1 /* 2 * linux/fs/ext4/ialloc.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * BSD ufs-inspired inode and directory allocation by 10 * Stephen Tweedie (sct@redhat.com), 1993 11 * Big-endian to little-endian byte-swapping/bitmaps by 12 * David S. Miller (davem@caip.rutgers.edu), 1995 13 */ 14 15 #include <linux/time.h> 16 #include <linux/fs.h> 17 #include <linux/jbd2.h> 18 #include <linux/stat.h> 19 #include <linux/string.h> 20 #include <linux/quotaops.h> 21 #include <linux/buffer_head.h> 22 #include <linux/random.h> 23 #include <linux/bitops.h> 24 #include <linux/blkdev.h> 25 #include <asm/byteorder.h> 26 27 #include "ext4.h" 28 #include "ext4_jbd2.h" 29 #include "xattr.h" 30 #include "acl.h" 31 32 #include <trace/events/ext4.h> 33 34 /* 35 * ialloc.c contains the inodes allocation and deallocation routines 36 */ 37 38 /* 39 * The free inodes are managed by bitmaps. A file system contains several 40 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap 41 * block for inodes, N blocks for the inode table and data blocks. 42 * 43 * The file system contains group descriptors which are located after the 44 * super block. Each descriptor contains the number of the bitmap block and 45 * the free blocks count in the block. 46 */ 47 48 /* 49 * To avoid calling the atomic setbit hundreds or thousands of times, we only 50 * need to use it within a single byte (to ensure we get endianness right). 51 * We can use memset for the rest of the bitmap as there are no other users. 52 */ 53 void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap) 54 { 55 int i; 56 57 if (start_bit >= end_bit) 58 return; 59 60 ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit); 61 for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++) 62 ext4_set_bit(i, bitmap); 63 if (i < end_bit) 64 memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3); 65 } 66 67 /* Initializes an uninitialized inode bitmap */ 68 static unsigned ext4_init_inode_bitmap(struct super_block *sb, 69 struct buffer_head *bh, 70 ext4_group_t block_group, 71 struct ext4_group_desc *gdp) 72 { 73 struct ext4_group_info *grp; 74 J_ASSERT_BH(bh, buffer_locked(bh)); 75 76 /* If checksum is bad mark all blocks and inodes use to prevent 77 * allocation, essentially implementing a per-group read-only flag. */ 78 if (!ext4_group_desc_csum_verify(sb, block_group, gdp)) { 79 ext4_error(sb, "Checksum bad for group %u", block_group); 80 grp = ext4_get_group_info(sb, block_group); 81 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, &grp->bb_state); 82 set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state); 83 return 0; 84 } 85 86 memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8); 87 ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb), sb->s_blocksize * 8, 88 bh->b_data); 89 ext4_inode_bitmap_csum_set(sb, block_group, gdp, bh, 90 EXT4_INODES_PER_GROUP(sb) / 8); 91 ext4_group_desc_csum_set(sb, block_group, gdp); 92 93 return EXT4_INODES_PER_GROUP(sb); 94 } 95 96 void ext4_end_bitmap_read(struct buffer_head *bh, int uptodate) 97 { 98 if (uptodate) { 99 set_buffer_uptodate(bh); 100 set_bitmap_uptodate(bh); 101 } 102 unlock_buffer(bh); 103 put_bh(bh); 104 } 105 106 /* 107 * Read the inode allocation bitmap for a given block_group, reading 108 * into the specified slot in the superblock's bitmap cache. 109 * 110 * Return buffer_head of bitmap on success or NULL. 111 */ 112 static struct buffer_head * 113 ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group) 114 { 115 struct ext4_group_desc *desc; 116 struct buffer_head *bh = NULL; 117 ext4_fsblk_t bitmap_blk; 118 struct ext4_group_info *grp; 119 120 desc = ext4_get_group_desc(sb, block_group, NULL); 121 if (!desc) 122 return NULL; 123 124 bitmap_blk = ext4_inode_bitmap(sb, desc); 125 bh = sb_getblk(sb, bitmap_blk); 126 if (unlikely(!bh)) { 127 ext4_error(sb, "Cannot read inode bitmap - " 128 "block_group = %u, inode_bitmap = %llu", 129 block_group, bitmap_blk); 130 return NULL; 131 } 132 if (bitmap_uptodate(bh)) 133 goto verify; 134 135 lock_buffer(bh); 136 if (bitmap_uptodate(bh)) { 137 unlock_buffer(bh); 138 goto verify; 139 } 140 141 ext4_lock_group(sb, block_group); 142 if (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) { 143 ext4_init_inode_bitmap(sb, bh, block_group, desc); 144 set_bitmap_uptodate(bh); 145 set_buffer_uptodate(bh); 146 set_buffer_verified(bh); 147 ext4_unlock_group(sb, block_group); 148 unlock_buffer(bh); 149 return bh; 150 } 151 ext4_unlock_group(sb, block_group); 152 153 if (buffer_uptodate(bh)) { 154 /* 155 * if not uninit if bh is uptodate, 156 * bitmap is also uptodate 157 */ 158 set_bitmap_uptodate(bh); 159 unlock_buffer(bh); 160 goto verify; 161 } 162 /* 163 * submit the buffer_head for reading 164 */ 165 trace_ext4_load_inode_bitmap(sb, block_group); 166 bh->b_end_io = ext4_end_bitmap_read; 167 get_bh(bh); 168 submit_bh(READ | REQ_META | REQ_PRIO, bh); 169 wait_on_buffer(bh); 170 if (!buffer_uptodate(bh)) { 171 put_bh(bh); 172 ext4_error(sb, "Cannot read inode bitmap - " 173 "block_group = %u, inode_bitmap = %llu", 174 block_group, bitmap_blk); 175 return NULL; 176 } 177 178 verify: 179 ext4_lock_group(sb, block_group); 180 if (!buffer_verified(bh) && 181 !ext4_inode_bitmap_csum_verify(sb, block_group, desc, bh, 182 EXT4_INODES_PER_GROUP(sb) / 8)) { 183 ext4_unlock_group(sb, block_group); 184 put_bh(bh); 185 ext4_error(sb, "Corrupt inode bitmap - block_group = %u, " 186 "inode_bitmap = %llu", block_group, bitmap_blk); 187 grp = ext4_get_group_info(sb, block_group); 188 set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state); 189 return NULL; 190 } 191 ext4_unlock_group(sb, block_group); 192 set_buffer_verified(bh); 193 return bh; 194 } 195 196 /* 197 * NOTE! When we get the inode, we're the only people 198 * that have access to it, and as such there are no 199 * race conditions we have to worry about. The inode 200 * is not on the hash-lists, and it cannot be reached 201 * through the filesystem because the directory entry 202 * has been deleted earlier. 203 * 204 * HOWEVER: we must make sure that we get no aliases, 205 * which means that we have to call "clear_inode()" 206 * _before_ we mark the inode not in use in the inode 207 * bitmaps. Otherwise a newly created file might use 208 * the same inode number (not actually the same pointer 209 * though), and then we'd have two inodes sharing the 210 * same inode number and space on the harddisk. 211 */ 212 void ext4_free_inode(handle_t *handle, struct inode *inode) 213 { 214 struct super_block *sb = inode->i_sb; 215 int is_directory; 216 unsigned long ino; 217 struct buffer_head *bitmap_bh = NULL; 218 struct buffer_head *bh2; 219 ext4_group_t block_group; 220 unsigned long bit; 221 struct ext4_group_desc *gdp; 222 struct ext4_super_block *es; 223 struct ext4_sb_info *sbi; 224 int fatal = 0, err, count, cleared; 225 struct ext4_group_info *grp; 226 227 if (!sb) { 228 printk(KERN_ERR "EXT4-fs: %s:%d: inode on " 229 "nonexistent device\n", __func__, __LINE__); 230 return; 231 } 232 if (atomic_read(&inode->i_count) > 1) { 233 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: count=%d", 234 __func__, __LINE__, inode->i_ino, 235 atomic_read(&inode->i_count)); 236 return; 237 } 238 if (inode->i_nlink) { 239 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: nlink=%d\n", 240 __func__, __LINE__, inode->i_ino, inode->i_nlink); 241 return; 242 } 243 sbi = EXT4_SB(sb); 244 245 ino = inode->i_ino; 246 ext4_debug("freeing inode %lu\n", ino); 247 trace_ext4_free_inode(inode); 248 249 /* 250 * Note: we must free any quota before locking the superblock, 251 * as writing the quota to disk may need the lock as well. 252 */ 253 dquot_initialize(inode); 254 ext4_xattr_delete_inode(handle, inode); 255 dquot_free_inode(inode); 256 dquot_drop(inode); 257 258 is_directory = S_ISDIR(inode->i_mode); 259 260 /* Do this BEFORE marking the inode not in use or returning an error */ 261 ext4_clear_inode(inode); 262 263 es = EXT4_SB(sb)->s_es; 264 if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) { 265 ext4_error(sb, "reserved or nonexistent inode %lu", ino); 266 goto error_return; 267 } 268 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 269 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb); 270 bitmap_bh = ext4_read_inode_bitmap(sb, block_group); 271 /* Don't bother if the inode bitmap is corrupt. */ 272 grp = ext4_get_group_info(sb, block_group); 273 if (unlikely(EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) || !bitmap_bh) 274 goto error_return; 275 276 BUFFER_TRACE(bitmap_bh, "get_write_access"); 277 fatal = ext4_journal_get_write_access(handle, bitmap_bh); 278 if (fatal) 279 goto error_return; 280 281 fatal = -ESRCH; 282 gdp = ext4_get_group_desc(sb, block_group, &bh2); 283 if (gdp) { 284 BUFFER_TRACE(bh2, "get_write_access"); 285 fatal = ext4_journal_get_write_access(handle, bh2); 286 } 287 ext4_lock_group(sb, block_group); 288 cleared = ext4_test_and_clear_bit(bit, bitmap_bh->b_data); 289 if (fatal || !cleared) { 290 ext4_unlock_group(sb, block_group); 291 goto out; 292 } 293 294 count = ext4_free_inodes_count(sb, gdp) + 1; 295 ext4_free_inodes_set(sb, gdp, count); 296 if (is_directory) { 297 count = ext4_used_dirs_count(sb, gdp) - 1; 298 ext4_used_dirs_set(sb, gdp, count); 299 percpu_counter_dec(&sbi->s_dirs_counter); 300 } 301 ext4_inode_bitmap_csum_set(sb, block_group, gdp, bitmap_bh, 302 EXT4_INODES_PER_GROUP(sb) / 8); 303 ext4_group_desc_csum_set(sb, block_group, gdp); 304 ext4_unlock_group(sb, block_group); 305 306 percpu_counter_inc(&sbi->s_freeinodes_counter); 307 if (sbi->s_log_groups_per_flex) { 308 ext4_group_t f = ext4_flex_group(sbi, block_group); 309 310 atomic_inc(&sbi->s_flex_groups[f].free_inodes); 311 if (is_directory) 312 atomic_dec(&sbi->s_flex_groups[f].used_dirs); 313 } 314 BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata"); 315 fatal = ext4_handle_dirty_metadata(handle, NULL, bh2); 316 out: 317 if (cleared) { 318 BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata"); 319 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 320 if (!fatal) 321 fatal = err; 322 } else { 323 ext4_error(sb, "bit already cleared for inode %lu", ino); 324 set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state); 325 } 326 327 error_return: 328 brelse(bitmap_bh); 329 ext4_std_error(sb, fatal); 330 } 331 332 struct orlov_stats { 333 __u64 free_clusters; 334 __u32 free_inodes; 335 __u32 used_dirs; 336 }; 337 338 /* 339 * Helper function for Orlov's allocator; returns critical information 340 * for a particular block group or flex_bg. If flex_size is 1, then g 341 * is a block group number; otherwise it is flex_bg number. 342 */ 343 static void get_orlov_stats(struct super_block *sb, ext4_group_t g, 344 int flex_size, struct orlov_stats *stats) 345 { 346 struct ext4_group_desc *desc; 347 struct flex_groups *flex_group = EXT4_SB(sb)->s_flex_groups; 348 349 if (flex_size > 1) { 350 stats->free_inodes = atomic_read(&flex_group[g].free_inodes); 351 stats->free_clusters = atomic64_read(&flex_group[g].free_clusters); 352 stats->used_dirs = atomic_read(&flex_group[g].used_dirs); 353 return; 354 } 355 356 desc = ext4_get_group_desc(sb, g, NULL); 357 if (desc) { 358 stats->free_inodes = ext4_free_inodes_count(sb, desc); 359 stats->free_clusters = ext4_free_group_clusters(sb, desc); 360 stats->used_dirs = ext4_used_dirs_count(sb, desc); 361 } else { 362 stats->free_inodes = 0; 363 stats->free_clusters = 0; 364 stats->used_dirs = 0; 365 } 366 } 367 368 /* 369 * Orlov's allocator for directories. 370 * 371 * We always try to spread first-level directories. 372 * 373 * If there are blockgroups with both free inodes and free blocks counts 374 * not worse than average we return one with smallest directory count. 375 * Otherwise we simply return a random group. 376 * 377 * For the rest rules look so: 378 * 379 * It's OK to put directory into a group unless 380 * it has too many directories already (max_dirs) or 381 * it has too few free inodes left (min_inodes) or 382 * it has too few free blocks left (min_blocks) or 383 * Parent's group is preferred, if it doesn't satisfy these 384 * conditions we search cyclically through the rest. If none 385 * of the groups look good we just look for a group with more 386 * free inodes than average (starting at parent's group). 387 */ 388 389 static int find_group_orlov(struct super_block *sb, struct inode *parent, 390 ext4_group_t *group, umode_t mode, 391 const struct qstr *qstr) 392 { 393 ext4_group_t parent_group = EXT4_I(parent)->i_block_group; 394 struct ext4_sb_info *sbi = EXT4_SB(sb); 395 ext4_group_t real_ngroups = ext4_get_groups_count(sb); 396 int inodes_per_group = EXT4_INODES_PER_GROUP(sb); 397 unsigned int freei, avefreei, grp_free; 398 ext4_fsblk_t freeb, avefreec; 399 unsigned int ndirs; 400 int max_dirs, min_inodes; 401 ext4_grpblk_t min_clusters; 402 ext4_group_t i, grp, g, ngroups; 403 struct ext4_group_desc *desc; 404 struct orlov_stats stats; 405 int flex_size = ext4_flex_bg_size(sbi); 406 struct dx_hash_info hinfo; 407 408 ngroups = real_ngroups; 409 if (flex_size > 1) { 410 ngroups = (real_ngroups + flex_size - 1) >> 411 sbi->s_log_groups_per_flex; 412 parent_group >>= sbi->s_log_groups_per_flex; 413 } 414 415 freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter); 416 avefreei = freei / ngroups; 417 freeb = EXT4_C2B(sbi, 418 percpu_counter_read_positive(&sbi->s_freeclusters_counter)); 419 avefreec = freeb; 420 do_div(avefreec, ngroups); 421 ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter); 422 423 if (S_ISDIR(mode) && 424 ((parent == sb->s_root->d_inode) || 425 (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) { 426 int best_ndir = inodes_per_group; 427 int ret = -1; 428 429 if (qstr) { 430 hinfo.hash_version = DX_HASH_HALF_MD4; 431 hinfo.seed = sbi->s_hash_seed; 432 ext4fs_dirhash(qstr->name, qstr->len, &hinfo); 433 grp = hinfo.hash; 434 } else 435 get_random_bytes(&grp, sizeof(grp)); 436 parent_group = (unsigned)grp % ngroups; 437 for (i = 0; i < ngroups; i++) { 438 g = (parent_group + i) % ngroups; 439 get_orlov_stats(sb, g, flex_size, &stats); 440 if (!stats.free_inodes) 441 continue; 442 if (stats.used_dirs >= best_ndir) 443 continue; 444 if (stats.free_inodes < avefreei) 445 continue; 446 if (stats.free_clusters < avefreec) 447 continue; 448 grp = g; 449 ret = 0; 450 best_ndir = stats.used_dirs; 451 } 452 if (ret) 453 goto fallback; 454 found_flex_bg: 455 if (flex_size == 1) { 456 *group = grp; 457 return 0; 458 } 459 460 /* 461 * We pack inodes at the beginning of the flexgroup's 462 * inode tables. Block allocation decisions will do 463 * something similar, although regular files will 464 * start at 2nd block group of the flexgroup. See 465 * ext4_ext_find_goal() and ext4_find_near(). 466 */ 467 grp *= flex_size; 468 for (i = 0; i < flex_size; i++) { 469 if (grp+i >= real_ngroups) 470 break; 471 desc = ext4_get_group_desc(sb, grp+i, NULL); 472 if (desc && ext4_free_inodes_count(sb, desc)) { 473 *group = grp+i; 474 return 0; 475 } 476 } 477 goto fallback; 478 } 479 480 max_dirs = ndirs / ngroups + inodes_per_group / 16; 481 min_inodes = avefreei - inodes_per_group*flex_size / 4; 482 if (min_inodes < 1) 483 min_inodes = 1; 484 min_clusters = avefreec - EXT4_CLUSTERS_PER_GROUP(sb)*flex_size / 4; 485 486 /* 487 * Start looking in the flex group where we last allocated an 488 * inode for this parent directory 489 */ 490 if (EXT4_I(parent)->i_last_alloc_group != ~0) { 491 parent_group = EXT4_I(parent)->i_last_alloc_group; 492 if (flex_size > 1) 493 parent_group >>= sbi->s_log_groups_per_flex; 494 } 495 496 for (i = 0; i < ngroups; i++) { 497 grp = (parent_group + i) % ngroups; 498 get_orlov_stats(sb, grp, flex_size, &stats); 499 if (stats.used_dirs >= max_dirs) 500 continue; 501 if (stats.free_inodes < min_inodes) 502 continue; 503 if (stats.free_clusters < min_clusters) 504 continue; 505 goto found_flex_bg; 506 } 507 508 fallback: 509 ngroups = real_ngroups; 510 avefreei = freei / ngroups; 511 fallback_retry: 512 parent_group = EXT4_I(parent)->i_block_group; 513 for (i = 0; i < ngroups; i++) { 514 grp = (parent_group + i) % ngroups; 515 desc = ext4_get_group_desc(sb, grp, NULL); 516 if (desc) { 517 grp_free = ext4_free_inodes_count(sb, desc); 518 if (grp_free && grp_free >= avefreei) { 519 *group = grp; 520 return 0; 521 } 522 } 523 } 524 525 if (avefreei) { 526 /* 527 * The free-inodes counter is approximate, and for really small 528 * filesystems the above test can fail to find any blockgroups 529 */ 530 avefreei = 0; 531 goto fallback_retry; 532 } 533 534 return -1; 535 } 536 537 static int find_group_other(struct super_block *sb, struct inode *parent, 538 ext4_group_t *group, umode_t mode) 539 { 540 ext4_group_t parent_group = EXT4_I(parent)->i_block_group; 541 ext4_group_t i, last, ngroups = ext4_get_groups_count(sb); 542 struct ext4_group_desc *desc; 543 int flex_size = ext4_flex_bg_size(EXT4_SB(sb)); 544 545 /* 546 * Try to place the inode is the same flex group as its 547 * parent. If we can't find space, use the Orlov algorithm to 548 * find another flex group, and store that information in the 549 * parent directory's inode information so that use that flex 550 * group for future allocations. 551 */ 552 if (flex_size > 1) { 553 int retry = 0; 554 555 try_again: 556 parent_group &= ~(flex_size-1); 557 last = parent_group + flex_size; 558 if (last > ngroups) 559 last = ngroups; 560 for (i = parent_group; i < last; i++) { 561 desc = ext4_get_group_desc(sb, i, NULL); 562 if (desc && ext4_free_inodes_count(sb, desc)) { 563 *group = i; 564 return 0; 565 } 566 } 567 if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) { 568 retry = 1; 569 parent_group = EXT4_I(parent)->i_last_alloc_group; 570 goto try_again; 571 } 572 /* 573 * If this didn't work, use the Orlov search algorithm 574 * to find a new flex group; we pass in the mode to 575 * avoid the topdir algorithms. 576 */ 577 *group = parent_group + flex_size; 578 if (*group > ngroups) 579 *group = 0; 580 return find_group_orlov(sb, parent, group, mode, NULL); 581 } 582 583 /* 584 * Try to place the inode in its parent directory 585 */ 586 *group = parent_group; 587 desc = ext4_get_group_desc(sb, *group, NULL); 588 if (desc && ext4_free_inodes_count(sb, desc) && 589 ext4_free_group_clusters(sb, desc)) 590 return 0; 591 592 /* 593 * We're going to place this inode in a different blockgroup from its 594 * parent. We want to cause files in a common directory to all land in 595 * the same blockgroup. But we want files which are in a different 596 * directory which shares a blockgroup with our parent to land in a 597 * different blockgroup. 598 * 599 * So add our directory's i_ino into the starting point for the hash. 600 */ 601 *group = (*group + parent->i_ino) % ngroups; 602 603 /* 604 * Use a quadratic hash to find a group with a free inode and some free 605 * blocks. 606 */ 607 for (i = 1; i < ngroups; i <<= 1) { 608 *group += i; 609 if (*group >= ngroups) 610 *group -= ngroups; 611 desc = ext4_get_group_desc(sb, *group, NULL); 612 if (desc && ext4_free_inodes_count(sb, desc) && 613 ext4_free_group_clusters(sb, desc)) 614 return 0; 615 } 616 617 /* 618 * That failed: try linear search for a free inode, even if that group 619 * has no free blocks. 620 */ 621 *group = parent_group; 622 for (i = 0; i < ngroups; i++) { 623 if (++*group >= ngroups) 624 *group = 0; 625 desc = ext4_get_group_desc(sb, *group, NULL); 626 if (desc && ext4_free_inodes_count(sb, desc)) 627 return 0; 628 } 629 630 return -1; 631 } 632 633 /* 634 * In no journal mode, if an inode has recently been deleted, we want 635 * to avoid reusing it until we're reasonably sure the inode table 636 * block has been written back to disk. (Yes, these values are 637 * somewhat arbitrary...) 638 */ 639 #define RECENTCY_MIN 5 640 #define RECENTCY_DIRTY 30 641 642 static int recently_deleted(struct super_block *sb, ext4_group_t group, int ino) 643 { 644 struct ext4_group_desc *gdp; 645 struct ext4_inode *raw_inode; 646 struct buffer_head *bh; 647 unsigned long dtime, now; 648 int inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 649 int offset, ret = 0, recentcy = RECENTCY_MIN; 650 651 gdp = ext4_get_group_desc(sb, group, NULL); 652 if (unlikely(!gdp)) 653 return 0; 654 655 bh = sb_getblk(sb, ext4_inode_table(sb, gdp) + 656 (ino / inodes_per_block)); 657 if (unlikely(!bh) || !buffer_uptodate(bh)) 658 /* 659 * If the block is not in the buffer cache, then it 660 * must have been written out. 661 */ 662 goto out; 663 664 offset = (ino % inodes_per_block) * EXT4_INODE_SIZE(sb); 665 raw_inode = (struct ext4_inode *) (bh->b_data + offset); 666 dtime = le32_to_cpu(raw_inode->i_dtime); 667 now = get_seconds(); 668 if (buffer_dirty(bh)) 669 recentcy += RECENTCY_DIRTY; 670 671 if (dtime && (dtime < now) && (now < dtime + recentcy)) 672 ret = 1; 673 out: 674 brelse(bh); 675 return ret; 676 } 677 678 /* 679 * There are two policies for allocating an inode. If the new inode is 680 * a directory, then a forward search is made for a block group with both 681 * free space and a low directory-to-inode ratio; if that fails, then of 682 * the groups with above-average free space, that group with the fewest 683 * directories already is chosen. 684 * 685 * For other inodes, search forward from the parent directory's block 686 * group to find a free inode. 687 */ 688 struct inode *__ext4_new_inode(handle_t *handle, struct inode *dir, 689 umode_t mode, const struct qstr *qstr, 690 __u32 goal, uid_t *owner, int handle_type, 691 unsigned int line_no, int nblocks) 692 { 693 struct super_block *sb; 694 struct buffer_head *inode_bitmap_bh = NULL; 695 struct buffer_head *group_desc_bh; 696 ext4_group_t ngroups, group = 0; 697 unsigned long ino = 0; 698 struct inode *inode; 699 struct ext4_group_desc *gdp = NULL; 700 struct ext4_inode_info *ei; 701 struct ext4_sb_info *sbi; 702 int ret2, err = 0; 703 struct inode *ret; 704 ext4_group_t i; 705 ext4_group_t flex_group; 706 struct ext4_group_info *grp; 707 708 /* Cannot create files in a deleted directory */ 709 if (!dir || !dir->i_nlink) 710 return ERR_PTR(-EPERM); 711 712 sb = dir->i_sb; 713 ngroups = ext4_get_groups_count(sb); 714 trace_ext4_request_inode(dir, mode); 715 inode = new_inode(sb); 716 if (!inode) 717 return ERR_PTR(-ENOMEM); 718 ei = EXT4_I(inode); 719 sbi = EXT4_SB(sb); 720 721 /* 722 * Initalize owners and quota early so that we don't have to account 723 * for quota initialization worst case in standard inode creating 724 * transaction 725 */ 726 if (owner) { 727 inode->i_mode = mode; 728 i_uid_write(inode, owner[0]); 729 i_gid_write(inode, owner[1]); 730 } else if (test_opt(sb, GRPID)) { 731 inode->i_mode = mode; 732 inode->i_uid = current_fsuid(); 733 inode->i_gid = dir->i_gid; 734 } else 735 inode_init_owner(inode, dir, mode); 736 dquot_initialize(inode); 737 738 if (!goal) 739 goal = sbi->s_inode_goal; 740 741 if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) { 742 group = (goal - 1) / EXT4_INODES_PER_GROUP(sb); 743 ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb); 744 ret2 = 0; 745 goto got_group; 746 } 747 748 if (S_ISDIR(mode)) 749 ret2 = find_group_orlov(sb, dir, &group, mode, qstr); 750 else 751 ret2 = find_group_other(sb, dir, &group, mode); 752 753 got_group: 754 EXT4_I(dir)->i_last_alloc_group = group; 755 err = -ENOSPC; 756 if (ret2 == -1) 757 goto out; 758 759 /* 760 * Normally we will only go through one pass of this loop, 761 * unless we get unlucky and it turns out the group we selected 762 * had its last inode grabbed by someone else. 763 */ 764 for (i = 0; i < ngroups; i++, ino = 0) { 765 err = -EIO; 766 767 gdp = ext4_get_group_desc(sb, group, &group_desc_bh); 768 if (!gdp) 769 goto out; 770 771 /* 772 * Check free inodes count before loading bitmap. 773 */ 774 if (ext4_free_inodes_count(sb, gdp) == 0) { 775 if (++group == ngroups) 776 group = 0; 777 continue; 778 } 779 780 grp = ext4_get_group_info(sb, group); 781 /* Skip groups with already-known suspicious inode tables */ 782 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) { 783 if (++group == ngroups) 784 group = 0; 785 continue; 786 } 787 788 brelse(inode_bitmap_bh); 789 inode_bitmap_bh = ext4_read_inode_bitmap(sb, group); 790 /* Skip groups with suspicious inode tables */ 791 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp) || !inode_bitmap_bh) { 792 if (++group == ngroups) 793 group = 0; 794 continue; 795 } 796 797 repeat_in_this_group: 798 ino = ext4_find_next_zero_bit((unsigned long *) 799 inode_bitmap_bh->b_data, 800 EXT4_INODES_PER_GROUP(sb), ino); 801 if (ino >= EXT4_INODES_PER_GROUP(sb)) 802 goto next_group; 803 if (group == 0 && (ino+1) < EXT4_FIRST_INO(sb)) { 804 ext4_error(sb, "reserved inode found cleared - " 805 "inode=%lu", ino + 1); 806 continue; 807 } 808 if ((EXT4_SB(sb)->s_journal == NULL) && 809 recently_deleted(sb, group, ino)) { 810 ino++; 811 goto next_inode; 812 } 813 if (!handle) { 814 BUG_ON(nblocks <= 0); 815 handle = __ext4_journal_start_sb(dir->i_sb, line_no, 816 handle_type, nblocks, 817 0); 818 if (IS_ERR(handle)) { 819 err = PTR_ERR(handle); 820 ext4_std_error(sb, err); 821 goto out; 822 } 823 } 824 BUFFER_TRACE(inode_bitmap_bh, "get_write_access"); 825 err = ext4_journal_get_write_access(handle, inode_bitmap_bh); 826 if (err) { 827 ext4_std_error(sb, err); 828 goto out; 829 } 830 ext4_lock_group(sb, group); 831 ret2 = ext4_test_and_set_bit(ino, inode_bitmap_bh->b_data); 832 ext4_unlock_group(sb, group); 833 ino++; /* the inode bitmap is zero-based */ 834 if (!ret2) 835 goto got; /* we grabbed the inode! */ 836 next_inode: 837 if (ino < EXT4_INODES_PER_GROUP(sb)) 838 goto repeat_in_this_group; 839 next_group: 840 if (++group == ngroups) 841 group = 0; 842 } 843 err = -ENOSPC; 844 goto out; 845 846 got: 847 BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata"); 848 err = ext4_handle_dirty_metadata(handle, NULL, inode_bitmap_bh); 849 if (err) { 850 ext4_std_error(sb, err); 851 goto out; 852 } 853 854 /* We may have to initialize the block bitmap if it isn't already */ 855 if (ext4_has_group_desc_csum(sb) && 856 gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 857 struct buffer_head *block_bitmap_bh; 858 859 block_bitmap_bh = ext4_read_block_bitmap(sb, group); 860 BUFFER_TRACE(block_bitmap_bh, "get block bitmap access"); 861 err = ext4_journal_get_write_access(handle, block_bitmap_bh); 862 if (err) { 863 brelse(block_bitmap_bh); 864 ext4_std_error(sb, err); 865 goto out; 866 } 867 868 BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap"); 869 err = ext4_handle_dirty_metadata(handle, NULL, block_bitmap_bh); 870 871 /* recheck and clear flag under lock if we still need to */ 872 ext4_lock_group(sb, group); 873 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 874 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 875 ext4_free_group_clusters_set(sb, gdp, 876 ext4_free_clusters_after_init(sb, group, gdp)); 877 ext4_block_bitmap_csum_set(sb, group, gdp, 878 block_bitmap_bh); 879 ext4_group_desc_csum_set(sb, group, gdp); 880 } 881 ext4_unlock_group(sb, group); 882 brelse(block_bitmap_bh); 883 884 if (err) { 885 ext4_std_error(sb, err); 886 goto out; 887 } 888 } 889 890 BUFFER_TRACE(group_desc_bh, "get_write_access"); 891 err = ext4_journal_get_write_access(handle, group_desc_bh); 892 if (err) { 893 ext4_std_error(sb, err); 894 goto out; 895 } 896 897 /* Update the relevant bg descriptor fields */ 898 if (ext4_has_group_desc_csum(sb)) { 899 int free; 900 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 901 902 down_read(&grp->alloc_sem); /* protect vs itable lazyinit */ 903 ext4_lock_group(sb, group); /* while we modify the bg desc */ 904 free = EXT4_INODES_PER_GROUP(sb) - 905 ext4_itable_unused_count(sb, gdp); 906 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) { 907 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT); 908 free = 0; 909 } 910 /* 911 * Check the relative inode number against the last used 912 * relative inode number in this group. if it is greater 913 * we need to update the bg_itable_unused count 914 */ 915 if (ino > free) 916 ext4_itable_unused_set(sb, gdp, 917 (EXT4_INODES_PER_GROUP(sb) - ino)); 918 up_read(&grp->alloc_sem); 919 } else { 920 ext4_lock_group(sb, group); 921 } 922 923 ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1); 924 if (S_ISDIR(mode)) { 925 ext4_used_dirs_set(sb, gdp, ext4_used_dirs_count(sb, gdp) + 1); 926 if (sbi->s_log_groups_per_flex) { 927 ext4_group_t f = ext4_flex_group(sbi, group); 928 929 atomic_inc(&sbi->s_flex_groups[f].used_dirs); 930 } 931 } 932 if (ext4_has_group_desc_csum(sb)) { 933 ext4_inode_bitmap_csum_set(sb, group, gdp, inode_bitmap_bh, 934 EXT4_INODES_PER_GROUP(sb) / 8); 935 ext4_group_desc_csum_set(sb, group, gdp); 936 } 937 ext4_unlock_group(sb, group); 938 939 BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata"); 940 err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh); 941 if (err) { 942 ext4_std_error(sb, err); 943 goto out; 944 } 945 946 percpu_counter_dec(&sbi->s_freeinodes_counter); 947 if (S_ISDIR(mode)) 948 percpu_counter_inc(&sbi->s_dirs_counter); 949 950 if (sbi->s_log_groups_per_flex) { 951 flex_group = ext4_flex_group(sbi, group); 952 atomic_dec(&sbi->s_flex_groups[flex_group].free_inodes); 953 } 954 955 inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb); 956 /* This is the optimal IO size (for stat), not the fs block size */ 957 inode->i_blocks = 0; 958 inode->i_mtime = inode->i_atime = inode->i_ctime = ei->i_crtime = 959 ext4_current_time(inode); 960 961 memset(ei->i_data, 0, sizeof(ei->i_data)); 962 ei->i_dir_start_lookup = 0; 963 ei->i_disksize = 0; 964 965 /* Don't inherit extent flag from directory, amongst others. */ 966 ei->i_flags = 967 ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED); 968 ei->i_file_acl = 0; 969 ei->i_dtime = 0; 970 ei->i_block_group = group; 971 ei->i_last_alloc_group = ~0; 972 973 ext4_set_inode_flags(inode); 974 if (IS_DIRSYNC(inode)) 975 ext4_handle_sync(handle); 976 if (insert_inode_locked(inode) < 0) { 977 /* 978 * Likely a bitmap corruption causing inode to be allocated 979 * twice. 980 */ 981 err = -EIO; 982 ext4_error(sb, "failed to insert inode %lu: doubly allocated?", 983 inode->i_ino); 984 goto out; 985 } 986 spin_lock(&sbi->s_next_gen_lock); 987 inode->i_generation = sbi->s_next_generation++; 988 spin_unlock(&sbi->s_next_gen_lock); 989 990 /* Precompute checksum seed for inode metadata */ 991 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 992 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) { 993 __u32 csum; 994 __le32 inum = cpu_to_le32(inode->i_ino); 995 __le32 gen = cpu_to_le32(inode->i_generation); 996 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 997 sizeof(inum)); 998 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 999 sizeof(gen)); 1000 } 1001 1002 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 1003 ext4_set_inode_state(inode, EXT4_STATE_NEW); 1004 1005 ei->i_extra_isize = EXT4_SB(sb)->s_want_extra_isize; 1006 1007 ei->i_inline_off = 0; 1008 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_INLINE_DATA)) 1009 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); 1010 1011 ret = inode; 1012 err = dquot_alloc_inode(inode); 1013 if (err) 1014 goto fail_drop; 1015 1016 err = ext4_init_acl(handle, inode, dir); 1017 if (err) 1018 goto fail_free_drop; 1019 1020 err = ext4_init_security(handle, inode, dir, qstr); 1021 if (err) 1022 goto fail_free_drop; 1023 1024 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) { 1025 /* set extent flag only for directory, file and normal symlink*/ 1026 if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) { 1027 ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS); 1028 ext4_ext_tree_init(handle, inode); 1029 } 1030 } 1031 1032 if (ext4_handle_valid(handle)) { 1033 ei->i_sync_tid = handle->h_transaction->t_tid; 1034 ei->i_datasync_tid = handle->h_transaction->t_tid; 1035 } 1036 1037 err = ext4_mark_inode_dirty(handle, inode); 1038 if (err) { 1039 ext4_std_error(sb, err); 1040 goto fail_free_drop; 1041 } 1042 1043 ext4_debug("allocating inode %lu\n", inode->i_ino); 1044 trace_ext4_allocate_inode(inode, dir, mode); 1045 brelse(inode_bitmap_bh); 1046 return ret; 1047 1048 fail_free_drop: 1049 dquot_free_inode(inode); 1050 fail_drop: 1051 clear_nlink(inode); 1052 unlock_new_inode(inode); 1053 out: 1054 dquot_drop(inode); 1055 inode->i_flags |= S_NOQUOTA; 1056 iput(inode); 1057 brelse(inode_bitmap_bh); 1058 return ERR_PTR(err); 1059 } 1060 1061 /* Verify that we are loading a valid orphan from disk */ 1062 struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino) 1063 { 1064 unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count); 1065 ext4_group_t block_group; 1066 int bit; 1067 struct buffer_head *bitmap_bh; 1068 struct inode *inode = NULL; 1069 long err = -EIO; 1070 1071 /* Error cases - e2fsck has already cleaned up for us */ 1072 if (ino > max_ino) { 1073 ext4_warning(sb, "bad orphan ino %lu! e2fsck was run?", ino); 1074 goto error; 1075 } 1076 1077 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 1078 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb); 1079 bitmap_bh = ext4_read_inode_bitmap(sb, block_group); 1080 if (!bitmap_bh) { 1081 ext4_warning(sb, "inode bitmap error for orphan %lu", ino); 1082 goto error; 1083 } 1084 1085 /* Having the inode bit set should be a 100% indicator that this 1086 * is a valid orphan (no e2fsck run on fs). Orphans also include 1087 * inodes that were being truncated, so we can't check i_nlink==0. 1088 */ 1089 if (!ext4_test_bit(bit, bitmap_bh->b_data)) 1090 goto bad_orphan; 1091 1092 inode = ext4_iget(sb, ino); 1093 if (IS_ERR(inode)) 1094 goto iget_failed; 1095 1096 /* 1097 * If the orphans has i_nlinks > 0 then it should be able to be 1098 * truncated, otherwise it won't be removed from the orphan list 1099 * during processing and an infinite loop will result. 1100 */ 1101 if (inode->i_nlink && !ext4_can_truncate(inode)) 1102 goto bad_orphan; 1103 1104 if (NEXT_ORPHAN(inode) > max_ino) 1105 goto bad_orphan; 1106 brelse(bitmap_bh); 1107 return inode; 1108 1109 iget_failed: 1110 err = PTR_ERR(inode); 1111 inode = NULL; 1112 bad_orphan: 1113 ext4_warning(sb, "bad orphan inode %lu! e2fsck was run?", ino); 1114 printk(KERN_WARNING "ext4_test_bit(bit=%d, block=%llu) = %d\n", 1115 bit, (unsigned long long)bitmap_bh->b_blocknr, 1116 ext4_test_bit(bit, bitmap_bh->b_data)); 1117 printk(KERN_WARNING "inode=%p\n", inode); 1118 if (inode) { 1119 printk(KERN_WARNING "is_bad_inode(inode)=%d\n", 1120 is_bad_inode(inode)); 1121 printk(KERN_WARNING "NEXT_ORPHAN(inode)=%u\n", 1122 NEXT_ORPHAN(inode)); 1123 printk(KERN_WARNING "max_ino=%lu\n", max_ino); 1124 printk(KERN_WARNING "i_nlink=%u\n", inode->i_nlink); 1125 /* Avoid freeing blocks if we got a bad deleted inode */ 1126 if (inode->i_nlink == 0) 1127 inode->i_blocks = 0; 1128 iput(inode); 1129 } 1130 brelse(bitmap_bh); 1131 error: 1132 return ERR_PTR(err); 1133 } 1134 1135 unsigned long ext4_count_free_inodes(struct super_block *sb) 1136 { 1137 unsigned long desc_count; 1138 struct ext4_group_desc *gdp; 1139 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 1140 #ifdef EXT4FS_DEBUG 1141 struct ext4_super_block *es; 1142 unsigned long bitmap_count, x; 1143 struct buffer_head *bitmap_bh = NULL; 1144 1145 es = EXT4_SB(sb)->s_es; 1146 desc_count = 0; 1147 bitmap_count = 0; 1148 gdp = NULL; 1149 for (i = 0; i < ngroups; i++) { 1150 gdp = ext4_get_group_desc(sb, i, NULL); 1151 if (!gdp) 1152 continue; 1153 desc_count += ext4_free_inodes_count(sb, gdp); 1154 brelse(bitmap_bh); 1155 bitmap_bh = ext4_read_inode_bitmap(sb, i); 1156 if (!bitmap_bh) 1157 continue; 1158 1159 x = ext4_count_free(bitmap_bh->b_data, 1160 EXT4_INODES_PER_GROUP(sb) / 8); 1161 printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n", 1162 (unsigned long) i, ext4_free_inodes_count(sb, gdp), x); 1163 bitmap_count += x; 1164 } 1165 brelse(bitmap_bh); 1166 printk(KERN_DEBUG "ext4_count_free_inodes: " 1167 "stored = %u, computed = %lu, %lu\n", 1168 le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count); 1169 return desc_count; 1170 #else 1171 desc_count = 0; 1172 for (i = 0; i < ngroups; i++) { 1173 gdp = ext4_get_group_desc(sb, i, NULL); 1174 if (!gdp) 1175 continue; 1176 desc_count += ext4_free_inodes_count(sb, gdp); 1177 cond_resched(); 1178 } 1179 return desc_count; 1180 #endif 1181 } 1182 1183 /* Called at mount-time, super-block is locked */ 1184 unsigned long ext4_count_dirs(struct super_block * sb) 1185 { 1186 unsigned long count = 0; 1187 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 1188 1189 for (i = 0; i < ngroups; i++) { 1190 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 1191 if (!gdp) 1192 continue; 1193 count += ext4_used_dirs_count(sb, gdp); 1194 } 1195 return count; 1196 } 1197 1198 /* 1199 * Zeroes not yet zeroed inode table - just write zeroes through the whole 1200 * inode table. Must be called without any spinlock held. The only place 1201 * where it is called from on active part of filesystem is ext4lazyinit 1202 * thread, so we do not need any special locks, however we have to prevent 1203 * inode allocation from the current group, so we take alloc_sem lock, to 1204 * block ext4_new_inode() until we are finished. 1205 */ 1206 int ext4_init_inode_table(struct super_block *sb, ext4_group_t group, 1207 int barrier) 1208 { 1209 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 1210 struct ext4_sb_info *sbi = EXT4_SB(sb); 1211 struct ext4_group_desc *gdp = NULL; 1212 struct buffer_head *group_desc_bh; 1213 handle_t *handle; 1214 ext4_fsblk_t blk; 1215 int num, ret = 0, used_blks = 0; 1216 1217 /* This should not happen, but just to be sure check this */ 1218 if (sb->s_flags & MS_RDONLY) { 1219 ret = 1; 1220 goto out; 1221 } 1222 1223 gdp = ext4_get_group_desc(sb, group, &group_desc_bh); 1224 if (!gdp) 1225 goto out; 1226 1227 /* 1228 * We do not need to lock this, because we are the only one 1229 * handling this flag. 1230 */ 1231 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)) 1232 goto out; 1233 1234 handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1); 1235 if (IS_ERR(handle)) { 1236 ret = PTR_ERR(handle); 1237 goto out; 1238 } 1239 1240 down_write(&grp->alloc_sem); 1241 /* 1242 * If inode bitmap was already initialized there may be some 1243 * used inodes so we need to skip blocks with used inodes in 1244 * inode table. 1245 */ 1246 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT))) 1247 used_blks = DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb) - 1248 ext4_itable_unused_count(sb, gdp)), 1249 sbi->s_inodes_per_block); 1250 1251 if ((used_blks < 0) || (used_blks > sbi->s_itb_per_group)) { 1252 ext4_error(sb, "Something is wrong with group %u: " 1253 "used itable blocks: %d; " 1254 "itable unused count: %u", 1255 group, used_blks, 1256 ext4_itable_unused_count(sb, gdp)); 1257 ret = 1; 1258 goto err_out; 1259 } 1260 1261 blk = ext4_inode_table(sb, gdp) + used_blks; 1262 num = sbi->s_itb_per_group - used_blks; 1263 1264 BUFFER_TRACE(group_desc_bh, "get_write_access"); 1265 ret = ext4_journal_get_write_access(handle, 1266 group_desc_bh); 1267 if (ret) 1268 goto err_out; 1269 1270 /* 1271 * Skip zeroout if the inode table is full. But we set the ZEROED 1272 * flag anyway, because obviously, when it is full it does not need 1273 * further zeroing. 1274 */ 1275 if (unlikely(num == 0)) 1276 goto skip_zeroout; 1277 1278 ext4_debug("going to zero out inode table in group %d\n", 1279 group); 1280 ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS); 1281 if (ret < 0) 1282 goto err_out; 1283 if (barrier) 1284 blkdev_issue_flush(sb->s_bdev, GFP_NOFS, NULL); 1285 1286 skip_zeroout: 1287 ext4_lock_group(sb, group); 1288 gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED); 1289 ext4_group_desc_csum_set(sb, group, gdp); 1290 ext4_unlock_group(sb, group); 1291 1292 BUFFER_TRACE(group_desc_bh, 1293 "call ext4_handle_dirty_metadata"); 1294 ret = ext4_handle_dirty_metadata(handle, NULL, 1295 group_desc_bh); 1296 1297 err_out: 1298 up_write(&grp->alloc_sem); 1299 ext4_journal_stop(handle); 1300 out: 1301 return ret; 1302 } 1303