 if (inode->i_nlink && !ext4_can_truncate(inode)) 1118 goto bad_orphan; 1119 1120 if (NEXT_ORPHAN(inode) > max_ino) 1121 goto bad_orphan; 1122 brelse(bitmap_bh); 1123 return inode; 1124 1125 iget_failed: 1126 err = PTR_ERR(inode); 1127 inode = NULL; 1128 bad_orphan: 1129 ext4_warning(sb, __func__, 1130 "bad orphan inode %lu! e2fsck was run?", ino); 1131 printk(KERN_NOTICE "ext4_test_bit(bit=%d, block=%llu) = %d\n", 1132 bit, (unsigned long long)bitmap_bh->b_blocknr, 1133 ext4_test_bit(bit, bitmap_bh->b_data)); 1134 printk(KERN_NOTICE "inode=%p\n", inode); 1135 if (inode) { 1136 printk(KERN_NOTICE "is_bad_inode(inode)=%d\n", 1137 is_bad_inode(inode)); 1138 printk(KERN_NOTICE "NEXT_ORPHAN(inode)=%u\n", 1139 NEXT_ORPHAN(inode)); 1140 printk(KERN_NOTICE "max_ino=%lu\n", max_ino); 1141 printk(KERN_NOTICE "i_nlink=%u\n", inode->i_nlink); 1142 /* Avoid freeing blocks if we got a bad deleted inode */ 1143 if (inode->i_nlink == 0) 1144 inode->i_blocks = 0; 1145 iput(inode); 1146 } 1147 brelse(bitmap_bh); 1148 error: 1149 return ERR_PTR(err); 1150 } 1151 1152 unsigned long ext4_count_free_inodes(struct super_block *sb) 1153 { 1154 unsigned long desc_count; 1155 struct ext4_group_desc *gdp; 1156 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 1157 #ifdef EXT4FS_DEBUG 1158 struct ext4_super_block *es; 1159 unsigned long bitmap_count, x; 1160 struct buffer_head *bitmap_bh = NULL; 1161 1162 es = EXT4_SB(sb)->s_es; 1163 desc_count = 0; 1164 bitmap_count = 0; 1165 gdp = NULL; 1166 for (i = 0; i < ngroups; i++) { 1167 gdp = ext4_get_group_desc(sb, i, NULL); 1168 if (!gdp) 1169 continue; 1170 desc_count += ext4_free_inodes_count(sb, gdp); 1171 brelse(bitmap_bh); 1172 bitmap_bh = ext4_read_inode_bitmap(sb, i); 1173 if (!bitmap_bh) 1174 continue; 1175 1176 x = ext4_count_free(bitmap_bh, EXT4_INODES_PER_GROUP(sb) / 8); 1177 printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n", 1178 i, ext4_free_inodes_count(sb, gdp), x); 1179 bitmap_count += x; 1180 } 1181 brelse(bitmap_bh); 1182 printk(KERN_DEBUG "ext4_count_free_inodes: " 1183 "stored = %u, computed = %lu, %lu\n", 1184 le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count); 1185 return desc_count; 1186 #else 1187 desc_count = 0; 1188 for (i = 0; i < ngroups; i++) { 1189 gdp = ext4_get_group_desc(sb, i, NULL); 1190 if (!gdp) 1191 continue; 1192 desc_count += ext4_free_inodes_count(sb, gdp); 1193 cond_resched(); 1194 } 1195 return desc_count; 1196 #endif 1197 } 1198 1199 /* Called at mount-time, super-block is locked */ 1200 unsigned long ext4_count_dirs(struct super_block * sb) 1201 { 1202 unsigned long count = 0; 1203 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 1204 1205 for (i = 0; i < ngroups; i++) { 1206 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 1207 if (!gdp) 1208 continue; 1209 count += ext4_used_dirs_count(sb, gdp); 1210 } 1211 return count; 1212 } 1213