xref: /openbmc/linux/fs/ext4/ialloc.c (revision 15e3ae36)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/ialloc.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  BSD ufs-inspired inode and directory allocation by
11  *  Stephen Tweedie (sct@redhat.com), 1993
12  *  Big-endian to little-endian byte-swapping/bitmaps by
13  *        David S. Miller (davem@caip.rutgers.edu), 1995
14  */
15 
16 #include <linux/time.h>
17 #include <linux/fs.h>
18 #include <linux/stat.h>
19 #include <linux/string.h>
20 #include <linux/quotaops.h>
21 #include <linux/buffer_head.h>
22 #include <linux/random.h>
23 #include <linux/bitops.h>
24 #include <linux/blkdev.h>
25 #include <linux/cred.h>
26 
27 #include <asm/byteorder.h>
28 
29 #include "ext4.h"
30 #include "ext4_jbd2.h"
31 #include "xattr.h"
32 #include "acl.h"
33 
34 #include <trace/events/ext4.h>
35 
36 /*
37  * ialloc.c contains the inodes allocation and deallocation routines
38  */
39 
40 /*
41  * The free inodes are managed by bitmaps.  A file system contains several
42  * blocks groups.  Each group contains 1 bitmap block for blocks, 1 bitmap
43  * block for inodes, N blocks for the inode table and data blocks.
44  *
45  * The file system contains group descriptors which are located after the
46  * super block.  Each descriptor contains the number of the bitmap block and
47  * the free blocks count in the block.
48  */
49 
50 /*
51  * To avoid calling the atomic setbit hundreds or thousands of times, we only
52  * need to use it within a single byte (to ensure we get endianness right).
53  * We can use memset for the rest of the bitmap as there are no other users.
54  */
55 void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap)
56 {
57 	int i;
58 
59 	if (start_bit >= end_bit)
60 		return;
61 
62 	ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit);
63 	for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++)
64 		ext4_set_bit(i, bitmap);
65 	if (i < end_bit)
66 		memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3);
67 }
68 
69 void ext4_end_bitmap_read(struct buffer_head *bh, int uptodate)
70 {
71 	if (uptodate) {
72 		set_buffer_uptodate(bh);
73 		set_bitmap_uptodate(bh);
74 	}
75 	unlock_buffer(bh);
76 	put_bh(bh);
77 }
78 
79 static int ext4_validate_inode_bitmap(struct super_block *sb,
80 				      struct ext4_group_desc *desc,
81 				      ext4_group_t block_group,
82 				      struct buffer_head *bh)
83 {
84 	ext4_fsblk_t	blk;
85 	struct ext4_group_info *grp = ext4_get_group_info(sb, block_group);
86 
87 	if (buffer_verified(bh))
88 		return 0;
89 	if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp))
90 		return -EFSCORRUPTED;
91 
92 	ext4_lock_group(sb, block_group);
93 	if (buffer_verified(bh))
94 		goto verified;
95 	blk = ext4_inode_bitmap(sb, desc);
96 	if (!ext4_inode_bitmap_csum_verify(sb, block_group, desc, bh,
97 					   EXT4_INODES_PER_GROUP(sb) / 8) ||
98 	    ext4_simulate_fail(sb, EXT4_SIM_IBITMAP_CRC)) {
99 		ext4_unlock_group(sb, block_group);
100 		ext4_error(sb, "Corrupt inode bitmap - block_group = %u, "
101 			   "inode_bitmap = %llu", block_group, blk);
102 		ext4_mark_group_bitmap_corrupted(sb, block_group,
103 					EXT4_GROUP_INFO_IBITMAP_CORRUPT);
104 		return -EFSBADCRC;
105 	}
106 	set_buffer_verified(bh);
107 verified:
108 	ext4_unlock_group(sb, block_group);
109 	return 0;
110 }
111 
112 /*
113  * Read the inode allocation bitmap for a given block_group, reading
114  * into the specified slot in the superblock's bitmap cache.
115  *
116  * Return buffer_head of bitmap on success or NULL.
117  */
118 static struct buffer_head *
119 ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group)
120 {
121 	struct ext4_group_desc *desc;
122 	struct ext4_sb_info *sbi = EXT4_SB(sb);
123 	struct buffer_head *bh = NULL;
124 	ext4_fsblk_t bitmap_blk;
125 	int err;
126 
127 	desc = ext4_get_group_desc(sb, block_group, NULL);
128 	if (!desc)
129 		return ERR_PTR(-EFSCORRUPTED);
130 
131 	bitmap_blk = ext4_inode_bitmap(sb, desc);
132 	if ((bitmap_blk <= le32_to_cpu(sbi->s_es->s_first_data_block)) ||
133 	    (bitmap_blk >= ext4_blocks_count(sbi->s_es))) {
134 		ext4_error(sb, "Invalid inode bitmap blk %llu in "
135 			   "block_group %u", bitmap_blk, block_group);
136 		ext4_mark_group_bitmap_corrupted(sb, block_group,
137 					EXT4_GROUP_INFO_IBITMAP_CORRUPT);
138 		return ERR_PTR(-EFSCORRUPTED);
139 	}
140 	bh = sb_getblk(sb, bitmap_blk);
141 	if (unlikely(!bh)) {
142 		ext4_warning(sb, "Cannot read inode bitmap - "
143 			     "block_group = %u, inode_bitmap = %llu",
144 			     block_group, bitmap_blk);
145 		return ERR_PTR(-ENOMEM);
146 	}
147 	if (bitmap_uptodate(bh))
148 		goto verify;
149 
150 	lock_buffer(bh);
151 	if (bitmap_uptodate(bh)) {
152 		unlock_buffer(bh);
153 		goto verify;
154 	}
155 
156 	ext4_lock_group(sb, block_group);
157 	if (ext4_has_group_desc_csum(sb) &&
158 	    (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT))) {
159 		if (block_group == 0) {
160 			ext4_unlock_group(sb, block_group);
161 			unlock_buffer(bh);
162 			ext4_error(sb, "Inode bitmap for bg 0 marked "
163 				   "uninitialized");
164 			err = -EFSCORRUPTED;
165 			goto out;
166 		}
167 		memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8);
168 		ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb),
169 				     sb->s_blocksize * 8, bh->b_data);
170 		set_bitmap_uptodate(bh);
171 		set_buffer_uptodate(bh);
172 		set_buffer_verified(bh);
173 		ext4_unlock_group(sb, block_group);
174 		unlock_buffer(bh);
175 		return bh;
176 	}
177 	ext4_unlock_group(sb, block_group);
178 
179 	if (buffer_uptodate(bh)) {
180 		/*
181 		 * if not uninit if bh is uptodate,
182 		 * bitmap is also uptodate
183 		 */
184 		set_bitmap_uptodate(bh);
185 		unlock_buffer(bh);
186 		goto verify;
187 	}
188 	/*
189 	 * submit the buffer_head for reading
190 	 */
191 	trace_ext4_load_inode_bitmap(sb, block_group);
192 	bh->b_end_io = ext4_end_bitmap_read;
193 	get_bh(bh);
194 	submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
195 	wait_on_buffer(bh);
196 	ext4_simulate_fail_bh(sb, bh, EXT4_SIM_IBITMAP_EIO);
197 	if (!buffer_uptodate(bh)) {
198 		put_bh(bh);
199 		ext4_error_err(sb, EIO, "Cannot read inode bitmap - "
200 			       "block_group = %u, inode_bitmap = %llu",
201 			       block_group, bitmap_blk);
202 		ext4_mark_group_bitmap_corrupted(sb, block_group,
203 				EXT4_GROUP_INFO_IBITMAP_CORRUPT);
204 		return ERR_PTR(-EIO);
205 	}
206 
207 verify:
208 	err = ext4_validate_inode_bitmap(sb, desc, block_group, bh);
209 	if (err)
210 		goto out;
211 	return bh;
212 out:
213 	put_bh(bh);
214 	return ERR_PTR(err);
215 }
216 
217 /*
218  * NOTE! When we get the inode, we're the only people
219  * that have access to it, and as such there are no
220  * race conditions we have to worry about. The inode
221  * is not on the hash-lists, and it cannot be reached
222  * through the filesystem because the directory entry
223  * has been deleted earlier.
224  *
225  * HOWEVER: we must make sure that we get no aliases,
226  * which means that we have to call "clear_inode()"
227  * _before_ we mark the inode not in use in the inode
228  * bitmaps. Otherwise a newly created file might use
229  * the same inode number (not actually the same pointer
230  * though), and then we'd have two inodes sharing the
231  * same inode number and space on the harddisk.
232  */
233 void ext4_free_inode(handle_t *handle, struct inode *inode)
234 {
235 	struct super_block *sb = inode->i_sb;
236 	int is_directory;
237 	unsigned long ino;
238 	struct buffer_head *bitmap_bh = NULL;
239 	struct buffer_head *bh2;
240 	ext4_group_t block_group;
241 	unsigned long bit;
242 	struct ext4_group_desc *gdp;
243 	struct ext4_super_block *es;
244 	struct ext4_sb_info *sbi;
245 	int fatal = 0, err, count, cleared;
246 	struct ext4_group_info *grp;
247 
248 	if (!sb) {
249 		printk(KERN_ERR "EXT4-fs: %s:%d: inode on "
250 		       "nonexistent device\n", __func__, __LINE__);
251 		return;
252 	}
253 	if (atomic_read(&inode->i_count) > 1) {
254 		ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: count=%d",
255 			 __func__, __LINE__, inode->i_ino,
256 			 atomic_read(&inode->i_count));
257 		return;
258 	}
259 	if (inode->i_nlink) {
260 		ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: nlink=%d\n",
261 			 __func__, __LINE__, inode->i_ino, inode->i_nlink);
262 		return;
263 	}
264 	sbi = EXT4_SB(sb);
265 
266 	ino = inode->i_ino;
267 	ext4_debug("freeing inode %lu\n", ino);
268 	trace_ext4_free_inode(inode);
269 
270 	dquot_initialize(inode);
271 	dquot_free_inode(inode);
272 
273 	is_directory = S_ISDIR(inode->i_mode);
274 
275 	/* Do this BEFORE marking the inode not in use or returning an error */
276 	ext4_clear_inode(inode);
277 
278 	es = sbi->s_es;
279 	if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) {
280 		ext4_error(sb, "reserved or nonexistent inode %lu", ino);
281 		goto error_return;
282 	}
283 	block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
284 	bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
285 	bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
286 	/* Don't bother if the inode bitmap is corrupt. */
287 	grp = ext4_get_group_info(sb, block_group);
288 	if (IS_ERR(bitmap_bh)) {
289 		fatal = PTR_ERR(bitmap_bh);
290 		bitmap_bh = NULL;
291 		goto error_return;
292 	}
293 	if (unlikely(EXT4_MB_GRP_IBITMAP_CORRUPT(grp))) {
294 		fatal = -EFSCORRUPTED;
295 		goto error_return;
296 	}
297 
298 	BUFFER_TRACE(bitmap_bh, "get_write_access");
299 	fatal = ext4_journal_get_write_access(handle, bitmap_bh);
300 	if (fatal)
301 		goto error_return;
302 
303 	fatal = -ESRCH;
304 	gdp = ext4_get_group_desc(sb, block_group, &bh2);
305 	if (gdp) {
306 		BUFFER_TRACE(bh2, "get_write_access");
307 		fatal = ext4_journal_get_write_access(handle, bh2);
308 	}
309 	ext4_lock_group(sb, block_group);
310 	cleared = ext4_test_and_clear_bit(bit, bitmap_bh->b_data);
311 	if (fatal || !cleared) {
312 		ext4_unlock_group(sb, block_group);
313 		goto out;
314 	}
315 
316 	count = ext4_free_inodes_count(sb, gdp) + 1;
317 	ext4_free_inodes_set(sb, gdp, count);
318 	if (is_directory) {
319 		count = ext4_used_dirs_count(sb, gdp) - 1;
320 		ext4_used_dirs_set(sb, gdp, count);
321 		percpu_counter_dec(&sbi->s_dirs_counter);
322 	}
323 	ext4_inode_bitmap_csum_set(sb, block_group, gdp, bitmap_bh,
324 				   EXT4_INODES_PER_GROUP(sb) / 8);
325 	ext4_group_desc_csum_set(sb, block_group, gdp);
326 	ext4_unlock_group(sb, block_group);
327 
328 	percpu_counter_inc(&sbi->s_freeinodes_counter);
329 	if (sbi->s_log_groups_per_flex) {
330 		struct flex_groups *fg;
331 
332 		fg = sbi_array_rcu_deref(sbi, s_flex_groups,
333 					 ext4_flex_group(sbi, block_group));
334 		atomic_inc(&fg->free_inodes);
335 		if (is_directory)
336 			atomic_dec(&fg->used_dirs);
337 	}
338 	BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata");
339 	fatal = ext4_handle_dirty_metadata(handle, NULL, bh2);
340 out:
341 	if (cleared) {
342 		BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata");
343 		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
344 		if (!fatal)
345 			fatal = err;
346 	} else {
347 		ext4_error(sb, "bit already cleared for inode %lu", ino);
348 		ext4_mark_group_bitmap_corrupted(sb, block_group,
349 					EXT4_GROUP_INFO_IBITMAP_CORRUPT);
350 	}
351 
352 error_return:
353 	brelse(bitmap_bh);
354 	ext4_std_error(sb, fatal);
355 }
356 
357 struct orlov_stats {
358 	__u64 free_clusters;
359 	__u32 free_inodes;
360 	__u32 used_dirs;
361 };
362 
363 /*
364  * Helper function for Orlov's allocator; returns critical information
365  * for a particular block group or flex_bg.  If flex_size is 1, then g
366  * is a block group number; otherwise it is flex_bg number.
367  */
368 static void get_orlov_stats(struct super_block *sb, ext4_group_t g,
369 			    int flex_size, struct orlov_stats *stats)
370 {
371 	struct ext4_group_desc *desc;
372 
373 	if (flex_size > 1) {
374 		struct flex_groups *fg = sbi_array_rcu_deref(EXT4_SB(sb),
375 							     s_flex_groups, g);
376 		stats->free_inodes = atomic_read(&fg->free_inodes);
377 		stats->free_clusters = atomic64_read(&fg->free_clusters);
378 		stats->used_dirs = atomic_read(&fg->used_dirs);
379 		return;
380 	}
381 
382 	desc = ext4_get_group_desc(sb, g, NULL);
383 	if (desc) {
384 		stats->free_inodes = ext4_free_inodes_count(sb, desc);
385 		stats->free_clusters = ext4_free_group_clusters(sb, desc);
386 		stats->used_dirs = ext4_used_dirs_count(sb, desc);
387 	} else {
388 		stats->free_inodes = 0;
389 		stats->free_clusters = 0;
390 		stats->used_dirs = 0;
391 	}
392 }
393 
394 /*
395  * Orlov's allocator for directories.
396  *
397  * We always try to spread first-level directories.
398  *
399  * If there are blockgroups with both free inodes and free blocks counts
400  * not worse than average we return one with smallest directory count.
401  * Otherwise we simply return a random group.
402  *
403  * For the rest rules look so:
404  *
405  * It's OK to put directory into a group unless
406  * it has too many directories already (max_dirs) or
407  * it has too few free inodes left (min_inodes) or
408  * it has too few free blocks left (min_blocks) or
409  * Parent's group is preferred, if it doesn't satisfy these
410  * conditions we search cyclically through the rest. If none
411  * of the groups look good we just look for a group with more
412  * free inodes than average (starting at parent's group).
413  */
414 
415 static int find_group_orlov(struct super_block *sb, struct inode *parent,
416 			    ext4_group_t *group, umode_t mode,
417 			    const struct qstr *qstr)
418 {
419 	ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
420 	struct ext4_sb_info *sbi = EXT4_SB(sb);
421 	ext4_group_t real_ngroups = ext4_get_groups_count(sb);
422 	int inodes_per_group = EXT4_INODES_PER_GROUP(sb);
423 	unsigned int freei, avefreei, grp_free;
424 	ext4_fsblk_t freeb, avefreec;
425 	unsigned int ndirs;
426 	int max_dirs, min_inodes;
427 	ext4_grpblk_t min_clusters;
428 	ext4_group_t i, grp, g, ngroups;
429 	struct ext4_group_desc *desc;
430 	struct orlov_stats stats;
431 	int flex_size = ext4_flex_bg_size(sbi);
432 	struct dx_hash_info hinfo;
433 
434 	ngroups = real_ngroups;
435 	if (flex_size > 1) {
436 		ngroups = (real_ngroups + flex_size - 1) >>
437 			sbi->s_log_groups_per_flex;
438 		parent_group >>= sbi->s_log_groups_per_flex;
439 	}
440 
441 	freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter);
442 	avefreei = freei / ngroups;
443 	freeb = EXT4_C2B(sbi,
444 		percpu_counter_read_positive(&sbi->s_freeclusters_counter));
445 	avefreec = freeb;
446 	do_div(avefreec, ngroups);
447 	ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter);
448 
449 	if (S_ISDIR(mode) &&
450 	    ((parent == d_inode(sb->s_root)) ||
451 	     (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) {
452 		int best_ndir = inodes_per_group;
453 		int ret = -1;
454 
455 		if (qstr) {
456 			hinfo.hash_version = DX_HASH_HALF_MD4;
457 			hinfo.seed = sbi->s_hash_seed;
458 			ext4fs_dirhash(parent, qstr->name, qstr->len, &hinfo);
459 			grp = hinfo.hash;
460 		} else
461 			grp = prandom_u32();
462 		parent_group = (unsigned)grp % ngroups;
463 		for (i = 0; i < ngroups; i++) {
464 			g = (parent_group + i) % ngroups;
465 			get_orlov_stats(sb, g, flex_size, &stats);
466 			if (!stats.free_inodes)
467 				continue;
468 			if (stats.used_dirs >= best_ndir)
469 				continue;
470 			if (stats.free_inodes < avefreei)
471 				continue;
472 			if (stats.free_clusters < avefreec)
473 				continue;
474 			grp = g;
475 			ret = 0;
476 			best_ndir = stats.used_dirs;
477 		}
478 		if (ret)
479 			goto fallback;
480 	found_flex_bg:
481 		if (flex_size == 1) {
482 			*group = grp;
483 			return 0;
484 		}
485 
486 		/*
487 		 * We pack inodes at the beginning of the flexgroup's
488 		 * inode tables.  Block allocation decisions will do
489 		 * something similar, although regular files will
490 		 * start at 2nd block group of the flexgroup.  See
491 		 * ext4_ext_find_goal() and ext4_find_near().
492 		 */
493 		grp *= flex_size;
494 		for (i = 0; i < flex_size; i++) {
495 			if (grp+i >= real_ngroups)
496 				break;
497 			desc = ext4_get_group_desc(sb, grp+i, NULL);
498 			if (desc && ext4_free_inodes_count(sb, desc)) {
499 				*group = grp+i;
500 				return 0;
501 			}
502 		}
503 		goto fallback;
504 	}
505 
506 	max_dirs = ndirs / ngroups + inodes_per_group / 16;
507 	min_inodes = avefreei - inodes_per_group*flex_size / 4;
508 	if (min_inodes < 1)
509 		min_inodes = 1;
510 	min_clusters = avefreec - EXT4_CLUSTERS_PER_GROUP(sb)*flex_size / 4;
511 
512 	/*
513 	 * Start looking in the flex group where we last allocated an
514 	 * inode for this parent directory
515 	 */
516 	if (EXT4_I(parent)->i_last_alloc_group != ~0) {
517 		parent_group = EXT4_I(parent)->i_last_alloc_group;
518 		if (flex_size > 1)
519 			parent_group >>= sbi->s_log_groups_per_flex;
520 	}
521 
522 	for (i = 0; i < ngroups; i++) {
523 		grp = (parent_group + i) % ngroups;
524 		get_orlov_stats(sb, grp, flex_size, &stats);
525 		if (stats.used_dirs >= max_dirs)
526 			continue;
527 		if (stats.free_inodes < min_inodes)
528 			continue;
529 		if (stats.free_clusters < min_clusters)
530 			continue;
531 		goto found_flex_bg;
532 	}
533 
534 fallback:
535 	ngroups = real_ngroups;
536 	avefreei = freei / ngroups;
537 fallback_retry:
538 	parent_group = EXT4_I(parent)->i_block_group;
539 	for (i = 0; i < ngroups; i++) {
540 		grp = (parent_group + i) % ngroups;
541 		desc = ext4_get_group_desc(sb, grp, NULL);
542 		if (desc) {
543 			grp_free = ext4_free_inodes_count(sb, desc);
544 			if (grp_free && grp_free >= avefreei) {
545 				*group = grp;
546 				return 0;
547 			}
548 		}
549 	}
550 
551 	if (avefreei) {
552 		/*
553 		 * The free-inodes counter is approximate, and for really small
554 		 * filesystems the above test can fail to find any blockgroups
555 		 */
556 		avefreei = 0;
557 		goto fallback_retry;
558 	}
559 
560 	return -1;
561 }
562 
563 static int find_group_other(struct super_block *sb, struct inode *parent,
564 			    ext4_group_t *group, umode_t mode)
565 {
566 	ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
567 	ext4_group_t i, last, ngroups = ext4_get_groups_count(sb);
568 	struct ext4_group_desc *desc;
569 	int flex_size = ext4_flex_bg_size(EXT4_SB(sb));
570 
571 	/*
572 	 * Try to place the inode is the same flex group as its
573 	 * parent.  If we can't find space, use the Orlov algorithm to
574 	 * find another flex group, and store that information in the
575 	 * parent directory's inode information so that use that flex
576 	 * group for future allocations.
577 	 */
578 	if (flex_size > 1) {
579 		int retry = 0;
580 
581 	try_again:
582 		parent_group &= ~(flex_size-1);
583 		last = parent_group + flex_size;
584 		if (last > ngroups)
585 			last = ngroups;
586 		for  (i = parent_group; i < last; i++) {
587 			desc = ext4_get_group_desc(sb, i, NULL);
588 			if (desc && ext4_free_inodes_count(sb, desc)) {
589 				*group = i;
590 				return 0;
591 			}
592 		}
593 		if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) {
594 			retry = 1;
595 			parent_group = EXT4_I(parent)->i_last_alloc_group;
596 			goto try_again;
597 		}
598 		/*
599 		 * If this didn't work, use the Orlov search algorithm
600 		 * to find a new flex group; we pass in the mode to
601 		 * avoid the topdir algorithms.
602 		 */
603 		*group = parent_group + flex_size;
604 		if (*group > ngroups)
605 			*group = 0;
606 		return find_group_orlov(sb, parent, group, mode, NULL);
607 	}
608 
609 	/*
610 	 * Try to place the inode in its parent directory
611 	 */
612 	*group = parent_group;
613 	desc = ext4_get_group_desc(sb, *group, NULL);
614 	if (desc && ext4_free_inodes_count(sb, desc) &&
615 	    ext4_free_group_clusters(sb, desc))
616 		return 0;
617 
618 	/*
619 	 * We're going to place this inode in a different blockgroup from its
620 	 * parent.  We want to cause files in a common directory to all land in
621 	 * the same blockgroup.  But we want files which are in a different
622 	 * directory which shares a blockgroup with our parent to land in a
623 	 * different blockgroup.
624 	 *
625 	 * So add our directory's i_ino into the starting point for the hash.
626 	 */
627 	*group = (*group + parent->i_ino) % ngroups;
628 
629 	/*
630 	 * Use a quadratic hash to find a group with a free inode and some free
631 	 * blocks.
632 	 */
633 	for (i = 1; i < ngroups; i <<= 1) {
634 		*group += i;
635 		if (*group >= ngroups)
636 			*group -= ngroups;
637 		desc = ext4_get_group_desc(sb, *group, NULL);
638 		if (desc && ext4_free_inodes_count(sb, desc) &&
639 		    ext4_free_group_clusters(sb, desc))
640 			return 0;
641 	}
642 
643 	/*
644 	 * That failed: try linear search for a free inode, even if that group
645 	 * has no free blocks.
646 	 */
647 	*group = parent_group;
648 	for (i = 0; i < ngroups; i++) {
649 		if (++*group >= ngroups)
650 			*group = 0;
651 		desc = ext4_get_group_desc(sb, *group, NULL);
652 		if (desc && ext4_free_inodes_count(sb, desc))
653 			return 0;
654 	}
655 
656 	return -1;
657 }
658 
659 /*
660  * In no journal mode, if an inode has recently been deleted, we want
661  * to avoid reusing it until we're reasonably sure the inode table
662  * block has been written back to disk.  (Yes, these values are
663  * somewhat arbitrary...)
664  */
665 #define RECENTCY_MIN	5
666 #define RECENTCY_DIRTY	300
667 
668 static int recently_deleted(struct super_block *sb, ext4_group_t group, int ino)
669 {
670 	struct ext4_group_desc	*gdp;
671 	struct ext4_inode	*raw_inode;
672 	struct buffer_head	*bh;
673 	int inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
674 	int offset, ret = 0;
675 	int recentcy = RECENTCY_MIN;
676 	u32 dtime, now;
677 
678 	gdp = ext4_get_group_desc(sb, group, NULL);
679 	if (unlikely(!gdp))
680 		return 0;
681 
682 	bh = sb_find_get_block(sb, ext4_inode_table(sb, gdp) +
683 		       (ino / inodes_per_block));
684 	if (!bh || !buffer_uptodate(bh))
685 		/*
686 		 * If the block is not in the buffer cache, then it
687 		 * must have been written out.
688 		 */
689 		goto out;
690 
691 	offset = (ino % inodes_per_block) * EXT4_INODE_SIZE(sb);
692 	raw_inode = (struct ext4_inode *) (bh->b_data + offset);
693 
694 	/* i_dtime is only 32 bits on disk, but we only care about relative
695 	 * times in the range of a few minutes (i.e. long enough to sync a
696 	 * recently-deleted inode to disk), so using the low 32 bits of the
697 	 * clock (a 68 year range) is enough, see time_before32() */
698 	dtime = le32_to_cpu(raw_inode->i_dtime);
699 	now = ktime_get_real_seconds();
700 	if (buffer_dirty(bh))
701 		recentcy += RECENTCY_DIRTY;
702 
703 	if (dtime && time_before32(dtime, now) &&
704 	    time_before32(now, dtime + recentcy))
705 		ret = 1;
706 out:
707 	brelse(bh);
708 	return ret;
709 }
710 
711 static int find_inode_bit(struct super_block *sb, ext4_group_t group,
712 			  struct buffer_head *bitmap, unsigned long *ino)
713 {
714 	bool check_recently_deleted = EXT4_SB(sb)->s_journal == NULL;
715 	unsigned long recently_deleted_ino = EXT4_INODES_PER_GROUP(sb);
716 
717 next:
718 	*ino = ext4_find_next_zero_bit((unsigned long *)
719 				       bitmap->b_data,
720 				       EXT4_INODES_PER_GROUP(sb), *ino);
721 	if (*ino >= EXT4_INODES_PER_GROUP(sb))
722 		goto not_found;
723 
724 	if (check_recently_deleted && recently_deleted(sb, group, *ino)) {
725 		recently_deleted_ino = *ino;
726 		*ino = *ino + 1;
727 		if (*ino < EXT4_INODES_PER_GROUP(sb))
728 			goto next;
729 		goto not_found;
730 	}
731 	return 1;
732 not_found:
733 	if (recently_deleted_ino >= EXT4_INODES_PER_GROUP(sb))
734 		return 0;
735 	/*
736 	 * Not reusing recently deleted inodes is mostly a preference. We don't
737 	 * want to report ENOSPC or skew allocation patterns because of that.
738 	 * So return even recently deleted inode if we could find better in the
739 	 * given range.
740 	 */
741 	*ino = recently_deleted_ino;
742 	return 1;
743 }
744 
745 /*
746  * There are two policies for allocating an inode.  If the new inode is
747  * a directory, then a forward search is made for a block group with both
748  * free space and a low directory-to-inode ratio; if that fails, then of
749  * the groups with above-average free space, that group with the fewest
750  * directories already is chosen.
751  *
752  * For other inodes, search forward from the parent directory's block
753  * group to find a free inode.
754  */
755 struct inode *__ext4_new_inode(handle_t *handle, struct inode *dir,
756 			       umode_t mode, const struct qstr *qstr,
757 			       __u32 goal, uid_t *owner, __u32 i_flags,
758 			       int handle_type, unsigned int line_no,
759 			       int nblocks)
760 {
761 	struct super_block *sb;
762 	struct buffer_head *inode_bitmap_bh = NULL;
763 	struct buffer_head *group_desc_bh;
764 	ext4_group_t ngroups, group = 0;
765 	unsigned long ino = 0;
766 	struct inode *inode;
767 	struct ext4_group_desc *gdp = NULL;
768 	struct ext4_inode_info *ei;
769 	struct ext4_sb_info *sbi;
770 	int ret2, err;
771 	struct inode *ret;
772 	ext4_group_t i;
773 	ext4_group_t flex_group;
774 	struct ext4_group_info *grp;
775 	int encrypt = 0;
776 
777 	/* Cannot create files in a deleted directory */
778 	if (!dir || !dir->i_nlink)
779 		return ERR_PTR(-EPERM);
780 
781 	sb = dir->i_sb;
782 	sbi = EXT4_SB(sb);
783 
784 	if (unlikely(ext4_forced_shutdown(sbi)))
785 		return ERR_PTR(-EIO);
786 
787 	if ((IS_ENCRYPTED(dir) || DUMMY_ENCRYPTION_ENABLED(sbi)) &&
788 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)) &&
789 	    !(i_flags & EXT4_EA_INODE_FL)) {
790 		err = fscrypt_get_encryption_info(dir);
791 		if (err)
792 			return ERR_PTR(err);
793 		if (!fscrypt_has_encryption_key(dir))
794 			return ERR_PTR(-ENOKEY);
795 		encrypt = 1;
796 	}
797 
798 	if (!handle && sbi->s_journal && !(i_flags & EXT4_EA_INODE_FL)) {
799 #ifdef CONFIG_EXT4_FS_POSIX_ACL
800 		struct posix_acl *p = get_acl(dir, ACL_TYPE_DEFAULT);
801 
802 		if (IS_ERR(p))
803 			return ERR_CAST(p);
804 		if (p) {
805 			int acl_size = p->a_count * sizeof(ext4_acl_entry);
806 
807 			nblocks += (S_ISDIR(mode) ? 2 : 1) *
808 				__ext4_xattr_set_credits(sb, NULL /* inode */,
809 					NULL /* block_bh */, acl_size,
810 					true /* is_create */);
811 			posix_acl_release(p);
812 		}
813 #endif
814 
815 #ifdef CONFIG_SECURITY
816 		{
817 			int num_security_xattrs = 1;
818 
819 #ifdef CONFIG_INTEGRITY
820 			num_security_xattrs++;
821 #endif
822 			/*
823 			 * We assume that security xattrs are never
824 			 * more than 1k.  In practice they are under
825 			 * 128 bytes.
826 			 */
827 			nblocks += num_security_xattrs *
828 				__ext4_xattr_set_credits(sb, NULL /* inode */,
829 					NULL /* block_bh */, 1024,
830 					true /* is_create */);
831 		}
832 #endif
833 		if (encrypt)
834 			nblocks += __ext4_xattr_set_credits(sb,
835 					NULL /* inode */, NULL /* block_bh */,
836 					FSCRYPT_SET_CONTEXT_MAX_SIZE,
837 					true /* is_create */);
838 	}
839 
840 	ngroups = ext4_get_groups_count(sb);
841 	trace_ext4_request_inode(dir, mode);
842 	inode = new_inode(sb);
843 	if (!inode)
844 		return ERR_PTR(-ENOMEM);
845 	ei = EXT4_I(inode);
846 
847 	/*
848 	 * Initialize owners and quota early so that we don't have to account
849 	 * for quota initialization worst case in standard inode creating
850 	 * transaction
851 	 */
852 	if (owner) {
853 		inode->i_mode = mode;
854 		i_uid_write(inode, owner[0]);
855 		i_gid_write(inode, owner[1]);
856 	} else if (test_opt(sb, GRPID)) {
857 		inode->i_mode = mode;
858 		inode->i_uid = current_fsuid();
859 		inode->i_gid = dir->i_gid;
860 	} else
861 		inode_init_owner(inode, dir, mode);
862 
863 	if (ext4_has_feature_project(sb) &&
864 	    ext4_test_inode_flag(dir, EXT4_INODE_PROJINHERIT))
865 		ei->i_projid = EXT4_I(dir)->i_projid;
866 	else
867 		ei->i_projid = make_kprojid(&init_user_ns, EXT4_DEF_PROJID);
868 
869 	err = dquot_initialize(inode);
870 	if (err)
871 		goto out;
872 
873 	if (!goal)
874 		goal = sbi->s_inode_goal;
875 
876 	if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) {
877 		group = (goal - 1) / EXT4_INODES_PER_GROUP(sb);
878 		ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb);
879 		ret2 = 0;
880 		goto got_group;
881 	}
882 
883 	if (S_ISDIR(mode))
884 		ret2 = find_group_orlov(sb, dir, &group, mode, qstr);
885 	else
886 		ret2 = find_group_other(sb, dir, &group, mode);
887 
888 got_group:
889 	EXT4_I(dir)->i_last_alloc_group = group;
890 	err = -ENOSPC;
891 	if (ret2 == -1)
892 		goto out;
893 
894 	/*
895 	 * Normally we will only go through one pass of this loop,
896 	 * unless we get unlucky and it turns out the group we selected
897 	 * had its last inode grabbed by someone else.
898 	 */
899 	for (i = 0; i < ngroups; i++, ino = 0) {
900 		err = -EIO;
901 
902 		gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
903 		if (!gdp)
904 			goto out;
905 
906 		/*
907 		 * Check free inodes count before loading bitmap.
908 		 */
909 		if (ext4_free_inodes_count(sb, gdp) == 0)
910 			goto next_group;
911 
912 		grp = ext4_get_group_info(sb, group);
913 		/* Skip groups with already-known suspicious inode tables */
914 		if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp))
915 			goto next_group;
916 
917 		brelse(inode_bitmap_bh);
918 		inode_bitmap_bh = ext4_read_inode_bitmap(sb, group);
919 		/* Skip groups with suspicious inode tables */
920 		if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp) ||
921 		    IS_ERR(inode_bitmap_bh)) {
922 			inode_bitmap_bh = NULL;
923 			goto next_group;
924 		}
925 
926 repeat_in_this_group:
927 		ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino);
928 		if (!ret2)
929 			goto next_group;
930 
931 		if (group == 0 && (ino + 1) < EXT4_FIRST_INO(sb)) {
932 			ext4_error(sb, "reserved inode found cleared - "
933 				   "inode=%lu", ino + 1);
934 			ext4_mark_group_bitmap_corrupted(sb, group,
935 					EXT4_GROUP_INFO_IBITMAP_CORRUPT);
936 			goto next_group;
937 		}
938 
939 		if (!handle) {
940 			BUG_ON(nblocks <= 0);
941 			handle = __ext4_journal_start_sb(dir->i_sb, line_no,
942 				 handle_type, nblocks, 0,
943 				 ext4_trans_default_revoke_credits(sb));
944 			if (IS_ERR(handle)) {
945 				err = PTR_ERR(handle);
946 				ext4_std_error(sb, err);
947 				goto out;
948 			}
949 		}
950 		BUFFER_TRACE(inode_bitmap_bh, "get_write_access");
951 		err = ext4_journal_get_write_access(handle, inode_bitmap_bh);
952 		if (err) {
953 			ext4_std_error(sb, err);
954 			goto out;
955 		}
956 		ext4_lock_group(sb, group);
957 		ret2 = ext4_test_and_set_bit(ino, inode_bitmap_bh->b_data);
958 		if (ret2) {
959 			/* Someone already took the bit. Repeat the search
960 			 * with lock held.
961 			 */
962 			ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino);
963 			if (ret2) {
964 				ext4_set_bit(ino, inode_bitmap_bh->b_data);
965 				ret2 = 0;
966 			} else {
967 				ret2 = 1; /* we didn't grab the inode */
968 			}
969 		}
970 		ext4_unlock_group(sb, group);
971 		ino++;		/* the inode bitmap is zero-based */
972 		if (!ret2)
973 			goto got; /* we grabbed the inode! */
974 
975 		if (ino < EXT4_INODES_PER_GROUP(sb))
976 			goto repeat_in_this_group;
977 next_group:
978 		if (++group == ngroups)
979 			group = 0;
980 	}
981 	err = -ENOSPC;
982 	goto out;
983 
984 got:
985 	BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata");
986 	err = ext4_handle_dirty_metadata(handle, NULL, inode_bitmap_bh);
987 	if (err) {
988 		ext4_std_error(sb, err);
989 		goto out;
990 	}
991 
992 	BUFFER_TRACE(group_desc_bh, "get_write_access");
993 	err = ext4_journal_get_write_access(handle, group_desc_bh);
994 	if (err) {
995 		ext4_std_error(sb, err);
996 		goto out;
997 	}
998 
999 	/* We may have to initialize the block bitmap if it isn't already */
1000 	if (ext4_has_group_desc_csum(sb) &&
1001 	    gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
1002 		struct buffer_head *block_bitmap_bh;
1003 
1004 		block_bitmap_bh = ext4_read_block_bitmap(sb, group);
1005 		if (IS_ERR(block_bitmap_bh)) {
1006 			err = PTR_ERR(block_bitmap_bh);
1007 			goto out;
1008 		}
1009 		BUFFER_TRACE(block_bitmap_bh, "get block bitmap access");
1010 		err = ext4_journal_get_write_access(handle, block_bitmap_bh);
1011 		if (err) {
1012 			brelse(block_bitmap_bh);
1013 			ext4_std_error(sb, err);
1014 			goto out;
1015 		}
1016 
1017 		BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap");
1018 		err = ext4_handle_dirty_metadata(handle, NULL, block_bitmap_bh);
1019 
1020 		/* recheck and clear flag under lock if we still need to */
1021 		ext4_lock_group(sb, group);
1022 		if (ext4_has_group_desc_csum(sb) &&
1023 		    (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
1024 			gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
1025 			ext4_free_group_clusters_set(sb, gdp,
1026 				ext4_free_clusters_after_init(sb, group, gdp));
1027 			ext4_block_bitmap_csum_set(sb, group, gdp,
1028 						   block_bitmap_bh);
1029 			ext4_group_desc_csum_set(sb, group, gdp);
1030 		}
1031 		ext4_unlock_group(sb, group);
1032 		brelse(block_bitmap_bh);
1033 
1034 		if (err) {
1035 			ext4_std_error(sb, err);
1036 			goto out;
1037 		}
1038 	}
1039 
1040 	/* Update the relevant bg descriptor fields */
1041 	if (ext4_has_group_desc_csum(sb)) {
1042 		int free;
1043 		struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1044 
1045 		down_read(&grp->alloc_sem); /* protect vs itable lazyinit */
1046 		ext4_lock_group(sb, group); /* while we modify the bg desc */
1047 		free = EXT4_INODES_PER_GROUP(sb) -
1048 			ext4_itable_unused_count(sb, gdp);
1049 		if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
1050 			gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT);
1051 			free = 0;
1052 		}
1053 		/*
1054 		 * Check the relative inode number against the last used
1055 		 * relative inode number in this group. if it is greater
1056 		 * we need to update the bg_itable_unused count
1057 		 */
1058 		if (ino > free)
1059 			ext4_itable_unused_set(sb, gdp,
1060 					(EXT4_INODES_PER_GROUP(sb) - ino));
1061 		up_read(&grp->alloc_sem);
1062 	} else {
1063 		ext4_lock_group(sb, group);
1064 	}
1065 
1066 	ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1);
1067 	if (S_ISDIR(mode)) {
1068 		ext4_used_dirs_set(sb, gdp, ext4_used_dirs_count(sb, gdp) + 1);
1069 		if (sbi->s_log_groups_per_flex) {
1070 			ext4_group_t f = ext4_flex_group(sbi, group);
1071 
1072 			atomic_inc(&sbi_array_rcu_deref(sbi, s_flex_groups,
1073 							f)->used_dirs);
1074 		}
1075 	}
1076 	if (ext4_has_group_desc_csum(sb)) {
1077 		ext4_inode_bitmap_csum_set(sb, group, gdp, inode_bitmap_bh,
1078 					   EXT4_INODES_PER_GROUP(sb) / 8);
1079 		ext4_group_desc_csum_set(sb, group, gdp);
1080 	}
1081 	ext4_unlock_group(sb, group);
1082 
1083 	BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata");
1084 	err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh);
1085 	if (err) {
1086 		ext4_std_error(sb, err);
1087 		goto out;
1088 	}
1089 
1090 	percpu_counter_dec(&sbi->s_freeinodes_counter);
1091 	if (S_ISDIR(mode))
1092 		percpu_counter_inc(&sbi->s_dirs_counter);
1093 
1094 	if (sbi->s_log_groups_per_flex) {
1095 		flex_group = ext4_flex_group(sbi, group);
1096 		atomic_dec(&sbi_array_rcu_deref(sbi, s_flex_groups,
1097 						flex_group)->free_inodes);
1098 	}
1099 
1100 	inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb);
1101 	/* This is the optimal IO size (for stat), not the fs block size */
1102 	inode->i_blocks = 0;
1103 	inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1104 	ei->i_crtime = inode->i_mtime;
1105 
1106 	memset(ei->i_data, 0, sizeof(ei->i_data));
1107 	ei->i_dir_start_lookup = 0;
1108 	ei->i_disksize = 0;
1109 
1110 	/* Don't inherit extent flag from directory, amongst others. */
1111 	ei->i_flags =
1112 		ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED);
1113 	ei->i_flags |= i_flags;
1114 	ei->i_file_acl = 0;
1115 	ei->i_dtime = 0;
1116 	ei->i_block_group = group;
1117 	ei->i_last_alloc_group = ~0;
1118 
1119 	ext4_set_inode_flags(inode);
1120 	if (IS_DIRSYNC(inode))
1121 		ext4_handle_sync(handle);
1122 	if (insert_inode_locked(inode) < 0) {
1123 		/*
1124 		 * Likely a bitmap corruption causing inode to be allocated
1125 		 * twice.
1126 		 */
1127 		err = -EIO;
1128 		ext4_error(sb, "failed to insert inode %lu: doubly allocated?",
1129 			   inode->i_ino);
1130 		ext4_mark_group_bitmap_corrupted(sb, group,
1131 					EXT4_GROUP_INFO_IBITMAP_CORRUPT);
1132 		goto out;
1133 	}
1134 	inode->i_generation = prandom_u32();
1135 
1136 	/* Precompute checksum seed for inode metadata */
1137 	if (ext4_has_metadata_csum(sb)) {
1138 		__u32 csum;
1139 		__le32 inum = cpu_to_le32(inode->i_ino);
1140 		__le32 gen = cpu_to_le32(inode->i_generation);
1141 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
1142 				   sizeof(inum));
1143 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
1144 					      sizeof(gen));
1145 	}
1146 
1147 	ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
1148 	ext4_set_inode_state(inode, EXT4_STATE_NEW);
1149 
1150 	ei->i_extra_isize = sbi->s_want_extra_isize;
1151 	ei->i_inline_off = 0;
1152 	if (ext4_has_feature_inline_data(sb))
1153 		ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
1154 	ret = inode;
1155 	err = dquot_alloc_inode(inode);
1156 	if (err)
1157 		goto fail_drop;
1158 
1159 	/*
1160 	 * Since the encryption xattr will always be unique, create it first so
1161 	 * that it's less likely to end up in an external xattr block and
1162 	 * prevent its deduplication.
1163 	 */
1164 	if (encrypt) {
1165 		err = fscrypt_inherit_context(dir, inode, handle, true);
1166 		if (err)
1167 			goto fail_free_drop;
1168 	}
1169 
1170 	if (!(ei->i_flags & EXT4_EA_INODE_FL)) {
1171 		err = ext4_init_acl(handle, inode, dir);
1172 		if (err)
1173 			goto fail_free_drop;
1174 
1175 		err = ext4_init_security(handle, inode, dir, qstr);
1176 		if (err)
1177 			goto fail_free_drop;
1178 	}
1179 
1180 	if (ext4_has_feature_extents(sb)) {
1181 		/* set extent flag only for directory, file and normal symlink*/
1182 		if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) {
1183 			ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS);
1184 			ext4_ext_tree_init(handle, inode);
1185 		}
1186 	}
1187 
1188 	if (ext4_handle_valid(handle)) {
1189 		ei->i_sync_tid = handle->h_transaction->t_tid;
1190 		ei->i_datasync_tid = handle->h_transaction->t_tid;
1191 	}
1192 
1193 	err = ext4_mark_inode_dirty(handle, inode);
1194 	if (err) {
1195 		ext4_std_error(sb, err);
1196 		goto fail_free_drop;
1197 	}
1198 
1199 	ext4_debug("allocating inode %lu\n", inode->i_ino);
1200 	trace_ext4_allocate_inode(inode, dir, mode);
1201 	brelse(inode_bitmap_bh);
1202 	return ret;
1203 
1204 fail_free_drop:
1205 	dquot_free_inode(inode);
1206 fail_drop:
1207 	clear_nlink(inode);
1208 	unlock_new_inode(inode);
1209 out:
1210 	dquot_drop(inode);
1211 	inode->i_flags |= S_NOQUOTA;
1212 	iput(inode);
1213 	brelse(inode_bitmap_bh);
1214 	return ERR_PTR(err);
1215 }
1216 
1217 /* Verify that we are loading a valid orphan from disk */
1218 struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino)
1219 {
1220 	unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count);
1221 	ext4_group_t block_group;
1222 	int bit;
1223 	struct buffer_head *bitmap_bh = NULL;
1224 	struct inode *inode = NULL;
1225 	int err = -EFSCORRUPTED;
1226 
1227 	if (ino < EXT4_FIRST_INO(sb) || ino > max_ino)
1228 		goto bad_orphan;
1229 
1230 	block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
1231 	bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
1232 	bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
1233 	if (IS_ERR(bitmap_bh))
1234 		return ERR_CAST(bitmap_bh);
1235 
1236 	/* Having the inode bit set should be a 100% indicator that this
1237 	 * is a valid orphan (no e2fsck run on fs).  Orphans also include
1238 	 * inodes that were being truncated, so we can't check i_nlink==0.
1239 	 */
1240 	if (!ext4_test_bit(bit, bitmap_bh->b_data))
1241 		goto bad_orphan;
1242 
1243 	inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1244 	if (IS_ERR(inode)) {
1245 		err = PTR_ERR(inode);
1246 		ext4_error_err(sb, -err,
1247 			       "couldn't read orphan inode %lu (err %d)",
1248 			       ino, err);
1249 		return inode;
1250 	}
1251 
1252 	/*
1253 	 * If the orphans has i_nlinks > 0 then it should be able to
1254 	 * be truncated, otherwise it won't be removed from the orphan
1255 	 * list during processing and an infinite loop will result.
1256 	 * Similarly, it must not be a bad inode.
1257 	 */
1258 	if ((inode->i_nlink && !ext4_can_truncate(inode)) ||
1259 	    is_bad_inode(inode))
1260 		goto bad_orphan;
1261 
1262 	if (NEXT_ORPHAN(inode) > max_ino)
1263 		goto bad_orphan;
1264 	brelse(bitmap_bh);
1265 	return inode;
1266 
1267 bad_orphan:
1268 	ext4_error(sb, "bad orphan inode %lu", ino);
1269 	if (bitmap_bh)
1270 		printk(KERN_ERR "ext4_test_bit(bit=%d, block=%llu) = %d\n",
1271 		       bit, (unsigned long long)bitmap_bh->b_blocknr,
1272 		       ext4_test_bit(bit, bitmap_bh->b_data));
1273 	if (inode) {
1274 		printk(KERN_ERR "is_bad_inode(inode)=%d\n",
1275 		       is_bad_inode(inode));
1276 		printk(KERN_ERR "NEXT_ORPHAN(inode)=%u\n",
1277 		       NEXT_ORPHAN(inode));
1278 		printk(KERN_ERR "max_ino=%lu\n", max_ino);
1279 		printk(KERN_ERR "i_nlink=%u\n", inode->i_nlink);
1280 		/* Avoid freeing blocks if we got a bad deleted inode */
1281 		if (inode->i_nlink == 0)
1282 			inode->i_blocks = 0;
1283 		iput(inode);
1284 	}
1285 	brelse(bitmap_bh);
1286 	return ERR_PTR(err);
1287 }
1288 
1289 unsigned long ext4_count_free_inodes(struct super_block *sb)
1290 {
1291 	unsigned long desc_count;
1292 	struct ext4_group_desc *gdp;
1293 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1294 #ifdef EXT4FS_DEBUG
1295 	struct ext4_super_block *es;
1296 	unsigned long bitmap_count, x;
1297 	struct buffer_head *bitmap_bh = NULL;
1298 
1299 	es = EXT4_SB(sb)->s_es;
1300 	desc_count = 0;
1301 	bitmap_count = 0;
1302 	gdp = NULL;
1303 	for (i = 0; i < ngroups; i++) {
1304 		gdp = ext4_get_group_desc(sb, i, NULL);
1305 		if (!gdp)
1306 			continue;
1307 		desc_count += ext4_free_inodes_count(sb, gdp);
1308 		brelse(bitmap_bh);
1309 		bitmap_bh = ext4_read_inode_bitmap(sb, i);
1310 		if (IS_ERR(bitmap_bh)) {
1311 			bitmap_bh = NULL;
1312 			continue;
1313 		}
1314 
1315 		x = ext4_count_free(bitmap_bh->b_data,
1316 				    EXT4_INODES_PER_GROUP(sb) / 8);
1317 		printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n",
1318 			(unsigned long) i, ext4_free_inodes_count(sb, gdp), x);
1319 		bitmap_count += x;
1320 	}
1321 	brelse(bitmap_bh);
1322 	printk(KERN_DEBUG "ext4_count_free_inodes: "
1323 	       "stored = %u, computed = %lu, %lu\n",
1324 	       le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count);
1325 	return desc_count;
1326 #else
1327 	desc_count = 0;
1328 	for (i = 0; i < ngroups; i++) {
1329 		gdp = ext4_get_group_desc(sb, i, NULL);
1330 		if (!gdp)
1331 			continue;
1332 		desc_count += ext4_free_inodes_count(sb, gdp);
1333 		cond_resched();
1334 	}
1335 	return desc_count;
1336 #endif
1337 }
1338 
1339 /* Called at mount-time, super-block is locked */
1340 unsigned long ext4_count_dirs(struct super_block * sb)
1341 {
1342 	unsigned long count = 0;
1343 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1344 
1345 	for (i = 0; i < ngroups; i++) {
1346 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
1347 		if (!gdp)
1348 			continue;
1349 		count += ext4_used_dirs_count(sb, gdp);
1350 	}
1351 	return count;
1352 }
1353 
1354 /*
1355  * Zeroes not yet zeroed inode table - just write zeroes through the whole
1356  * inode table. Must be called without any spinlock held. The only place
1357  * where it is called from on active part of filesystem is ext4lazyinit
1358  * thread, so we do not need any special locks, however we have to prevent
1359  * inode allocation from the current group, so we take alloc_sem lock, to
1360  * block ext4_new_inode() until we are finished.
1361  */
1362 int ext4_init_inode_table(struct super_block *sb, ext4_group_t group,
1363 				 int barrier)
1364 {
1365 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1366 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1367 	struct ext4_group_desc *gdp = NULL;
1368 	struct buffer_head *group_desc_bh;
1369 	handle_t *handle;
1370 	ext4_fsblk_t blk;
1371 	int num, ret = 0, used_blks = 0;
1372 
1373 	/* This should not happen, but just to be sure check this */
1374 	if (sb_rdonly(sb)) {
1375 		ret = 1;
1376 		goto out;
1377 	}
1378 
1379 	gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
1380 	if (!gdp)
1381 		goto out;
1382 
1383 	/*
1384 	 * We do not need to lock this, because we are the only one
1385 	 * handling this flag.
1386 	 */
1387 	if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))
1388 		goto out;
1389 
1390 	handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
1391 	if (IS_ERR(handle)) {
1392 		ret = PTR_ERR(handle);
1393 		goto out;
1394 	}
1395 
1396 	down_write(&grp->alloc_sem);
1397 	/*
1398 	 * If inode bitmap was already initialized there may be some
1399 	 * used inodes so we need to skip blocks with used inodes in
1400 	 * inode table.
1401 	 */
1402 	if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)))
1403 		used_blks = DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb) -
1404 			    ext4_itable_unused_count(sb, gdp)),
1405 			    sbi->s_inodes_per_block);
1406 
1407 	if ((used_blks < 0) || (used_blks > sbi->s_itb_per_group) ||
1408 	    ((group == 0) && ((EXT4_INODES_PER_GROUP(sb) -
1409 			       ext4_itable_unused_count(sb, gdp)) <
1410 			      EXT4_FIRST_INO(sb)))) {
1411 		ext4_error(sb, "Something is wrong with group %u: "
1412 			   "used itable blocks: %d; "
1413 			   "itable unused count: %u",
1414 			   group, used_blks,
1415 			   ext4_itable_unused_count(sb, gdp));
1416 		ret = 1;
1417 		goto err_out;
1418 	}
1419 
1420 	blk = ext4_inode_table(sb, gdp) + used_blks;
1421 	num = sbi->s_itb_per_group - used_blks;
1422 
1423 	BUFFER_TRACE(group_desc_bh, "get_write_access");
1424 	ret = ext4_journal_get_write_access(handle,
1425 					    group_desc_bh);
1426 	if (ret)
1427 		goto err_out;
1428 
1429 	/*
1430 	 * Skip zeroout if the inode table is full. But we set the ZEROED
1431 	 * flag anyway, because obviously, when it is full it does not need
1432 	 * further zeroing.
1433 	 */
1434 	if (unlikely(num == 0))
1435 		goto skip_zeroout;
1436 
1437 	ext4_debug("going to zero out inode table in group %d\n",
1438 		   group);
1439 	ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS);
1440 	if (ret < 0)
1441 		goto err_out;
1442 	if (barrier)
1443 		blkdev_issue_flush(sb->s_bdev, GFP_NOFS, NULL);
1444 
1445 skip_zeroout:
1446 	ext4_lock_group(sb, group);
1447 	gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED);
1448 	ext4_group_desc_csum_set(sb, group, gdp);
1449 	ext4_unlock_group(sb, group);
1450 
1451 	BUFFER_TRACE(group_desc_bh,
1452 		     "call ext4_handle_dirty_metadata");
1453 	ret = ext4_handle_dirty_metadata(handle, NULL,
1454 					 group_desc_bh);
1455 
1456 err_out:
1457 	up_write(&grp->alloc_sem);
1458 	ext4_journal_stop(handle);
1459 out:
1460 	return ret;
1461 }
1462