xref: /openbmc/linux/fs/ext4/ialloc.c (revision 5bd8e16d)
1 /*
2  *  linux/fs/ext4/ialloc.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  BSD ufs-inspired inode and directory allocation by
10  *  Stephen Tweedie (sct@redhat.com), 1993
11  *  Big-endian to little-endian byte-swapping/bitmaps by
12  *        David S. Miller (davem@caip.rutgers.edu), 1995
13  */
14 
15 #include <linux/time.h>
16 #include <linux/fs.h>
17 #include <linux/jbd2.h>
18 #include <linux/stat.h>
19 #include <linux/string.h>
20 #include <linux/quotaops.h>
21 #include <linux/buffer_head.h>
22 #include <linux/random.h>
23 #include <linux/bitops.h>
24 #include <linux/blkdev.h>
25 #include <asm/byteorder.h>
26 
27 #include "ext4.h"
28 #include "ext4_jbd2.h"
29 #include "xattr.h"
30 #include "acl.h"
31 
32 #include <trace/events/ext4.h>
33 
34 /*
35  * ialloc.c contains the inodes allocation and deallocation routines
36  */
37 
38 /*
39  * The free inodes are managed by bitmaps.  A file system contains several
40  * blocks groups.  Each group contains 1 bitmap block for blocks, 1 bitmap
41  * block for inodes, N blocks for the inode table and data blocks.
42  *
43  * The file system contains group descriptors which are located after the
44  * super block.  Each descriptor contains the number of the bitmap block and
45  * the free blocks count in the block.
46  */
47 
48 /*
49  * To avoid calling the atomic setbit hundreds or thousands of times, we only
50  * need to use it within a single byte (to ensure we get endianness right).
51  * We can use memset for the rest of the bitmap as there are no other users.
52  */
53 void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap)
54 {
55 	int i;
56 
57 	if (start_bit >= end_bit)
58 		return;
59 
60 	ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit);
61 	for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++)
62 		ext4_set_bit(i, bitmap);
63 	if (i < end_bit)
64 		memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3);
65 }
66 
67 /* Initializes an uninitialized inode bitmap */
68 static unsigned ext4_init_inode_bitmap(struct super_block *sb,
69 				       struct buffer_head *bh,
70 				       ext4_group_t block_group,
71 				       struct ext4_group_desc *gdp)
72 {
73 	struct ext4_group_info *grp;
74 	J_ASSERT_BH(bh, buffer_locked(bh));
75 
76 	/* If checksum is bad mark all blocks and inodes use to prevent
77 	 * allocation, essentially implementing a per-group read-only flag. */
78 	if (!ext4_group_desc_csum_verify(sb, block_group, gdp)) {
79 		ext4_error(sb, "Checksum bad for group %u", block_group);
80 		grp = ext4_get_group_info(sb, block_group);
81 		set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, &grp->bb_state);
82 		set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state);
83 		return 0;
84 	}
85 
86 	memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8);
87 	ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb), sb->s_blocksize * 8,
88 			bh->b_data);
89 	ext4_inode_bitmap_csum_set(sb, block_group, gdp, bh,
90 				   EXT4_INODES_PER_GROUP(sb) / 8);
91 	ext4_group_desc_csum_set(sb, block_group, gdp);
92 
93 	return EXT4_INODES_PER_GROUP(sb);
94 }
95 
96 void ext4_end_bitmap_read(struct buffer_head *bh, int uptodate)
97 {
98 	if (uptodate) {
99 		set_buffer_uptodate(bh);
100 		set_bitmap_uptodate(bh);
101 	}
102 	unlock_buffer(bh);
103 	put_bh(bh);
104 }
105 
106 /*
107  * Read the inode allocation bitmap for a given block_group, reading
108  * into the specified slot in the superblock's bitmap cache.
109  *
110  * Return buffer_head of bitmap on success or NULL.
111  */
112 static struct buffer_head *
113 ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group)
114 {
115 	struct ext4_group_desc *desc;
116 	struct buffer_head *bh = NULL;
117 	ext4_fsblk_t bitmap_blk;
118 	struct ext4_group_info *grp;
119 
120 	desc = ext4_get_group_desc(sb, block_group, NULL);
121 	if (!desc)
122 		return NULL;
123 
124 	bitmap_blk = ext4_inode_bitmap(sb, desc);
125 	bh = sb_getblk(sb, bitmap_blk);
126 	if (unlikely(!bh)) {
127 		ext4_error(sb, "Cannot read inode bitmap - "
128 			    "block_group = %u, inode_bitmap = %llu",
129 			    block_group, bitmap_blk);
130 		return NULL;
131 	}
132 	if (bitmap_uptodate(bh))
133 		goto verify;
134 
135 	lock_buffer(bh);
136 	if (bitmap_uptodate(bh)) {
137 		unlock_buffer(bh);
138 		goto verify;
139 	}
140 
141 	ext4_lock_group(sb, block_group);
142 	if (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
143 		ext4_init_inode_bitmap(sb, bh, block_group, desc);
144 		set_bitmap_uptodate(bh);
145 		set_buffer_uptodate(bh);
146 		set_buffer_verified(bh);
147 		ext4_unlock_group(sb, block_group);
148 		unlock_buffer(bh);
149 		return bh;
150 	}
151 	ext4_unlock_group(sb, block_group);
152 
153 	if (buffer_uptodate(bh)) {
154 		/*
155 		 * if not uninit if bh is uptodate,
156 		 * bitmap is also uptodate
157 		 */
158 		set_bitmap_uptodate(bh);
159 		unlock_buffer(bh);
160 		goto verify;
161 	}
162 	/*
163 	 * submit the buffer_head for reading
164 	 */
165 	trace_ext4_load_inode_bitmap(sb, block_group);
166 	bh->b_end_io = ext4_end_bitmap_read;
167 	get_bh(bh);
168 	submit_bh(READ | REQ_META | REQ_PRIO, bh);
169 	wait_on_buffer(bh);
170 	if (!buffer_uptodate(bh)) {
171 		put_bh(bh);
172 		ext4_error(sb, "Cannot read inode bitmap - "
173 			   "block_group = %u, inode_bitmap = %llu",
174 			   block_group, bitmap_blk);
175 		return NULL;
176 	}
177 
178 verify:
179 	ext4_lock_group(sb, block_group);
180 	if (!buffer_verified(bh) &&
181 	    !ext4_inode_bitmap_csum_verify(sb, block_group, desc, bh,
182 					   EXT4_INODES_PER_GROUP(sb) / 8)) {
183 		ext4_unlock_group(sb, block_group);
184 		put_bh(bh);
185 		ext4_error(sb, "Corrupt inode bitmap - block_group = %u, "
186 			   "inode_bitmap = %llu", block_group, bitmap_blk);
187 		grp = ext4_get_group_info(sb, block_group);
188 		set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state);
189 		return NULL;
190 	}
191 	ext4_unlock_group(sb, block_group);
192 	set_buffer_verified(bh);
193 	return bh;
194 }
195 
196 /*
197  * NOTE! When we get the inode, we're the only people
198  * that have access to it, and as such there are no
199  * race conditions we have to worry about. The inode
200  * is not on the hash-lists, and it cannot be reached
201  * through the filesystem because the directory entry
202  * has been deleted earlier.
203  *
204  * HOWEVER: we must make sure that we get no aliases,
205  * which means that we have to call "clear_inode()"
206  * _before_ we mark the inode not in use in the inode
207  * bitmaps. Otherwise a newly created file might use
208  * the same inode number (not actually the same pointer
209  * though), and then we'd have two inodes sharing the
210  * same inode number and space on the harddisk.
211  */
212 void ext4_free_inode(handle_t *handle, struct inode *inode)
213 {
214 	struct super_block *sb = inode->i_sb;
215 	int is_directory;
216 	unsigned long ino;
217 	struct buffer_head *bitmap_bh = NULL;
218 	struct buffer_head *bh2;
219 	ext4_group_t block_group;
220 	unsigned long bit;
221 	struct ext4_group_desc *gdp;
222 	struct ext4_super_block *es;
223 	struct ext4_sb_info *sbi;
224 	int fatal = 0, err, count, cleared;
225 	struct ext4_group_info *grp;
226 
227 	if (!sb) {
228 		printk(KERN_ERR "EXT4-fs: %s:%d: inode on "
229 		       "nonexistent device\n", __func__, __LINE__);
230 		return;
231 	}
232 	if (atomic_read(&inode->i_count) > 1) {
233 		ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: count=%d",
234 			 __func__, __LINE__, inode->i_ino,
235 			 atomic_read(&inode->i_count));
236 		return;
237 	}
238 	if (inode->i_nlink) {
239 		ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: nlink=%d\n",
240 			 __func__, __LINE__, inode->i_ino, inode->i_nlink);
241 		return;
242 	}
243 	sbi = EXT4_SB(sb);
244 
245 	ino = inode->i_ino;
246 	ext4_debug("freeing inode %lu\n", ino);
247 	trace_ext4_free_inode(inode);
248 
249 	/*
250 	 * Note: we must free any quota before locking the superblock,
251 	 * as writing the quota to disk may need the lock as well.
252 	 */
253 	dquot_initialize(inode);
254 	ext4_xattr_delete_inode(handle, inode);
255 	dquot_free_inode(inode);
256 	dquot_drop(inode);
257 
258 	is_directory = S_ISDIR(inode->i_mode);
259 
260 	/* Do this BEFORE marking the inode not in use or returning an error */
261 	ext4_clear_inode(inode);
262 
263 	es = EXT4_SB(sb)->s_es;
264 	if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) {
265 		ext4_error(sb, "reserved or nonexistent inode %lu", ino);
266 		goto error_return;
267 	}
268 	block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
269 	bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
270 	bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
271 	/* Don't bother if the inode bitmap is corrupt. */
272 	grp = ext4_get_group_info(sb, block_group);
273 	if (unlikely(EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) || !bitmap_bh)
274 		goto error_return;
275 
276 	BUFFER_TRACE(bitmap_bh, "get_write_access");
277 	fatal = ext4_journal_get_write_access(handle, bitmap_bh);
278 	if (fatal)
279 		goto error_return;
280 
281 	fatal = -ESRCH;
282 	gdp = ext4_get_group_desc(sb, block_group, &bh2);
283 	if (gdp) {
284 		BUFFER_TRACE(bh2, "get_write_access");
285 		fatal = ext4_journal_get_write_access(handle, bh2);
286 	}
287 	ext4_lock_group(sb, block_group);
288 	cleared = ext4_test_and_clear_bit(bit, bitmap_bh->b_data);
289 	if (fatal || !cleared) {
290 		ext4_unlock_group(sb, block_group);
291 		goto out;
292 	}
293 
294 	count = ext4_free_inodes_count(sb, gdp) + 1;
295 	ext4_free_inodes_set(sb, gdp, count);
296 	if (is_directory) {
297 		count = ext4_used_dirs_count(sb, gdp) - 1;
298 		ext4_used_dirs_set(sb, gdp, count);
299 		percpu_counter_dec(&sbi->s_dirs_counter);
300 	}
301 	ext4_inode_bitmap_csum_set(sb, block_group, gdp, bitmap_bh,
302 				   EXT4_INODES_PER_GROUP(sb) / 8);
303 	ext4_group_desc_csum_set(sb, block_group, gdp);
304 	ext4_unlock_group(sb, block_group);
305 
306 	percpu_counter_inc(&sbi->s_freeinodes_counter);
307 	if (sbi->s_log_groups_per_flex) {
308 		ext4_group_t f = ext4_flex_group(sbi, block_group);
309 
310 		atomic_inc(&sbi->s_flex_groups[f].free_inodes);
311 		if (is_directory)
312 			atomic_dec(&sbi->s_flex_groups[f].used_dirs);
313 	}
314 	BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata");
315 	fatal = ext4_handle_dirty_metadata(handle, NULL, bh2);
316 out:
317 	if (cleared) {
318 		BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata");
319 		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
320 		if (!fatal)
321 			fatal = err;
322 	} else {
323 		ext4_error(sb, "bit already cleared for inode %lu", ino);
324 		set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state);
325 	}
326 
327 error_return:
328 	brelse(bitmap_bh);
329 	ext4_std_error(sb, fatal);
330 }
331 
332 struct orlov_stats {
333 	__u64 free_clusters;
334 	__u32 free_inodes;
335 	__u32 used_dirs;
336 };
337 
338 /*
339  * Helper function for Orlov's allocator; returns critical information
340  * for a particular block group or flex_bg.  If flex_size is 1, then g
341  * is a block group number; otherwise it is flex_bg number.
342  */
343 static void get_orlov_stats(struct super_block *sb, ext4_group_t g,
344 			    int flex_size, struct orlov_stats *stats)
345 {
346 	struct ext4_group_desc *desc;
347 	struct flex_groups *flex_group = EXT4_SB(sb)->s_flex_groups;
348 
349 	if (flex_size > 1) {
350 		stats->free_inodes = atomic_read(&flex_group[g].free_inodes);
351 		stats->free_clusters = atomic64_read(&flex_group[g].free_clusters);
352 		stats->used_dirs = atomic_read(&flex_group[g].used_dirs);
353 		return;
354 	}
355 
356 	desc = ext4_get_group_desc(sb, g, NULL);
357 	if (desc) {
358 		stats->free_inodes = ext4_free_inodes_count(sb, desc);
359 		stats->free_clusters = ext4_free_group_clusters(sb, desc);
360 		stats->used_dirs = ext4_used_dirs_count(sb, desc);
361 	} else {
362 		stats->free_inodes = 0;
363 		stats->free_clusters = 0;
364 		stats->used_dirs = 0;
365 	}
366 }
367 
368 /*
369  * Orlov's allocator for directories.
370  *
371  * We always try to spread first-level directories.
372  *
373  * If there are blockgroups with both free inodes and free blocks counts
374  * not worse than average we return one with smallest directory count.
375  * Otherwise we simply return a random group.
376  *
377  * For the rest rules look so:
378  *
379  * It's OK to put directory into a group unless
380  * it has too many directories already (max_dirs) or
381  * it has too few free inodes left (min_inodes) or
382  * it has too few free blocks left (min_blocks) or
383  * Parent's group is preferred, if it doesn't satisfy these
384  * conditions we search cyclically through the rest. If none
385  * of the groups look good we just look for a group with more
386  * free inodes than average (starting at parent's group).
387  */
388 
389 static int find_group_orlov(struct super_block *sb, struct inode *parent,
390 			    ext4_group_t *group, umode_t mode,
391 			    const struct qstr *qstr)
392 {
393 	ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
394 	struct ext4_sb_info *sbi = EXT4_SB(sb);
395 	ext4_group_t real_ngroups = ext4_get_groups_count(sb);
396 	int inodes_per_group = EXT4_INODES_PER_GROUP(sb);
397 	unsigned int freei, avefreei, grp_free;
398 	ext4_fsblk_t freeb, avefreec;
399 	unsigned int ndirs;
400 	int max_dirs, min_inodes;
401 	ext4_grpblk_t min_clusters;
402 	ext4_group_t i, grp, g, ngroups;
403 	struct ext4_group_desc *desc;
404 	struct orlov_stats stats;
405 	int flex_size = ext4_flex_bg_size(sbi);
406 	struct dx_hash_info hinfo;
407 
408 	ngroups = real_ngroups;
409 	if (flex_size > 1) {
410 		ngroups = (real_ngroups + flex_size - 1) >>
411 			sbi->s_log_groups_per_flex;
412 		parent_group >>= sbi->s_log_groups_per_flex;
413 	}
414 
415 	freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter);
416 	avefreei = freei / ngroups;
417 	freeb = EXT4_C2B(sbi,
418 		percpu_counter_read_positive(&sbi->s_freeclusters_counter));
419 	avefreec = freeb;
420 	do_div(avefreec, ngroups);
421 	ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter);
422 
423 	if (S_ISDIR(mode) &&
424 	    ((parent == sb->s_root->d_inode) ||
425 	     (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) {
426 		int best_ndir = inodes_per_group;
427 		int ret = -1;
428 
429 		if (qstr) {
430 			hinfo.hash_version = DX_HASH_HALF_MD4;
431 			hinfo.seed = sbi->s_hash_seed;
432 			ext4fs_dirhash(qstr->name, qstr->len, &hinfo);
433 			grp = hinfo.hash;
434 		} else
435 			get_random_bytes(&grp, sizeof(grp));
436 		parent_group = (unsigned)grp % ngroups;
437 		for (i = 0; i < ngroups; i++) {
438 			g = (parent_group + i) % ngroups;
439 			get_orlov_stats(sb, g, flex_size, &stats);
440 			if (!stats.free_inodes)
441 				continue;
442 			if (stats.used_dirs >= best_ndir)
443 				continue;
444 			if (stats.free_inodes < avefreei)
445 				continue;
446 			if (stats.free_clusters < avefreec)
447 				continue;
448 			grp = g;
449 			ret = 0;
450 			best_ndir = stats.used_dirs;
451 		}
452 		if (ret)
453 			goto fallback;
454 	found_flex_bg:
455 		if (flex_size == 1) {
456 			*group = grp;
457 			return 0;
458 		}
459 
460 		/*
461 		 * We pack inodes at the beginning of the flexgroup's
462 		 * inode tables.  Block allocation decisions will do
463 		 * something similar, although regular files will
464 		 * start at 2nd block group of the flexgroup.  See
465 		 * ext4_ext_find_goal() and ext4_find_near().
466 		 */
467 		grp *= flex_size;
468 		for (i = 0; i < flex_size; i++) {
469 			if (grp+i >= real_ngroups)
470 				break;
471 			desc = ext4_get_group_desc(sb, grp+i, NULL);
472 			if (desc && ext4_free_inodes_count(sb, desc)) {
473 				*group = grp+i;
474 				return 0;
475 			}
476 		}
477 		goto fallback;
478 	}
479 
480 	max_dirs = ndirs / ngroups + inodes_per_group / 16;
481 	min_inodes = avefreei - inodes_per_group*flex_size / 4;
482 	if (min_inodes < 1)
483 		min_inodes = 1;
484 	min_clusters = avefreec - EXT4_CLUSTERS_PER_GROUP(sb)*flex_size / 4;
485 
486 	/*
487 	 * Start looking in the flex group where we last allocated an
488 	 * inode for this parent directory
489 	 */
490 	if (EXT4_I(parent)->i_last_alloc_group != ~0) {
491 		parent_group = EXT4_I(parent)->i_last_alloc_group;
492 		if (flex_size > 1)
493 			parent_group >>= sbi->s_log_groups_per_flex;
494 	}
495 
496 	for (i = 0; i < ngroups; i++) {
497 		grp = (parent_group + i) % ngroups;
498 		get_orlov_stats(sb, grp, flex_size, &stats);
499 		if (stats.used_dirs >= max_dirs)
500 			continue;
501 		if (stats.free_inodes < min_inodes)
502 			continue;
503 		if (stats.free_clusters < min_clusters)
504 			continue;
505 		goto found_flex_bg;
506 	}
507 
508 fallback:
509 	ngroups = real_ngroups;
510 	avefreei = freei / ngroups;
511 fallback_retry:
512 	parent_group = EXT4_I(parent)->i_block_group;
513 	for (i = 0; i < ngroups; i++) {
514 		grp = (parent_group + i) % ngroups;
515 		desc = ext4_get_group_desc(sb, grp, NULL);
516 		if (desc) {
517 			grp_free = ext4_free_inodes_count(sb, desc);
518 			if (grp_free && grp_free >= avefreei) {
519 				*group = grp;
520 				return 0;
521 			}
522 		}
523 	}
524 
525 	if (avefreei) {
526 		/*
527 		 * The free-inodes counter is approximate, and for really small
528 		 * filesystems the above test can fail to find any blockgroups
529 		 */
530 		avefreei = 0;
531 		goto fallback_retry;
532 	}
533 
534 	return -1;
535 }
536 
537 static int find_group_other(struct super_block *sb, struct inode *parent,
538 			    ext4_group_t *group, umode_t mode)
539 {
540 	ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
541 	ext4_group_t i, last, ngroups = ext4_get_groups_count(sb);
542 	struct ext4_group_desc *desc;
543 	int flex_size = ext4_flex_bg_size(EXT4_SB(sb));
544 
545 	/*
546 	 * Try to place the inode is the same flex group as its
547 	 * parent.  If we can't find space, use the Orlov algorithm to
548 	 * find another flex group, and store that information in the
549 	 * parent directory's inode information so that use that flex
550 	 * group for future allocations.
551 	 */
552 	if (flex_size > 1) {
553 		int retry = 0;
554 
555 	try_again:
556 		parent_group &= ~(flex_size-1);
557 		last = parent_group + flex_size;
558 		if (last > ngroups)
559 			last = ngroups;
560 		for  (i = parent_group; i < last; i++) {
561 			desc = ext4_get_group_desc(sb, i, NULL);
562 			if (desc && ext4_free_inodes_count(sb, desc)) {
563 				*group = i;
564 				return 0;
565 			}
566 		}
567 		if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) {
568 			retry = 1;
569 			parent_group = EXT4_I(parent)->i_last_alloc_group;
570 			goto try_again;
571 		}
572 		/*
573 		 * If this didn't work, use the Orlov search algorithm
574 		 * to find a new flex group; we pass in the mode to
575 		 * avoid the topdir algorithms.
576 		 */
577 		*group = parent_group + flex_size;
578 		if (*group > ngroups)
579 			*group = 0;
580 		return find_group_orlov(sb, parent, group, mode, NULL);
581 	}
582 
583 	/*
584 	 * Try to place the inode in its parent directory
585 	 */
586 	*group = parent_group;
587 	desc = ext4_get_group_desc(sb, *group, NULL);
588 	if (desc && ext4_free_inodes_count(sb, desc) &&
589 	    ext4_free_group_clusters(sb, desc))
590 		return 0;
591 
592 	/*
593 	 * We're going to place this inode in a different blockgroup from its
594 	 * parent.  We want to cause files in a common directory to all land in
595 	 * the same blockgroup.  But we want files which are in a different
596 	 * directory which shares a blockgroup with our parent to land in a
597 	 * different blockgroup.
598 	 *
599 	 * So add our directory's i_ino into the starting point for the hash.
600 	 */
601 	*group = (*group + parent->i_ino) % ngroups;
602 
603 	/*
604 	 * Use a quadratic hash to find a group with a free inode and some free
605 	 * blocks.
606 	 */
607 	for (i = 1; i < ngroups; i <<= 1) {
608 		*group += i;
609 		if (*group >= ngroups)
610 			*group -= ngroups;
611 		desc = ext4_get_group_desc(sb, *group, NULL);
612 		if (desc && ext4_free_inodes_count(sb, desc) &&
613 		    ext4_free_group_clusters(sb, desc))
614 			return 0;
615 	}
616 
617 	/*
618 	 * That failed: try linear search for a free inode, even if that group
619 	 * has no free blocks.
620 	 */
621 	*group = parent_group;
622 	for (i = 0; i < ngroups; i++) {
623 		if (++*group >= ngroups)
624 			*group = 0;
625 		desc = ext4_get_group_desc(sb, *group, NULL);
626 		if (desc && ext4_free_inodes_count(sb, desc))
627 			return 0;
628 	}
629 
630 	return -1;
631 }
632 
633 /*
634  * In no journal mode, if an inode has recently been deleted, we want
635  * to avoid reusing it until we're reasonably sure the inode table
636  * block has been written back to disk.  (Yes, these values are
637  * somewhat arbitrary...)
638  */
639 #define RECENTCY_MIN	5
640 #define RECENTCY_DIRTY	30
641 
642 static int recently_deleted(struct super_block *sb, ext4_group_t group, int ino)
643 {
644 	struct ext4_group_desc	*gdp;
645 	struct ext4_inode	*raw_inode;
646 	struct buffer_head	*bh;
647 	unsigned long		dtime, now;
648 	int	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
649 	int	offset, ret = 0, recentcy = RECENTCY_MIN;
650 
651 	gdp = ext4_get_group_desc(sb, group, NULL);
652 	if (unlikely(!gdp))
653 		return 0;
654 
655 	bh = sb_getblk(sb, ext4_inode_table(sb, gdp) +
656 		       (ino / inodes_per_block));
657 	if (unlikely(!bh) || !buffer_uptodate(bh))
658 		/*
659 		 * If the block is not in the buffer cache, then it
660 		 * must have been written out.
661 		 */
662 		goto out;
663 
664 	offset = (ino % inodes_per_block) * EXT4_INODE_SIZE(sb);
665 	raw_inode = (struct ext4_inode *) (bh->b_data + offset);
666 	dtime = le32_to_cpu(raw_inode->i_dtime);
667 	now = get_seconds();
668 	if (buffer_dirty(bh))
669 		recentcy += RECENTCY_DIRTY;
670 
671 	if (dtime && (dtime < now) && (now < dtime + recentcy))
672 		ret = 1;
673 out:
674 	brelse(bh);
675 	return ret;
676 }
677 
678 /*
679  * There are two policies for allocating an inode.  If the new inode is
680  * a directory, then a forward search is made for a block group with both
681  * free space and a low directory-to-inode ratio; if that fails, then of
682  * the groups with above-average free space, that group with the fewest
683  * directories already is chosen.
684  *
685  * For other inodes, search forward from the parent directory's block
686  * group to find a free inode.
687  */
688 struct inode *__ext4_new_inode(handle_t *handle, struct inode *dir,
689 			       umode_t mode, const struct qstr *qstr,
690 			       __u32 goal, uid_t *owner, int handle_type,
691 			       unsigned int line_no, int nblocks)
692 {
693 	struct super_block *sb;
694 	struct buffer_head *inode_bitmap_bh = NULL;
695 	struct buffer_head *group_desc_bh;
696 	ext4_group_t ngroups, group = 0;
697 	unsigned long ino = 0;
698 	struct inode *inode;
699 	struct ext4_group_desc *gdp = NULL;
700 	struct ext4_inode_info *ei;
701 	struct ext4_sb_info *sbi;
702 	int ret2, err = 0;
703 	struct inode *ret;
704 	ext4_group_t i;
705 	ext4_group_t flex_group;
706 	struct ext4_group_info *grp;
707 
708 	/* Cannot create files in a deleted directory */
709 	if (!dir || !dir->i_nlink)
710 		return ERR_PTR(-EPERM);
711 
712 	sb = dir->i_sb;
713 	ngroups = ext4_get_groups_count(sb);
714 	trace_ext4_request_inode(dir, mode);
715 	inode = new_inode(sb);
716 	if (!inode)
717 		return ERR_PTR(-ENOMEM);
718 	ei = EXT4_I(inode);
719 	sbi = EXT4_SB(sb);
720 
721 	/*
722 	 * Initalize owners and quota early so that we don't have to account
723 	 * for quota initialization worst case in standard inode creating
724 	 * transaction
725 	 */
726 	if (owner) {
727 		inode->i_mode = mode;
728 		i_uid_write(inode, owner[0]);
729 		i_gid_write(inode, owner[1]);
730 	} else if (test_opt(sb, GRPID)) {
731 		inode->i_mode = mode;
732 		inode->i_uid = current_fsuid();
733 		inode->i_gid = dir->i_gid;
734 	} else
735 		inode_init_owner(inode, dir, mode);
736 	dquot_initialize(inode);
737 
738 	if (!goal)
739 		goal = sbi->s_inode_goal;
740 
741 	if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) {
742 		group = (goal - 1) / EXT4_INODES_PER_GROUP(sb);
743 		ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb);
744 		ret2 = 0;
745 		goto got_group;
746 	}
747 
748 	if (S_ISDIR(mode))
749 		ret2 = find_group_orlov(sb, dir, &group, mode, qstr);
750 	else
751 		ret2 = find_group_other(sb, dir, &group, mode);
752 
753 got_group:
754 	EXT4_I(dir)->i_last_alloc_group = group;
755 	err = -ENOSPC;
756 	if (ret2 == -1)
757 		goto out;
758 
759 	/*
760 	 * Normally we will only go through one pass of this loop,
761 	 * unless we get unlucky and it turns out the group we selected
762 	 * had its last inode grabbed by someone else.
763 	 */
764 	for (i = 0; i < ngroups; i++, ino = 0) {
765 		err = -EIO;
766 
767 		gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
768 		if (!gdp)
769 			goto out;
770 
771 		/*
772 		 * Check free inodes count before loading bitmap.
773 		 */
774 		if (ext4_free_inodes_count(sb, gdp) == 0) {
775 			if (++group == ngroups)
776 				group = 0;
777 			continue;
778 		}
779 
780 		grp = ext4_get_group_info(sb, group);
781 		/* Skip groups with already-known suspicious inode tables */
782 		if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
783 			if (++group == ngroups)
784 				group = 0;
785 			continue;
786 		}
787 
788 		brelse(inode_bitmap_bh);
789 		inode_bitmap_bh = ext4_read_inode_bitmap(sb, group);
790 		/* Skip groups with suspicious inode tables */
791 		if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp) || !inode_bitmap_bh) {
792 			if (++group == ngroups)
793 				group = 0;
794 			continue;
795 		}
796 
797 repeat_in_this_group:
798 		ino = ext4_find_next_zero_bit((unsigned long *)
799 					      inode_bitmap_bh->b_data,
800 					      EXT4_INODES_PER_GROUP(sb), ino);
801 		if (ino >= EXT4_INODES_PER_GROUP(sb))
802 			goto next_group;
803 		if (group == 0 && (ino+1) < EXT4_FIRST_INO(sb)) {
804 			ext4_error(sb, "reserved inode found cleared - "
805 				   "inode=%lu", ino + 1);
806 			continue;
807 		}
808 		if ((EXT4_SB(sb)->s_journal == NULL) &&
809 		    recently_deleted(sb, group, ino)) {
810 			ino++;
811 			goto next_inode;
812 		}
813 		if (!handle) {
814 			BUG_ON(nblocks <= 0);
815 			handle = __ext4_journal_start_sb(dir->i_sb, line_no,
816 							 handle_type, nblocks,
817 							 0);
818 			if (IS_ERR(handle)) {
819 				err = PTR_ERR(handle);
820 				ext4_std_error(sb, err);
821 				goto out;
822 			}
823 		}
824 		BUFFER_TRACE(inode_bitmap_bh, "get_write_access");
825 		err = ext4_journal_get_write_access(handle, inode_bitmap_bh);
826 		if (err) {
827 			ext4_std_error(sb, err);
828 			goto out;
829 		}
830 		ext4_lock_group(sb, group);
831 		ret2 = ext4_test_and_set_bit(ino, inode_bitmap_bh->b_data);
832 		ext4_unlock_group(sb, group);
833 		ino++;		/* the inode bitmap is zero-based */
834 		if (!ret2)
835 			goto got; /* we grabbed the inode! */
836 next_inode:
837 		if (ino < EXT4_INODES_PER_GROUP(sb))
838 			goto repeat_in_this_group;
839 next_group:
840 		if (++group == ngroups)
841 			group = 0;
842 	}
843 	err = -ENOSPC;
844 	goto out;
845 
846 got:
847 	BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata");
848 	err = ext4_handle_dirty_metadata(handle, NULL, inode_bitmap_bh);
849 	if (err) {
850 		ext4_std_error(sb, err);
851 		goto out;
852 	}
853 
854 	/* We may have to initialize the block bitmap if it isn't already */
855 	if (ext4_has_group_desc_csum(sb) &&
856 	    gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
857 		struct buffer_head *block_bitmap_bh;
858 
859 		block_bitmap_bh = ext4_read_block_bitmap(sb, group);
860 		BUFFER_TRACE(block_bitmap_bh, "get block bitmap access");
861 		err = ext4_journal_get_write_access(handle, block_bitmap_bh);
862 		if (err) {
863 			brelse(block_bitmap_bh);
864 			ext4_std_error(sb, err);
865 			goto out;
866 		}
867 
868 		BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap");
869 		err = ext4_handle_dirty_metadata(handle, NULL, block_bitmap_bh);
870 
871 		/* recheck and clear flag under lock if we still need to */
872 		ext4_lock_group(sb, group);
873 		if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
874 			gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
875 			ext4_free_group_clusters_set(sb, gdp,
876 				ext4_free_clusters_after_init(sb, group, gdp));
877 			ext4_block_bitmap_csum_set(sb, group, gdp,
878 						   block_bitmap_bh);
879 			ext4_group_desc_csum_set(sb, group, gdp);
880 		}
881 		ext4_unlock_group(sb, group);
882 		brelse(block_bitmap_bh);
883 
884 		if (err) {
885 			ext4_std_error(sb, err);
886 			goto out;
887 		}
888 	}
889 
890 	BUFFER_TRACE(group_desc_bh, "get_write_access");
891 	err = ext4_journal_get_write_access(handle, group_desc_bh);
892 	if (err) {
893 		ext4_std_error(sb, err);
894 		goto out;
895 	}
896 
897 	/* Update the relevant bg descriptor fields */
898 	if (ext4_has_group_desc_csum(sb)) {
899 		int free;
900 		struct ext4_group_info *grp = ext4_get_group_info(sb, group);
901 
902 		down_read(&grp->alloc_sem); /* protect vs itable lazyinit */
903 		ext4_lock_group(sb, group); /* while we modify the bg desc */
904 		free = EXT4_INODES_PER_GROUP(sb) -
905 			ext4_itable_unused_count(sb, gdp);
906 		if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
907 			gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT);
908 			free = 0;
909 		}
910 		/*
911 		 * Check the relative inode number against the last used
912 		 * relative inode number in this group. if it is greater
913 		 * we need to update the bg_itable_unused count
914 		 */
915 		if (ino > free)
916 			ext4_itable_unused_set(sb, gdp,
917 					(EXT4_INODES_PER_GROUP(sb) - ino));
918 		up_read(&grp->alloc_sem);
919 	} else {
920 		ext4_lock_group(sb, group);
921 	}
922 
923 	ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1);
924 	if (S_ISDIR(mode)) {
925 		ext4_used_dirs_set(sb, gdp, ext4_used_dirs_count(sb, gdp) + 1);
926 		if (sbi->s_log_groups_per_flex) {
927 			ext4_group_t f = ext4_flex_group(sbi, group);
928 
929 			atomic_inc(&sbi->s_flex_groups[f].used_dirs);
930 		}
931 	}
932 	if (ext4_has_group_desc_csum(sb)) {
933 		ext4_inode_bitmap_csum_set(sb, group, gdp, inode_bitmap_bh,
934 					   EXT4_INODES_PER_GROUP(sb) / 8);
935 		ext4_group_desc_csum_set(sb, group, gdp);
936 	}
937 	ext4_unlock_group(sb, group);
938 
939 	BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata");
940 	err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh);
941 	if (err) {
942 		ext4_std_error(sb, err);
943 		goto out;
944 	}
945 
946 	percpu_counter_dec(&sbi->s_freeinodes_counter);
947 	if (S_ISDIR(mode))
948 		percpu_counter_inc(&sbi->s_dirs_counter);
949 
950 	if (sbi->s_log_groups_per_flex) {
951 		flex_group = ext4_flex_group(sbi, group);
952 		atomic_dec(&sbi->s_flex_groups[flex_group].free_inodes);
953 	}
954 
955 	inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb);
956 	/* This is the optimal IO size (for stat), not the fs block size */
957 	inode->i_blocks = 0;
958 	inode->i_mtime = inode->i_atime = inode->i_ctime = ei->i_crtime =
959 						       ext4_current_time(inode);
960 
961 	memset(ei->i_data, 0, sizeof(ei->i_data));
962 	ei->i_dir_start_lookup = 0;
963 	ei->i_disksize = 0;
964 
965 	/* Don't inherit extent flag from directory, amongst others. */
966 	ei->i_flags =
967 		ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED);
968 	ei->i_file_acl = 0;
969 	ei->i_dtime = 0;
970 	ei->i_block_group = group;
971 	ei->i_last_alloc_group = ~0;
972 
973 	ext4_set_inode_flags(inode);
974 	if (IS_DIRSYNC(inode))
975 		ext4_handle_sync(handle);
976 	if (insert_inode_locked(inode) < 0) {
977 		/*
978 		 * Likely a bitmap corruption causing inode to be allocated
979 		 * twice.
980 		 */
981 		err = -EIO;
982 		ext4_error(sb, "failed to insert inode %lu: doubly allocated?",
983 			   inode->i_ino);
984 		goto out;
985 	}
986 	spin_lock(&sbi->s_next_gen_lock);
987 	inode->i_generation = sbi->s_next_generation++;
988 	spin_unlock(&sbi->s_next_gen_lock);
989 
990 	/* Precompute checksum seed for inode metadata */
991 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
992 			EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
993 		__u32 csum;
994 		__le32 inum = cpu_to_le32(inode->i_ino);
995 		__le32 gen = cpu_to_le32(inode->i_generation);
996 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
997 				   sizeof(inum));
998 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
999 					      sizeof(gen));
1000 	}
1001 
1002 	ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
1003 	ext4_set_inode_state(inode, EXT4_STATE_NEW);
1004 
1005 	ei->i_extra_isize = EXT4_SB(sb)->s_want_extra_isize;
1006 
1007 	ei->i_inline_off = 0;
1008 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_INLINE_DATA))
1009 		ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
1010 
1011 	ret = inode;
1012 	err = dquot_alloc_inode(inode);
1013 	if (err)
1014 		goto fail_drop;
1015 
1016 	err = ext4_init_acl(handle, inode, dir);
1017 	if (err)
1018 		goto fail_free_drop;
1019 
1020 	err = ext4_init_security(handle, inode, dir, qstr);
1021 	if (err)
1022 		goto fail_free_drop;
1023 
1024 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
1025 		/* set extent flag only for directory, file and normal symlink*/
1026 		if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) {
1027 			ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS);
1028 			ext4_ext_tree_init(handle, inode);
1029 		}
1030 	}
1031 
1032 	if (ext4_handle_valid(handle)) {
1033 		ei->i_sync_tid = handle->h_transaction->t_tid;
1034 		ei->i_datasync_tid = handle->h_transaction->t_tid;
1035 	}
1036 
1037 	err = ext4_mark_inode_dirty(handle, inode);
1038 	if (err) {
1039 		ext4_std_error(sb, err);
1040 		goto fail_free_drop;
1041 	}
1042 
1043 	ext4_debug("allocating inode %lu\n", inode->i_ino);
1044 	trace_ext4_allocate_inode(inode, dir, mode);
1045 	brelse(inode_bitmap_bh);
1046 	return ret;
1047 
1048 fail_free_drop:
1049 	dquot_free_inode(inode);
1050 fail_drop:
1051 	clear_nlink(inode);
1052 	unlock_new_inode(inode);
1053 out:
1054 	dquot_drop(inode);
1055 	inode->i_flags |= S_NOQUOTA;
1056 	iput(inode);
1057 	brelse(inode_bitmap_bh);
1058 	return ERR_PTR(err);
1059 }
1060 
1061 /* Verify that we are loading a valid orphan from disk */
1062 struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino)
1063 {
1064 	unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count);
1065 	ext4_group_t block_group;
1066 	int bit;
1067 	struct buffer_head *bitmap_bh;
1068 	struct inode *inode = NULL;
1069 	long err = -EIO;
1070 
1071 	/* Error cases - e2fsck has already cleaned up for us */
1072 	if (ino > max_ino) {
1073 		ext4_warning(sb, "bad orphan ino %lu!  e2fsck was run?", ino);
1074 		goto error;
1075 	}
1076 
1077 	block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
1078 	bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
1079 	bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
1080 	if (!bitmap_bh) {
1081 		ext4_warning(sb, "inode bitmap error for orphan %lu", ino);
1082 		goto error;
1083 	}
1084 
1085 	/* Having the inode bit set should be a 100% indicator that this
1086 	 * is a valid orphan (no e2fsck run on fs).  Orphans also include
1087 	 * inodes that were being truncated, so we can't check i_nlink==0.
1088 	 */
1089 	if (!ext4_test_bit(bit, bitmap_bh->b_data))
1090 		goto bad_orphan;
1091 
1092 	inode = ext4_iget(sb, ino);
1093 	if (IS_ERR(inode))
1094 		goto iget_failed;
1095 
1096 	/*
1097 	 * If the orphans has i_nlinks > 0 then it should be able to be
1098 	 * truncated, otherwise it won't be removed from the orphan list
1099 	 * during processing and an infinite loop will result.
1100 	 */
1101 	if (inode->i_nlink && !ext4_can_truncate(inode))
1102 		goto bad_orphan;
1103 
1104 	if (NEXT_ORPHAN(inode) > max_ino)
1105 		goto bad_orphan;
1106 	brelse(bitmap_bh);
1107 	return inode;
1108 
1109 iget_failed:
1110 	err = PTR_ERR(inode);
1111 	inode = NULL;
1112 bad_orphan:
1113 	ext4_warning(sb, "bad orphan inode %lu!  e2fsck was run?", ino);
1114 	printk(KERN_WARNING "ext4_test_bit(bit=%d, block=%llu) = %d\n",
1115 	       bit, (unsigned long long)bitmap_bh->b_blocknr,
1116 	       ext4_test_bit(bit, bitmap_bh->b_data));
1117 	printk(KERN_WARNING "inode=%p\n", inode);
1118 	if (inode) {
1119 		printk(KERN_WARNING "is_bad_inode(inode)=%d\n",
1120 		       is_bad_inode(inode));
1121 		printk(KERN_WARNING "NEXT_ORPHAN(inode)=%u\n",
1122 		       NEXT_ORPHAN(inode));
1123 		printk(KERN_WARNING "max_ino=%lu\n", max_ino);
1124 		printk(KERN_WARNING "i_nlink=%u\n", inode->i_nlink);
1125 		/* Avoid freeing blocks if we got a bad deleted inode */
1126 		if (inode->i_nlink == 0)
1127 			inode->i_blocks = 0;
1128 		iput(inode);
1129 	}
1130 	brelse(bitmap_bh);
1131 error:
1132 	return ERR_PTR(err);
1133 }
1134 
1135 unsigned long ext4_count_free_inodes(struct super_block *sb)
1136 {
1137 	unsigned long desc_count;
1138 	struct ext4_group_desc *gdp;
1139 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1140 #ifdef EXT4FS_DEBUG
1141 	struct ext4_super_block *es;
1142 	unsigned long bitmap_count, x;
1143 	struct buffer_head *bitmap_bh = NULL;
1144 
1145 	es = EXT4_SB(sb)->s_es;
1146 	desc_count = 0;
1147 	bitmap_count = 0;
1148 	gdp = NULL;
1149 	for (i = 0; i < ngroups; i++) {
1150 		gdp = ext4_get_group_desc(sb, i, NULL);
1151 		if (!gdp)
1152 			continue;
1153 		desc_count += ext4_free_inodes_count(sb, gdp);
1154 		brelse(bitmap_bh);
1155 		bitmap_bh = ext4_read_inode_bitmap(sb, i);
1156 		if (!bitmap_bh)
1157 			continue;
1158 
1159 		x = ext4_count_free(bitmap_bh->b_data,
1160 				    EXT4_INODES_PER_GROUP(sb) / 8);
1161 		printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n",
1162 			(unsigned long) i, ext4_free_inodes_count(sb, gdp), x);
1163 		bitmap_count += x;
1164 	}
1165 	brelse(bitmap_bh);
1166 	printk(KERN_DEBUG "ext4_count_free_inodes: "
1167 	       "stored = %u, computed = %lu, %lu\n",
1168 	       le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count);
1169 	return desc_count;
1170 #else
1171 	desc_count = 0;
1172 	for (i = 0; i < ngroups; i++) {
1173 		gdp = ext4_get_group_desc(sb, i, NULL);
1174 		if (!gdp)
1175 			continue;
1176 		desc_count += ext4_free_inodes_count(sb, gdp);
1177 		cond_resched();
1178 	}
1179 	return desc_count;
1180 #endif
1181 }
1182 
1183 /* Called at mount-time, super-block is locked */
1184 unsigned long ext4_count_dirs(struct super_block * sb)
1185 {
1186 	unsigned long count = 0;
1187 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1188 
1189 	for (i = 0; i < ngroups; i++) {
1190 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
1191 		if (!gdp)
1192 			continue;
1193 		count += ext4_used_dirs_count(sb, gdp);
1194 	}
1195 	return count;
1196 }
1197 
1198 /*
1199  * Zeroes not yet zeroed inode table - just write zeroes through the whole
1200  * inode table. Must be called without any spinlock held. The only place
1201  * where it is called from on active part of filesystem is ext4lazyinit
1202  * thread, so we do not need any special locks, however we have to prevent
1203  * inode allocation from the current group, so we take alloc_sem lock, to
1204  * block ext4_new_inode() until we are finished.
1205  */
1206 int ext4_init_inode_table(struct super_block *sb, ext4_group_t group,
1207 				 int barrier)
1208 {
1209 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1210 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1211 	struct ext4_group_desc *gdp = NULL;
1212 	struct buffer_head *group_desc_bh;
1213 	handle_t *handle;
1214 	ext4_fsblk_t blk;
1215 	int num, ret = 0, used_blks = 0;
1216 
1217 	/* This should not happen, but just to be sure check this */
1218 	if (sb->s_flags & MS_RDONLY) {
1219 		ret = 1;
1220 		goto out;
1221 	}
1222 
1223 	gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
1224 	if (!gdp)
1225 		goto out;
1226 
1227 	/*
1228 	 * We do not need to lock this, because we are the only one
1229 	 * handling this flag.
1230 	 */
1231 	if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))
1232 		goto out;
1233 
1234 	handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
1235 	if (IS_ERR(handle)) {
1236 		ret = PTR_ERR(handle);
1237 		goto out;
1238 	}
1239 
1240 	down_write(&grp->alloc_sem);
1241 	/*
1242 	 * If inode bitmap was already initialized there may be some
1243 	 * used inodes so we need to skip blocks with used inodes in
1244 	 * inode table.
1245 	 */
1246 	if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)))
1247 		used_blks = DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb) -
1248 			    ext4_itable_unused_count(sb, gdp)),
1249 			    sbi->s_inodes_per_block);
1250 
1251 	if ((used_blks < 0) || (used_blks > sbi->s_itb_per_group)) {
1252 		ext4_error(sb, "Something is wrong with group %u: "
1253 			   "used itable blocks: %d; "
1254 			   "itable unused count: %u",
1255 			   group, used_blks,
1256 			   ext4_itable_unused_count(sb, gdp));
1257 		ret = 1;
1258 		goto err_out;
1259 	}
1260 
1261 	blk = ext4_inode_table(sb, gdp) + used_blks;
1262 	num = sbi->s_itb_per_group - used_blks;
1263 
1264 	BUFFER_TRACE(group_desc_bh, "get_write_access");
1265 	ret = ext4_journal_get_write_access(handle,
1266 					    group_desc_bh);
1267 	if (ret)
1268 		goto err_out;
1269 
1270 	/*
1271 	 * Skip zeroout if the inode table is full. But we set the ZEROED
1272 	 * flag anyway, because obviously, when it is full it does not need
1273 	 * further zeroing.
1274 	 */
1275 	if (unlikely(num == 0))
1276 		goto skip_zeroout;
1277 
1278 	ext4_debug("going to zero out inode table in group %d\n",
1279 		   group);
1280 	ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS);
1281 	if (ret < 0)
1282 		goto err_out;
1283 	if (barrier)
1284 		blkdev_issue_flush(sb->s_bdev, GFP_NOFS, NULL);
1285 
1286 skip_zeroout:
1287 	ext4_lock_group(sb, group);
1288 	gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED);
1289 	ext4_group_desc_csum_set(sb, group, gdp);
1290 	ext4_unlock_group(sb, group);
1291 
1292 	BUFFER_TRACE(group_desc_bh,
1293 		     "call ext4_handle_dirty_metadata");
1294 	ret = ext4_handle_dirty_metadata(handle, NULL,
1295 					 group_desc_bh);
1296 
1297 err_out:
1298 	up_write(&grp->alloc_sem);
1299 	ext4_journal_stop(handle);
1300 out:
1301 	return ret;
1302 }
1303