xref: /openbmc/linux/fs/ext4/ialloc.c (revision 65cf840f)
1 /*
2  *  linux/fs/ext4/ialloc.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  BSD ufs-inspired inode and directory allocation by
10  *  Stephen Tweedie (sct@redhat.com), 1993
11  *  Big-endian to little-endian byte-swapping/bitmaps by
12  *        David S. Miller (davem@caip.rutgers.edu), 1995
13  */
14 
15 #include <linux/time.h>
16 #include <linux/fs.h>
17 #include <linux/jbd2.h>
18 #include <linux/stat.h>
19 #include <linux/string.h>
20 #include <linux/quotaops.h>
21 #include <linux/buffer_head.h>
22 #include <linux/random.h>
23 #include <linux/bitops.h>
24 #include <linux/blkdev.h>
25 #include <asm/byteorder.h>
26 
27 #include "ext4.h"
28 #include "ext4_jbd2.h"
29 #include "xattr.h"
30 #include "acl.h"
31 
32 #include <trace/events/ext4.h>
33 
34 /*
35  * ialloc.c contains the inodes allocation and deallocation routines
36  */
37 
38 /*
39  * The free inodes are managed by bitmaps.  A file system contains several
40  * blocks groups.  Each group contains 1 bitmap block for blocks, 1 bitmap
41  * block for inodes, N blocks for the inode table and data blocks.
42  *
43  * The file system contains group descriptors which are located after the
44  * super block.  Each descriptor contains the number of the bitmap block and
45  * the free blocks count in the block.
46  */
47 
48 /*
49  * To avoid calling the atomic setbit hundreds or thousands of times, we only
50  * need to use it within a single byte (to ensure we get endianness right).
51  * We can use memset for the rest of the bitmap as there are no other users.
52  */
53 void mark_bitmap_end(int start_bit, int end_bit, char *bitmap)
54 {
55 	int i;
56 
57 	if (start_bit >= end_bit)
58 		return;
59 
60 	ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit);
61 	for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++)
62 		ext4_set_bit(i, bitmap);
63 	if (i < end_bit)
64 		memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3);
65 }
66 
67 /* Initializes an uninitialized inode bitmap */
68 unsigned ext4_init_inode_bitmap(struct super_block *sb, struct buffer_head *bh,
69 				ext4_group_t block_group,
70 				struct ext4_group_desc *gdp)
71 {
72 	struct ext4_sb_info *sbi = EXT4_SB(sb);
73 
74 	J_ASSERT_BH(bh, buffer_locked(bh));
75 
76 	/* If checksum is bad mark all blocks and inodes use to prevent
77 	 * allocation, essentially implementing a per-group read-only flag. */
78 	if (!ext4_group_desc_csum_verify(sbi, block_group, gdp)) {
79 		ext4_error(sb, "Checksum bad for group %u", block_group);
80 		ext4_free_blks_set(sb, gdp, 0);
81 		ext4_free_inodes_set(sb, gdp, 0);
82 		ext4_itable_unused_set(sb, gdp, 0);
83 		memset(bh->b_data, 0xff, sb->s_blocksize);
84 		return 0;
85 	}
86 
87 	memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8);
88 	mark_bitmap_end(EXT4_INODES_PER_GROUP(sb), sb->s_blocksize * 8,
89 			bh->b_data);
90 
91 	return EXT4_INODES_PER_GROUP(sb);
92 }
93 
94 /*
95  * Read the inode allocation bitmap for a given block_group, reading
96  * into the specified slot in the superblock's bitmap cache.
97  *
98  * Return buffer_head of bitmap on success or NULL.
99  */
100 static struct buffer_head *
101 ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group)
102 {
103 	struct ext4_group_desc *desc;
104 	struct buffer_head *bh = NULL;
105 	ext4_fsblk_t bitmap_blk;
106 
107 	desc = ext4_get_group_desc(sb, block_group, NULL);
108 	if (!desc)
109 		return NULL;
110 	bitmap_blk = ext4_inode_bitmap(sb, desc);
111 	bh = sb_getblk(sb, bitmap_blk);
112 	if (unlikely(!bh)) {
113 		ext4_error(sb, "Cannot read inode bitmap - "
114 			    "block_group = %u, inode_bitmap = %llu",
115 			    block_group, bitmap_blk);
116 		return NULL;
117 	}
118 	if (bitmap_uptodate(bh))
119 		return bh;
120 
121 	lock_buffer(bh);
122 	if (bitmap_uptodate(bh)) {
123 		unlock_buffer(bh);
124 		return bh;
125 	}
126 	ext4_lock_group(sb, block_group);
127 	if (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
128 		ext4_init_inode_bitmap(sb, bh, block_group, desc);
129 		set_bitmap_uptodate(bh);
130 		set_buffer_uptodate(bh);
131 		ext4_unlock_group(sb, block_group);
132 		unlock_buffer(bh);
133 		return bh;
134 	}
135 	ext4_unlock_group(sb, block_group);
136 	if (buffer_uptodate(bh)) {
137 		/*
138 		 * if not uninit if bh is uptodate,
139 		 * bitmap is also uptodate
140 		 */
141 		set_bitmap_uptodate(bh);
142 		unlock_buffer(bh);
143 		return bh;
144 	}
145 	/*
146 	 * submit the buffer_head for read. We can
147 	 * safely mark the bitmap as uptodate now.
148 	 * We do it here so the bitmap uptodate bit
149 	 * get set with buffer lock held.
150 	 */
151 	set_bitmap_uptodate(bh);
152 	if (bh_submit_read(bh) < 0) {
153 		put_bh(bh);
154 		ext4_error(sb, "Cannot read inode bitmap - "
155 			    "block_group = %u, inode_bitmap = %llu",
156 			    block_group, bitmap_blk);
157 		return NULL;
158 	}
159 	return bh;
160 }
161 
162 /*
163  * NOTE! When we get the inode, we're the only people
164  * that have access to it, and as such there are no
165  * race conditions we have to worry about. The inode
166  * is not on the hash-lists, and it cannot be reached
167  * through the filesystem because the directory entry
168  * has been deleted earlier.
169  *
170  * HOWEVER: we must make sure that we get no aliases,
171  * which means that we have to call "clear_inode()"
172  * _before_ we mark the inode not in use in the inode
173  * bitmaps. Otherwise a newly created file might use
174  * the same inode number (not actually the same pointer
175  * though), and then we'd have two inodes sharing the
176  * same inode number and space on the harddisk.
177  */
178 void ext4_free_inode(handle_t *handle, struct inode *inode)
179 {
180 	struct super_block *sb = inode->i_sb;
181 	int is_directory;
182 	unsigned long ino;
183 	struct buffer_head *bitmap_bh = NULL;
184 	struct buffer_head *bh2;
185 	ext4_group_t block_group;
186 	unsigned long bit;
187 	struct ext4_group_desc *gdp;
188 	struct ext4_super_block *es;
189 	struct ext4_sb_info *sbi;
190 	int fatal = 0, err, count, cleared;
191 
192 	if (atomic_read(&inode->i_count) > 1) {
193 		printk(KERN_ERR "ext4_free_inode: inode has count=%d\n",
194 		       atomic_read(&inode->i_count));
195 		return;
196 	}
197 	if (inode->i_nlink) {
198 		printk(KERN_ERR "ext4_free_inode: inode has nlink=%d\n",
199 		       inode->i_nlink);
200 		return;
201 	}
202 	if (!sb) {
203 		printk(KERN_ERR "ext4_free_inode: inode on "
204 		       "nonexistent device\n");
205 		return;
206 	}
207 	sbi = EXT4_SB(sb);
208 
209 	ino = inode->i_ino;
210 	ext4_debug("freeing inode %lu\n", ino);
211 	trace_ext4_free_inode(inode);
212 
213 	/*
214 	 * Note: we must free any quota before locking the superblock,
215 	 * as writing the quota to disk may need the lock as well.
216 	 */
217 	dquot_initialize(inode);
218 	ext4_xattr_delete_inode(handle, inode);
219 	dquot_free_inode(inode);
220 	dquot_drop(inode);
221 
222 	is_directory = S_ISDIR(inode->i_mode);
223 
224 	/* Do this BEFORE marking the inode not in use or returning an error */
225 	clear_inode(inode);
226 
227 	es = EXT4_SB(sb)->s_es;
228 	if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) {
229 		ext4_error(sb, "reserved or nonexistent inode %lu", ino);
230 		goto error_return;
231 	}
232 	block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
233 	bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
234 	bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
235 	if (!bitmap_bh)
236 		goto error_return;
237 
238 	BUFFER_TRACE(bitmap_bh, "get_write_access");
239 	fatal = ext4_journal_get_write_access(handle, bitmap_bh);
240 	if (fatal)
241 		goto error_return;
242 
243 	fatal = -ESRCH;
244 	gdp = ext4_get_group_desc(sb, block_group, &bh2);
245 	if (gdp) {
246 		BUFFER_TRACE(bh2, "get_write_access");
247 		fatal = ext4_journal_get_write_access(handle, bh2);
248 	}
249 	ext4_lock_group(sb, block_group);
250 	cleared = ext4_clear_bit(bit, bitmap_bh->b_data);
251 	if (fatal || !cleared) {
252 		ext4_unlock_group(sb, block_group);
253 		goto out;
254 	}
255 
256 	count = ext4_free_inodes_count(sb, gdp) + 1;
257 	ext4_free_inodes_set(sb, gdp, count);
258 	if (is_directory) {
259 		count = ext4_used_dirs_count(sb, gdp) - 1;
260 		ext4_used_dirs_set(sb, gdp, count);
261 		percpu_counter_dec(&sbi->s_dirs_counter);
262 	}
263 	gdp->bg_checksum = ext4_group_desc_csum(sbi, block_group, gdp);
264 	ext4_unlock_group(sb, block_group);
265 
266 	percpu_counter_inc(&sbi->s_freeinodes_counter);
267 	if (sbi->s_log_groups_per_flex) {
268 		ext4_group_t f = ext4_flex_group(sbi, block_group);
269 
270 		atomic_inc(&sbi->s_flex_groups[f].free_inodes);
271 		if (is_directory)
272 			atomic_dec(&sbi->s_flex_groups[f].used_dirs);
273 	}
274 	BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata");
275 	fatal = ext4_handle_dirty_metadata(handle, NULL, bh2);
276 out:
277 	if (cleared) {
278 		BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata");
279 		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
280 		if (!fatal)
281 			fatal = err;
282 		sb->s_dirt = 1;
283 	} else
284 		ext4_error(sb, "bit already cleared for inode %lu", ino);
285 
286 error_return:
287 	brelse(bitmap_bh);
288 	ext4_std_error(sb, fatal);
289 }
290 
291 /*
292  * There are two policies for allocating an inode.  If the new inode is
293  * a directory, then a forward search is made for a block group with both
294  * free space and a low directory-to-inode ratio; if that fails, then of
295  * the groups with above-average free space, that group with the fewest
296  * directories already is chosen.
297  *
298  * For other inodes, search forward from the parent directory\'s block
299  * group to find a free inode.
300  */
301 static int find_group_dir(struct super_block *sb, struct inode *parent,
302 				ext4_group_t *best_group)
303 {
304 	ext4_group_t ngroups = ext4_get_groups_count(sb);
305 	unsigned int freei, avefreei;
306 	struct ext4_group_desc *desc, *best_desc = NULL;
307 	ext4_group_t group;
308 	int ret = -1;
309 
310 	freei = percpu_counter_read_positive(&EXT4_SB(sb)->s_freeinodes_counter);
311 	avefreei = freei / ngroups;
312 
313 	for (group = 0; group < ngroups; group++) {
314 		desc = ext4_get_group_desc(sb, group, NULL);
315 		if (!desc || !ext4_free_inodes_count(sb, desc))
316 			continue;
317 		if (ext4_free_inodes_count(sb, desc) < avefreei)
318 			continue;
319 		if (!best_desc ||
320 		    (ext4_free_blks_count(sb, desc) >
321 		     ext4_free_blks_count(sb, best_desc))) {
322 			*best_group = group;
323 			best_desc = desc;
324 			ret = 0;
325 		}
326 	}
327 	return ret;
328 }
329 
330 #define free_block_ratio 10
331 
332 static int find_group_flex(struct super_block *sb, struct inode *parent,
333 			   ext4_group_t *best_group)
334 {
335 	struct ext4_sb_info *sbi = EXT4_SB(sb);
336 	struct ext4_group_desc *desc;
337 	struct flex_groups *flex_group = sbi->s_flex_groups;
338 	ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
339 	ext4_group_t parent_fbg_group = ext4_flex_group(sbi, parent_group);
340 	ext4_group_t ngroups = ext4_get_groups_count(sb);
341 	int flex_size = ext4_flex_bg_size(sbi);
342 	ext4_group_t best_flex = parent_fbg_group;
343 	int blocks_per_flex = sbi->s_blocks_per_group * flex_size;
344 	int flexbg_free_blocks;
345 	int flex_freeb_ratio;
346 	ext4_group_t n_fbg_groups;
347 	ext4_group_t i;
348 
349 	n_fbg_groups = (ngroups + flex_size - 1) >>
350 		sbi->s_log_groups_per_flex;
351 
352 find_close_to_parent:
353 	flexbg_free_blocks = atomic_read(&flex_group[best_flex].free_blocks);
354 	flex_freeb_ratio = flexbg_free_blocks * 100 / blocks_per_flex;
355 	if (atomic_read(&flex_group[best_flex].free_inodes) &&
356 	    flex_freeb_ratio > free_block_ratio)
357 		goto found_flexbg;
358 
359 	if (best_flex && best_flex == parent_fbg_group) {
360 		best_flex--;
361 		goto find_close_to_parent;
362 	}
363 
364 	for (i = 0; i < n_fbg_groups; i++) {
365 		if (i == parent_fbg_group || i == parent_fbg_group - 1)
366 			continue;
367 
368 		flexbg_free_blocks = atomic_read(&flex_group[i].free_blocks);
369 		flex_freeb_ratio = flexbg_free_blocks * 100 / blocks_per_flex;
370 
371 		if (flex_freeb_ratio > free_block_ratio &&
372 		    (atomic_read(&flex_group[i].free_inodes))) {
373 			best_flex = i;
374 			goto found_flexbg;
375 		}
376 
377 		if ((atomic_read(&flex_group[best_flex].free_inodes) == 0) ||
378 		    ((atomic_read(&flex_group[i].free_blocks) >
379 		      atomic_read(&flex_group[best_flex].free_blocks)) &&
380 		     atomic_read(&flex_group[i].free_inodes)))
381 			best_flex = i;
382 	}
383 
384 	if (!atomic_read(&flex_group[best_flex].free_inodes) ||
385 	    !atomic_read(&flex_group[best_flex].free_blocks))
386 		return -1;
387 
388 found_flexbg:
389 	for (i = best_flex * flex_size; i < ngroups &&
390 		     i < (best_flex + 1) * flex_size; i++) {
391 		desc = ext4_get_group_desc(sb, i, NULL);
392 		if (ext4_free_inodes_count(sb, desc)) {
393 			*best_group = i;
394 			goto out;
395 		}
396 	}
397 
398 	return -1;
399 out:
400 	return 0;
401 }
402 
403 struct orlov_stats {
404 	__u32 free_inodes;
405 	__u32 free_blocks;
406 	__u32 used_dirs;
407 };
408 
409 /*
410  * Helper function for Orlov's allocator; returns critical information
411  * for a particular block group or flex_bg.  If flex_size is 1, then g
412  * is a block group number; otherwise it is flex_bg number.
413  */
414 void get_orlov_stats(struct super_block *sb, ext4_group_t g,
415 		       int flex_size, struct orlov_stats *stats)
416 {
417 	struct ext4_group_desc *desc;
418 	struct flex_groups *flex_group = EXT4_SB(sb)->s_flex_groups;
419 
420 	if (flex_size > 1) {
421 		stats->free_inodes = atomic_read(&flex_group[g].free_inodes);
422 		stats->free_blocks = atomic_read(&flex_group[g].free_blocks);
423 		stats->used_dirs = atomic_read(&flex_group[g].used_dirs);
424 		return;
425 	}
426 
427 	desc = ext4_get_group_desc(sb, g, NULL);
428 	if (desc) {
429 		stats->free_inodes = ext4_free_inodes_count(sb, desc);
430 		stats->free_blocks = ext4_free_blks_count(sb, desc);
431 		stats->used_dirs = ext4_used_dirs_count(sb, desc);
432 	} else {
433 		stats->free_inodes = 0;
434 		stats->free_blocks = 0;
435 		stats->used_dirs = 0;
436 	}
437 }
438 
439 /*
440  * Orlov's allocator for directories.
441  *
442  * We always try to spread first-level directories.
443  *
444  * If there are blockgroups with both free inodes and free blocks counts
445  * not worse than average we return one with smallest directory count.
446  * Otherwise we simply return a random group.
447  *
448  * For the rest rules look so:
449  *
450  * It's OK to put directory into a group unless
451  * it has too many directories already (max_dirs) or
452  * it has too few free inodes left (min_inodes) or
453  * it has too few free blocks left (min_blocks) or
454  * Parent's group is preferred, if it doesn't satisfy these
455  * conditions we search cyclically through the rest. If none
456  * of the groups look good we just look for a group with more
457  * free inodes than average (starting at parent's group).
458  */
459 
460 static int find_group_orlov(struct super_block *sb, struct inode *parent,
461 			    ext4_group_t *group, int mode,
462 			    const struct qstr *qstr)
463 {
464 	ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
465 	struct ext4_sb_info *sbi = EXT4_SB(sb);
466 	ext4_group_t real_ngroups = ext4_get_groups_count(sb);
467 	int inodes_per_group = EXT4_INODES_PER_GROUP(sb);
468 	unsigned int freei, avefreei;
469 	ext4_fsblk_t freeb, avefreeb;
470 	unsigned int ndirs;
471 	int max_dirs, min_inodes;
472 	ext4_grpblk_t min_blocks;
473 	ext4_group_t i, grp, g, ngroups;
474 	struct ext4_group_desc *desc;
475 	struct orlov_stats stats;
476 	int flex_size = ext4_flex_bg_size(sbi);
477 	struct dx_hash_info hinfo;
478 
479 	ngroups = real_ngroups;
480 	if (flex_size > 1) {
481 		ngroups = (real_ngroups + flex_size - 1) >>
482 			sbi->s_log_groups_per_flex;
483 		parent_group >>= sbi->s_log_groups_per_flex;
484 	}
485 
486 	freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter);
487 	avefreei = freei / ngroups;
488 	freeb = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
489 	avefreeb = freeb;
490 	do_div(avefreeb, ngroups);
491 	ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter);
492 
493 	if (S_ISDIR(mode) &&
494 	    ((parent == sb->s_root->d_inode) ||
495 	     (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) {
496 		int best_ndir = inodes_per_group;
497 		int ret = -1;
498 
499 		if (qstr) {
500 			hinfo.hash_version = DX_HASH_HALF_MD4;
501 			hinfo.seed = sbi->s_hash_seed;
502 			ext4fs_dirhash(qstr->name, qstr->len, &hinfo);
503 			grp = hinfo.hash;
504 		} else
505 			get_random_bytes(&grp, sizeof(grp));
506 		parent_group = (unsigned)grp % ngroups;
507 		for (i = 0; i < ngroups; i++) {
508 			g = (parent_group + i) % ngroups;
509 			get_orlov_stats(sb, g, flex_size, &stats);
510 			if (!stats.free_inodes)
511 				continue;
512 			if (stats.used_dirs >= best_ndir)
513 				continue;
514 			if (stats.free_inodes < avefreei)
515 				continue;
516 			if (stats.free_blocks < avefreeb)
517 				continue;
518 			grp = g;
519 			ret = 0;
520 			best_ndir = stats.used_dirs;
521 		}
522 		if (ret)
523 			goto fallback;
524 	found_flex_bg:
525 		if (flex_size == 1) {
526 			*group = grp;
527 			return 0;
528 		}
529 
530 		/*
531 		 * We pack inodes at the beginning of the flexgroup's
532 		 * inode tables.  Block allocation decisions will do
533 		 * something similar, although regular files will
534 		 * start at 2nd block group of the flexgroup.  See
535 		 * ext4_ext_find_goal() and ext4_find_near().
536 		 */
537 		grp *= flex_size;
538 		for (i = 0; i < flex_size; i++) {
539 			if (grp+i >= real_ngroups)
540 				break;
541 			desc = ext4_get_group_desc(sb, grp+i, NULL);
542 			if (desc && ext4_free_inodes_count(sb, desc)) {
543 				*group = grp+i;
544 				return 0;
545 			}
546 		}
547 		goto fallback;
548 	}
549 
550 	max_dirs = ndirs / ngroups + inodes_per_group / 16;
551 	min_inodes = avefreei - inodes_per_group*flex_size / 4;
552 	if (min_inodes < 1)
553 		min_inodes = 1;
554 	min_blocks = avefreeb - EXT4_BLOCKS_PER_GROUP(sb)*flex_size / 4;
555 
556 	/*
557 	 * Start looking in the flex group where we last allocated an
558 	 * inode for this parent directory
559 	 */
560 	if (EXT4_I(parent)->i_last_alloc_group != ~0) {
561 		parent_group = EXT4_I(parent)->i_last_alloc_group;
562 		if (flex_size > 1)
563 			parent_group >>= sbi->s_log_groups_per_flex;
564 	}
565 
566 	for (i = 0; i < ngroups; i++) {
567 		grp = (parent_group + i) % ngroups;
568 		get_orlov_stats(sb, grp, flex_size, &stats);
569 		if (stats.used_dirs >= max_dirs)
570 			continue;
571 		if (stats.free_inodes < min_inodes)
572 			continue;
573 		if (stats.free_blocks < min_blocks)
574 			continue;
575 		goto found_flex_bg;
576 	}
577 
578 fallback:
579 	ngroups = real_ngroups;
580 	avefreei = freei / ngroups;
581 fallback_retry:
582 	parent_group = EXT4_I(parent)->i_block_group;
583 	for (i = 0; i < ngroups; i++) {
584 		grp = (parent_group + i) % ngroups;
585 		desc = ext4_get_group_desc(sb, grp, NULL);
586 		if (desc && ext4_free_inodes_count(sb, desc) &&
587 		    ext4_free_inodes_count(sb, desc) >= avefreei) {
588 			*group = grp;
589 			return 0;
590 		}
591 	}
592 
593 	if (avefreei) {
594 		/*
595 		 * The free-inodes counter is approximate, and for really small
596 		 * filesystems the above test can fail to find any blockgroups
597 		 */
598 		avefreei = 0;
599 		goto fallback_retry;
600 	}
601 
602 	return -1;
603 }
604 
605 static int find_group_other(struct super_block *sb, struct inode *parent,
606 			    ext4_group_t *group, int mode)
607 {
608 	ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
609 	ext4_group_t i, last, ngroups = ext4_get_groups_count(sb);
610 	struct ext4_group_desc *desc;
611 	int flex_size = ext4_flex_bg_size(EXT4_SB(sb));
612 
613 	/*
614 	 * Try to place the inode is the same flex group as its
615 	 * parent.  If we can't find space, use the Orlov algorithm to
616 	 * find another flex group, and store that information in the
617 	 * parent directory's inode information so that use that flex
618 	 * group for future allocations.
619 	 */
620 	if (flex_size > 1) {
621 		int retry = 0;
622 
623 	try_again:
624 		parent_group &= ~(flex_size-1);
625 		last = parent_group + flex_size;
626 		if (last > ngroups)
627 			last = ngroups;
628 		for  (i = parent_group; i < last; i++) {
629 			desc = ext4_get_group_desc(sb, i, NULL);
630 			if (desc && ext4_free_inodes_count(sb, desc)) {
631 				*group = i;
632 				return 0;
633 			}
634 		}
635 		if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) {
636 			retry = 1;
637 			parent_group = EXT4_I(parent)->i_last_alloc_group;
638 			goto try_again;
639 		}
640 		/*
641 		 * If this didn't work, use the Orlov search algorithm
642 		 * to find a new flex group; we pass in the mode to
643 		 * avoid the topdir algorithms.
644 		 */
645 		*group = parent_group + flex_size;
646 		if (*group > ngroups)
647 			*group = 0;
648 		return find_group_orlov(sb, parent, group, mode, 0);
649 	}
650 
651 	/*
652 	 * Try to place the inode in its parent directory
653 	 */
654 	*group = parent_group;
655 	desc = ext4_get_group_desc(sb, *group, NULL);
656 	if (desc && ext4_free_inodes_count(sb, desc) &&
657 			ext4_free_blks_count(sb, desc))
658 		return 0;
659 
660 	/*
661 	 * We're going to place this inode in a different blockgroup from its
662 	 * parent.  We want to cause files in a common directory to all land in
663 	 * the same blockgroup.  But we want files which are in a different
664 	 * directory which shares a blockgroup with our parent to land in a
665 	 * different blockgroup.
666 	 *
667 	 * So add our directory's i_ino into the starting point for the hash.
668 	 */
669 	*group = (*group + parent->i_ino) % ngroups;
670 
671 	/*
672 	 * Use a quadratic hash to find a group with a free inode and some free
673 	 * blocks.
674 	 */
675 	for (i = 1; i < ngroups; i <<= 1) {
676 		*group += i;
677 		if (*group >= ngroups)
678 			*group -= ngroups;
679 		desc = ext4_get_group_desc(sb, *group, NULL);
680 		if (desc && ext4_free_inodes_count(sb, desc) &&
681 				ext4_free_blks_count(sb, desc))
682 			return 0;
683 	}
684 
685 	/*
686 	 * That failed: try linear search for a free inode, even if that group
687 	 * has no free blocks.
688 	 */
689 	*group = parent_group;
690 	for (i = 0; i < ngroups; i++) {
691 		if (++*group >= ngroups)
692 			*group = 0;
693 		desc = ext4_get_group_desc(sb, *group, NULL);
694 		if (desc && ext4_free_inodes_count(sb, desc))
695 			return 0;
696 	}
697 
698 	return -1;
699 }
700 
701 /*
702  * claim the inode from the inode bitmap. If the group
703  * is uninit we need to take the groups's ext4_group_lock
704  * and clear the uninit flag. The inode bitmap update
705  * and group desc uninit flag clear should be done
706  * after holding ext4_group_lock so that ext4_read_inode_bitmap
707  * doesn't race with the ext4_claim_inode
708  */
709 static int ext4_claim_inode(struct super_block *sb,
710 			struct buffer_head *inode_bitmap_bh,
711 			unsigned long ino, ext4_group_t group, int mode)
712 {
713 	int free = 0, retval = 0, count;
714 	struct ext4_sb_info *sbi = EXT4_SB(sb);
715 	struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
716 
717 	ext4_lock_group(sb, group);
718 	if (ext4_set_bit(ino, inode_bitmap_bh->b_data)) {
719 		/* not a free inode */
720 		retval = 1;
721 		goto err_ret;
722 	}
723 	ino++;
724 	if ((group == 0 && ino < EXT4_FIRST_INO(sb)) ||
725 			ino > EXT4_INODES_PER_GROUP(sb)) {
726 		ext4_unlock_group(sb, group);
727 		ext4_error(sb, "reserved inode or inode > inodes count - "
728 			   "block_group = %u, inode=%lu", group,
729 			   ino + group * EXT4_INODES_PER_GROUP(sb));
730 		return 1;
731 	}
732 	/* If we didn't allocate from within the initialized part of the inode
733 	 * table then we need to initialize up to this inode. */
734 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) {
735 
736 		if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
737 			gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT);
738 			/* When marking the block group with
739 			 * ~EXT4_BG_INODE_UNINIT we don't want to depend
740 			 * on the value of bg_itable_unused even though
741 			 * mke2fs could have initialized the same for us.
742 			 * Instead we calculated the value below
743 			 */
744 
745 			free = 0;
746 		} else {
747 			free = EXT4_INODES_PER_GROUP(sb) -
748 				ext4_itable_unused_count(sb, gdp);
749 		}
750 
751 		/*
752 		 * Check the relative inode number against the last used
753 		 * relative inode number in this group. if it is greater
754 		 * we need to  update the bg_itable_unused count
755 		 *
756 		 */
757 		if (ino > free)
758 			ext4_itable_unused_set(sb, gdp,
759 					(EXT4_INODES_PER_GROUP(sb) - ino));
760 	}
761 	count = ext4_free_inodes_count(sb, gdp) - 1;
762 	ext4_free_inodes_set(sb, gdp, count);
763 	if (S_ISDIR(mode)) {
764 		count = ext4_used_dirs_count(sb, gdp) + 1;
765 		ext4_used_dirs_set(sb, gdp, count);
766 		if (sbi->s_log_groups_per_flex) {
767 			ext4_group_t f = ext4_flex_group(sbi, group);
768 
769 			atomic_inc(&sbi->s_flex_groups[f].used_dirs);
770 		}
771 	}
772 	gdp->bg_checksum = ext4_group_desc_csum(sbi, group, gdp);
773 err_ret:
774 	ext4_unlock_group(sb, group);
775 	return retval;
776 }
777 
778 /*
779  * There are two policies for allocating an inode.  If the new inode is
780  * a directory, then a forward search is made for a block group with both
781  * free space and a low directory-to-inode ratio; if that fails, then of
782  * the groups with above-average free space, that group with the fewest
783  * directories already is chosen.
784  *
785  * For other inodes, search forward from the parent directory's block
786  * group to find a free inode.
787  */
788 struct inode *ext4_new_inode(handle_t *handle, struct inode *dir, int mode,
789 			     const struct qstr *qstr, __u32 goal)
790 {
791 	struct super_block *sb;
792 	struct buffer_head *inode_bitmap_bh = NULL;
793 	struct buffer_head *group_desc_bh;
794 	ext4_group_t ngroups, group = 0;
795 	unsigned long ino = 0;
796 	struct inode *inode;
797 	struct ext4_group_desc *gdp = NULL;
798 	struct ext4_inode_info *ei;
799 	struct ext4_sb_info *sbi;
800 	int ret2, err = 0;
801 	struct inode *ret;
802 	ext4_group_t i;
803 	int free = 0;
804 	static int once = 1;
805 	ext4_group_t flex_group;
806 
807 	/* Cannot create files in a deleted directory */
808 	if (!dir || !dir->i_nlink)
809 		return ERR_PTR(-EPERM);
810 
811 	sb = dir->i_sb;
812 	ngroups = ext4_get_groups_count(sb);
813 	trace_ext4_request_inode(dir, mode);
814 	inode = new_inode(sb);
815 	if (!inode)
816 		return ERR_PTR(-ENOMEM);
817 	ei = EXT4_I(inode);
818 	sbi = EXT4_SB(sb);
819 
820 	if (!goal)
821 		goal = sbi->s_inode_goal;
822 
823 	if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) {
824 		group = (goal - 1) / EXT4_INODES_PER_GROUP(sb);
825 		ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb);
826 		ret2 = 0;
827 		goto got_group;
828 	}
829 
830 	if (sbi->s_log_groups_per_flex && test_opt(sb, OLDALLOC)) {
831 		ret2 = find_group_flex(sb, dir, &group);
832 		if (ret2 == -1) {
833 			ret2 = find_group_other(sb, dir, &group, mode);
834 			if (ret2 == 0 && once) {
835 				once = 0;
836 				printk(KERN_NOTICE "ext4: find_group_flex "
837 				       "failed, fallback succeeded dir %lu\n",
838 				       dir->i_ino);
839 			}
840 		}
841 		goto got_group;
842 	}
843 
844 	if (S_ISDIR(mode)) {
845 		if (test_opt(sb, OLDALLOC))
846 			ret2 = find_group_dir(sb, dir, &group);
847 		else
848 			ret2 = find_group_orlov(sb, dir, &group, mode, qstr);
849 	} else
850 		ret2 = find_group_other(sb, dir, &group, mode);
851 
852 got_group:
853 	EXT4_I(dir)->i_last_alloc_group = group;
854 	err = -ENOSPC;
855 	if (ret2 == -1)
856 		goto out;
857 
858 	for (i = 0; i < ngroups; i++, ino = 0) {
859 		err = -EIO;
860 
861 		gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
862 		if (!gdp)
863 			goto fail;
864 
865 		brelse(inode_bitmap_bh);
866 		inode_bitmap_bh = ext4_read_inode_bitmap(sb, group);
867 		if (!inode_bitmap_bh)
868 			goto fail;
869 
870 repeat_in_this_group:
871 		ino = ext4_find_next_zero_bit((unsigned long *)
872 					      inode_bitmap_bh->b_data,
873 					      EXT4_INODES_PER_GROUP(sb), ino);
874 
875 		if (ino < EXT4_INODES_PER_GROUP(sb)) {
876 
877 			BUFFER_TRACE(inode_bitmap_bh, "get_write_access");
878 			err = ext4_journal_get_write_access(handle,
879 							    inode_bitmap_bh);
880 			if (err)
881 				goto fail;
882 
883 			BUFFER_TRACE(group_desc_bh, "get_write_access");
884 			err = ext4_journal_get_write_access(handle,
885 								group_desc_bh);
886 			if (err)
887 				goto fail;
888 			if (!ext4_claim_inode(sb, inode_bitmap_bh,
889 						ino, group, mode)) {
890 				/* we won it */
891 				BUFFER_TRACE(inode_bitmap_bh,
892 					"call ext4_handle_dirty_metadata");
893 				err = ext4_handle_dirty_metadata(handle,
894 								 NULL,
895 							inode_bitmap_bh);
896 				if (err)
897 					goto fail;
898 				/* zero bit is inode number 1*/
899 				ino++;
900 				goto got;
901 			}
902 			/* we lost it */
903 			ext4_handle_release_buffer(handle, inode_bitmap_bh);
904 			ext4_handle_release_buffer(handle, group_desc_bh);
905 
906 			if (++ino < EXT4_INODES_PER_GROUP(sb))
907 				goto repeat_in_this_group;
908 		}
909 
910 		/*
911 		 * This case is possible in concurrent environment.  It is very
912 		 * rare.  We cannot repeat the find_group_xxx() call because
913 		 * that will simply return the same blockgroup, because the
914 		 * group descriptor metadata has not yet been updated.
915 		 * So we just go onto the next blockgroup.
916 		 */
917 		if (++group == ngroups)
918 			group = 0;
919 	}
920 	err = -ENOSPC;
921 	goto out;
922 
923 got:
924 	/* We may have to initialize the block bitmap if it isn't already */
925 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM) &&
926 	    gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
927 		struct buffer_head *block_bitmap_bh;
928 
929 		block_bitmap_bh = ext4_read_block_bitmap(sb, group);
930 		BUFFER_TRACE(block_bitmap_bh, "get block bitmap access");
931 		err = ext4_journal_get_write_access(handle, block_bitmap_bh);
932 		if (err) {
933 			brelse(block_bitmap_bh);
934 			goto fail;
935 		}
936 
937 		free = 0;
938 		ext4_lock_group(sb, group);
939 		/* recheck and clear flag under lock if we still need to */
940 		if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
941 			free = ext4_free_blocks_after_init(sb, group, gdp);
942 			gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
943 			ext4_free_blks_set(sb, gdp, free);
944 			gdp->bg_checksum = ext4_group_desc_csum(sbi, group,
945 								gdp);
946 		}
947 		ext4_unlock_group(sb, group);
948 
949 		/* Don't need to dirty bitmap block if we didn't change it */
950 		if (free) {
951 			BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap");
952 			err = ext4_handle_dirty_metadata(handle,
953 							NULL, block_bitmap_bh);
954 		}
955 
956 		brelse(block_bitmap_bh);
957 		if (err)
958 			goto fail;
959 	}
960 	BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata");
961 	err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh);
962 	if (err)
963 		goto fail;
964 
965 	percpu_counter_dec(&sbi->s_freeinodes_counter);
966 	if (S_ISDIR(mode))
967 		percpu_counter_inc(&sbi->s_dirs_counter);
968 	sb->s_dirt = 1;
969 
970 	if (sbi->s_log_groups_per_flex) {
971 		flex_group = ext4_flex_group(sbi, group);
972 		atomic_dec(&sbi->s_flex_groups[flex_group].free_inodes);
973 	}
974 
975 	if (test_opt(sb, GRPID)) {
976 		inode->i_mode = mode;
977 		inode->i_uid = current_fsuid();
978 		inode->i_gid = dir->i_gid;
979 	} else
980 		inode_init_owner(inode, dir, mode);
981 
982 	inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb);
983 	/* This is the optimal IO size (for stat), not the fs block size */
984 	inode->i_blocks = 0;
985 	inode->i_mtime = inode->i_atime = inode->i_ctime = ei->i_crtime =
986 						       ext4_current_time(inode);
987 
988 	memset(ei->i_data, 0, sizeof(ei->i_data));
989 	ei->i_dir_start_lookup = 0;
990 	ei->i_disksize = 0;
991 
992 	/*
993 	 * Don't inherit extent flag from directory, amongst others. We set
994 	 * extent flag on newly created directory and file only if -o extent
995 	 * mount option is specified
996 	 */
997 	ei->i_flags =
998 		ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED);
999 	ei->i_file_acl = 0;
1000 	ei->i_dtime = 0;
1001 	ei->i_block_group = group;
1002 	ei->i_last_alloc_group = ~0;
1003 
1004 	ext4_set_inode_flags(inode);
1005 	if (IS_DIRSYNC(inode))
1006 		ext4_handle_sync(handle);
1007 	if (insert_inode_locked(inode) < 0) {
1008 		err = -EINVAL;
1009 		goto fail_drop;
1010 	}
1011 	spin_lock(&sbi->s_next_gen_lock);
1012 	inode->i_generation = sbi->s_next_generation++;
1013 	spin_unlock(&sbi->s_next_gen_lock);
1014 
1015 	ei->i_state_flags = 0;
1016 	ext4_set_inode_state(inode, EXT4_STATE_NEW);
1017 
1018 	ei->i_extra_isize = EXT4_SB(sb)->s_want_extra_isize;
1019 
1020 	ret = inode;
1021 	dquot_initialize(inode);
1022 	err = dquot_alloc_inode(inode);
1023 	if (err)
1024 		goto fail_drop;
1025 
1026 	err = ext4_init_acl(handle, inode, dir);
1027 	if (err)
1028 		goto fail_free_drop;
1029 
1030 	err = ext4_init_security(handle, inode, dir);
1031 	if (err)
1032 		goto fail_free_drop;
1033 
1034 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
1035 		/* set extent flag only for directory, file and normal symlink*/
1036 		if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) {
1037 			ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS);
1038 			ext4_ext_tree_init(handle, inode);
1039 		}
1040 	}
1041 
1042 	err = ext4_mark_inode_dirty(handle, inode);
1043 	if (err) {
1044 		ext4_std_error(sb, err);
1045 		goto fail_free_drop;
1046 	}
1047 
1048 	ext4_debug("allocating inode %lu\n", inode->i_ino);
1049 	trace_ext4_allocate_inode(inode, dir, mode);
1050 	goto really_out;
1051 fail:
1052 	ext4_std_error(sb, err);
1053 out:
1054 	iput(inode);
1055 	ret = ERR_PTR(err);
1056 really_out:
1057 	brelse(inode_bitmap_bh);
1058 	return ret;
1059 
1060 fail_free_drop:
1061 	dquot_free_inode(inode);
1062 
1063 fail_drop:
1064 	dquot_drop(inode);
1065 	inode->i_flags |= S_NOQUOTA;
1066 	inode->i_nlink = 0;
1067 	unlock_new_inode(inode);
1068 	iput(inode);
1069 	brelse(inode_bitmap_bh);
1070 	return ERR_PTR(err);
1071 }
1072 
1073 /* Verify that we are loading a valid orphan from disk */
1074 struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino)
1075 {
1076 	unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count);
1077 	ext4_group_t block_group;
1078 	int bit;
1079 	struct buffer_head *bitmap_bh;
1080 	struct inode *inode = NULL;
1081 	long err = -EIO;
1082 
1083 	/* Error cases - e2fsck has already cleaned up for us */
1084 	if (ino > max_ino) {
1085 		ext4_warning(sb, "bad orphan ino %lu!  e2fsck was run?", ino);
1086 		goto error;
1087 	}
1088 
1089 	block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
1090 	bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
1091 	bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
1092 	if (!bitmap_bh) {
1093 		ext4_warning(sb, "inode bitmap error for orphan %lu", ino);
1094 		goto error;
1095 	}
1096 
1097 	/* Having the inode bit set should be a 100% indicator that this
1098 	 * is a valid orphan (no e2fsck run on fs).  Orphans also include
1099 	 * inodes that were being truncated, so we can't check i_nlink==0.
1100 	 */
1101 	if (!ext4_test_bit(bit, bitmap_bh->b_data))
1102 		goto bad_orphan;
1103 
1104 	inode = ext4_iget(sb, ino);
1105 	if (IS_ERR(inode))
1106 		goto iget_failed;
1107 
1108 	/*
1109 	 * If the orphans has i_nlinks > 0 then it should be able to be
1110 	 * truncated, otherwise it won't be removed from the orphan list
1111 	 * during processing and an infinite loop will result.
1112 	 */
1113 	if (inode->i_nlink && !ext4_can_truncate(inode))
1114 		goto bad_orphan;
1115 
1116 	if (NEXT_ORPHAN(inode) > max_ino)
1117 		goto bad_orphan;
1118 	brelse(bitmap_bh);
1119 	return inode;
1120 
1121 iget_failed:
1122 	err = PTR_ERR(inode);
1123 	inode = NULL;
1124 bad_orphan:
1125 	ext4_warning(sb, "bad orphan inode %lu!  e2fsck was run?", ino);
1126 	printk(KERN_NOTICE "ext4_test_bit(bit=%d, block=%llu) = %d\n",
1127 	       bit, (unsigned long long)bitmap_bh->b_blocknr,
1128 	       ext4_test_bit(bit, bitmap_bh->b_data));
1129 	printk(KERN_NOTICE "inode=%p\n", inode);
1130 	if (inode) {
1131 		printk(KERN_NOTICE "is_bad_inode(inode)=%d\n",
1132 		       is_bad_inode(inode));
1133 		printk(KERN_NOTICE "NEXT_ORPHAN(inode)=%u\n",
1134 		       NEXT_ORPHAN(inode));
1135 		printk(KERN_NOTICE "max_ino=%lu\n", max_ino);
1136 		printk(KERN_NOTICE "i_nlink=%u\n", inode->i_nlink);
1137 		/* Avoid freeing blocks if we got a bad deleted inode */
1138 		if (inode->i_nlink == 0)
1139 			inode->i_blocks = 0;
1140 		iput(inode);
1141 	}
1142 	brelse(bitmap_bh);
1143 error:
1144 	return ERR_PTR(err);
1145 }
1146 
1147 unsigned long ext4_count_free_inodes(struct super_block *sb)
1148 {
1149 	unsigned long desc_count;
1150 	struct ext4_group_desc *gdp;
1151 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1152 #ifdef EXT4FS_DEBUG
1153 	struct ext4_super_block *es;
1154 	unsigned long bitmap_count, x;
1155 	struct buffer_head *bitmap_bh = NULL;
1156 
1157 	es = EXT4_SB(sb)->s_es;
1158 	desc_count = 0;
1159 	bitmap_count = 0;
1160 	gdp = NULL;
1161 	for (i = 0; i < ngroups; i++) {
1162 		gdp = ext4_get_group_desc(sb, i, NULL);
1163 		if (!gdp)
1164 			continue;
1165 		desc_count += ext4_free_inodes_count(sb, gdp);
1166 		brelse(bitmap_bh);
1167 		bitmap_bh = ext4_read_inode_bitmap(sb, i);
1168 		if (!bitmap_bh)
1169 			continue;
1170 
1171 		x = ext4_count_free(bitmap_bh, EXT4_INODES_PER_GROUP(sb) / 8);
1172 		printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n",
1173 			(unsigned long) i, ext4_free_inodes_count(sb, gdp), x);
1174 		bitmap_count += x;
1175 	}
1176 	brelse(bitmap_bh);
1177 	printk(KERN_DEBUG "ext4_count_free_inodes: "
1178 	       "stored = %u, computed = %lu, %lu\n",
1179 	       le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count);
1180 	return desc_count;
1181 #else
1182 	desc_count = 0;
1183 	for (i = 0; i < ngroups; i++) {
1184 		gdp = ext4_get_group_desc(sb, i, NULL);
1185 		if (!gdp)
1186 			continue;
1187 		desc_count += ext4_free_inodes_count(sb, gdp);
1188 		cond_resched();
1189 	}
1190 	return desc_count;
1191 #endif
1192 }
1193 
1194 /* Called at mount-time, super-block is locked */
1195 unsigned long ext4_count_dirs(struct super_block * sb)
1196 {
1197 	unsigned long count = 0;
1198 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1199 
1200 	for (i = 0; i < ngroups; i++) {
1201 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
1202 		if (!gdp)
1203 			continue;
1204 		count += ext4_used_dirs_count(sb, gdp);
1205 	}
1206 	return count;
1207 }
1208