xref: /openbmc/linux/fs/ext4/fsync.c (revision c7cbb022)
1 /*
2  *  linux/fs/ext4/fsync.c
3  *
4  *  Copyright (C) 1993  Stephen Tweedie (sct@redhat.com)
5  *  from
6  *  Copyright (C) 1992  Remy Card (card@masi.ibp.fr)
7  *                      Laboratoire MASI - Institut Blaise Pascal
8  *                      Universite Pierre et Marie Curie (Paris VI)
9  *  from
10  *  linux/fs/minix/truncate.c   Copyright (C) 1991, 1992  Linus Torvalds
11  *
12  *  ext4fs fsync primitive
13  *
14  *  Big-endian to little-endian byte-swapping/bitmaps by
15  *        David S. Miller (davem@caip.rutgers.edu), 1995
16  *
17  *  Removed unnecessary code duplication for little endian machines
18  *  and excessive __inline__s.
19  *        Andi Kleen, 1997
20  *
21  * Major simplications and cleanup - we only need to do the metadata, because
22  * we can depend on generic_block_fdatasync() to sync the data blocks.
23  */
24 
25 #include <linux/time.h>
26 #include <linux/fs.h>
27 #include <linux/sched.h>
28 #include <linux/writeback.h>
29 #include <linux/jbd2.h>
30 #include <linux/blkdev.h>
31 
32 #include "ext4.h"
33 #include "ext4_jbd2.h"
34 
35 #include <trace/events/ext4.h>
36 
37 static void dump_completed_IO(struct inode * inode)
38 {
39 #ifdef	EXT4FS_DEBUG
40 	struct list_head *cur, *before, *after;
41 	ext4_io_end_t *io, *io0, *io1;
42 	unsigned long flags;
43 
44 	if (list_empty(&EXT4_I(inode)->i_completed_io_list)){
45 		ext4_debug("inode %lu completed_io list is empty\n", inode->i_ino);
46 		return;
47 	}
48 
49 	ext4_debug("Dump inode %lu completed_io list \n", inode->i_ino);
50 	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
51 	list_for_each_entry(io, &EXT4_I(inode)->i_completed_io_list, list){
52 		cur = &io->list;
53 		before = cur->prev;
54 		io0 = container_of(before, ext4_io_end_t, list);
55 		after = cur->next;
56 		io1 = container_of(after, ext4_io_end_t, list);
57 
58 		ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
59 			    io, inode->i_ino, io0, io1);
60 	}
61 	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
62 #endif
63 }
64 
65 /*
66  * This function is called from ext4_sync_file().
67  *
68  * When IO is completed, the work to convert unwritten extents to
69  * written is queued on workqueue but may not get immediately
70  * scheduled. When fsync is called, we need to ensure the
71  * conversion is complete before fsync returns.
72  * The inode keeps track of a list of pending/completed IO that
73  * might needs to do the conversion. This function walks through
74  * the list and convert the related unwritten extents for completed IO
75  * to written.
76  * The function return the number of pending IOs on success.
77  */
78 extern int ext4_flush_completed_IO(struct inode *inode)
79 {
80 	ext4_io_end_t *io;
81 	struct ext4_inode_info *ei = EXT4_I(inode);
82 	unsigned long flags;
83 	int ret = 0;
84 	int ret2 = 0;
85 
86 	if (list_empty(&ei->i_completed_io_list))
87 		return ret;
88 
89 	dump_completed_IO(inode);
90 	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
91 	while (!list_empty(&ei->i_completed_io_list)){
92 		io = list_entry(ei->i_completed_io_list.next,
93 				ext4_io_end_t, list);
94 		/*
95 		 * Calling ext4_end_io_nolock() to convert completed
96 		 * IO to written.
97 		 *
98 		 * When ext4_sync_file() is called, run_queue() may already
99 		 * about to flush the work corresponding to this io structure.
100 		 * It will be upset if it founds the io structure related
101 		 * to the work-to-be schedule is freed.
102 		 *
103 		 * Thus we need to keep the io structure still valid here after
104 		 * conversion finished. The io structure has a flag to
105 		 * avoid double converting from both fsync and background work
106 		 * queue work.
107 		 */
108 		spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
109 		ret = ext4_end_io_nolock(io);
110 		spin_lock_irqsave(&ei->i_completed_io_lock, flags);
111 		if (ret < 0)
112 			ret2 = ret;
113 		else
114 			list_del_init(&io->list);
115 	}
116 	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
117 	return (ret2 < 0) ? ret2 : 0;
118 }
119 
120 /*
121  * If we're not journaling and this is a just-created file, we have to
122  * sync our parent directory (if it was freshly created) since
123  * otherwise it will only be written by writeback, leaving a huge
124  * window during which a crash may lose the file.  This may apply for
125  * the parent directory's parent as well, and so on recursively, if
126  * they are also freshly created.
127  */
128 static int ext4_sync_parent(struct inode *inode)
129 {
130 	struct writeback_control wbc;
131 	struct dentry *dentry = NULL;
132 	int ret = 0;
133 
134 	while (inode && ext4_test_inode_state(inode, EXT4_STATE_NEWENTRY)) {
135 		ext4_clear_inode_state(inode, EXT4_STATE_NEWENTRY);
136 		dentry = list_entry(inode->i_dentry.next,
137 				    struct dentry, d_alias);
138 		if (!dentry || !dentry->d_parent || !dentry->d_parent->d_inode)
139 			break;
140 		inode = dentry->d_parent->d_inode;
141 		ret = sync_mapping_buffers(inode->i_mapping);
142 		if (ret)
143 			break;
144 		memset(&wbc, 0, sizeof(wbc));
145 		wbc.sync_mode = WB_SYNC_ALL;
146 		wbc.nr_to_write = 0;         /* only write out the inode */
147 		ret = sync_inode(inode, &wbc);
148 		if (ret)
149 			break;
150 	}
151 	return ret;
152 }
153 
154 /*
155  * akpm: A new design for ext4_sync_file().
156  *
157  * This is only called from sys_fsync(), sys_fdatasync() and sys_msync().
158  * There cannot be a transaction open by this task.
159  * Another task could have dirtied this inode.  Its data can be in any
160  * state in the journalling system.
161  *
162  * What we do is just kick off a commit and wait on it.  This will snapshot the
163  * inode to disk.
164  *
165  * i_mutex lock is held when entering and exiting this function
166  */
167 
168 int ext4_sync_file(struct file *file, int datasync)
169 {
170 	struct inode *inode = file->f_mapping->host;
171 	struct ext4_inode_info *ei = EXT4_I(inode);
172 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
173 	int ret;
174 	tid_t commit_tid;
175 	bool needs_barrier = false;
176 
177 	J_ASSERT(ext4_journal_current_handle() == NULL);
178 
179 	trace_ext4_sync_file_enter(file, datasync);
180 
181 	if (inode->i_sb->s_flags & MS_RDONLY)
182 		return 0;
183 
184 	ret = ext4_flush_completed_IO(inode);
185 	if (ret < 0)
186 		goto out;
187 
188 	if (!journal) {
189 		ret = generic_file_fsync(file, datasync);
190 		if (!ret && !list_empty(&inode->i_dentry))
191 			ret = ext4_sync_parent(inode);
192 		goto out;
193 	}
194 
195 	/*
196 	 * data=writeback,ordered:
197 	 *  The caller's filemap_fdatawrite()/wait will sync the data.
198 	 *  Metadata is in the journal, we wait for proper transaction to
199 	 *  commit here.
200 	 *
201 	 * data=journal:
202 	 *  filemap_fdatawrite won't do anything (the buffers are clean).
203 	 *  ext4_force_commit will write the file data into the journal and
204 	 *  will wait on that.
205 	 *  filemap_fdatawait() will encounter a ton of newly-dirtied pages
206 	 *  (they were dirtied by commit).  But that's OK - the blocks are
207 	 *  safe in-journal, which is all fsync() needs to ensure.
208 	 */
209 	if (ext4_should_journal_data(inode)) {
210 		ret = ext4_force_commit(inode->i_sb);
211 		goto out;
212 	}
213 
214 	commit_tid = datasync ? ei->i_datasync_tid : ei->i_sync_tid;
215 	if (journal->j_flags & JBD2_BARRIER &&
216 	    !jbd2_trans_will_send_data_barrier(journal, commit_tid))
217 		needs_barrier = true;
218 	jbd2_log_start_commit(journal, commit_tid);
219 	ret = jbd2_log_wait_commit(journal, commit_tid);
220 	if (needs_barrier)
221 		blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
222  out:
223 	trace_ext4_sync_file_exit(inode, ret);
224 	return ret;
225 }
226