xref: /openbmc/linux/fs/ext4/ialloc.c (revision 22fd411a)
1 /*
2  *  linux/fs/ext4/ialloc.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  BSD ufs-inspired inode and directory allocation by
10  *  Stephen Tweedie (sct@redhat.com), 1993
11  *  Big-endian to little-endian byte-swapping/bitmaps by
12  *        David S. Miller (davem@caip.rutgers.edu), 1995
13  */
14 
15 #include <linux/time.h>
16 #include <linux/fs.h>
17 #include <linux/jbd2.h>
18 #include <linux/stat.h>
19 #include <linux/string.h>
20 #include <linux/quotaops.h>
21 #include <linux/buffer_head.h>
22 #include <linux/random.h>
23 #include <linux/bitops.h>
24 #include <linux/blkdev.h>
25 #include <asm/byteorder.h>
26 
27 #include "ext4.h"
28 #include "ext4_jbd2.h"
29 #include "xattr.h"
30 #include "acl.h"
31 
32 #include <trace/events/ext4.h>
33 
34 /*
35  * ialloc.c contains the inodes allocation and deallocation routines
36  */
37 
38 /*
39  * The free inodes are managed by bitmaps.  A file system contains several
40  * blocks groups.  Each group contains 1 bitmap block for blocks, 1 bitmap
41  * block for inodes, N blocks for the inode table and data blocks.
42  *
43  * The file system contains group descriptors which are located after the
44  * super block.  Each descriptor contains the number of the bitmap block and
45  * the free blocks count in the block.
46  */
47 
48 /*
49  * To avoid calling the atomic setbit hundreds or thousands of times, we only
50  * need to use it within a single byte (to ensure we get endianness right).
51  * We can use memset for the rest of the bitmap as there are no other users.
52  */
53 void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap)
54 {
55 	int i;
56 
57 	if (start_bit >= end_bit)
58 		return;
59 
60 	ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit);
61 	for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++)
62 		ext4_set_bit(i, bitmap);
63 	if (i < end_bit)
64 		memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3);
65 }
66 
67 /* Initializes an uninitialized inode bitmap */
68 static unsigned ext4_init_inode_bitmap(struct super_block *sb,
69 				       struct buffer_head *bh,
70 				       ext4_group_t block_group,
71 				       struct ext4_group_desc *gdp)
72 {
73 	struct ext4_sb_info *sbi = EXT4_SB(sb);
74 
75 	J_ASSERT_BH(bh, buffer_locked(bh));
76 
77 	/* If checksum is bad mark all blocks and inodes use to prevent
78 	 * allocation, essentially implementing a per-group read-only flag. */
79 	if (!ext4_group_desc_csum_verify(sbi, block_group, gdp)) {
80 		ext4_error(sb, "Checksum bad for group %u", block_group);
81 		ext4_free_blks_set(sb, gdp, 0);
82 		ext4_free_inodes_set(sb, gdp, 0);
83 		ext4_itable_unused_set(sb, gdp, 0);
84 		memset(bh->b_data, 0xff, sb->s_blocksize);
85 		return 0;
86 	}
87 
88 	memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8);
89 	ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb), sb->s_blocksize * 8,
90 			bh->b_data);
91 
92 	return EXT4_INODES_PER_GROUP(sb);
93 }
94 
95 /*
96  * Read the inode allocation bitmap for a given block_group, reading
97  * into the specified slot in the superblock's bitmap cache.
98  *
99  * Return buffer_head of bitmap on success or NULL.
100  */
101 static struct buffer_head *
102 ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group)
103 {
104 	struct ext4_group_desc *desc;
105 	struct buffer_head *bh = NULL;
106 	ext4_fsblk_t bitmap_blk;
107 
108 	desc = ext4_get_group_desc(sb, block_group, NULL);
109 	if (!desc)
110 		return NULL;
111 
112 	bitmap_blk = ext4_inode_bitmap(sb, desc);
113 	bh = sb_getblk(sb, bitmap_blk);
114 	if (unlikely(!bh)) {
115 		ext4_error(sb, "Cannot read inode bitmap - "
116 			    "block_group = %u, inode_bitmap = %llu",
117 			    block_group, bitmap_blk);
118 		return NULL;
119 	}
120 	if (bitmap_uptodate(bh))
121 		return bh;
122 
123 	lock_buffer(bh);
124 	if (bitmap_uptodate(bh)) {
125 		unlock_buffer(bh);
126 		return bh;
127 	}
128 
129 	ext4_lock_group(sb, block_group);
130 	if (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
131 		ext4_init_inode_bitmap(sb, bh, block_group, desc);
132 		set_bitmap_uptodate(bh);
133 		set_buffer_uptodate(bh);
134 		ext4_unlock_group(sb, block_group);
135 		unlock_buffer(bh);
136 		return bh;
137 	}
138 	ext4_unlock_group(sb, block_group);
139 
140 	if (buffer_uptodate(bh)) {
141 		/*
142 		 * if not uninit if bh is uptodate,
143 		 * bitmap is also uptodate
144 		 */
145 		set_bitmap_uptodate(bh);
146 		unlock_buffer(bh);
147 		return bh;
148 	}
149 	/*
150 	 * submit the buffer_head for read. We can
151 	 * safely mark the bitmap as uptodate now.
152 	 * We do it here so the bitmap uptodate bit
153 	 * get set with buffer lock held.
154 	 */
155 	set_bitmap_uptodate(bh);
156 	if (bh_submit_read(bh) < 0) {
157 		put_bh(bh);
158 		ext4_error(sb, "Cannot read inode bitmap - "
159 			    "block_group = %u, inode_bitmap = %llu",
160 			    block_group, bitmap_blk);
161 		return NULL;
162 	}
163 	return bh;
164 }
165 
166 /*
167  * NOTE! When we get the inode, we're the only people
168  * that have access to it, and as such there are no
169  * race conditions we have to worry about. The inode
170  * is not on the hash-lists, and it cannot be reached
171  * through the filesystem because the directory entry
172  * has been deleted earlier.
173  *
174  * HOWEVER: we must make sure that we get no aliases,
175  * which means that we have to call "clear_inode()"
176  * _before_ we mark the inode not in use in the inode
177  * bitmaps. Otherwise a newly created file might use
178  * the same inode number (not actually the same pointer
179  * though), and then we'd have two inodes sharing the
180  * same inode number and space on the harddisk.
181  */
182 void ext4_free_inode(handle_t *handle, struct inode *inode)
183 {
184 	struct super_block *sb = inode->i_sb;
185 	int is_directory;
186 	unsigned long ino;
187 	struct buffer_head *bitmap_bh = NULL;
188 	struct buffer_head *bh2;
189 	ext4_group_t block_group;
190 	unsigned long bit;
191 	struct ext4_group_desc *gdp;
192 	struct ext4_super_block *es;
193 	struct ext4_sb_info *sbi;
194 	int fatal = 0, err, count, cleared;
195 
196 	if (atomic_read(&inode->i_count) > 1) {
197 		printk(KERN_ERR "ext4_free_inode: inode has count=%d\n",
198 		       atomic_read(&inode->i_count));
199 		return;
200 	}
201 	if (inode->i_nlink) {
202 		printk(KERN_ERR "ext4_free_inode: inode has nlink=%d\n",
203 		       inode->i_nlink);
204 		return;
205 	}
206 	if (!sb) {
207 		printk(KERN_ERR "ext4_free_inode: inode on "
208 		       "nonexistent device\n");
209 		return;
210 	}
211 	sbi = EXT4_SB(sb);
212 
213 	ino = inode->i_ino;
214 	ext4_debug("freeing inode %lu\n", ino);
215 	trace_ext4_free_inode(inode);
216 
217 	/*
218 	 * Note: we must free any quota before locking the superblock,
219 	 * as writing the quota to disk may need the lock as well.
220 	 */
221 	dquot_initialize(inode);
222 	ext4_xattr_delete_inode(handle, inode);
223 	dquot_free_inode(inode);
224 	dquot_drop(inode);
225 
226 	is_directory = S_ISDIR(inode->i_mode);
227 
228 	/* Do this BEFORE marking the inode not in use or returning an error */
229 	ext4_clear_inode(inode);
230 
231 	es = EXT4_SB(sb)->s_es;
232 	if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) {
233 		ext4_error(sb, "reserved or nonexistent inode %lu", ino);
234 		goto error_return;
235 	}
236 	block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
237 	bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
238 	bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
239 	if (!bitmap_bh)
240 		goto error_return;
241 
242 	BUFFER_TRACE(bitmap_bh, "get_write_access");
243 	fatal = ext4_journal_get_write_access(handle, bitmap_bh);
244 	if (fatal)
245 		goto error_return;
246 
247 	fatal = -ESRCH;
248 	gdp = ext4_get_group_desc(sb, block_group, &bh2);
249 	if (gdp) {
250 		BUFFER_TRACE(bh2, "get_write_access");
251 		fatal = ext4_journal_get_write_access(handle, bh2);
252 	}
253 	ext4_lock_group(sb, block_group);
254 	cleared = ext4_clear_bit(bit, bitmap_bh->b_data);
255 	if (fatal || !cleared) {
256 		ext4_unlock_group(sb, block_group);
257 		goto out;
258 	}
259 
260 	count = ext4_free_inodes_count(sb, gdp) + 1;
261 	ext4_free_inodes_set(sb, gdp, count);
262 	if (is_directory) {
263 		count = ext4_used_dirs_count(sb, gdp) - 1;
264 		ext4_used_dirs_set(sb, gdp, count);
265 		percpu_counter_dec(&sbi->s_dirs_counter);
266 	}
267 	gdp->bg_checksum = ext4_group_desc_csum(sbi, block_group, gdp);
268 	ext4_unlock_group(sb, block_group);
269 
270 	percpu_counter_inc(&sbi->s_freeinodes_counter);
271 	if (sbi->s_log_groups_per_flex) {
272 		ext4_group_t f = ext4_flex_group(sbi, block_group);
273 
274 		atomic_inc(&sbi->s_flex_groups[f].free_inodes);
275 		if (is_directory)
276 			atomic_dec(&sbi->s_flex_groups[f].used_dirs);
277 	}
278 	BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata");
279 	fatal = ext4_handle_dirty_metadata(handle, NULL, bh2);
280 out:
281 	if (cleared) {
282 		BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata");
283 		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
284 		if (!fatal)
285 			fatal = err;
286 		ext4_mark_super_dirty(sb);
287 	} else
288 		ext4_error(sb, "bit already cleared for inode %lu", ino);
289 
290 error_return:
291 	brelse(bitmap_bh);
292 	ext4_std_error(sb, fatal);
293 }
294 
295 /*
296  * There are two policies for allocating an inode.  If the new inode is
297  * a directory, then a forward search is made for a block group with both
298  * free space and a low directory-to-inode ratio; if that fails, then of
299  * the groups with above-average free space, that group with the fewest
300  * directories already is chosen.
301  *
302  * For other inodes, search forward from the parent directory\'s block
303  * group to find a free inode.
304  */
305 static int find_group_dir(struct super_block *sb, struct inode *parent,
306 				ext4_group_t *best_group)
307 {
308 	ext4_group_t ngroups = ext4_get_groups_count(sb);
309 	unsigned int freei, avefreei;
310 	struct ext4_group_desc *desc, *best_desc = NULL;
311 	ext4_group_t group;
312 	int ret = -1;
313 
314 	freei = percpu_counter_read_positive(&EXT4_SB(sb)->s_freeinodes_counter);
315 	avefreei = freei / ngroups;
316 
317 	for (group = 0; group < ngroups; group++) {
318 		desc = ext4_get_group_desc(sb, group, NULL);
319 		if (!desc || !ext4_free_inodes_count(sb, desc))
320 			continue;
321 		if (ext4_free_inodes_count(sb, desc) < avefreei)
322 			continue;
323 		if (!best_desc ||
324 		    (ext4_free_blks_count(sb, desc) >
325 		     ext4_free_blks_count(sb, best_desc))) {
326 			*best_group = group;
327 			best_desc = desc;
328 			ret = 0;
329 		}
330 	}
331 	return ret;
332 }
333 
334 #define free_block_ratio 10
335 
336 static int find_group_flex(struct super_block *sb, struct inode *parent,
337 			   ext4_group_t *best_group)
338 {
339 	struct ext4_sb_info *sbi = EXT4_SB(sb);
340 	struct ext4_group_desc *desc;
341 	struct flex_groups *flex_group = sbi->s_flex_groups;
342 	ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
343 	ext4_group_t parent_fbg_group = ext4_flex_group(sbi, parent_group);
344 	ext4_group_t ngroups = ext4_get_groups_count(sb);
345 	int flex_size = ext4_flex_bg_size(sbi);
346 	ext4_group_t best_flex = parent_fbg_group;
347 	int blocks_per_flex = sbi->s_blocks_per_group * flex_size;
348 	int flexbg_free_blocks;
349 	int flex_freeb_ratio;
350 	ext4_group_t n_fbg_groups;
351 	ext4_group_t i;
352 
353 	n_fbg_groups = (ngroups + flex_size - 1) >>
354 		sbi->s_log_groups_per_flex;
355 
356 find_close_to_parent:
357 	flexbg_free_blocks = atomic_read(&flex_group[best_flex].free_blocks);
358 	flex_freeb_ratio = flexbg_free_blocks * 100 / blocks_per_flex;
359 	if (atomic_read(&flex_group[best_flex].free_inodes) &&
360 	    flex_freeb_ratio > free_block_ratio)
361 		goto found_flexbg;
362 
363 	if (best_flex && best_flex == parent_fbg_group) {
364 		best_flex--;
365 		goto find_close_to_parent;
366 	}
367 
368 	for (i = 0; i < n_fbg_groups; i++) {
369 		if (i == parent_fbg_group || i == parent_fbg_group - 1)
370 			continue;
371 
372 		flexbg_free_blocks = atomic_read(&flex_group[i].free_blocks);
373 		flex_freeb_ratio = flexbg_free_blocks * 100 / blocks_per_flex;
374 
375 		if (flex_freeb_ratio > free_block_ratio &&
376 		    (atomic_read(&flex_group[i].free_inodes))) {
377 			best_flex = i;
378 			goto found_flexbg;
379 		}
380 
381 		if ((atomic_read(&flex_group[best_flex].free_inodes) == 0) ||
382 		    ((atomic_read(&flex_group[i].free_blocks) >
383 		      atomic_read(&flex_group[best_flex].free_blocks)) &&
384 		     atomic_read(&flex_group[i].free_inodes)))
385 			best_flex = i;
386 	}
387 
388 	if (!atomic_read(&flex_group[best_flex].free_inodes) ||
389 	    !atomic_read(&flex_group[best_flex].free_blocks))
390 		return -1;
391 
392 found_flexbg:
393 	for (i = best_flex * flex_size; i < ngroups &&
394 		     i < (best_flex + 1) * flex_size; i++) {
395 		desc = ext4_get_group_desc(sb, i, NULL);
396 		if (ext4_free_inodes_count(sb, desc)) {
397 			*best_group = i;
398 			goto out;
399 		}
400 	}
401 
402 	return -1;
403 out:
404 	return 0;
405 }
406 
407 struct orlov_stats {
408 	__u32 free_inodes;
409 	__u32 free_blocks;
410 	__u32 used_dirs;
411 };
412 
413 /*
414  * Helper function for Orlov's allocator; returns critical information
415  * for a particular block group or flex_bg.  If flex_size is 1, then g
416  * is a block group number; otherwise it is flex_bg number.
417  */
418 static void get_orlov_stats(struct super_block *sb, ext4_group_t g,
419 			    int flex_size, struct orlov_stats *stats)
420 {
421 	struct ext4_group_desc *desc;
422 	struct flex_groups *flex_group = EXT4_SB(sb)->s_flex_groups;
423 
424 	if (flex_size > 1) {
425 		stats->free_inodes = atomic_read(&flex_group[g].free_inodes);
426 		stats->free_blocks = atomic_read(&flex_group[g].free_blocks);
427 		stats->used_dirs = atomic_read(&flex_group[g].used_dirs);
428 		return;
429 	}
430 
431 	desc = ext4_get_group_desc(sb, g, NULL);
432 	if (desc) {
433 		stats->free_inodes = ext4_free_inodes_count(sb, desc);
434 		stats->free_blocks = ext4_free_blks_count(sb, desc);
435 		stats->used_dirs = ext4_used_dirs_count(sb, desc);
436 	} else {
437 		stats->free_inodes = 0;
438 		stats->free_blocks = 0;
439 		stats->used_dirs = 0;
440 	}
441 }
442 
443 /*
444  * Orlov's allocator for directories.
445  *
446  * We always try to spread first-level directories.
447  *
448  * If there are blockgroups with both free inodes and free blocks counts
449  * not worse than average we return one with smallest directory count.
450  * Otherwise we simply return a random group.
451  *
452  * For the rest rules look so:
453  *
454  * It's OK to put directory into a group unless
455  * it has too many directories already (max_dirs) or
456  * it has too few free inodes left (min_inodes) or
457  * it has too few free blocks left (min_blocks) or
458  * Parent's group is preferred, if it doesn't satisfy these
459  * conditions we search cyclically through the rest. If none
460  * of the groups look good we just look for a group with more
461  * free inodes than average (starting at parent's group).
462  */
463 
464 static int find_group_orlov(struct super_block *sb, struct inode *parent,
465 			    ext4_group_t *group, int mode,
466 			    const struct qstr *qstr)
467 {
468 	ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
469 	struct ext4_sb_info *sbi = EXT4_SB(sb);
470 	ext4_group_t real_ngroups = ext4_get_groups_count(sb);
471 	int inodes_per_group = EXT4_INODES_PER_GROUP(sb);
472 	unsigned int freei, avefreei;
473 	ext4_fsblk_t freeb, avefreeb;
474 	unsigned int ndirs;
475 	int max_dirs, min_inodes;
476 	ext4_grpblk_t min_blocks;
477 	ext4_group_t i, grp, g, ngroups;
478 	struct ext4_group_desc *desc;
479 	struct orlov_stats stats;
480 	int flex_size = ext4_flex_bg_size(sbi);
481 	struct dx_hash_info hinfo;
482 
483 	ngroups = real_ngroups;
484 	if (flex_size > 1) {
485 		ngroups = (real_ngroups + flex_size - 1) >>
486 			sbi->s_log_groups_per_flex;
487 		parent_group >>= sbi->s_log_groups_per_flex;
488 	}
489 
490 	freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter);
491 	avefreei = freei / ngroups;
492 	freeb = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
493 	avefreeb = freeb;
494 	do_div(avefreeb, ngroups);
495 	ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter);
496 
497 	if (S_ISDIR(mode) &&
498 	    ((parent == sb->s_root->d_inode) ||
499 	     (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) {
500 		int best_ndir = inodes_per_group;
501 		int ret = -1;
502 
503 		if (qstr) {
504 			hinfo.hash_version = DX_HASH_HALF_MD4;
505 			hinfo.seed = sbi->s_hash_seed;
506 			ext4fs_dirhash(qstr->name, qstr->len, &hinfo);
507 			grp = hinfo.hash;
508 		} else
509 			get_random_bytes(&grp, sizeof(grp));
510 		parent_group = (unsigned)grp % ngroups;
511 		for (i = 0; i < ngroups; i++) {
512 			g = (parent_group + i) % ngroups;
513 			get_orlov_stats(sb, g, flex_size, &stats);
514 			if (!stats.free_inodes)
515 				continue;
516 			if (stats.used_dirs >= best_ndir)
517 				continue;
518 			if (stats.free_inodes < avefreei)
519 				continue;
520 			if (stats.free_blocks < avefreeb)
521 				continue;
522 			grp = g;
523 			ret = 0;
524 			best_ndir = stats.used_dirs;
525 		}
526 		if (ret)
527 			goto fallback;
528 	found_flex_bg:
529 		if (flex_size == 1) {
530 			*group = grp;
531 			return 0;
532 		}
533 
534 		/*
535 		 * We pack inodes at the beginning of the flexgroup's
536 		 * inode tables.  Block allocation decisions will do
537 		 * something similar, although regular files will
538 		 * start at 2nd block group of the flexgroup.  See
539 		 * ext4_ext_find_goal() and ext4_find_near().
540 		 */
541 		grp *= flex_size;
542 		for (i = 0; i < flex_size; i++) {
543 			if (grp+i >= real_ngroups)
544 				break;
545 			desc = ext4_get_group_desc(sb, grp+i, NULL);
546 			if (desc && ext4_free_inodes_count(sb, desc)) {
547 				*group = grp+i;
548 				return 0;
549 			}
550 		}
551 		goto fallback;
552 	}
553 
554 	max_dirs = ndirs / ngroups + inodes_per_group / 16;
555 	min_inodes = avefreei - inodes_per_group*flex_size / 4;
556 	if (min_inodes < 1)
557 		min_inodes = 1;
558 	min_blocks = avefreeb - EXT4_BLOCKS_PER_GROUP(sb)*flex_size / 4;
559 
560 	/*
561 	 * Start looking in the flex group where we last allocated an
562 	 * inode for this parent directory
563 	 */
564 	if (EXT4_I(parent)->i_last_alloc_group != ~0) {
565 		parent_group = EXT4_I(parent)->i_last_alloc_group;
566 		if (flex_size > 1)
567 			parent_group >>= sbi->s_log_groups_per_flex;
568 	}
569 
570 	for (i = 0; i < ngroups; i++) {
571 		grp = (parent_group + i) % ngroups;
572 		get_orlov_stats(sb, grp, flex_size, &stats);
573 		if (stats.used_dirs >= max_dirs)
574 			continue;
575 		if (stats.free_inodes < min_inodes)
576 			continue;
577 		if (stats.free_blocks < min_blocks)
578 			continue;
579 		goto found_flex_bg;
580 	}
581 
582 fallback:
583 	ngroups = real_ngroups;
584 	avefreei = freei / ngroups;
585 fallback_retry:
586 	parent_group = EXT4_I(parent)->i_block_group;
587 	for (i = 0; i < ngroups; i++) {
588 		grp = (parent_group + i) % ngroups;
589 		desc = ext4_get_group_desc(sb, grp, NULL);
590 		if (desc && ext4_free_inodes_count(sb, desc) &&
591 		    ext4_free_inodes_count(sb, desc) >= avefreei) {
592 			*group = grp;
593 			return 0;
594 		}
595 	}
596 
597 	if (avefreei) {
598 		/*
599 		 * The free-inodes counter is approximate, and for really small
600 		 * filesystems the above test can fail to find any blockgroups
601 		 */
602 		avefreei = 0;
603 		goto fallback_retry;
604 	}
605 
606 	return -1;
607 }
608 
609 static int find_group_other(struct super_block *sb, struct inode *parent,
610 			    ext4_group_t *group, int mode)
611 {
612 	ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
613 	ext4_group_t i, last, ngroups = ext4_get_groups_count(sb);
614 	struct ext4_group_desc *desc;
615 	int flex_size = ext4_flex_bg_size(EXT4_SB(sb));
616 
617 	/*
618 	 * Try to place the inode is the same flex group as its
619 	 * parent.  If we can't find space, use the Orlov algorithm to
620 	 * find another flex group, and store that information in the
621 	 * parent directory's inode information so that use that flex
622 	 * group for future allocations.
623 	 */
624 	if (flex_size > 1) {
625 		int retry = 0;
626 
627 	try_again:
628 		parent_group &= ~(flex_size-1);
629 		last = parent_group + flex_size;
630 		if (last > ngroups)
631 			last = ngroups;
632 		for  (i = parent_group; i < last; i++) {
633 			desc = ext4_get_group_desc(sb, i, NULL);
634 			if (desc && ext4_free_inodes_count(sb, desc)) {
635 				*group = i;
636 				return 0;
637 			}
638 		}
639 		if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) {
640 			retry = 1;
641 			parent_group = EXT4_I(parent)->i_last_alloc_group;
642 			goto try_again;
643 		}
644 		/*
645 		 * If this didn't work, use the Orlov search algorithm
646 		 * to find a new flex group; we pass in the mode to
647 		 * avoid the topdir algorithms.
648 		 */
649 		*group = parent_group + flex_size;
650 		if (*group > ngroups)
651 			*group = 0;
652 		return find_group_orlov(sb, parent, group, mode, 0);
653 	}
654 
655 	/*
656 	 * Try to place the inode in its parent directory
657 	 */
658 	*group = parent_group;
659 	desc = ext4_get_group_desc(sb, *group, NULL);
660 	if (desc && ext4_free_inodes_count(sb, desc) &&
661 			ext4_free_blks_count(sb, desc))
662 		return 0;
663 
664 	/*
665 	 * We're going to place this inode in a different blockgroup from its
666 	 * parent.  We want to cause files in a common directory to all land in
667 	 * the same blockgroup.  But we want files which are in a different
668 	 * directory which shares a blockgroup with our parent to land in a
669 	 * different blockgroup.
670 	 *
671 	 * So add our directory's i_ino into the starting point for the hash.
672 	 */
673 	*group = (*group + parent->i_ino) % ngroups;
674 
675 	/*
676 	 * Use a quadratic hash to find a group with a free inode and some free
677 	 * blocks.
678 	 */
679 	for (i = 1; i < ngroups; i <<= 1) {
680 		*group += i;
681 		if (*group >= ngroups)
682 			*group -= ngroups;
683 		desc = ext4_get_group_desc(sb, *group, NULL);
684 		if (desc && ext4_free_inodes_count(sb, desc) &&
685 				ext4_free_blks_count(sb, desc))
686 			return 0;
687 	}
688 
689 	/*
690 	 * That failed: try linear search for a free inode, even if that group
691 	 * has no free blocks.
692 	 */
693 	*group = parent_group;
694 	for (i = 0; i < ngroups; i++) {
695 		if (++*group >= ngroups)
696 			*group = 0;
697 		desc = ext4_get_group_desc(sb, *group, NULL);
698 		if (desc && ext4_free_inodes_count(sb, desc))
699 			return 0;
700 	}
701 
702 	return -1;
703 }
704 
705 /*
706  * claim the inode from the inode bitmap. If the group
707  * is uninit we need to take the groups's ext4_group_lock
708  * and clear the uninit flag. The inode bitmap update
709  * and group desc uninit flag clear should be done
710  * after holding ext4_group_lock so that ext4_read_inode_bitmap
711  * doesn't race with the ext4_claim_inode
712  */
713 static int ext4_claim_inode(struct super_block *sb,
714 			struct buffer_head *inode_bitmap_bh,
715 			unsigned long ino, ext4_group_t group, int mode)
716 {
717 	int free = 0, retval = 0, count;
718 	struct ext4_sb_info *sbi = EXT4_SB(sb);
719 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
720 	struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
721 
722 	/*
723 	 * We have to be sure that new inode allocation does not race with
724 	 * inode table initialization, because otherwise we may end up
725 	 * allocating and writing new inode right before sb_issue_zeroout
726 	 * takes place and overwriting our new inode with zeroes. So we
727 	 * take alloc_sem to prevent it.
728 	 */
729 	down_read(&grp->alloc_sem);
730 	ext4_lock_group(sb, group);
731 	if (ext4_set_bit(ino, inode_bitmap_bh->b_data)) {
732 		/* not a free inode */
733 		retval = 1;
734 		goto err_ret;
735 	}
736 	ino++;
737 	if ((group == 0 && ino < EXT4_FIRST_INO(sb)) ||
738 			ino > EXT4_INODES_PER_GROUP(sb)) {
739 		ext4_unlock_group(sb, group);
740 		up_read(&grp->alloc_sem);
741 		ext4_error(sb, "reserved inode or inode > inodes count - "
742 			   "block_group = %u, inode=%lu", group,
743 			   ino + group * EXT4_INODES_PER_GROUP(sb));
744 		return 1;
745 	}
746 	/* If we didn't allocate from within the initialized part of the inode
747 	 * table then we need to initialize up to this inode. */
748 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) {
749 
750 		if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
751 			gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT);
752 			/* When marking the block group with
753 			 * ~EXT4_BG_INODE_UNINIT we don't want to depend
754 			 * on the value of bg_itable_unused even though
755 			 * mke2fs could have initialized the same for us.
756 			 * Instead we calculated the value below
757 			 */
758 
759 			free = 0;
760 		} else {
761 			free = EXT4_INODES_PER_GROUP(sb) -
762 				ext4_itable_unused_count(sb, gdp);
763 		}
764 
765 		/*
766 		 * Check the relative inode number against the last used
767 		 * relative inode number in this group. if it is greater
768 		 * we need to  update the bg_itable_unused count
769 		 *
770 		 */
771 		if (ino > free)
772 			ext4_itable_unused_set(sb, gdp,
773 					(EXT4_INODES_PER_GROUP(sb) - ino));
774 	}
775 	count = ext4_free_inodes_count(sb, gdp) - 1;
776 	ext4_free_inodes_set(sb, gdp, count);
777 	if (S_ISDIR(mode)) {
778 		count = ext4_used_dirs_count(sb, gdp) + 1;
779 		ext4_used_dirs_set(sb, gdp, count);
780 		if (sbi->s_log_groups_per_flex) {
781 			ext4_group_t f = ext4_flex_group(sbi, group);
782 
783 			atomic_inc(&sbi->s_flex_groups[f].used_dirs);
784 		}
785 	}
786 	gdp->bg_checksum = ext4_group_desc_csum(sbi, group, gdp);
787 err_ret:
788 	ext4_unlock_group(sb, group);
789 	up_read(&grp->alloc_sem);
790 	return retval;
791 }
792 
793 /*
794  * There are two policies for allocating an inode.  If the new inode is
795  * a directory, then a forward search is made for a block group with both
796  * free space and a low directory-to-inode ratio; if that fails, then of
797  * the groups with above-average free space, that group with the fewest
798  * directories already is chosen.
799  *
800  * For other inodes, search forward from the parent directory's block
801  * group to find a free inode.
802  */
803 struct inode *ext4_new_inode(handle_t *handle, struct inode *dir, int mode,
804 			     const struct qstr *qstr, __u32 goal)
805 {
806 	struct super_block *sb;
807 	struct buffer_head *inode_bitmap_bh = NULL;
808 	struct buffer_head *group_desc_bh;
809 	ext4_group_t ngroups, group = 0;
810 	unsigned long ino = 0;
811 	struct inode *inode;
812 	struct ext4_group_desc *gdp = NULL;
813 	struct ext4_inode_info *ei;
814 	struct ext4_sb_info *sbi;
815 	int ret2, err = 0;
816 	struct inode *ret;
817 	ext4_group_t i;
818 	int free = 0;
819 	static int once = 1;
820 	ext4_group_t flex_group;
821 
822 	/* Cannot create files in a deleted directory */
823 	if (!dir || !dir->i_nlink)
824 		return ERR_PTR(-EPERM);
825 
826 	sb = dir->i_sb;
827 	ngroups = ext4_get_groups_count(sb);
828 	trace_ext4_request_inode(dir, mode);
829 	inode = new_inode(sb);
830 	if (!inode)
831 		return ERR_PTR(-ENOMEM);
832 	ei = EXT4_I(inode);
833 	sbi = EXT4_SB(sb);
834 
835 	if (!goal)
836 		goal = sbi->s_inode_goal;
837 
838 	if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) {
839 		group = (goal - 1) / EXT4_INODES_PER_GROUP(sb);
840 		ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb);
841 		ret2 = 0;
842 		goto got_group;
843 	}
844 
845 	if (sbi->s_log_groups_per_flex && test_opt(sb, OLDALLOC)) {
846 		ret2 = find_group_flex(sb, dir, &group);
847 		if (ret2 == -1) {
848 			ret2 = find_group_other(sb, dir, &group, mode);
849 			if (ret2 == 0 && once) {
850 				once = 0;
851 				printk(KERN_NOTICE "ext4: find_group_flex "
852 				       "failed, fallback succeeded dir %lu\n",
853 				       dir->i_ino);
854 			}
855 		}
856 		goto got_group;
857 	}
858 
859 	if (S_ISDIR(mode)) {
860 		if (test_opt(sb, OLDALLOC))
861 			ret2 = find_group_dir(sb, dir, &group);
862 		else
863 			ret2 = find_group_orlov(sb, dir, &group, mode, qstr);
864 	} else
865 		ret2 = find_group_other(sb, dir, &group, mode);
866 
867 got_group:
868 	EXT4_I(dir)->i_last_alloc_group = group;
869 	err = -ENOSPC;
870 	if (ret2 == -1)
871 		goto out;
872 
873 	for (i = 0; i < ngroups; i++, ino = 0) {
874 		err = -EIO;
875 
876 		gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
877 		if (!gdp)
878 			goto fail;
879 
880 		brelse(inode_bitmap_bh);
881 		inode_bitmap_bh = ext4_read_inode_bitmap(sb, group);
882 		if (!inode_bitmap_bh)
883 			goto fail;
884 
885 repeat_in_this_group:
886 		ino = ext4_find_next_zero_bit((unsigned long *)
887 					      inode_bitmap_bh->b_data,
888 					      EXT4_INODES_PER_GROUP(sb), ino);
889 
890 		if (ino < EXT4_INODES_PER_GROUP(sb)) {
891 
892 			BUFFER_TRACE(inode_bitmap_bh, "get_write_access");
893 			err = ext4_journal_get_write_access(handle,
894 							    inode_bitmap_bh);
895 			if (err)
896 				goto fail;
897 
898 			BUFFER_TRACE(group_desc_bh, "get_write_access");
899 			err = ext4_journal_get_write_access(handle,
900 								group_desc_bh);
901 			if (err)
902 				goto fail;
903 			if (!ext4_claim_inode(sb, inode_bitmap_bh,
904 						ino, group, mode)) {
905 				/* we won it */
906 				BUFFER_TRACE(inode_bitmap_bh,
907 					"call ext4_handle_dirty_metadata");
908 				err = ext4_handle_dirty_metadata(handle,
909 								 NULL,
910 							inode_bitmap_bh);
911 				if (err)
912 					goto fail;
913 				/* zero bit is inode number 1*/
914 				ino++;
915 				goto got;
916 			}
917 			/* we lost it */
918 			ext4_handle_release_buffer(handle, inode_bitmap_bh);
919 			ext4_handle_release_buffer(handle, group_desc_bh);
920 
921 			if (++ino < EXT4_INODES_PER_GROUP(sb))
922 				goto repeat_in_this_group;
923 		}
924 
925 		/*
926 		 * This case is possible in concurrent environment.  It is very
927 		 * rare.  We cannot repeat the find_group_xxx() call because
928 		 * that will simply return the same blockgroup, because the
929 		 * group descriptor metadata has not yet been updated.
930 		 * So we just go onto the next blockgroup.
931 		 */
932 		if (++group == ngroups)
933 			group = 0;
934 	}
935 	err = -ENOSPC;
936 	goto out;
937 
938 got:
939 	/* We may have to initialize the block bitmap if it isn't already */
940 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM) &&
941 	    gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
942 		struct buffer_head *block_bitmap_bh;
943 
944 		block_bitmap_bh = ext4_read_block_bitmap(sb, group);
945 		BUFFER_TRACE(block_bitmap_bh, "get block bitmap access");
946 		err = ext4_journal_get_write_access(handle, block_bitmap_bh);
947 		if (err) {
948 			brelse(block_bitmap_bh);
949 			goto fail;
950 		}
951 
952 		free = 0;
953 		ext4_lock_group(sb, group);
954 		/* recheck and clear flag under lock if we still need to */
955 		if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
956 			free = ext4_free_blocks_after_init(sb, group, gdp);
957 			gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
958 			ext4_free_blks_set(sb, gdp, free);
959 			gdp->bg_checksum = ext4_group_desc_csum(sbi, group,
960 								gdp);
961 		}
962 		ext4_unlock_group(sb, group);
963 
964 		/* Don't need to dirty bitmap block if we didn't change it */
965 		if (free) {
966 			BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap");
967 			err = ext4_handle_dirty_metadata(handle,
968 							NULL, block_bitmap_bh);
969 		}
970 
971 		brelse(block_bitmap_bh);
972 		if (err)
973 			goto fail;
974 	}
975 	BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata");
976 	err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh);
977 	if (err)
978 		goto fail;
979 
980 	percpu_counter_dec(&sbi->s_freeinodes_counter);
981 	if (S_ISDIR(mode))
982 		percpu_counter_inc(&sbi->s_dirs_counter);
983 	ext4_mark_super_dirty(sb);
984 
985 	if (sbi->s_log_groups_per_flex) {
986 		flex_group = ext4_flex_group(sbi, group);
987 		atomic_dec(&sbi->s_flex_groups[flex_group].free_inodes);
988 	}
989 
990 	if (test_opt(sb, GRPID)) {
991 		inode->i_mode = mode;
992 		inode->i_uid = current_fsuid();
993 		inode->i_gid = dir->i_gid;
994 	} else
995 		inode_init_owner(inode, dir, mode);
996 
997 	inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb);
998 	/* This is the optimal IO size (for stat), not the fs block size */
999 	inode->i_blocks = 0;
1000 	inode->i_mtime = inode->i_atime = inode->i_ctime = ei->i_crtime =
1001 						       ext4_current_time(inode);
1002 
1003 	memset(ei->i_data, 0, sizeof(ei->i_data));
1004 	ei->i_dir_start_lookup = 0;
1005 	ei->i_disksize = 0;
1006 
1007 	/*
1008 	 * Don't inherit extent flag from directory, amongst others. We set
1009 	 * extent flag on newly created directory and file only if -o extent
1010 	 * mount option is specified
1011 	 */
1012 	ei->i_flags =
1013 		ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED);
1014 	ei->i_file_acl = 0;
1015 	ei->i_dtime = 0;
1016 	ei->i_block_group = group;
1017 	ei->i_last_alloc_group = ~0;
1018 
1019 	ext4_set_inode_flags(inode);
1020 	if (IS_DIRSYNC(inode))
1021 		ext4_handle_sync(handle);
1022 	if (insert_inode_locked(inode) < 0) {
1023 		err = -EINVAL;
1024 		goto fail_drop;
1025 	}
1026 	spin_lock(&sbi->s_next_gen_lock);
1027 	inode->i_generation = sbi->s_next_generation++;
1028 	spin_unlock(&sbi->s_next_gen_lock);
1029 
1030 	ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
1031 	ext4_set_inode_state(inode, EXT4_STATE_NEW);
1032 
1033 	ei->i_extra_isize = EXT4_SB(sb)->s_want_extra_isize;
1034 
1035 	ret = inode;
1036 	dquot_initialize(inode);
1037 	err = dquot_alloc_inode(inode);
1038 	if (err)
1039 		goto fail_drop;
1040 
1041 	err = ext4_init_acl(handle, inode, dir);
1042 	if (err)
1043 		goto fail_free_drop;
1044 
1045 	err = ext4_init_security(handle, inode, dir);
1046 	if (err)
1047 		goto fail_free_drop;
1048 
1049 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
1050 		/* set extent flag only for directory, file and normal symlink*/
1051 		if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) {
1052 			ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS);
1053 			ext4_ext_tree_init(handle, inode);
1054 		}
1055 	}
1056 
1057 	err = ext4_mark_inode_dirty(handle, inode);
1058 	if (err) {
1059 		ext4_std_error(sb, err);
1060 		goto fail_free_drop;
1061 	}
1062 
1063 	ext4_debug("allocating inode %lu\n", inode->i_ino);
1064 	trace_ext4_allocate_inode(inode, dir, mode);
1065 	goto really_out;
1066 fail:
1067 	ext4_std_error(sb, err);
1068 out:
1069 	iput(inode);
1070 	ret = ERR_PTR(err);
1071 really_out:
1072 	brelse(inode_bitmap_bh);
1073 	return ret;
1074 
1075 fail_free_drop:
1076 	dquot_free_inode(inode);
1077 
1078 fail_drop:
1079 	dquot_drop(inode);
1080 	inode->i_flags |= S_NOQUOTA;
1081 	inode->i_nlink = 0;
1082 	unlock_new_inode(inode);
1083 	iput(inode);
1084 	brelse(inode_bitmap_bh);
1085 	return ERR_PTR(err);
1086 }
1087 
1088 /* Verify that we are loading a valid orphan from disk */
1089 struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino)
1090 {
1091 	unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count);
1092 	ext4_group_t block_group;
1093 	int bit;
1094 	struct buffer_head *bitmap_bh;
1095 	struct inode *inode = NULL;
1096 	long err = -EIO;
1097 
1098 	/* Error cases - e2fsck has already cleaned up for us */
1099 	if (ino > max_ino) {
1100 		ext4_warning(sb, "bad orphan ino %lu!  e2fsck was run?", ino);
1101 		goto error;
1102 	}
1103 
1104 	block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
1105 	bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
1106 	bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
1107 	if (!bitmap_bh) {
1108 		ext4_warning(sb, "inode bitmap error for orphan %lu", ino);
1109 		goto error;
1110 	}
1111 
1112 	/* Having the inode bit set should be a 100% indicator that this
1113 	 * is a valid orphan (no e2fsck run on fs).  Orphans also include
1114 	 * inodes that were being truncated, so we can't check i_nlink==0.
1115 	 */
1116 	if (!ext4_test_bit(bit, bitmap_bh->b_data))
1117 		goto bad_orphan;
1118 
1119 	inode = ext4_iget(sb, ino);
1120 	if (IS_ERR(inode))
1121 		goto iget_failed;
1122 
1123 	/*
1124 	 * If the orphans has i_nlinks > 0 then it should be able to be
1125 	 * truncated, otherwise it won't be removed from the orphan list
1126 	 * during processing and an infinite loop will result.
1127 	 */
1128 	if (inode->i_nlink && !ext4_can_truncate(inode))
1129 		goto bad_orphan;
1130 
1131 	if (NEXT_ORPHAN(inode) > max_ino)
1132 		goto bad_orphan;
1133 	brelse(bitmap_bh);
1134 	return inode;
1135 
1136 iget_failed:
1137 	err = PTR_ERR(inode);
1138 	inode = NULL;
1139 bad_orphan:
1140 	ext4_warning(sb, "bad orphan inode %lu!  e2fsck was run?", ino);
1141 	printk(KERN_NOTICE "ext4_test_bit(bit=%d, block=%llu) = %d\n",
1142 	       bit, (unsigned long long)bitmap_bh->b_blocknr,
1143 	       ext4_test_bit(bit, bitmap_bh->b_data));
1144 	printk(KERN_NOTICE "inode=%p\n", inode);
1145 	if (inode) {
1146 		printk(KERN_NOTICE "is_bad_inode(inode)=%d\n",
1147 		       is_bad_inode(inode));
1148 		printk(KERN_NOTICE "NEXT_ORPHAN(inode)=%u\n",
1149 		       NEXT_ORPHAN(inode));
1150 		printk(KERN_NOTICE "max_ino=%lu\n", max_ino);
1151 		printk(KERN_NOTICE "i_nlink=%u\n", inode->i_nlink);
1152 		/* Avoid freeing blocks if we got a bad deleted inode */
1153 		if (inode->i_nlink == 0)
1154 			inode->i_blocks = 0;
1155 		iput(inode);
1156 	}
1157 	brelse(bitmap_bh);
1158 error:
1159 	return ERR_PTR(err);
1160 }
1161 
1162 unsigned long ext4_count_free_inodes(struct super_block *sb)
1163 {
1164 	unsigned long desc_count;
1165 	struct ext4_group_desc *gdp;
1166 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1167 #ifdef EXT4FS_DEBUG
1168 	struct ext4_super_block *es;
1169 	unsigned long bitmap_count, x;
1170 	struct buffer_head *bitmap_bh = NULL;
1171 
1172 	es = EXT4_SB(sb)->s_es;
1173 	desc_count = 0;
1174 	bitmap_count = 0;
1175 	gdp = NULL;
1176 	for (i = 0; i < ngroups; i++) {
1177 		gdp = ext4_get_group_desc(sb, i, NULL);
1178 		if (!gdp)
1179 			continue;
1180 		desc_count += ext4_free_inodes_count(sb, gdp);
1181 		brelse(bitmap_bh);
1182 		bitmap_bh = ext4_read_inode_bitmap(sb, i);
1183 		if (!bitmap_bh)
1184 			continue;
1185 
1186 		x = ext4_count_free(bitmap_bh, EXT4_INODES_PER_GROUP(sb) / 8);
1187 		printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n",
1188 			(unsigned long) i, ext4_free_inodes_count(sb, gdp), x);
1189 		bitmap_count += x;
1190 	}
1191 	brelse(bitmap_bh);
1192 	printk(KERN_DEBUG "ext4_count_free_inodes: "
1193 	       "stored = %u, computed = %lu, %lu\n",
1194 	       le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count);
1195 	return desc_count;
1196 #else
1197 	desc_count = 0;
1198 	for (i = 0; i < ngroups; i++) {
1199 		gdp = ext4_get_group_desc(sb, i, NULL);
1200 		if (!gdp)
1201 			continue;
1202 		desc_count += ext4_free_inodes_count(sb, gdp);
1203 		cond_resched();
1204 	}
1205 	return desc_count;
1206 #endif
1207 }
1208 
1209 /* Called at mount-time, super-block is locked */
1210 unsigned long ext4_count_dirs(struct super_block * sb)
1211 {
1212 	unsigned long count = 0;
1213 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1214 
1215 	for (i = 0; i < ngroups; i++) {
1216 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
1217 		if (!gdp)
1218 			continue;
1219 		count += ext4_used_dirs_count(sb, gdp);
1220 	}
1221 	return count;
1222 }
1223 
1224 /*
1225  * Zeroes not yet zeroed inode table - just write zeroes through the whole
1226  * inode table. Must be called without any spinlock held. The only place
1227  * where it is called from on active part of filesystem is ext4lazyinit
1228  * thread, so we do not need any special locks, however we have to prevent
1229  * inode allocation from the current group, so we take alloc_sem lock, to
1230  * block ext4_claim_inode until we are finished.
1231  */
1232 extern int ext4_init_inode_table(struct super_block *sb, ext4_group_t group,
1233 				 int barrier)
1234 {
1235 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1236 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1237 	struct ext4_group_desc *gdp = NULL;
1238 	struct buffer_head *group_desc_bh;
1239 	handle_t *handle;
1240 	ext4_fsblk_t blk;
1241 	int num, ret = 0, used_blks = 0;
1242 
1243 	/* This should not happen, but just to be sure check this */
1244 	if (sb->s_flags & MS_RDONLY) {
1245 		ret = 1;
1246 		goto out;
1247 	}
1248 
1249 	gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
1250 	if (!gdp)
1251 		goto out;
1252 
1253 	/*
1254 	 * We do not need to lock this, because we are the only one
1255 	 * handling this flag.
1256 	 */
1257 	if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))
1258 		goto out;
1259 
1260 	handle = ext4_journal_start_sb(sb, 1);
1261 	if (IS_ERR(handle)) {
1262 		ret = PTR_ERR(handle);
1263 		goto out;
1264 	}
1265 
1266 	down_write(&grp->alloc_sem);
1267 	/*
1268 	 * If inode bitmap was already initialized there may be some
1269 	 * used inodes so we need to skip blocks with used inodes in
1270 	 * inode table.
1271 	 */
1272 	if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)))
1273 		used_blks = DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb) -
1274 			    ext4_itable_unused_count(sb, gdp)),
1275 			    sbi->s_inodes_per_block);
1276 
1277 	if ((used_blks < 0) || (used_blks > sbi->s_itb_per_group)) {
1278 		ext4_error(sb, "Something is wrong with group %u\n"
1279 			   "Used itable blocks: %d"
1280 			   "itable unused count: %u\n",
1281 			   group, used_blks,
1282 			   ext4_itable_unused_count(sb, gdp));
1283 		ret = 1;
1284 		goto out;
1285 	}
1286 
1287 	blk = ext4_inode_table(sb, gdp) + used_blks;
1288 	num = sbi->s_itb_per_group - used_blks;
1289 
1290 	BUFFER_TRACE(group_desc_bh, "get_write_access");
1291 	ret = ext4_journal_get_write_access(handle,
1292 					    group_desc_bh);
1293 	if (ret)
1294 		goto err_out;
1295 
1296 	/*
1297 	 * Skip zeroout if the inode table is full. But we set the ZEROED
1298 	 * flag anyway, because obviously, when it is full it does not need
1299 	 * further zeroing.
1300 	 */
1301 	if (unlikely(num == 0))
1302 		goto skip_zeroout;
1303 
1304 	ext4_debug("going to zero out inode table in group %d\n",
1305 		   group);
1306 	ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS);
1307 	if (ret < 0)
1308 		goto err_out;
1309 	if (barrier)
1310 		blkdev_issue_flush(sb->s_bdev, GFP_NOFS, NULL);
1311 
1312 skip_zeroout:
1313 	ext4_lock_group(sb, group);
1314 	gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED);
1315 	gdp->bg_checksum = ext4_group_desc_csum(sbi, group, gdp);
1316 	ext4_unlock_group(sb, group);
1317 
1318 	BUFFER_TRACE(group_desc_bh,
1319 		     "call ext4_handle_dirty_metadata");
1320 	ret = ext4_handle_dirty_metadata(handle, NULL,
1321 					 group_desc_bh);
1322 
1323 err_out:
1324 	up_write(&grp->alloc_sem);
1325 	ext4_journal_stop(handle);
1326 out:
1327 	return ret;
1328 }
1329