1 /* 2 * linux/fs/ext4/ialloc.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * BSD ufs-inspired inode and directory allocation by 10 * Stephen Tweedie (sct@redhat.com), 1993 11 * Big-endian to little-endian byte-swapping/bitmaps by 12 * David S. Miller (davem@caip.rutgers.edu), 1995 13 */ 14 15 #include <linux/time.h> 16 #include <linux/fs.h> 17 #include <linux/stat.h> 18 #include <linux/string.h> 19 #include <linux/quotaops.h> 20 #include <linux/buffer_head.h> 21 #include <linux/random.h> 22 #include <linux/bitops.h> 23 #include <linux/blkdev.h> 24 #include <asm/byteorder.h> 25 26 #include "ext4.h" 27 #include "ext4_jbd2.h" 28 #include "xattr.h" 29 #include "acl.h" 30 31 #include <trace/events/ext4.h> 32 33 /* 34 * ialloc.c contains the inodes allocation and deallocation routines 35 */ 36 37 /* 38 * The free inodes are managed by bitmaps. A file system contains several 39 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap 40 * block for inodes, N blocks for the inode table and data blocks. 41 * 42 * The file system contains group descriptors which are located after the 43 * super block. Each descriptor contains the number of the bitmap block and 44 * the free blocks count in the block. 45 */ 46 47 /* 48 * To avoid calling the atomic setbit hundreds or thousands of times, we only 49 * need to use it within a single byte (to ensure we get endianness right). 50 * We can use memset for the rest of the bitmap as there are no other users. 51 */ 52 void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap) 53 { 54 int i; 55 56 if (start_bit >= end_bit) 57 return; 58 59 ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit); 60 for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++) 61 ext4_set_bit(i, bitmap); 62 if (i < end_bit) 63 memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3); 64 } 65 66 /* Initializes an uninitialized inode bitmap */ 67 static unsigned ext4_init_inode_bitmap(struct super_block *sb, 68 struct buffer_head *bh, 69 ext4_group_t block_group, 70 struct ext4_group_desc *gdp) 71 { 72 struct ext4_group_info *grp; 73 struct ext4_sb_info *sbi = EXT4_SB(sb); 74 J_ASSERT_BH(bh, buffer_locked(bh)); 75 76 /* If checksum is bad mark all blocks and inodes use to prevent 77 * allocation, essentially implementing a per-group read-only flag. */ 78 if (!ext4_group_desc_csum_verify(sb, block_group, gdp)) { 79 ext4_error(sb, "Checksum bad for group %u", block_group); 80 grp = ext4_get_group_info(sb, block_group); 81 if (!EXT4_MB_GRP_BBITMAP_CORRUPT(grp)) 82 percpu_counter_sub(&sbi->s_freeclusters_counter, 83 grp->bb_free); 84 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, &grp->bb_state); 85 if (!EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) { 86 int count; 87 count = ext4_free_inodes_count(sb, gdp); 88 percpu_counter_sub(&sbi->s_freeinodes_counter, 89 count); 90 } 91 set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state); 92 return 0; 93 } 94 95 memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8); 96 ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb), sb->s_blocksize * 8, 97 bh->b_data); 98 ext4_inode_bitmap_csum_set(sb, block_group, gdp, bh, 99 EXT4_INODES_PER_GROUP(sb) / 8); 100 ext4_group_desc_csum_set(sb, block_group, gdp); 101 102 return EXT4_INODES_PER_GROUP(sb); 103 } 104 105 void ext4_end_bitmap_read(struct buffer_head *bh, int uptodate) 106 { 107 if (uptodate) { 108 set_buffer_uptodate(bh); 109 set_bitmap_uptodate(bh); 110 } 111 unlock_buffer(bh); 112 put_bh(bh); 113 } 114 115 /* 116 * Read the inode allocation bitmap for a given block_group, reading 117 * into the specified slot in the superblock's bitmap cache. 118 * 119 * Return buffer_head of bitmap on success or NULL. 120 */ 121 static struct buffer_head * 122 ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group) 123 { 124 struct ext4_group_desc *desc; 125 struct buffer_head *bh = NULL; 126 ext4_fsblk_t bitmap_blk; 127 struct ext4_group_info *grp; 128 struct ext4_sb_info *sbi = EXT4_SB(sb); 129 130 desc = ext4_get_group_desc(sb, block_group, NULL); 131 if (!desc) 132 return NULL; 133 134 bitmap_blk = ext4_inode_bitmap(sb, desc); 135 bh = sb_getblk(sb, bitmap_blk); 136 if (unlikely(!bh)) { 137 ext4_error(sb, "Cannot read inode bitmap - " 138 "block_group = %u, inode_bitmap = %llu", 139 block_group, bitmap_blk); 140 return NULL; 141 } 142 if (bitmap_uptodate(bh)) 143 goto verify; 144 145 lock_buffer(bh); 146 if (bitmap_uptodate(bh)) { 147 unlock_buffer(bh); 148 goto verify; 149 } 150 151 ext4_lock_group(sb, block_group); 152 if (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) { 153 ext4_init_inode_bitmap(sb, bh, block_group, desc); 154 set_bitmap_uptodate(bh); 155 set_buffer_uptodate(bh); 156 set_buffer_verified(bh); 157 ext4_unlock_group(sb, block_group); 158 unlock_buffer(bh); 159 return bh; 160 } 161 ext4_unlock_group(sb, block_group); 162 163 if (buffer_uptodate(bh)) { 164 /* 165 * if not uninit if bh is uptodate, 166 * bitmap is also uptodate 167 */ 168 set_bitmap_uptodate(bh); 169 unlock_buffer(bh); 170 goto verify; 171 } 172 /* 173 * submit the buffer_head for reading 174 */ 175 trace_ext4_load_inode_bitmap(sb, block_group); 176 bh->b_end_io = ext4_end_bitmap_read; 177 get_bh(bh); 178 submit_bh(READ | REQ_META | REQ_PRIO, bh); 179 wait_on_buffer(bh); 180 if (!buffer_uptodate(bh)) { 181 put_bh(bh); 182 ext4_error(sb, "Cannot read inode bitmap - " 183 "block_group = %u, inode_bitmap = %llu", 184 block_group, bitmap_blk); 185 return NULL; 186 } 187 188 verify: 189 ext4_lock_group(sb, block_group); 190 if (!buffer_verified(bh) && 191 !ext4_inode_bitmap_csum_verify(sb, block_group, desc, bh, 192 EXT4_INODES_PER_GROUP(sb) / 8)) { 193 ext4_unlock_group(sb, block_group); 194 put_bh(bh); 195 ext4_error(sb, "Corrupt inode bitmap - block_group = %u, " 196 "inode_bitmap = %llu", block_group, bitmap_blk); 197 grp = ext4_get_group_info(sb, block_group); 198 if (!EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) { 199 int count; 200 count = ext4_free_inodes_count(sb, desc); 201 percpu_counter_sub(&sbi->s_freeinodes_counter, 202 count); 203 } 204 set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state); 205 return NULL; 206 } 207 ext4_unlock_group(sb, block_group); 208 set_buffer_verified(bh); 209 return bh; 210 } 211 212 /* 213 * NOTE! When we get the inode, we're the only people 214 * that have access to it, and as such there are no 215 * race conditions we have to worry about. The inode 216 * is not on the hash-lists, and it cannot be reached 217 * through the filesystem because the directory entry 218 * has been deleted earlier. 219 * 220 * HOWEVER: we must make sure that we get no aliases, 221 * which means that we have to call "clear_inode()" 222 * _before_ we mark the inode not in use in the inode 223 * bitmaps. Otherwise a newly created file might use 224 * the same inode number (not actually the same pointer 225 * though), and then we'd have two inodes sharing the 226 * same inode number and space on the harddisk. 227 */ 228 void ext4_free_inode(handle_t *handle, struct inode *inode) 229 { 230 struct super_block *sb = inode->i_sb; 231 int is_directory; 232 unsigned long ino; 233 struct buffer_head *bitmap_bh = NULL; 234 struct buffer_head *bh2; 235 ext4_group_t block_group; 236 unsigned long bit; 237 struct ext4_group_desc *gdp; 238 struct ext4_super_block *es; 239 struct ext4_sb_info *sbi; 240 int fatal = 0, err, count, cleared; 241 struct ext4_group_info *grp; 242 243 if (!sb) { 244 printk(KERN_ERR "EXT4-fs: %s:%d: inode on " 245 "nonexistent device\n", __func__, __LINE__); 246 return; 247 } 248 if (atomic_read(&inode->i_count) > 1) { 249 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: count=%d", 250 __func__, __LINE__, inode->i_ino, 251 atomic_read(&inode->i_count)); 252 return; 253 } 254 if (inode->i_nlink) { 255 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: nlink=%d\n", 256 __func__, __LINE__, inode->i_ino, inode->i_nlink); 257 return; 258 } 259 sbi = EXT4_SB(sb); 260 261 ino = inode->i_ino; 262 ext4_debug("freeing inode %lu\n", ino); 263 trace_ext4_free_inode(inode); 264 265 /* 266 * Note: we must free any quota before locking the superblock, 267 * as writing the quota to disk may need the lock as well. 268 */ 269 dquot_initialize(inode); 270 ext4_xattr_delete_inode(handle, inode); 271 dquot_free_inode(inode); 272 dquot_drop(inode); 273 274 is_directory = S_ISDIR(inode->i_mode); 275 276 /* Do this BEFORE marking the inode not in use or returning an error */ 277 ext4_clear_inode(inode); 278 279 es = EXT4_SB(sb)->s_es; 280 if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) { 281 ext4_error(sb, "reserved or nonexistent inode %lu", ino); 282 goto error_return; 283 } 284 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 285 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb); 286 bitmap_bh = ext4_read_inode_bitmap(sb, block_group); 287 /* Don't bother if the inode bitmap is corrupt. */ 288 grp = ext4_get_group_info(sb, block_group); 289 if (unlikely(EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) || !bitmap_bh) 290 goto error_return; 291 292 BUFFER_TRACE(bitmap_bh, "get_write_access"); 293 fatal = ext4_journal_get_write_access(handle, bitmap_bh); 294 if (fatal) 295 goto error_return; 296 297 fatal = -ESRCH; 298 gdp = ext4_get_group_desc(sb, block_group, &bh2); 299 if (gdp) { 300 BUFFER_TRACE(bh2, "get_write_access"); 301 fatal = ext4_journal_get_write_access(handle, bh2); 302 } 303 ext4_lock_group(sb, block_group); 304 cleared = ext4_test_and_clear_bit(bit, bitmap_bh->b_data); 305 if (fatal || !cleared) { 306 ext4_unlock_group(sb, block_group); 307 goto out; 308 } 309 310 count = ext4_free_inodes_count(sb, gdp) + 1; 311 ext4_free_inodes_set(sb, gdp, count); 312 if (is_directory) { 313 count = ext4_used_dirs_count(sb, gdp) - 1; 314 ext4_used_dirs_set(sb, gdp, count); 315 percpu_counter_dec(&sbi->s_dirs_counter); 316 } 317 ext4_inode_bitmap_csum_set(sb, block_group, gdp, bitmap_bh, 318 EXT4_INODES_PER_GROUP(sb) / 8); 319 ext4_group_desc_csum_set(sb, block_group, gdp); 320 ext4_unlock_group(sb, block_group); 321 322 percpu_counter_inc(&sbi->s_freeinodes_counter); 323 if (sbi->s_log_groups_per_flex) { 324 ext4_group_t f = ext4_flex_group(sbi, block_group); 325 326 atomic_inc(&sbi->s_flex_groups[f].free_inodes); 327 if (is_directory) 328 atomic_dec(&sbi->s_flex_groups[f].used_dirs); 329 } 330 BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata"); 331 fatal = ext4_handle_dirty_metadata(handle, NULL, bh2); 332 out: 333 if (cleared) { 334 BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata"); 335 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 336 if (!fatal) 337 fatal = err; 338 } else { 339 ext4_error(sb, "bit already cleared for inode %lu", ino); 340 if (gdp && !EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) { 341 int count; 342 count = ext4_free_inodes_count(sb, gdp); 343 percpu_counter_sub(&sbi->s_freeinodes_counter, 344 count); 345 } 346 set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state); 347 } 348 349 error_return: 350 brelse(bitmap_bh); 351 ext4_std_error(sb, fatal); 352 } 353 354 struct orlov_stats { 355 __u64 free_clusters; 356 __u32 free_inodes; 357 __u32 used_dirs; 358 }; 359 360 /* 361 * Helper function for Orlov's allocator; returns critical information 362 * for a particular block group or flex_bg. If flex_size is 1, then g 363 * is a block group number; otherwise it is flex_bg number. 364 */ 365 static void get_orlov_stats(struct super_block *sb, ext4_group_t g, 366 int flex_size, struct orlov_stats *stats) 367 { 368 struct ext4_group_desc *desc; 369 struct flex_groups *flex_group = EXT4_SB(sb)->s_flex_groups; 370 371 if (flex_size > 1) { 372 stats->free_inodes = atomic_read(&flex_group[g].free_inodes); 373 stats->free_clusters = atomic64_read(&flex_group[g].free_clusters); 374 stats->used_dirs = atomic_read(&flex_group[g].used_dirs); 375 return; 376 } 377 378 desc = ext4_get_group_desc(sb, g, NULL); 379 if (desc) { 380 stats->free_inodes = ext4_free_inodes_count(sb, desc); 381 stats->free_clusters = ext4_free_group_clusters(sb, desc); 382 stats->used_dirs = ext4_used_dirs_count(sb, desc); 383 } else { 384 stats->free_inodes = 0; 385 stats->free_clusters = 0; 386 stats->used_dirs = 0; 387 } 388 } 389 390 /* 391 * Orlov's allocator for directories. 392 * 393 * We always try to spread first-level directories. 394 * 395 * If there are blockgroups with both free inodes and free blocks counts 396 * not worse than average we return one with smallest directory count. 397 * Otherwise we simply return a random group. 398 * 399 * For the rest rules look so: 400 * 401 * It's OK to put directory into a group unless 402 * it has too many directories already (max_dirs) or 403 * it has too few free inodes left (min_inodes) or 404 * it has too few free blocks left (min_blocks) or 405 * Parent's group is preferred, if it doesn't satisfy these 406 * conditions we search cyclically through the rest. If none 407 * of the groups look good we just look for a group with more 408 * free inodes than average (starting at parent's group). 409 */ 410 411 static int find_group_orlov(struct super_block *sb, struct inode *parent, 412 ext4_group_t *group, umode_t mode, 413 const struct qstr *qstr) 414 { 415 ext4_group_t parent_group = EXT4_I(parent)->i_block_group; 416 struct ext4_sb_info *sbi = EXT4_SB(sb); 417 ext4_group_t real_ngroups = ext4_get_groups_count(sb); 418 int inodes_per_group = EXT4_INODES_PER_GROUP(sb); 419 unsigned int freei, avefreei, grp_free; 420 ext4_fsblk_t freeb, avefreec; 421 unsigned int ndirs; 422 int max_dirs, min_inodes; 423 ext4_grpblk_t min_clusters; 424 ext4_group_t i, grp, g, ngroups; 425 struct ext4_group_desc *desc; 426 struct orlov_stats stats; 427 int flex_size = ext4_flex_bg_size(sbi); 428 struct dx_hash_info hinfo; 429 430 ngroups = real_ngroups; 431 if (flex_size > 1) { 432 ngroups = (real_ngroups + flex_size - 1) >> 433 sbi->s_log_groups_per_flex; 434 parent_group >>= sbi->s_log_groups_per_flex; 435 } 436 437 freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter); 438 avefreei = freei / ngroups; 439 freeb = EXT4_C2B(sbi, 440 percpu_counter_read_positive(&sbi->s_freeclusters_counter)); 441 avefreec = freeb; 442 do_div(avefreec, ngroups); 443 ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter); 444 445 if (S_ISDIR(mode) && 446 ((parent == d_inode(sb->s_root)) || 447 (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) { 448 int best_ndir = inodes_per_group; 449 int ret = -1; 450 451 if (qstr) { 452 hinfo.hash_version = DX_HASH_HALF_MD4; 453 hinfo.seed = sbi->s_hash_seed; 454 ext4fs_dirhash(qstr->name, qstr->len, &hinfo); 455 grp = hinfo.hash; 456 } else 457 grp = prandom_u32(); 458 parent_group = (unsigned)grp % ngroups; 459 for (i = 0; i < ngroups; i++) { 460 g = (parent_group + i) % ngroups; 461 get_orlov_stats(sb, g, flex_size, &stats); 462 if (!stats.free_inodes) 463 continue; 464 if (stats.used_dirs >= best_ndir) 465 continue; 466 if (stats.free_inodes < avefreei) 467 continue; 468 if (stats.free_clusters < avefreec) 469 continue; 470 grp = g; 471 ret = 0; 472 best_ndir = stats.used_dirs; 473 } 474 if (ret) 475 goto fallback; 476 found_flex_bg: 477 if (flex_size == 1) { 478 *group = grp; 479 return 0; 480 } 481 482 /* 483 * We pack inodes at the beginning of the flexgroup's 484 * inode tables. Block allocation decisions will do 485 * something similar, although regular files will 486 * start at 2nd block group of the flexgroup. See 487 * ext4_ext_find_goal() and ext4_find_near(). 488 */ 489 grp *= flex_size; 490 for (i = 0; i < flex_size; i++) { 491 if (grp+i >= real_ngroups) 492 break; 493 desc = ext4_get_group_desc(sb, grp+i, NULL); 494 if (desc && ext4_free_inodes_count(sb, desc)) { 495 *group = grp+i; 496 return 0; 497 } 498 } 499 goto fallback; 500 } 501 502 max_dirs = ndirs / ngroups + inodes_per_group / 16; 503 min_inodes = avefreei - inodes_per_group*flex_size / 4; 504 if (min_inodes < 1) 505 min_inodes = 1; 506 min_clusters = avefreec - EXT4_CLUSTERS_PER_GROUP(sb)*flex_size / 4; 507 508 /* 509 * Start looking in the flex group where we last allocated an 510 * inode for this parent directory 511 */ 512 if (EXT4_I(parent)->i_last_alloc_group != ~0) { 513 parent_group = EXT4_I(parent)->i_last_alloc_group; 514 if (flex_size > 1) 515 parent_group >>= sbi->s_log_groups_per_flex; 516 } 517 518 for (i = 0; i < ngroups; i++) { 519 grp = (parent_group + i) % ngroups; 520 get_orlov_stats(sb, grp, flex_size, &stats); 521 if (stats.used_dirs >= max_dirs) 522 continue; 523 if (stats.free_inodes < min_inodes) 524 continue; 525 if (stats.free_clusters < min_clusters) 526 continue; 527 goto found_flex_bg; 528 } 529 530 fallback: 531 ngroups = real_ngroups; 532 avefreei = freei / ngroups; 533 fallback_retry: 534 parent_group = EXT4_I(parent)->i_block_group; 535 for (i = 0; i < ngroups; i++) { 536 grp = (parent_group + i) % ngroups; 537 desc = ext4_get_group_desc(sb, grp, NULL); 538 if (desc) { 539 grp_free = ext4_free_inodes_count(sb, desc); 540 if (grp_free && grp_free >= avefreei) { 541 *group = grp; 542 return 0; 543 } 544 } 545 } 546 547 if (avefreei) { 548 /* 549 * The free-inodes counter is approximate, and for really small 550 * filesystems the above test can fail to find any blockgroups 551 */ 552 avefreei = 0; 553 goto fallback_retry; 554 } 555 556 return -1; 557 } 558 559 static int find_group_other(struct super_block *sb, struct inode *parent, 560 ext4_group_t *group, umode_t mode) 561 { 562 ext4_group_t parent_group = EXT4_I(parent)->i_block_group; 563 ext4_group_t i, last, ngroups = ext4_get_groups_count(sb); 564 struct ext4_group_desc *desc; 565 int flex_size = ext4_flex_bg_size(EXT4_SB(sb)); 566 567 /* 568 * Try to place the inode is the same flex group as its 569 * parent. If we can't find space, use the Orlov algorithm to 570 * find another flex group, and store that information in the 571 * parent directory's inode information so that use that flex 572 * group for future allocations. 573 */ 574 if (flex_size > 1) { 575 int retry = 0; 576 577 try_again: 578 parent_group &= ~(flex_size-1); 579 last = parent_group + flex_size; 580 if (last > ngroups) 581 last = ngroups; 582 for (i = parent_group; i < last; i++) { 583 desc = ext4_get_group_desc(sb, i, NULL); 584 if (desc && ext4_free_inodes_count(sb, desc)) { 585 *group = i; 586 return 0; 587 } 588 } 589 if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) { 590 retry = 1; 591 parent_group = EXT4_I(parent)->i_last_alloc_group; 592 goto try_again; 593 } 594 /* 595 * If this didn't work, use the Orlov search algorithm 596 * to find a new flex group; we pass in the mode to 597 * avoid the topdir algorithms. 598 */ 599 *group = parent_group + flex_size; 600 if (*group > ngroups) 601 *group = 0; 602 return find_group_orlov(sb, parent, group, mode, NULL); 603 } 604 605 /* 606 * Try to place the inode in its parent directory 607 */ 608 *group = parent_group; 609 desc = ext4_get_group_desc(sb, *group, NULL); 610 if (desc && ext4_free_inodes_count(sb, desc) && 611 ext4_free_group_clusters(sb, desc)) 612 return 0; 613 614 /* 615 * We're going to place this inode in a different blockgroup from its 616 * parent. We want to cause files in a common directory to all land in 617 * the same blockgroup. But we want files which are in a different 618 * directory which shares a blockgroup with our parent to land in a 619 * different blockgroup. 620 * 621 * So add our directory's i_ino into the starting point for the hash. 622 */ 623 *group = (*group + parent->i_ino) % ngroups; 624 625 /* 626 * Use a quadratic hash to find a group with a free inode and some free 627 * blocks. 628 */ 629 for (i = 1; i < ngroups; i <<= 1) { 630 *group += i; 631 if (*group >= ngroups) 632 *group -= ngroups; 633 desc = ext4_get_group_desc(sb, *group, NULL); 634 if (desc && ext4_free_inodes_count(sb, desc) && 635 ext4_free_group_clusters(sb, desc)) 636 return 0; 637 } 638 639 /* 640 * That failed: try linear search for a free inode, even if that group 641 * has no free blocks. 642 */ 643 *group = parent_group; 644 for (i = 0; i < ngroups; i++) { 645 if (++*group >= ngroups) 646 *group = 0; 647 desc = ext4_get_group_desc(sb, *group, NULL); 648 if (desc && ext4_free_inodes_count(sb, desc)) 649 return 0; 650 } 651 652 return -1; 653 } 654 655 /* 656 * In no journal mode, if an inode has recently been deleted, we want 657 * to avoid reusing it until we're reasonably sure the inode table 658 * block has been written back to disk. (Yes, these values are 659 * somewhat arbitrary...) 660 */ 661 #define RECENTCY_MIN 5 662 #define RECENTCY_DIRTY 30 663 664 static int recently_deleted(struct super_block *sb, ext4_group_t group, int ino) 665 { 666 struct ext4_group_desc *gdp; 667 struct ext4_inode *raw_inode; 668 struct buffer_head *bh; 669 unsigned long dtime, now; 670 int inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 671 int offset, ret = 0, recentcy = RECENTCY_MIN; 672 673 gdp = ext4_get_group_desc(sb, group, NULL); 674 if (unlikely(!gdp)) 675 return 0; 676 677 bh = sb_getblk(sb, ext4_inode_table(sb, gdp) + 678 (ino / inodes_per_block)); 679 if (unlikely(!bh) || !buffer_uptodate(bh)) 680 /* 681 * If the block is not in the buffer cache, then it 682 * must have been written out. 683 */ 684 goto out; 685 686 offset = (ino % inodes_per_block) * EXT4_INODE_SIZE(sb); 687 raw_inode = (struct ext4_inode *) (bh->b_data + offset); 688 dtime = le32_to_cpu(raw_inode->i_dtime); 689 now = get_seconds(); 690 if (buffer_dirty(bh)) 691 recentcy += RECENTCY_DIRTY; 692 693 if (dtime && (dtime < now) && (now < dtime + recentcy)) 694 ret = 1; 695 out: 696 brelse(bh); 697 return ret; 698 } 699 700 /* 701 * There are two policies for allocating an inode. If the new inode is 702 * a directory, then a forward search is made for a block group with both 703 * free space and a low directory-to-inode ratio; if that fails, then of 704 * the groups with above-average free space, that group with the fewest 705 * directories already is chosen. 706 * 707 * For other inodes, search forward from the parent directory's block 708 * group to find a free inode. 709 */ 710 struct inode *__ext4_new_inode(handle_t *handle, struct inode *dir, 711 umode_t mode, const struct qstr *qstr, 712 __u32 goal, uid_t *owner, int handle_type, 713 unsigned int line_no, int nblocks) 714 { 715 struct super_block *sb; 716 struct buffer_head *inode_bitmap_bh = NULL; 717 struct buffer_head *group_desc_bh; 718 ext4_group_t ngroups, group = 0; 719 unsigned long ino = 0; 720 struct inode *inode; 721 struct ext4_group_desc *gdp = NULL; 722 struct ext4_inode_info *ei; 723 struct ext4_sb_info *sbi; 724 int ret2, err = 0; 725 struct inode *ret; 726 ext4_group_t i; 727 ext4_group_t flex_group; 728 struct ext4_group_info *grp; 729 730 /* Cannot create files in a deleted directory */ 731 if (!dir || !dir->i_nlink) 732 return ERR_PTR(-EPERM); 733 734 sb = dir->i_sb; 735 ngroups = ext4_get_groups_count(sb); 736 trace_ext4_request_inode(dir, mode); 737 inode = new_inode(sb); 738 if (!inode) 739 return ERR_PTR(-ENOMEM); 740 ei = EXT4_I(inode); 741 sbi = EXT4_SB(sb); 742 743 /* 744 * Initalize owners and quota early so that we don't have to account 745 * for quota initialization worst case in standard inode creating 746 * transaction 747 */ 748 if (owner) { 749 inode->i_mode = mode; 750 i_uid_write(inode, owner[0]); 751 i_gid_write(inode, owner[1]); 752 } else if (test_opt(sb, GRPID)) { 753 inode->i_mode = mode; 754 inode->i_uid = current_fsuid(); 755 inode->i_gid = dir->i_gid; 756 } else 757 inode_init_owner(inode, dir, mode); 758 dquot_initialize(inode); 759 760 if (!goal) 761 goal = sbi->s_inode_goal; 762 763 if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) { 764 group = (goal - 1) / EXT4_INODES_PER_GROUP(sb); 765 ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb); 766 ret2 = 0; 767 goto got_group; 768 } 769 770 if (S_ISDIR(mode)) 771 ret2 = find_group_orlov(sb, dir, &group, mode, qstr); 772 else 773 ret2 = find_group_other(sb, dir, &group, mode); 774 775 got_group: 776 EXT4_I(dir)->i_last_alloc_group = group; 777 err = -ENOSPC; 778 if (ret2 == -1) 779 goto out; 780 781 /* 782 * Normally we will only go through one pass of this loop, 783 * unless we get unlucky and it turns out the group we selected 784 * had its last inode grabbed by someone else. 785 */ 786 for (i = 0; i < ngroups; i++, ino = 0) { 787 err = -EIO; 788 789 gdp = ext4_get_group_desc(sb, group, &group_desc_bh); 790 if (!gdp) 791 goto out; 792 793 /* 794 * Check free inodes count before loading bitmap. 795 */ 796 if (ext4_free_inodes_count(sb, gdp) == 0) { 797 if (++group == ngroups) 798 group = 0; 799 continue; 800 } 801 802 grp = ext4_get_group_info(sb, group); 803 /* Skip groups with already-known suspicious inode tables */ 804 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) { 805 if (++group == ngroups) 806 group = 0; 807 continue; 808 } 809 810 brelse(inode_bitmap_bh); 811 inode_bitmap_bh = ext4_read_inode_bitmap(sb, group); 812 /* Skip groups with suspicious inode tables */ 813 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp) || !inode_bitmap_bh) { 814 if (++group == ngroups) 815 group = 0; 816 continue; 817 } 818 819 repeat_in_this_group: 820 ino = ext4_find_next_zero_bit((unsigned long *) 821 inode_bitmap_bh->b_data, 822 EXT4_INODES_PER_GROUP(sb), ino); 823 if (ino >= EXT4_INODES_PER_GROUP(sb)) 824 goto next_group; 825 if (group == 0 && (ino+1) < EXT4_FIRST_INO(sb)) { 826 ext4_error(sb, "reserved inode found cleared - " 827 "inode=%lu", ino + 1); 828 continue; 829 } 830 if ((EXT4_SB(sb)->s_journal == NULL) && 831 recently_deleted(sb, group, ino)) { 832 ino++; 833 goto next_inode; 834 } 835 if (!handle) { 836 BUG_ON(nblocks <= 0); 837 handle = __ext4_journal_start_sb(dir->i_sb, line_no, 838 handle_type, nblocks, 839 0); 840 if (IS_ERR(handle)) { 841 err = PTR_ERR(handle); 842 ext4_std_error(sb, err); 843 goto out; 844 } 845 } 846 BUFFER_TRACE(inode_bitmap_bh, "get_write_access"); 847 err = ext4_journal_get_write_access(handle, inode_bitmap_bh); 848 if (err) { 849 ext4_std_error(sb, err); 850 goto out; 851 } 852 ext4_lock_group(sb, group); 853 ret2 = ext4_test_and_set_bit(ino, inode_bitmap_bh->b_data); 854 ext4_unlock_group(sb, group); 855 ino++; /* the inode bitmap is zero-based */ 856 if (!ret2) 857 goto got; /* we grabbed the inode! */ 858 next_inode: 859 if (ino < EXT4_INODES_PER_GROUP(sb)) 860 goto repeat_in_this_group; 861 next_group: 862 if (++group == ngroups) 863 group = 0; 864 } 865 err = -ENOSPC; 866 goto out; 867 868 got: 869 BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata"); 870 err = ext4_handle_dirty_metadata(handle, NULL, inode_bitmap_bh); 871 if (err) { 872 ext4_std_error(sb, err); 873 goto out; 874 } 875 876 BUFFER_TRACE(group_desc_bh, "get_write_access"); 877 err = ext4_journal_get_write_access(handle, group_desc_bh); 878 if (err) { 879 ext4_std_error(sb, err); 880 goto out; 881 } 882 883 /* We may have to initialize the block bitmap if it isn't already */ 884 if (ext4_has_group_desc_csum(sb) && 885 gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 886 struct buffer_head *block_bitmap_bh; 887 888 block_bitmap_bh = ext4_read_block_bitmap(sb, group); 889 if (!block_bitmap_bh) { 890 err = -EIO; 891 goto out; 892 } 893 BUFFER_TRACE(block_bitmap_bh, "get block bitmap access"); 894 err = ext4_journal_get_write_access(handle, block_bitmap_bh); 895 if (err) { 896 brelse(block_bitmap_bh); 897 ext4_std_error(sb, err); 898 goto out; 899 } 900 901 BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap"); 902 err = ext4_handle_dirty_metadata(handle, NULL, block_bitmap_bh); 903 904 /* recheck and clear flag under lock if we still need to */ 905 ext4_lock_group(sb, group); 906 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 907 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 908 ext4_free_group_clusters_set(sb, gdp, 909 ext4_free_clusters_after_init(sb, group, gdp)); 910 ext4_block_bitmap_csum_set(sb, group, gdp, 911 block_bitmap_bh); 912 ext4_group_desc_csum_set(sb, group, gdp); 913 } 914 ext4_unlock_group(sb, group); 915 brelse(block_bitmap_bh); 916 917 if (err) { 918 ext4_std_error(sb, err); 919 goto out; 920 } 921 } 922 923 /* Update the relevant bg descriptor fields */ 924 if (ext4_has_group_desc_csum(sb)) { 925 int free; 926 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 927 928 down_read(&grp->alloc_sem); /* protect vs itable lazyinit */ 929 ext4_lock_group(sb, group); /* while we modify the bg desc */ 930 free = EXT4_INODES_PER_GROUP(sb) - 931 ext4_itable_unused_count(sb, gdp); 932 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) { 933 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT); 934 free = 0; 935 } 936 /* 937 * Check the relative inode number against the last used 938 * relative inode number in this group. if it is greater 939 * we need to update the bg_itable_unused count 940 */ 941 if (ino > free) 942 ext4_itable_unused_set(sb, gdp, 943 (EXT4_INODES_PER_GROUP(sb) - ino)); 944 up_read(&grp->alloc_sem); 945 } else { 946 ext4_lock_group(sb, group); 947 } 948 949 ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1); 950 if (S_ISDIR(mode)) { 951 ext4_used_dirs_set(sb, gdp, ext4_used_dirs_count(sb, gdp) + 1); 952 if (sbi->s_log_groups_per_flex) { 953 ext4_group_t f = ext4_flex_group(sbi, group); 954 955 atomic_inc(&sbi->s_flex_groups[f].used_dirs); 956 } 957 } 958 if (ext4_has_group_desc_csum(sb)) { 959 ext4_inode_bitmap_csum_set(sb, group, gdp, inode_bitmap_bh, 960 EXT4_INODES_PER_GROUP(sb) / 8); 961 ext4_group_desc_csum_set(sb, group, gdp); 962 } 963 ext4_unlock_group(sb, group); 964 965 BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata"); 966 err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh); 967 if (err) { 968 ext4_std_error(sb, err); 969 goto out; 970 } 971 972 percpu_counter_dec(&sbi->s_freeinodes_counter); 973 if (S_ISDIR(mode)) 974 percpu_counter_inc(&sbi->s_dirs_counter); 975 976 if (sbi->s_log_groups_per_flex) { 977 flex_group = ext4_flex_group(sbi, group); 978 atomic_dec(&sbi->s_flex_groups[flex_group].free_inodes); 979 } 980 981 inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb); 982 /* This is the optimal IO size (for stat), not the fs block size */ 983 inode->i_blocks = 0; 984 inode->i_mtime = inode->i_atime = inode->i_ctime = ei->i_crtime = 985 ext4_current_time(inode); 986 987 memset(ei->i_data, 0, sizeof(ei->i_data)); 988 ei->i_dir_start_lookup = 0; 989 ei->i_disksize = 0; 990 991 /* Don't inherit extent flag from directory, amongst others. */ 992 ei->i_flags = 993 ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED); 994 ei->i_file_acl = 0; 995 ei->i_dtime = 0; 996 ei->i_block_group = group; 997 ei->i_last_alloc_group = ~0; 998 999 /* If the directory encrypted, then we should encrypt the inode. */ 1000 if ((S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) && 1001 (ext4_encrypted_inode(dir) || 1002 DUMMY_ENCRYPTION_ENABLED(sbi))) 1003 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1004 1005 ext4_set_inode_flags(inode); 1006 if (IS_DIRSYNC(inode)) 1007 ext4_handle_sync(handle); 1008 if (insert_inode_locked(inode) < 0) { 1009 /* 1010 * Likely a bitmap corruption causing inode to be allocated 1011 * twice. 1012 */ 1013 err = -EIO; 1014 ext4_error(sb, "failed to insert inode %lu: doubly allocated?", 1015 inode->i_ino); 1016 goto out; 1017 } 1018 spin_lock(&sbi->s_next_gen_lock); 1019 inode->i_generation = sbi->s_next_generation++; 1020 spin_unlock(&sbi->s_next_gen_lock); 1021 1022 /* Precompute checksum seed for inode metadata */ 1023 if (ext4_has_metadata_csum(sb)) { 1024 __u32 csum; 1025 __le32 inum = cpu_to_le32(inode->i_ino); 1026 __le32 gen = cpu_to_le32(inode->i_generation); 1027 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 1028 sizeof(inum)); 1029 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 1030 sizeof(gen)); 1031 } 1032 1033 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 1034 ext4_set_inode_state(inode, EXT4_STATE_NEW); 1035 1036 ei->i_extra_isize = EXT4_SB(sb)->s_want_extra_isize; 1037 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1038 if ((sbi->s_file_encryption_mode == EXT4_ENCRYPTION_MODE_INVALID) && 1039 (sbi->s_dir_encryption_mode == EXT4_ENCRYPTION_MODE_INVALID)) { 1040 ei->i_inline_off = 0; 1041 if (EXT4_HAS_INCOMPAT_FEATURE(sb, 1042 EXT4_FEATURE_INCOMPAT_INLINE_DATA)) 1043 ext4_set_inode_state(inode, 1044 EXT4_STATE_MAY_INLINE_DATA); 1045 } else { 1046 /* Inline data and encryption are incompatible 1047 * We turn off inline data since encryption is enabled */ 1048 ei->i_inline_off = 1; 1049 if (EXT4_HAS_INCOMPAT_FEATURE(sb, 1050 EXT4_FEATURE_INCOMPAT_INLINE_DATA)) 1051 ext4_clear_inode_state(inode, 1052 EXT4_STATE_MAY_INLINE_DATA); 1053 } 1054 #else 1055 ei->i_inline_off = 0; 1056 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_INLINE_DATA)) 1057 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); 1058 #endif 1059 ret = inode; 1060 err = dquot_alloc_inode(inode); 1061 if (err) 1062 goto fail_drop; 1063 1064 err = ext4_init_acl(handle, inode, dir); 1065 if (err) 1066 goto fail_free_drop; 1067 1068 err = ext4_init_security(handle, inode, dir, qstr); 1069 if (err) 1070 goto fail_free_drop; 1071 1072 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) { 1073 /* set extent flag only for directory, file and normal symlink*/ 1074 if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) { 1075 ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS); 1076 ext4_ext_tree_init(handle, inode); 1077 } 1078 } 1079 1080 if (ext4_handle_valid(handle)) { 1081 ei->i_sync_tid = handle->h_transaction->t_tid; 1082 ei->i_datasync_tid = handle->h_transaction->t_tid; 1083 } 1084 1085 err = ext4_mark_inode_dirty(handle, inode); 1086 if (err) { 1087 ext4_std_error(sb, err); 1088 goto fail_free_drop; 1089 } 1090 1091 ext4_debug("allocating inode %lu\n", inode->i_ino); 1092 trace_ext4_allocate_inode(inode, dir, mode); 1093 brelse(inode_bitmap_bh); 1094 return ret; 1095 1096 fail_free_drop: 1097 dquot_free_inode(inode); 1098 fail_drop: 1099 clear_nlink(inode); 1100 unlock_new_inode(inode); 1101 out: 1102 dquot_drop(inode); 1103 inode->i_flags |= S_NOQUOTA; 1104 iput(inode); 1105 brelse(inode_bitmap_bh); 1106 return ERR_PTR(err); 1107 } 1108 1109 /* Verify that we are loading a valid orphan from disk */ 1110 struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino) 1111 { 1112 unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count); 1113 ext4_group_t block_group; 1114 int bit; 1115 struct buffer_head *bitmap_bh; 1116 struct inode *inode = NULL; 1117 long err = -EIO; 1118 1119 /* Error cases - e2fsck has already cleaned up for us */ 1120 if (ino > max_ino) { 1121 ext4_warning(sb, "bad orphan ino %lu! e2fsck was run?", ino); 1122 goto error; 1123 } 1124 1125 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 1126 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb); 1127 bitmap_bh = ext4_read_inode_bitmap(sb, block_group); 1128 if (!bitmap_bh) { 1129 ext4_warning(sb, "inode bitmap error for orphan %lu", ino); 1130 goto error; 1131 } 1132 1133 /* Having the inode bit set should be a 100% indicator that this 1134 * is a valid orphan (no e2fsck run on fs). Orphans also include 1135 * inodes that were being truncated, so we can't check i_nlink==0. 1136 */ 1137 if (!ext4_test_bit(bit, bitmap_bh->b_data)) 1138 goto bad_orphan; 1139 1140 inode = ext4_iget(sb, ino); 1141 if (IS_ERR(inode)) 1142 goto iget_failed; 1143 1144 /* 1145 * If the orphans has i_nlinks > 0 then it should be able to be 1146 * truncated, otherwise it won't be removed from the orphan list 1147 * during processing and an infinite loop will result. 1148 */ 1149 if (inode->i_nlink && !ext4_can_truncate(inode)) 1150 goto bad_orphan; 1151 1152 if (NEXT_ORPHAN(inode) > max_ino) 1153 goto bad_orphan; 1154 brelse(bitmap_bh); 1155 return inode; 1156 1157 iget_failed: 1158 err = PTR_ERR(inode); 1159 inode = NULL; 1160 bad_orphan: 1161 ext4_warning(sb, "bad orphan inode %lu! e2fsck was run?", ino); 1162 printk(KERN_WARNING "ext4_test_bit(bit=%d, block=%llu) = %d\n", 1163 bit, (unsigned long long)bitmap_bh->b_blocknr, 1164 ext4_test_bit(bit, bitmap_bh->b_data)); 1165 printk(KERN_WARNING "inode=%p\n", inode); 1166 if (inode) { 1167 printk(KERN_WARNING "is_bad_inode(inode)=%d\n", 1168 is_bad_inode(inode)); 1169 printk(KERN_WARNING "NEXT_ORPHAN(inode)=%u\n", 1170 NEXT_ORPHAN(inode)); 1171 printk(KERN_WARNING "max_ino=%lu\n", max_ino); 1172 printk(KERN_WARNING "i_nlink=%u\n", inode->i_nlink); 1173 /* Avoid freeing blocks if we got a bad deleted inode */ 1174 if (inode->i_nlink == 0) 1175 inode->i_blocks = 0; 1176 iput(inode); 1177 } 1178 brelse(bitmap_bh); 1179 error: 1180 return ERR_PTR(err); 1181 } 1182 1183 unsigned long ext4_count_free_inodes(struct super_block *sb) 1184 { 1185 unsigned long desc_count; 1186 struct ext4_group_desc *gdp; 1187 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 1188 #ifdef EXT4FS_DEBUG 1189 struct ext4_super_block *es; 1190 unsigned long bitmap_count, x; 1191 struct buffer_head *bitmap_bh = NULL; 1192 1193 es = EXT4_SB(sb)->s_es; 1194 desc_count = 0; 1195 bitmap_count = 0; 1196 gdp = NULL; 1197 for (i = 0; i < ngroups; i++) { 1198 gdp = ext4_get_group_desc(sb, i, NULL); 1199 if (!gdp) 1200 continue; 1201 desc_count += ext4_free_inodes_count(sb, gdp); 1202 brelse(bitmap_bh); 1203 bitmap_bh = ext4_read_inode_bitmap(sb, i); 1204 if (!bitmap_bh) 1205 continue; 1206 1207 x = ext4_count_free(bitmap_bh->b_data, 1208 EXT4_INODES_PER_GROUP(sb) / 8); 1209 printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n", 1210 (unsigned long) i, ext4_free_inodes_count(sb, gdp), x); 1211 bitmap_count += x; 1212 } 1213 brelse(bitmap_bh); 1214 printk(KERN_DEBUG "ext4_count_free_inodes: " 1215 "stored = %u, computed = %lu, %lu\n", 1216 le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count); 1217 return desc_count; 1218 #else 1219 desc_count = 0; 1220 for (i = 0; i < ngroups; i++) { 1221 gdp = ext4_get_group_desc(sb, i, NULL); 1222 if (!gdp) 1223 continue; 1224 desc_count += ext4_free_inodes_count(sb, gdp); 1225 cond_resched(); 1226 } 1227 return desc_count; 1228 #endif 1229 } 1230 1231 /* Called at mount-time, super-block is locked */ 1232 unsigned long ext4_count_dirs(struct super_block * sb) 1233 { 1234 unsigned long count = 0; 1235 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 1236 1237 for (i = 0; i < ngroups; i++) { 1238 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 1239 if (!gdp) 1240 continue; 1241 count += ext4_used_dirs_count(sb, gdp); 1242 } 1243 return count; 1244 } 1245 1246 /* 1247 * Zeroes not yet zeroed inode table - just write zeroes through the whole 1248 * inode table. Must be called without any spinlock held. The only place 1249 * where it is called from on active part of filesystem is ext4lazyinit 1250 * thread, so we do not need any special locks, however we have to prevent 1251 * inode allocation from the current group, so we take alloc_sem lock, to 1252 * block ext4_new_inode() until we are finished. 1253 */ 1254 int ext4_init_inode_table(struct super_block *sb, ext4_group_t group, 1255 int barrier) 1256 { 1257 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 1258 struct ext4_sb_info *sbi = EXT4_SB(sb); 1259 struct ext4_group_desc *gdp = NULL; 1260 struct buffer_head *group_desc_bh; 1261 handle_t *handle; 1262 ext4_fsblk_t blk; 1263 int num, ret = 0, used_blks = 0; 1264 1265 /* This should not happen, but just to be sure check this */ 1266 if (sb->s_flags & MS_RDONLY) { 1267 ret = 1; 1268 goto out; 1269 } 1270 1271 gdp = ext4_get_group_desc(sb, group, &group_desc_bh); 1272 if (!gdp) 1273 goto out; 1274 1275 /* 1276 * We do not need to lock this, because we are the only one 1277 * handling this flag. 1278 */ 1279 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)) 1280 goto out; 1281 1282 handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1); 1283 if (IS_ERR(handle)) { 1284 ret = PTR_ERR(handle); 1285 goto out; 1286 } 1287 1288 down_write(&grp->alloc_sem); 1289 /* 1290 * If inode bitmap was already initialized there may be some 1291 * used inodes so we need to skip blocks with used inodes in 1292 * inode table. 1293 */ 1294 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT))) 1295 used_blks = DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb) - 1296 ext4_itable_unused_count(sb, gdp)), 1297 sbi->s_inodes_per_block); 1298 1299 if ((used_blks < 0) || (used_blks > sbi->s_itb_per_group)) { 1300 ext4_error(sb, "Something is wrong with group %u: " 1301 "used itable blocks: %d; " 1302 "itable unused count: %u", 1303 group, used_blks, 1304 ext4_itable_unused_count(sb, gdp)); 1305 ret = 1; 1306 goto err_out; 1307 } 1308 1309 blk = ext4_inode_table(sb, gdp) + used_blks; 1310 num = sbi->s_itb_per_group - used_blks; 1311 1312 BUFFER_TRACE(group_desc_bh, "get_write_access"); 1313 ret = ext4_journal_get_write_access(handle, 1314 group_desc_bh); 1315 if (ret) 1316 goto err_out; 1317 1318 /* 1319 * Skip zeroout if the inode table is full. But we set the ZEROED 1320 * flag anyway, because obviously, when it is full it does not need 1321 * further zeroing. 1322 */ 1323 if (unlikely(num == 0)) 1324 goto skip_zeroout; 1325 1326 ext4_debug("going to zero out inode table in group %d\n", 1327 group); 1328 ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS); 1329 if (ret < 0) 1330 goto err_out; 1331 if (barrier) 1332 blkdev_issue_flush(sb->s_bdev, GFP_NOFS, NULL); 1333 1334 skip_zeroout: 1335 ext4_lock_group(sb, group); 1336 gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED); 1337 ext4_group_desc_csum_set(sb, group, gdp); 1338 ext4_unlock_group(sb, group); 1339 1340 BUFFER_TRACE(group_desc_bh, 1341 "call ext4_handle_dirty_metadata"); 1342 ret = ext4_handle_dirty_metadata(handle, NULL, 1343 group_desc_bh); 1344 1345 err_out: 1346 up_write(&grp->alloc_sem); 1347 ext4_journal_stop(handle); 1348 out: 1349 return ret; 1350 } 1351