1 /* 2 * linux/fs/ext4/ialloc.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * BSD ufs-inspired inode and directory allocation by 10 * Stephen Tweedie (sct@redhat.com), 1993 11 * Big-endian to little-endian byte-swapping/bitmaps by 12 * David S. Miller (davem@caip.rutgers.edu), 1995 13 */ 14 15 #include <linux/time.h> 16 #include <linux/fs.h> 17 #include <linux/jbd2.h> 18 #include <linux/stat.h> 19 #include <linux/string.h> 20 #include <linux/quotaops.h> 21 #include <linux/buffer_head.h> 22 #include <linux/random.h> 23 #include <linux/bitops.h> 24 #include <linux/blkdev.h> 25 #include <asm/byteorder.h> 26 27 #include "ext4.h" 28 #include "ext4_jbd2.h" 29 #include "xattr.h" 30 #include "acl.h" 31 32 #include <trace/events/ext4.h> 33 34 /* 35 * ialloc.c contains the inodes allocation and deallocation routines 36 */ 37 38 /* 39 * The free inodes are managed by bitmaps. A file system contains several 40 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap 41 * block for inodes, N blocks for the inode table and data blocks. 42 * 43 * The file system contains group descriptors which are located after the 44 * super block. Each descriptor contains the number of the bitmap block and 45 * the free blocks count in the block. 46 */ 47 48 /* 49 * To avoid calling the atomic setbit hundreds or thousands of times, we only 50 * need to use it within a single byte (to ensure we get endianness right). 51 * We can use memset for the rest of the bitmap as there are no other users. 52 */ 53 void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap) 54 { 55 int i; 56 57 if (start_bit >= end_bit) 58 return; 59 60 ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit); 61 for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++) 62 ext4_set_bit(i, bitmap); 63 if (i < end_bit) 64 memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3); 65 } 66 67 /* Initializes an uninitialized inode bitmap */ 68 static unsigned ext4_init_inode_bitmap(struct super_block *sb, 69 struct buffer_head *bh, 70 ext4_group_t block_group, 71 struct ext4_group_desc *gdp) 72 { 73 struct ext4_sb_info *sbi = EXT4_SB(sb); 74 75 J_ASSERT_BH(bh, buffer_locked(bh)); 76 77 /* If checksum is bad mark all blocks and inodes use to prevent 78 * allocation, essentially implementing a per-group read-only flag. */ 79 if (!ext4_group_desc_csum_verify(sbi, block_group, gdp)) { 80 ext4_error(sb, "Checksum bad for group %u", block_group); 81 ext4_free_group_clusters_set(sb, gdp, 0); 82 ext4_free_inodes_set(sb, gdp, 0); 83 ext4_itable_unused_set(sb, gdp, 0); 84 memset(bh->b_data, 0xff, sb->s_blocksize); 85 return 0; 86 } 87 88 memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8); 89 ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb), sb->s_blocksize * 8, 90 bh->b_data); 91 92 return EXT4_INODES_PER_GROUP(sb); 93 } 94 95 void ext4_end_bitmap_read(struct buffer_head *bh, int uptodate) 96 { 97 if (uptodate) { 98 set_buffer_uptodate(bh); 99 set_bitmap_uptodate(bh); 100 } 101 unlock_buffer(bh); 102 put_bh(bh); 103 } 104 105 /* 106 * Read the inode allocation bitmap for a given block_group, reading 107 * into the specified slot in the superblock's bitmap cache. 108 * 109 * Return buffer_head of bitmap on success or NULL. 110 */ 111 static struct buffer_head * 112 ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group) 113 { 114 struct ext4_group_desc *desc; 115 struct buffer_head *bh = NULL; 116 ext4_fsblk_t bitmap_blk; 117 118 desc = ext4_get_group_desc(sb, block_group, NULL); 119 if (!desc) 120 return NULL; 121 122 bitmap_blk = ext4_inode_bitmap(sb, desc); 123 bh = sb_getblk(sb, bitmap_blk); 124 if (unlikely(!bh)) { 125 ext4_error(sb, "Cannot read inode bitmap - " 126 "block_group = %u, inode_bitmap = %llu", 127 block_group, bitmap_blk); 128 return NULL; 129 } 130 if (bitmap_uptodate(bh)) 131 return bh; 132 133 lock_buffer(bh); 134 if (bitmap_uptodate(bh)) { 135 unlock_buffer(bh); 136 return bh; 137 } 138 139 ext4_lock_group(sb, block_group); 140 if (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) { 141 ext4_init_inode_bitmap(sb, bh, block_group, desc); 142 set_bitmap_uptodate(bh); 143 set_buffer_uptodate(bh); 144 ext4_unlock_group(sb, block_group); 145 unlock_buffer(bh); 146 return bh; 147 } 148 ext4_unlock_group(sb, block_group); 149 150 if (buffer_uptodate(bh)) { 151 /* 152 * if not uninit if bh is uptodate, 153 * bitmap is also uptodate 154 */ 155 set_bitmap_uptodate(bh); 156 unlock_buffer(bh); 157 return bh; 158 } 159 /* 160 * submit the buffer_head for reading 161 */ 162 trace_ext4_load_inode_bitmap(sb, block_group); 163 bh->b_end_io = ext4_end_bitmap_read; 164 get_bh(bh); 165 submit_bh(READ, bh); 166 wait_on_buffer(bh); 167 if (!buffer_uptodate(bh)) { 168 put_bh(bh); 169 ext4_error(sb, "Cannot read inode bitmap - " 170 "block_group = %u, inode_bitmap = %llu", 171 block_group, bitmap_blk); 172 return NULL; 173 } 174 return bh; 175 } 176 177 /* 178 * NOTE! When we get the inode, we're the only people 179 * that have access to it, and as such there are no 180 * race conditions we have to worry about. The inode 181 * is not on the hash-lists, and it cannot be reached 182 * through the filesystem because the directory entry 183 * has been deleted earlier. 184 * 185 * HOWEVER: we must make sure that we get no aliases, 186 * which means that we have to call "clear_inode()" 187 * _before_ we mark the inode not in use in the inode 188 * bitmaps. Otherwise a newly created file might use 189 * the same inode number (not actually the same pointer 190 * though), and then we'd have two inodes sharing the 191 * same inode number and space on the harddisk. 192 */ 193 void ext4_free_inode(handle_t *handle, struct inode *inode) 194 { 195 struct super_block *sb = inode->i_sb; 196 int is_directory; 197 unsigned long ino; 198 struct buffer_head *bitmap_bh = NULL; 199 struct buffer_head *bh2; 200 ext4_group_t block_group; 201 unsigned long bit; 202 struct ext4_group_desc *gdp; 203 struct ext4_super_block *es; 204 struct ext4_sb_info *sbi; 205 int fatal = 0, err, count, cleared; 206 207 if (!sb) { 208 printk(KERN_ERR "EXT4-fs: %s:%d: inode on " 209 "nonexistent device\n", __func__, __LINE__); 210 return; 211 } 212 if (atomic_read(&inode->i_count) > 1) { 213 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: count=%d", 214 __func__, __LINE__, inode->i_ino, 215 atomic_read(&inode->i_count)); 216 return; 217 } 218 if (inode->i_nlink) { 219 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: nlink=%d\n", 220 __func__, __LINE__, inode->i_ino, inode->i_nlink); 221 return; 222 } 223 sbi = EXT4_SB(sb); 224 225 ino = inode->i_ino; 226 ext4_debug("freeing inode %lu\n", ino); 227 trace_ext4_free_inode(inode); 228 229 /* 230 * Note: we must free any quota before locking the superblock, 231 * as writing the quota to disk may need the lock as well. 232 */ 233 dquot_initialize(inode); 234 ext4_xattr_delete_inode(handle, inode); 235 dquot_free_inode(inode); 236 dquot_drop(inode); 237 238 is_directory = S_ISDIR(inode->i_mode); 239 240 /* Do this BEFORE marking the inode not in use or returning an error */ 241 ext4_clear_inode(inode); 242 243 es = EXT4_SB(sb)->s_es; 244 if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) { 245 ext4_error(sb, "reserved or nonexistent inode %lu", ino); 246 goto error_return; 247 } 248 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 249 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb); 250 bitmap_bh = ext4_read_inode_bitmap(sb, block_group); 251 if (!bitmap_bh) 252 goto error_return; 253 254 BUFFER_TRACE(bitmap_bh, "get_write_access"); 255 fatal = ext4_journal_get_write_access(handle, bitmap_bh); 256 if (fatal) 257 goto error_return; 258 259 fatal = -ESRCH; 260 gdp = ext4_get_group_desc(sb, block_group, &bh2); 261 if (gdp) { 262 BUFFER_TRACE(bh2, "get_write_access"); 263 fatal = ext4_journal_get_write_access(handle, bh2); 264 } 265 ext4_lock_group(sb, block_group); 266 cleared = ext4_test_and_clear_bit(bit, bitmap_bh->b_data); 267 if (fatal || !cleared) { 268 ext4_unlock_group(sb, block_group); 269 goto out; 270 } 271 272 count = ext4_free_inodes_count(sb, gdp) + 1; 273 ext4_free_inodes_set(sb, gdp, count); 274 if (is_directory) { 275 count = ext4_used_dirs_count(sb, gdp) - 1; 276 ext4_used_dirs_set(sb, gdp, count); 277 percpu_counter_dec(&sbi->s_dirs_counter); 278 } 279 gdp->bg_checksum = ext4_group_desc_csum(sbi, block_group, gdp); 280 ext4_unlock_group(sb, block_group); 281 282 percpu_counter_inc(&sbi->s_freeinodes_counter); 283 if (sbi->s_log_groups_per_flex) { 284 ext4_group_t f = ext4_flex_group(sbi, block_group); 285 286 atomic_inc(&sbi->s_flex_groups[f].free_inodes); 287 if (is_directory) 288 atomic_dec(&sbi->s_flex_groups[f].used_dirs); 289 } 290 BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata"); 291 fatal = ext4_handle_dirty_metadata(handle, NULL, bh2); 292 out: 293 if (cleared) { 294 BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata"); 295 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 296 if (!fatal) 297 fatal = err; 298 ext4_mark_super_dirty(sb); 299 } else 300 ext4_error(sb, "bit already cleared for inode %lu", ino); 301 302 error_return: 303 brelse(bitmap_bh); 304 ext4_std_error(sb, fatal); 305 } 306 307 struct orlov_stats { 308 __u32 free_inodes; 309 __u32 free_clusters; 310 __u32 used_dirs; 311 }; 312 313 /* 314 * Helper function for Orlov's allocator; returns critical information 315 * for a particular block group or flex_bg. If flex_size is 1, then g 316 * is a block group number; otherwise it is flex_bg number. 317 */ 318 static void get_orlov_stats(struct super_block *sb, ext4_group_t g, 319 int flex_size, struct orlov_stats *stats) 320 { 321 struct ext4_group_desc *desc; 322 struct flex_groups *flex_group = EXT4_SB(sb)->s_flex_groups; 323 324 if (flex_size > 1) { 325 stats->free_inodes = atomic_read(&flex_group[g].free_inodes); 326 stats->free_clusters = atomic_read(&flex_group[g].free_clusters); 327 stats->used_dirs = atomic_read(&flex_group[g].used_dirs); 328 return; 329 } 330 331 desc = ext4_get_group_desc(sb, g, NULL); 332 if (desc) { 333 stats->free_inodes = ext4_free_inodes_count(sb, desc); 334 stats->free_clusters = ext4_free_group_clusters(sb, desc); 335 stats->used_dirs = ext4_used_dirs_count(sb, desc); 336 } else { 337 stats->free_inodes = 0; 338 stats->free_clusters = 0; 339 stats->used_dirs = 0; 340 } 341 } 342 343 /* 344 * Orlov's allocator for directories. 345 * 346 * We always try to spread first-level directories. 347 * 348 * If there are blockgroups with both free inodes and free blocks counts 349 * not worse than average we return one with smallest directory count. 350 * Otherwise we simply return a random group. 351 * 352 * For the rest rules look so: 353 * 354 * It's OK to put directory into a group unless 355 * it has too many directories already (max_dirs) or 356 * it has too few free inodes left (min_inodes) or 357 * it has too few free blocks left (min_blocks) or 358 * Parent's group is preferred, if it doesn't satisfy these 359 * conditions we search cyclically through the rest. If none 360 * of the groups look good we just look for a group with more 361 * free inodes than average (starting at parent's group). 362 */ 363 364 static int find_group_orlov(struct super_block *sb, struct inode *parent, 365 ext4_group_t *group, umode_t mode, 366 const struct qstr *qstr) 367 { 368 ext4_group_t parent_group = EXT4_I(parent)->i_block_group; 369 struct ext4_sb_info *sbi = EXT4_SB(sb); 370 ext4_group_t real_ngroups = ext4_get_groups_count(sb); 371 int inodes_per_group = EXT4_INODES_PER_GROUP(sb); 372 unsigned int freei, avefreei, grp_free; 373 ext4_fsblk_t freeb, avefreec; 374 unsigned int ndirs; 375 int max_dirs, min_inodes; 376 ext4_grpblk_t min_clusters; 377 ext4_group_t i, grp, g, ngroups; 378 struct ext4_group_desc *desc; 379 struct orlov_stats stats; 380 int flex_size = ext4_flex_bg_size(sbi); 381 struct dx_hash_info hinfo; 382 383 ngroups = real_ngroups; 384 if (flex_size > 1) { 385 ngroups = (real_ngroups + flex_size - 1) >> 386 sbi->s_log_groups_per_flex; 387 parent_group >>= sbi->s_log_groups_per_flex; 388 } 389 390 freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter); 391 avefreei = freei / ngroups; 392 freeb = EXT4_C2B(sbi, 393 percpu_counter_read_positive(&sbi->s_freeclusters_counter)); 394 avefreec = freeb; 395 do_div(avefreec, ngroups); 396 ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter); 397 398 if (S_ISDIR(mode) && 399 ((parent == sb->s_root->d_inode) || 400 (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) { 401 int best_ndir = inodes_per_group; 402 int ret = -1; 403 404 if (qstr) { 405 hinfo.hash_version = DX_HASH_HALF_MD4; 406 hinfo.seed = sbi->s_hash_seed; 407 ext4fs_dirhash(qstr->name, qstr->len, &hinfo); 408 grp = hinfo.hash; 409 } else 410 get_random_bytes(&grp, sizeof(grp)); 411 parent_group = (unsigned)grp % ngroups; 412 for (i = 0; i < ngroups; i++) { 413 g = (parent_group + i) % ngroups; 414 get_orlov_stats(sb, g, flex_size, &stats); 415 if (!stats.free_inodes) 416 continue; 417 if (stats.used_dirs >= best_ndir) 418 continue; 419 if (stats.free_inodes < avefreei) 420 continue; 421 if (stats.free_clusters < avefreec) 422 continue; 423 grp = g; 424 ret = 0; 425 best_ndir = stats.used_dirs; 426 } 427 if (ret) 428 goto fallback; 429 found_flex_bg: 430 if (flex_size == 1) { 431 *group = grp; 432 return 0; 433 } 434 435 /* 436 * We pack inodes at the beginning of the flexgroup's 437 * inode tables. Block allocation decisions will do 438 * something similar, although regular files will 439 * start at 2nd block group of the flexgroup. See 440 * ext4_ext_find_goal() and ext4_find_near(). 441 */ 442 grp *= flex_size; 443 for (i = 0; i < flex_size; i++) { 444 if (grp+i >= real_ngroups) 445 break; 446 desc = ext4_get_group_desc(sb, grp+i, NULL); 447 if (desc && ext4_free_inodes_count(sb, desc)) { 448 *group = grp+i; 449 return 0; 450 } 451 } 452 goto fallback; 453 } 454 455 max_dirs = ndirs / ngroups + inodes_per_group / 16; 456 min_inodes = avefreei - inodes_per_group*flex_size / 4; 457 if (min_inodes < 1) 458 min_inodes = 1; 459 min_clusters = avefreec - EXT4_CLUSTERS_PER_GROUP(sb)*flex_size / 4; 460 461 /* 462 * Start looking in the flex group where we last allocated an 463 * inode for this parent directory 464 */ 465 if (EXT4_I(parent)->i_last_alloc_group != ~0) { 466 parent_group = EXT4_I(parent)->i_last_alloc_group; 467 if (flex_size > 1) 468 parent_group >>= sbi->s_log_groups_per_flex; 469 } 470 471 for (i = 0; i < ngroups; i++) { 472 grp = (parent_group + i) % ngroups; 473 get_orlov_stats(sb, grp, flex_size, &stats); 474 if (stats.used_dirs >= max_dirs) 475 continue; 476 if (stats.free_inodes < min_inodes) 477 continue; 478 if (stats.free_clusters < min_clusters) 479 continue; 480 goto found_flex_bg; 481 } 482 483 fallback: 484 ngroups = real_ngroups; 485 avefreei = freei / ngroups; 486 fallback_retry: 487 parent_group = EXT4_I(parent)->i_block_group; 488 for (i = 0; i < ngroups; i++) { 489 grp = (parent_group + i) % ngroups; 490 desc = ext4_get_group_desc(sb, grp, NULL); 491 grp_free = ext4_free_inodes_count(sb, desc); 492 if (desc && grp_free && grp_free >= avefreei) { 493 *group = grp; 494 return 0; 495 } 496 } 497 498 if (avefreei) { 499 /* 500 * The free-inodes counter is approximate, and for really small 501 * filesystems the above test can fail to find any blockgroups 502 */ 503 avefreei = 0; 504 goto fallback_retry; 505 } 506 507 return -1; 508 } 509 510 static int find_group_other(struct super_block *sb, struct inode *parent, 511 ext4_group_t *group, umode_t mode) 512 { 513 ext4_group_t parent_group = EXT4_I(parent)->i_block_group; 514 ext4_group_t i, last, ngroups = ext4_get_groups_count(sb); 515 struct ext4_group_desc *desc; 516 int flex_size = ext4_flex_bg_size(EXT4_SB(sb)); 517 518 /* 519 * Try to place the inode is the same flex group as its 520 * parent. If we can't find space, use the Orlov algorithm to 521 * find another flex group, and store that information in the 522 * parent directory's inode information so that use that flex 523 * group for future allocations. 524 */ 525 if (flex_size > 1) { 526 int retry = 0; 527 528 try_again: 529 parent_group &= ~(flex_size-1); 530 last = parent_group + flex_size; 531 if (last > ngroups) 532 last = ngroups; 533 for (i = parent_group; i < last; i++) { 534 desc = ext4_get_group_desc(sb, i, NULL); 535 if (desc && ext4_free_inodes_count(sb, desc)) { 536 *group = i; 537 return 0; 538 } 539 } 540 if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) { 541 retry = 1; 542 parent_group = EXT4_I(parent)->i_last_alloc_group; 543 goto try_again; 544 } 545 /* 546 * If this didn't work, use the Orlov search algorithm 547 * to find a new flex group; we pass in the mode to 548 * avoid the topdir algorithms. 549 */ 550 *group = parent_group + flex_size; 551 if (*group > ngroups) 552 *group = 0; 553 return find_group_orlov(sb, parent, group, mode, NULL); 554 } 555 556 /* 557 * Try to place the inode in its parent directory 558 */ 559 *group = parent_group; 560 desc = ext4_get_group_desc(sb, *group, NULL); 561 if (desc && ext4_free_inodes_count(sb, desc) && 562 ext4_free_group_clusters(sb, desc)) 563 return 0; 564 565 /* 566 * We're going to place this inode in a different blockgroup from its 567 * parent. We want to cause files in a common directory to all land in 568 * the same blockgroup. But we want files which are in a different 569 * directory which shares a blockgroup with our parent to land in a 570 * different blockgroup. 571 * 572 * So add our directory's i_ino into the starting point for the hash. 573 */ 574 *group = (*group + parent->i_ino) % ngroups; 575 576 /* 577 * Use a quadratic hash to find a group with a free inode and some free 578 * blocks. 579 */ 580 for (i = 1; i < ngroups; i <<= 1) { 581 *group += i; 582 if (*group >= ngroups) 583 *group -= ngroups; 584 desc = ext4_get_group_desc(sb, *group, NULL); 585 if (desc && ext4_free_inodes_count(sb, desc) && 586 ext4_free_group_clusters(sb, desc)) 587 return 0; 588 } 589 590 /* 591 * That failed: try linear search for a free inode, even if that group 592 * has no free blocks. 593 */ 594 *group = parent_group; 595 for (i = 0; i < ngroups; i++) { 596 if (++*group >= ngroups) 597 *group = 0; 598 desc = ext4_get_group_desc(sb, *group, NULL); 599 if (desc && ext4_free_inodes_count(sb, desc)) 600 return 0; 601 } 602 603 return -1; 604 } 605 606 /* 607 * There are two policies for allocating an inode. If the new inode is 608 * a directory, then a forward search is made for a block group with both 609 * free space and a low directory-to-inode ratio; if that fails, then of 610 * the groups with above-average free space, that group with the fewest 611 * directories already is chosen. 612 * 613 * For other inodes, search forward from the parent directory's block 614 * group to find a free inode. 615 */ 616 struct inode *ext4_new_inode(handle_t *handle, struct inode *dir, umode_t mode, 617 const struct qstr *qstr, __u32 goal, uid_t *owner) 618 { 619 struct super_block *sb; 620 struct buffer_head *inode_bitmap_bh = NULL; 621 struct buffer_head *group_desc_bh; 622 ext4_group_t ngroups, group = 0; 623 unsigned long ino = 0; 624 struct inode *inode; 625 struct ext4_group_desc *gdp = NULL; 626 struct ext4_inode_info *ei; 627 struct ext4_sb_info *sbi; 628 int ret2, err = 0; 629 struct inode *ret; 630 ext4_group_t i; 631 ext4_group_t flex_group; 632 633 /* Cannot create files in a deleted directory */ 634 if (!dir || !dir->i_nlink) 635 return ERR_PTR(-EPERM); 636 637 sb = dir->i_sb; 638 ngroups = ext4_get_groups_count(sb); 639 trace_ext4_request_inode(dir, mode); 640 inode = new_inode(sb); 641 if (!inode) 642 return ERR_PTR(-ENOMEM); 643 ei = EXT4_I(inode); 644 sbi = EXT4_SB(sb); 645 646 if (!goal) 647 goal = sbi->s_inode_goal; 648 649 if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) { 650 group = (goal - 1) / EXT4_INODES_PER_GROUP(sb); 651 ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb); 652 ret2 = 0; 653 goto got_group; 654 } 655 656 if (S_ISDIR(mode)) 657 ret2 = find_group_orlov(sb, dir, &group, mode, qstr); 658 else 659 ret2 = find_group_other(sb, dir, &group, mode); 660 661 got_group: 662 EXT4_I(dir)->i_last_alloc_group = group; 663 err = -ENOSPC; 664 if (ret2 == -1) 665 goto out; 666 667 /* 668 * Normally we will only go through one pass of this loop, 669 * unless we get unlucky and it turns out the group we selected 670 * had its last inode grabbed by someone else. 671 */ 672 for (i = 0; i < ngroups; i++, ino = 0) { 673 err = -EIO; 674 675 gdp = ext4_get_group_desc(sb, group, &group_desc_bh); 676 if (!gdp) 677 goto fail; 678 679 brelse(inode_bitmap_bh); 680 inode_bitmap_bh = ext4_read_inode_bitmap(sb, group); 681 if (!inode_bitmap_bh) 682 goto fail; 683 684 repeat_in_this_group: 685 ino = ext4_find_next_zero_bit((unsigned long *) 686 inode_bitmap_bh->b_data, 687 EXT4_INODES_PER_GROUP(sb), ino); 688 if (ino >= EXT4_INODES_PER_GROUP(sb)) { 689 if (++group == ngroups) 690 group = 0; 691 continue; 692 } 693 if (group == 0 && (ino+1) < EXT4_FIRST_INO(sb)) { 694 ext4_error(sb, "reserved inode found cleared - " 695 "inode=%lu", ino + 1); 696 continue; 697 } 698 ext4_lock_group(sb, group); 699 ret2 = ext4_test_and_set_bit(ino, inode_bitmap_bh->b_data); 700 ext4_unlock_group(sb, group); 701 ino++; /* the inode bitmap is zero-based */ 702 if (!ret2) 703 goto got; /* we grabbed the inode! */ 704 if (ino < EXT4_INODES_PER_GROUP(sb)) 705 goto repeat_in_this_group; 706 } 707 err = -ENOSPC; 708 goto out; 709 710 got: 711 /* We may have to initialize the block bitmap if it isn't already */ 712 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM) && 713 gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 714 struct buffer_head *block_bitmap_bh; 715 716 block_bitmap_bh = ext4_read_block_bitmap(sb, group); 717 BUFFER_TRACE(block_bitmap_bh, "get block bitmap access"); 718 err = ext4_journal_get_write_access(handle, block_bitmap_bh); 719 if (err) { 720 brelse(block_bitmap_bh); 721 goto fail; 722 } 723 724 BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap"); 725 err = ext4_handle_dirty_metadata(handle, NULL, block_bitmap_bh); 726 brelse(block_bitmap_bh); 727 728 /* recheck and clear flag under lock if we still need to */ 729 ext4_lock_group(sb, group); 730 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 731 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 732 ext4_free_group_clusters_set(sb, gdp, 733 ext4_free_clusters_after_init(sb, group, gdp)); 734 gdp->bg_checksum = ext4_group_desc_csum(sbi, group, 735 gdp); 736 } 737 ext4_unlock_group(sb, group); 738 739 if (err) 740 goto fail; 741 } 742 743 BUFFER_TRACE(inode_bitmap_bh, "get_write_access"); 744 err = ext4_journal_get_write_access(handle, inode_bitmap_bh); 745 if (err) 746 goto fail; 747 748 BUFFER_TRACE(group_desc_bh, "get_write_access"); 749 err = ext4_journal_get_write_access(handle, group_desc_bh); 750 if (err) 751 goto fail; 752 753 /* Update the relevant bg descriptor fields */ 754 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) { 755 int free; 756 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 757 758 down_read(&grp->alloc_sem); /* protect vs itable lazyinit */ 759 ext4_lock_group(sb, group); /* while we modify the bg desc */ 760 free = EXT4_INODES_PER_GROUP(sb) - 761 ext4_itable_unused_count(sb, gdp); 762 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) { 763 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT); 764 free = 0; 765 } 766 /* 767 * Check the relative inode number against the last used 768 * relative inode number in this group. if it is greater 769 * we need to update the bg_itable_unused count 770 */ 771 if (ino > free) 772 ext4_itable_unused_set(sb, gdp, 773 (EXT4_INODES_PER_GROUP(sb) - ino)); 774 up_read(&grp->alloc_sem); 775 } 776 ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1); 777 if (S_ISDIR(mode)) { 778 ext4_used_dirs_set(sb, gdp, ext4_used_dirs_count(sb, gdp) + 1); 779 if (sbi->s_log_groups_per_flex) { 780 ext4_group_t f = ext4_flex_group(sbi, group); 781 782 atomic_inc(&sbi->s_flex_groups[f].used_dirs); 783 } 784 } 785 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) { 786 gdp->bg_checksum = ext4_group_desc_csum(sbi, group, gdp); 787 ext4_unlock_group(sb, group); 788 } 789 790 BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata"); 791 err = ext4_handle_dirty_metadata(handle, NULL, inode_bitmap_bh); 792 if (err) 793 goto fail; 794 795 BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata"); 796 err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh); 797 if (err) 798 goto fail; 799 800 percpu_counter_dec(&sbi->s_freeinodes_counter); 801 if (S_ISDIR(mode)) 802 percpu_counter_inc(&sbi->s_dirs_counter); 803 ext4_mark_super_dirty(sb); 804 805 if (sbi->s_log_groups_per_flex) { 806 flex_group = ext4_flex_group(sbi, group); 807 atomic_dec(&sbi->s_flex_groups[flex_group].free_inodes); 808 } 809 if (owner) { 810 inode->i_mode = mode; 811 inode->i_uid = owner[0]; 812 inode->i_gid = owner[1]; 813 } else if (test_opt(sb, GRPID)) { 814 inode->i_mode = mode; 815 inode->i_uid = current_fsuid(); 816 inode->i_gid = dir->i_gid; 817 } else 818 inode_init_owner(inode, dir, mode); 819 820 inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb); 821 /* This is the optimal IO size (for stat), not the fs block size */ 822 inode->i_blocks = 0; 823 inode->i_mtime = inode->i_atime = inode->i_ctime = ei->i_crtime = 824 ext4_current_time(inode); 825 826 memset(ei->i_data, 0, sizeof(ei->i_data)); 827 ei->i_dir_start_lookup = 0; 828 ei->i_disksize = 0; 829 830 /* Don't inherit extent flag from directory, amongst others. */ 831 ei->i_flags = 832 ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED); 833 ei->i_file_acl = 0; 834 ei->i_dtime = 0; 835 ei->i_block_group = group; 836 ei->i_last_alloc_group = ~0; 837 838 ext4_set_inode_flags(inode); 839 if (IS_DIRSYNC(inode)) 840 ext4_handle_sync(handle); 841 if (insert_inode_locked(inode) < 0) { 842 /* 843 * Likely a bitmap corruption causing inode to be allocated 844 * twice. 845 */ 846 err = -EIO; 847 goto fail; 848 } 849 spin_lock(&sbi->s_next_gen_lock); 850 inode->i_generation = sbi->s_next_generation++; 851 spin_unlock(&sbi->s_next_gen_lock); 852 853 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 854 ext4_set_inode_state(inode, EXT4_STATE_NEW); 855 856 ei->i_extra_isize = EXT4_SB(sb)->s_want_extra_isize; 857 858 ret = inode; 859 dquot_initialize(inode); 860 err = dquot_alloc_inode(inode); 861 if (err) 862 goto fail_drop; 863 864 err = ext4_init_acl(handle, inode, dir); 865 if (err) 866 goto fail_free_drop; 867 868 err = ext4_init_security(handle, inode, dir, qstr); 869 if (err) 870 goto fail_free_drop; 871 872 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) { 873 /* set extent flag only for directory, file and normal symlink*/ 874 if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) { 875 ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS); 876 ext4_ext_tree_init(handle, inode); 877 } 878 } 879 880 if (ext4_handle_valid(handle)) { 881 ei->i_sync_tid = handle->h_transaction->t_tid; 882 ei->i_datasync_tid = handle->h_transaction->t_tid; 883 } 884 885 err = ext4_mark_inode_dirty(handle, inode); 886 if (err) { 887 ext4_std_error(sb, err); 888 goto fail_free_drop; 889 } 890 891 ext4_debug("allocating inode %lu\n", inode->i_ino); 892 trace_ext4_allocate_inode(inode, dir, mode); 893 goto really_out; 894 fail: 895 ext4_std_error(sb, err); 896 out: 897 iput(inode); 898 ret = ERR_PTR(err); 899 really_out: 900 brelse(inode_bitmap_bh); 901 return ret; 902 903 fail_free_drop: 904 dquot_free_inode(inode); 905 906 fail_drop: 907 dquot_drop(inode); 908 inode->i_flags |= S_NOQUOTA; 909 clear_nlink(inode); 910 unlock_new_inode(inode); 911 iput(inode); 912 brelse(inode_bitmap_bh); 913 return ERR_PTR(err); 914 } 915 916 /* Verify that we are loading a valid orphan from disk */ 917 struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino) 918 { 919 unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count); 920 ext4_group_t block_group; 921 int bit; 922 struct buffer_head *bitmap_bh; 923 struct inode *inode = NULL; 924 long err = -EIO; 925 926 /* Error cases - e2fsck has already cleaned up for us */ 927 if (ino > max_ino) { 928 ext4_warning(sb, "bad orphan ino %lu! e2fsck was run?", ino); 929 goto error; 930 } 931 932 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 933 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb); 934 bitmap_bh = ext4_read_inode_bitmap(sb, block_group); 935 if (!bitmap_bh) { 936 ext4_warning(sb, "inode bitmap error for orphan %lu", ino); 937 goto error; 938 } 939 940 /* Having the inode bit set should be a 100% indicator that this 941 * is a valid orphan (no e2fsck run on fs). Orphans also include 942 * inodes that were being truncated, so we can't check i_nlink==0. 943 */ 944 if (!ext4_test_bit(bit, bitmap_bh->b_data)) 945 goto bad_orphan; 946 947 inode = ext4_iget(sb, ino); 948 if (IS_ERR(inode)) 949 goto iget_failed; 950 951 /* 952 * If the orphans has i_nlinks > 0 then it should be able to be 953 * truncated, otherwise it won't be removed from the orphan list 954 * during processing and an infinite loop will result. 955 */ 956 if (inode->i_nlink && !ext4_can_truncate(inode)) 957 goto bad_orphan; 958 959 if (NEXT_ORPHAN(inode) > max_ino) 960 goto bad_orphan; 961 brelse(bitmap_bh); 962 return inode; 963 964 iget_failed: 965 err = PTR_ERR(inode); 966 inode = NULL; 967 bad_orphan: 968 ext4_warning(sb, "bad orphan inode %lu! e2fsck was run?", ino); 969 printk(KERN_NOTICE "ext4_test_bit(bit=%d, block=%llu) = %d\n", 970 bit, (unsigned long long)bitmap_bh->b_blocknr, 971 ext4_test_bit(bit, bitmap_bh->b_data)); 972 printk(KERN_NOTICE "inode=%p\n", inode); 973 if (inode) { 974 printk(KERN_NOTICE "is_bad_inode(inode)=%d\n", 975 is_bad_inode(inode)); 976 printk(KERN_NOTICE "NEXT_ORPHAN(inode)=%u\n", 977 NEXT_ORPHAN(inode)); 978 printk(KERN_NOTICE "max_ino=%lu\n", max_ino); 979 printk(KERN_NOTICE "i_nlink=%u\n", inode->i_nlink); 980 /* Avoid freeing blocks if we got a bad deleted inode */ 981 if (inode->i_nlink == 0) 982 inode->i_blocks = 0; 983 iput(inode); 984 } 985 brelse(bitmap_bh); 986 error: 987 return ERR_PTR(err); 988 } 989 990 unsigned long ext4_count_free_inodes(struct super_block *sb) 991 { 992 unsigned long desc_count; 993 struct ext4_group_desc *gdp; 994 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 995 #ifdef EXT4FS_DEBUG 996 struct ext4_super_block *es; 997 unsigned long bitmap_count, x; 998 struct buffer_head *bitmap_bh = NULL; 999 1000 es = EXT4_SB(sb)->s_es; 1001 desc_count = 0; 1002 bitmap_count = 0; 1003 gdp = NULL; 1004 for (i = 0; i < ngroups; i++) { 1005 gdp = ext4_get_group_desc(sb, i, NULL); 1006 if (!gdp) 1007 continue; 1008 desc_count += ext4_free_inodes_count(sb, gdp); 1009 brelse(bitmap_bh); 1010 bitmap_bh = ext4_read_inode_bitmap(sb, i); 1011 if (!bitmap_bh) 1012 continue; 1013 1014 x = ext4_count_free(bitmap_bh, EXT4_INODES_PER_GROUP(sb) / 8); 1015 printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n", 1016 (unsigned long) i, ext4_free_inodes_count(sb, gdp), x); 1017 bitmap_count += x; 1018 } 1019 brelse(bitmap_bh); 1020 printk(KERN_DEBUG "ext4_count_free_inodes: " 1021 "stored = %u, computed = %lu, %lu\n", 1022 le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count); 1023 return desc_count; 1024 #else 1025 desc_count = 0; 1026 for (i = 0; i < ngroups; i++) { 1027 gdp = ext4_get_group_desc(sb, i, NULL); 1028 if (!gdp) 1029 continue; 1030 desc_count += ext4_free_inodes_count(sb, gdp); 1031 cond_resched(); 1032 } 1033 return desc_count; 1034 #endif 1035 } 1036 1037 /* Called at mount-time, super-block is locked */ 1038 unsigned long ext4_count_dirs(struct super_block * sb) 1039 { 1040 unsigned long count = 0; 1041 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 1042 1043 for (i = 0; i < ngroups; i++) { 1044 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 1045 if (!gdp) 1046 continue; 1047 count += ext4_used_dirs_count(sb, gdp); 1048 } 1049 return count; 1050 } 1051 1052 /* 1053 * Zeroes not yet zeroed inode table - just write zeroes through the whole 1054 * inode table. Must be called without any spinlock held. The only place 1055 * where it is called from on active part of filesystem is ext4lazyinit 1056 * thread, so we do not need any special locks, however we have to prevent 1057 * inode allocation from the current group, so we take alloc_sem lock, to 1058 * block ext4_new_inode() until we are finished. 1059 */ 1060 int ext4_init_inode_table(struct super_block *sb, ext4_group_t group, 1061 int barrier) 1062 { 1063 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 1064 struct ext4_sb_info *sbi = EXT4_SB(sb); 1065 struct ext4_group_desc *gdp = NULL; 1066 struct buffer_head *group_desc_bh; 1067 handle_t *handle; 1068 ext4_fsblk_t blk; 1069 int num, ret = 0, used_blks = 0; 1070 1071 /* This should not happen, but just to be sure check this */ 1072 if (sb->s_flags & MS_RDONLY) { 1073 ret = 1; 1074 goto out; 1075 } 1076 1077 gdp = ext4_get_group_desc(sb, group, &group_desc_bh); 1078 if (!gdp) 1079 goto out; 1080 1081 /* 1082 * We do not need to lock this, because we are the only one 1083 * handling this flag. 1084 */ 1085 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)) 1086 goto out; 1087 1088 handle = ext4_journal_start_sb(sb, 1); 1089 if (IS_ERR(handle)) { 1090 ret = PTR_ERR(handle); 1091 goto out; 1092 } 1093 1094 down_write(&grp->alloc_sem); 1095 /* 1096 * If inode bitmap was already initialized there may be some 1097 * used inodes so we need to skip blocks with used inodes in 1098 * inode table. 1099 */ 1100 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT))) 1101 used_blks = DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb) - 1102 ext4_itable_unused_count(sb, gdp)), 1103 sbi->s_inodes_per_block); 1104 1105 if ((used_blks < 0) || (used_blks > sbi->s_itb_per_group)) { 1106 ext4_error(sb, "Something is wrong with group %u: " 1107 "used itable blocks: %d; " 1108 "itable unused count: %u", 1109 group, used_blks, 1110 ext4_itable_unused_count(sb, gdp)); 1111 ret = 1; 1112 goto err_out; 1113 } 1114 1115 blk = ext4_inode_table(sb, gdp) + used_blks; 1116 num = sbi->s_itb_per_group - used_blks; 1117 1118 BUFFER_TRACE(group_desc_bh, "get_write_access"); 1119 ret = ext4_journal_get_write_access(handle, 1120 group_desc_bh); 1121 if (ret) 1122 goto err_out; 1123 1124 /* 1125 * Skip zeroout if the inode table is full. But we set the ZEROED 1126 * flag anyway, because obviously, when it is full it does not need 1127 * further zeroing. 1128 */ 1129 if (unlikely(num == 0)) 1130 goto skip_zeroout; 1131 1132 ext4_debug("going to zero out inode table in group %d\n", 1133 group); 1134 ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS); 1135 if (ret < 0) 1136 goto err_out; 1137 if (barrier) 1138 blkdev_issue_flush(sb->s_bdev, GFP_NOFS, NULL); 1139 1140 skip_zeroout: 1141 ext4_lock_group(sb, group); 1142 gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED); 1143 gdp->bg_checksum = ext4_group_desc_csum(sbi, group, gdp); 1144 ext4_unlock_group(sb, group); 1145 1146 BUFFER_TRACE(group_desc_bh, 1147 "call ext4_handle_dirty_metadata"); 1148 ret = ext4_handle_dirty_metadata(handle, NULL, 1149 group_desc_bh); 1150 1151 err_out: 1152 up_write(&grp->alloc_sem); 1153 ext4_journal_stop(handle); 1154 out: 1155 return ret; 1156 } 1157