1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/file.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/file.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * ext4 fs regular file handling primitives 17 * 18 * 64-bit file support on 64-bit platforms by Jakub Jelinek 19 * (jj@sunsite.ms.mff.cuni.cz) 20 */ 21 22 #include <linux/time.h> 23 #include <linux/fs.h> 24 #include <linux/iomap.h> 25 #include <linux/mount.h> 26 #include <linux/path.h> 27 #include <linux/dax.h> 28 #include <linux/quotaops.h> 29 #include <linux/pagevec.h> 30 #include <linux/uio.h> 31 #include <linux/mman.h> 32 #include <linux/backing-dev.h> 33 #include "ext4.h" 34 #include "ext4_jbd2.h" 35 #include "xattr.h" 36 #include "acl.h" 37 #include "truncate.h" 38 39 static bool ext4_dio_supported(struct inode *inode) 40 { 41 if (IS_ENABLED(CONFIG_FS_ENCRYPTION) && IS_ENCRYPTED(inode)) 42 return false; 43 if (fsverity_active(inode)) 44 return false; 45 if (ext4_should_journal_data(inode)) 46 return false; 47 if (ext4_has_inline_data(inode)) 48 return false; 49 return true; 50 } 51 52 static ssize_t ext4_dio_read_iter(struct kiocb *iocb, struct iov_iter *to) 53 { 54 ssize_t ret; 55 struct inode *inode = file_inode(iocb->ki_filp); 56 57 if (iocb->ki_flags & IOCB_NOWAIT) { 58 if (!inode_trylock_shared(inode)) 59 return -EAGAIN; 60 } else { 61 inode_lock_shared(inode); 62 } 63 64 if (!ext4_dio_supported(inode)) { 65 inode_unlock_shared(inode); 66 /* 67 * Fallback to buffered I/O if the operation being performed on 68 * the inode is not supported by direct I/O. The IOCB_DIRECT 69 * flag needs to be cleared here in order to ensure that the 70 * direct I/O path within generic_file_read_iter() is not 71 * taken. 72 */ 73 iocb->ki_flags &= ~IOCB_DIRECT; 74 return generic_file_read_iter(iocb, to); 75 } 76 77 ret = iomap_dio_rw(iocb, to, &ext4_iomap_ops, NULL, 78 is_sync_kiocb(iocb)); 79 inode_unlock_shared(inode); 80 81 file_accessed(iocb->ki_filp); 82 return ret; 83 } 84 85 #ifdef CONFIG_FS_DAX 86 static ssize_t ext4_dax_read_iter(struct kiocb *iocb, struct iov_iter *to) 87 { 88 struct inode *inode = file_inode(iocb->ki_filp); 89 ssize_t ret; 90 91 if (iocb->ki_flags & IOCB_NOWAIT) { 92 if (!inode_trylock_shared(inode)) 93 return -EAGAIN; 94 } else { 95 inode_lock_shared(inode); 96 } 97 /* 98 * Recheck under inode lock - at this point we are sure it cannot 99 * change anymore 100 */ 101 if (!IS_DAX(inode)) { 102 inode_unlock_shared(inode); 103 /* Fallback to buffered IO in case we cannot support DAX */ 104 return generic_file_read_iter(iocb, to); 105 } 106 ret = dax_iomap_rw(iocb, to, &ext4_iomap_ops); 107 inode_unlock_shared(inode); 108 109 file_accessed(iocb->ki_filp); 110 return ret; 111 } 112 #endif 113 114 static ssize_t ext4_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 115 { 116 struct inode *inode = file_inode(iocb->ki_filp); 117 118 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 119 return -EIO; 120 121 if (!iov_iter_count(to)) 122 return 0; /* skip atime */ 123 124 #ifdef CONFIG_FS_DAX 125 if (IS_DAX(inode)) 126 return ext4_dax_read_iter(iocb, to); 127 #endif 128 if (iocb->ki_flags & IOCB_DIRECT) 129 return ext4_dio_read_iter(iocb, to); 130 131 return generic_file_read_iter(iocb, to); 132 } 133 134 /* 135 * Called when an inode is released. Note that this is different 136 * from ext4_file_open: open gets called at every open, but release 137 * gets called only when /all/ the files are closed. 138 */ 139 static int ext4_release_file(struct inode *inode, struct file *filp) 140 { 141 if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) { 142 ext4_alloc_da_blocks(inode); 143 ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 144 } 145 /* if we are the last writer on the inode, drop the block reservation */ 146 if ((filp->f_mode & FMODE_WRITE) && 147 (atomic_read(&inode->i_writecount) == 1) && 148 !EXT4_I(inode)->i_reserved_data_blocks) 149 { 150 down_write(&EXT4_I(inode)->i_data_sem); 151 ext4_discard_preallocations(inode); 152 up_write(&EXT4_I(inode)->i_data_sem); 153 } 154 if (is_dx(inode) && filp->private_data) 155 ext4_htree_free_dir_info(filp->private_data); 156 157 return 0; 158 } 159 160 /* 161 * This tests whether the IO in question is block-aligned or not. 162 * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they 163 * are converted to written only after the IO is complete. Until they are 164 * mapped, these blocks appear as holes, so dio_zero_block() will assume that 165 * it needs to zero out portions of the start and/or end block. If 2 AIO 166 * threads are at work on the same unwritten block, they must be synchronized 167 * or one thread will zero the other's data, causing corruption. 168 */ 169 static bool 170 ext4_unaligned_io(struct inode *inode, struct iov_iter *from, loff_t pos) 171 { 172 struct super_block *sb = inode->i_sb; 173 unsigned long blockmask = sb->s_blocksize - 1; 174 175 if ((pos | iov_iter_alignment(from)) & blockmask) 176 return true; 177 178 return false; 179 } 180 181 static bool 182 ext4_extending_io(struct inode *inode, loff_t offset, size_t len) 183 { 184 if (offset + len > i_size_read(inode) || 185 offset + len > EXT4_I(inode)->i_disksize) 186 return true; 187 return false; 188 } 189 190 /* Is IO overwriting allocated and initialized blocks? */ 191 static bool ext4_overwrite_io(struct inode *inode, loff_t pos, loff_t len) 192 { 193 struct ext4_map_blocks map; 194 unsigned int blkbits = inode->i_blkbits; 195 int err, blklen; 196 197 if (pos + len > i_size_read(inode)) 198 return false; 199 200 map.m_lblk = pos >> blkbits; 201 map.m_len = EXT4_MAX_BLOCKS(len, pos, blkbits); 202 blklen = map.m_len; 203 204 err = ext4_map_blocks(NULL, inode, &map, 0); 205 /* 206 * 'err==len' means that all of the blocks have been preallocated, 207 * regardless of whether they have been initialized or not. To exclude 208 * unwritten extents, we need to check m_flags. 209 */ 210 return err == blklen && (map.m_flags & EXT4_MAP_MAPPED); 211 } 212 213 static ssize_t ext4_generic_write_checks(struct kiocb *iocb, 214 struct iov_iter *from) 215 { 216 struct inode *inode = file_inode(iocb->ki_filp); 217 ssize_t ret; 218 219 if (unlikely(IS_IMMUTABLE(inode))) 220 return -EPERM; 221 222 ret = generic_write_checks(iocb, from); 223 if (ret <= 0) 224 return ret; 225 226 /* 227 * If we have encountered a bitmap-format file, the size limit 228 * is smaller than s_maxbytes, which is for extent-mapped files. 229 */ 230 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 231 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 232 233 if (iocb->ki_pos >= sbi->s_bitmap_maxbytes) 234 return -EFBIG; 235 iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos); 236 } 237 238 return iov_iter_count(from); 239 } 240 241 static ssize_t ext4_write_checks(struct kiocb *iocb, struct iov_iter *from) 242 { 243 ssize_t ret, count; 244 245 count = ext4_generic_write_checks(iocb, from); 246 if (count <= 0) 247 return count; 248 249 ret = file_modified(iocb->ki_filp); 250 if (ret) 251 return ret; 252 return count; 253 } 254 255 static ssize_t ext4_buffered_write_iter(struct kiocb *iocb, 256 struct iov_iter *from) 257 { 258 ssize_t ret; 259 struct inode *inode = file_inode(iocb->ki_filp); 260 261 if (iocb->ki_flags & IOCB_NOWAIT) 262 return -EOPNOTSUPP; 263 264 inode_lock(inode); 265 ret = ext4_write_checks(iocb, from); 266 if (ret <= 0) 267 goto out; 268 269 current->backing_dev_info = inode_to_bdi(inode); 270 ret = generic_perform_write(iocb->ki_filp, from, iocb->ki_pos); 271 current->backing_dev_info = NULL; 272 273 out: 274 inode_unlock(inode); 275 if (likely(ret > 0)) { 276 iocb->ki_pos += ret; 277 ret = generic_write_sync(iocb, ret); 278 } 279 280 return ret; 281 } 282 283 static ssize_t ext4_handle_inode_extension(struct inode *inode, loff_t offset, 284 ssize_t written, size_t count) 285 { 286 handle_t *handle; 287 bool truncate = false; 288 u8 blkbits = inode->i_blkbits; 289 ext4_lblk_t written_blk, end_blk; 290 291 /* 292 * Note that EXT4_I(inode)->i_disksize can get extended up to 293 * inode->i_size while the I/O was running due to writeback of delalloc 294 * blocks. But, the code in ext4_iomap_alloc() is careful to use 295 * zeroed/unwritten extents if this is possible; thus we won't leave 296 * uninitialized blocks in a file even if we didn't succeed in writing 297 * as much as we intended. 298 */ 299 WARN_ON_ONCE(i_size_read(inode) < EXT4_I(inode)->i_disksize); 300 if (offset + count <= EXT4_I(inode)->i_disksize) { 301 /* 302 * We need to ensure that the inode is removed from the orphan 303 * list if it has been added prematurely, due to writeback of 304 * delalloc blocks. 305 */ 306 if (!list_empty(&EXT4_I(inode)->i_orphan) && inode->i_nlink) { 307 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 308 309 if (IS_ERR(handle)) { 310 ext4_orphan_del(NULL, inode); 311 return PTR_ERR(handle); 312 } 313 314 ext4_orphan_del(handle, inode); 315 ext4_journal_stop(handle); 316 } 317 318 return written; 319 } 320 321 if (written < 0) 322 goto truncate; 323 324 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 325 if (IS_ERR(handle)) { 326 written = PTR_ERR(handle); 327 goto truncate; 328 } 329 330 if (ext4_update_inode_size(inode, offset + written)) 331 ext4_mark_inode_dirty(handle, inode); 332 333 /* 334 * We may need to truncate allocated but not written blocks beyond EOF. 335 */ 336 written_blk = ALIGN(offset + written, 1 << blkbits); 337 end_blk = ALIGN(offset + count, 1 << blkbits); 338 if (written_blk < end_blk && ext4_can_truncate(inode)) 339 truncate = true; 340 341 /* 342 * Remove the inode from the orphan list if it has been extended and 343 * everything went OK. 344 */ 345 if (!truncate && inode->i_nlink) 346 ext4_orphan_del(handle, inode); 347 ext4_journal_stop(handle); 348 349 if (truncate) { 350 truncate: 351 ext4_truncate_failed_write(inode); 352 /* 353 * If the truncate operation failed early, then the inode may 354 * still be on the orphan list. In that case, we need to try 355 * remove the inode from the in-memory linked list. 356 */ 357 if (inode->i_nlink) 358 ext4_orphan_del(NULL, inode); 359 } 360 361 return written; 362 } 363 364 static int ext4_dio_write_end_io(struct kiocb *iocb, ssize_t size, 365 int error, unsigned int flags) 366 { 367 loff_t offset = iocb->ki_pos; 368 struct inode *inode = file_inode(iocb->ki_filp); 369 370 if (error) 371 return error; 372 373 if (size && flags & IOMAP_DIO_UNWRITTEN) 374 return ext4_convert_unwritten_extents(NULL, inode, 375 offset, size); 376 377 return 0; 378 } 379 380 static const struct iomap_dio_ops ext4_dio_write_ops = { 381 .end_io = ext4_dio_write_end_io, 382 }; 383 384 /* 385 * The intention here is to start with shared lock acquired then see if any 386 * condition requires an exclusive inode lock. If yes, then we restart the 387 * whole operation by releasing the shared lock and acquiring exclusive lock. 388 * 389 * - For unaligned_io we never take shared lock as it may cause data corruption 390 * when two unaligned IO tries to modify the same block e.g. while zeroing. 391 * 392 * - For extending writes case we don't take the shared lock, since it requires 393 * updating inode i_disksize and/or orphan handling with exclusive lock. 394 * 395 * - shared locking will only be true mostly with overwrites. Otherwise we will 396 * switch to exclusive i_rwsem lock. 397 */ 398 static ssize_t ext4_dio_write_checks(struct kiocb *iocb, struct iov_iter *from, 399 bool *ilock_shared, bool *extend) 400 { 401 struct file *file = iocb->ki_filp; 402 struct inode *inode = file_inode(file); 403 loff_t offset; 404 size_t count; 405 ssize_t ret; 406 407 restart: 408 ret = ext4_generic_write_checks(iocb, from); 409 if (ret <= 0) 410 goto out; 411 412 offset = iocb->ki_pos; 413 count = ret; 414 if (ext4_extending_io(inode, offset, count)) 415 *extend = true; 416 /* 417 * Determine whether the IO operation will overwrite allocated 418 * and initialized blocks. 419 * We need exclusive i_rwsem for changing security info 420 * in file_modified(). 421 */ 422 if (*ilock_shared && (!IS_NOSEC(inode) || *extend || 423 !ext4_overwrite_io(inode, offset, count))) { 424 inode_unlock_shared(inode); 425 *ilock_shared = false; 426 inode_lock(inode); 427 goto restart; 428 } 429 430 ret = file_modified(file); 431 if (ret < 0) 432 goto out; 433 434 return count; 435 out: 436 if (*ilock_shared) 437 inode_unlock_shared(inode); 438 else 439 inode_unlock(inode); 440 return ret; 441 } 442 443 static ssize_t ext4_dio_write_iter(struct kiocb *iocb, struct iov_iter *from) 444 { 445 ssize_t ret; 446 handle_t *handle; 447 struct inode *inode = file_inode(iocb->ki_filp); 448 loff_t offset = iocb->ki_pos; 449 size_t count = iov_iter_count(from); 450 const struct iomap_ops *iomap_ops = &ext4_iomap_ops; 451 bool extend = false, unaligned_io = false; 452 bool ilock_shared = true; 453 454 /* 455 * We initially start with shared inode lock unless it is 456 * unaligned IO which needs exclusive lock anyways. 457 */ 458 if (ext4_unaligned_io(inode, from, offset)) { 459 unaligned_io = true; 460 ilock_shared = false; 461 } 462 /* 463 * Quick check here without any i_rwsem lock to see if it is extending 464 * IO. A more reliable check is done in ext4_dio_write_checks() with 465 * proper locking in place. 466 */ 467 if (offset + count > i_size_read(inode)) 468 ilock_shared = false; 469 470 if (iocb->ki_flags & IOCB_NOWAIT) { 471 if (ilock_shared) { 472 if (!inode_trylock_shared(inode)) 473 return -EAGAIN; 474 } else { 475 if (!inode_trylock(inode)) 476 return -EAGAIN; 477 } 478 } else { 479 if (ilock_shared) 480 inode_lock_shared(inode); 481 else 482 inode_lock(inode); 483 } 484 485 /* Fallback to buffered I/O if the inode does not support direct I/O. */ 486 if (!ext4_dio_supported(inode)) { 487 if (ilock_shared) 488 inode_unlock_shared(inode); 489 else 490 inode_unlock(inode); 491 return ext4_buffered_write_iter(iocb, from); 492 } 493 494 ret = ext4_dio_write_checks(iocb, from, &ilock_shared, &extend); 495 if (ret <= 0) 496 return ret; 497 498 offset = iocb->ki_pos; 499 count = ret; 500 501 /* 502 * Unaligned direct IO must be serialized among each other as zeroing 503 * of partial blocks of two competing unaligned IOs can result in data 504 * corruption. 505 * 506 * So we make sure we don't allow any unaligned IO in flight. 507 * For IOs where we need not wait (like unaligned non-AIO DIO), 508 * below inode_dio_wait() may anyway become a no-op, since we start 509 * with exclusive lock. 510 */ 511 if (unaligned_io) 512 inode_dio_wait(inode); 513 514 if (extend) { 515 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 516 if (IS_ERR(handle)) { 517 ret = PTR_ERR(handle); 518 goto out; 519 } 520 521 ret = ext4_orphan_add(handle, inode); 522 if (ret) { 523 ext4_journal_stop(handle); 524 goto out; 525 } 526 527 ext4_journal_stop(handle); 528 } 529 530 if (ilock_shared) 531 iomap_ops = &ext4_iomap_overwrite_ops; 532 ret = iomap_dio_rw(iocb, from, iomap_ops, &ext4_dio_write_ops, 533 is_sync_kiocb(iocb) || unaligned_io || extend); 534 535 if (extend) 536 ret = ext4_handle_inode_extension(inode, offset, ret, count); 537 538 out: 539 if (ilock_shared) 540 inode_unlock_shared(inode); 541 else 542 inode_unlock(inode); 543 544 if (ret >= 0 && iov_iter_count(from)) { 545 ssize_t err; 546 loff_t endbyte; 547 548 offset = iocb->ki_pos; 549 err = ext4_buffered_write_iter(iocb, from); 550 if (err < 0) 551 return err; 552 553 /* 554 * We need to ensure that the pages within the page cache for 555 * the range covered by this I/O are written to disk and 556 * invalidated. This is in attempt to preserve the expected 557 * direct I/O semantics in the case we fallback to buffered I/O 558 * to complete off the I/O request. 559 */ 560 ret += err; 561 endbyte = offset + err - 1; 562 err = filemap_write_and_wait_range(iocb->ki_filp->f_mapping, 563 offset, endbyte); 564 if (!err) 565 invalidate_mapping_pages(iocb->ki_filp->f_mapping, 566 offset >> PAGE_SHIFT, 567 endbyte >> PAGE_SHIFT); 568 } 569 570 return ret; 571 } 572 573 #ifdef CONFIG_FS_DAX 574 static ssize_t 575 ext4_dax_write_iter(struct kiocb *iocb, struct iov_iter *from) 576 { 577 ssize_t ret; 578 size_t count; 579 loff_t offset; 580 handle_t *handle; 581 bool extend = false; 582 struct inode *inode = file_inode(iocb->ki_filp); 583 584 if (iocb->ki_flags & IOCB_NOWAIT) { 585 if (!inode_trylock(inode)) 586 return -EAGAIN; 587 } else { 588 inode_lock(inode); 589 } 590 591 ret = ext4_write_checks(iocb, from); 592 if (ret <= 0) 593 goto out; 594 595 offset = iocb->ki_pos; 596 count = iov_iter_count(from); 597 598 if (offset + count > EXT4_I(inode)->i_disksize) { 599 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 600 if (IS_ERR(handle)) { 601 ret = PTR_ERR(handle); 602 goto out; 603 } 604 605 ret = ext4_orphan_add(handle, inode); 606 if (ret) { 607 ext4_journal_stop(handle); 608 goto out; 609 } 610 611 extend = true; 612 ext4_journal_stop(handle); 613 } 614 615 ret = dax_iomap_rw(iocb, from, &ext4_iomap_ops); 616 617 if (extend) 618 ret = ext4_handle_inode_extension(inode, offset, ret, count); 619 out: 620 inode_unlock(inode); 621 if (ret > 0) 622 ret = generic_write_sync(iocb, ret); 623 return ret; 624 } 625 #endif 626 627 static ssize_t 628 ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 629 { 630 struct inode *inode = file_inode(iocb->ki_filp); 631 632 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 633 return -EIO; 634 635 #ifdef CONFIG_FS_DAX 636 if (IS_DAX(inode)) 637 return ext4_dax_write_iter(iocb, from); 638 #endif 639 if (iocb->ki_flags & IOCB_DIRECT) 640 return ext4_dio_write_iter(iocb, from); 641 642 return ext4_buffered_write_iter(iocb, from); 643 } 644 645 #ifdef CONFIG_FS_DAX 646 static vm_fault_t ext4_dax_huge_fault(struct vm_fault *vmf, 647 enum page_entry_size pe_size) 648 { 649 int error = 0; 650 vm_fault_t result; 651 int retries = 0; 652 handle_t *handle = NULL; 653 struct inode *inode = file_inode(vmf->vma->vm_file); 654 struct super_block *sb = inode->i_sb; 655 656 /* 657 * We have to distinguish real writes from writes which will result in a 658 * COW page; COW writes should *not* poke the journal (the file will not 659 * be changed). Doing so would cause unintended failures when mounted 660 * read-only. 661 * 662 * We check for VM_SHARED rather than vmf->cow_page since the latter is 663 * unset for pe_size != PE_SIZE_PTE (i.e. only in do_cow_fault); for 664 * other sizes, dax_iomap_fault will handle splitting / fallback so that 665 * we eventually come back with a COW page. 666 */ 667 bool write = (vmf->flags & FAULT_FLAG_WRITE) && 668 (vmf->vma->vm_flags & VM_SHARED); 669 pfn_t pfn; 670 671 if (write) { 672 sb_start_pagefault(sb); 673 file_update_time(vmf->vma->vm_file); 674 down_read(&EXT4_I(inode)->i_mmap_sem); 675 retry: 676 handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE, 677 EXT4_DATA_TRANS_BLOCKS(sb)); 678 if (IS_ERR(handle)) { 679 up_read(&EXT4_I(inode)->i_mmap_sem); 680 sb_end_pagefault(sb); 681 return VM_FAULT_SIGBUS; 682 } 683 } else { 684 down_read(&EXT4_I(inode)->i_mmap_sem); 685 } 686 result = dax_iomap_fault(vmf, pe_size, &pfn, &error, &ext4_iomap_ops); 687 if (write) { 688 ext4_journal_stop(handle); 689 690 if ((result & VM_FAULT_ERROR) && error == -ENOSPC && 691 ext4_should_retry_alloc(sb, &retries)) 692 goto retry; 693 /* Handling synchronous page fault? */ 694 if (result & VM_FAULT_NEEDDSYNC) 695 result = dax_finish_sync_fault(vmf, pe_size, pfn); 696 up_read(&EXT4_I(inode)->i_mmap_sem); 697 sb_end_pagefault(sb); 698 } else { 699 up_read(&EXT4_I(inode)->i_mmap_sem); 700 } 701 702 return result; 703 } 704 705 static vm_fault_t ext4_dax_fault(struct vm_fault *vmf) 706 { 707 return ext4_dax_huge_fault(vmf, PE_SIZE_PTE); 708 } 709 710 static const struct vm_operations_struct ext4_dax_vm_ops = { 711 .fault = ext4_dax_fault, 712 .huge_fault = ext4_dax_huge_fault, 713 .page_mkwrite = ext4_dax_fault, 714 .pfn_mkwrite = ext4_dax_fault, 715 }; 716 #else 717 #define ext4_dax_vm_ops ext4_file_vm_ops 718 #endif 719 720 static const struct vm_operations_struct ext4_file_vm_ops = { 721 .fault = ext4_filemap_fault, 722 .map_pages = filemap_map_pages, 723 .page_mkwrite = ext4_page_mkwrite, 724 }; 725 726 static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma) 727 { 728 struct inode *inode = file->f_mapping->host; 729 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 730 struct dax_device *dax_dev = sbi->s_daxdev; 731 732 if (unlikely(ext4_forced_shutdown(sbi))) 733 return -EIO; 734 735 /* 736 * We don't support synchronous mappings for non-DAX files and 737 * for DAX files if underneath dax_device is not synchronous. 738 */ 739 if (!daxdev_mapping_supported(vma, dax_dev)) 740 return -EOPNOTSUPP; 741 742 file_accessed(file); 743 if (IS_DAX(file_inode(file))) { 744 vma->vm_ops = &ext4_dax_vm_ops; 745 vma->vm_flags |= VM_HUGEPAGE; 746 } else { 747 vma->vm_ops = &ext4_file_vm_ops; 748 } 749 return 0; 750 } 751 752 static int ext4_sample_last_mounted(struct super_block *sb, 753 struct vfsmount *mnt) 754 { 755 struct ext4_sb_info *sbi = EXT4_SB(sb); 756 struct path path; 757 char buf[64], *cp; 758 handle_t *handle; 759 int err; 760 761 if (likely(sbi->s_mount_flags & EXT4_MF_MNTDIR_SAMPLED)) 762 return 0; 763 764 if (sb_rdonly(sb) || !sb_start_intwrite_trylock(sb)) 765 return 0; 766 767 sbi->s_mount_flags |= EXT4_MF_MNTDIR_SAMPLED; 768 /* 769 * Sample where the filesystem has been mounted and 770 * store it in the superblock for sysadmin convenience 771 * when trying to sort through large numbers of block 772 * devices or filesystem images. 773 */ 774 memset(buf, 0, sizeof(buf)); 775 path.mnt = mnt; 776 path.dentry = mnt->mnt_root; 777 cp = d_path(&path, buf, sizeof(buf)); 778 err = 0; 779 if (IS_ERR(cp)) 780 goto out; 781 782 handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1); 783 err = PTR_ERR(handle); 784 if (IS_ERR(handle)) 785 goto out; 786 BUFFER_TRACE(sbi->s_sbh, "get_write_access"); 787 err = ext4_journal_get_write_access(handle, sbi->s_sbh); 788 if (err) 789 goto out_journal; 790 strlcpy(sbi->s_es->s_last_mounted, cp, 791 sizeof(sbi->s_es->s_last_mounted)); 792 ext4_handle_dirty_super(handle, sb); 793 out_journal: 794 ext4_journal_stop(handle); 795 out: 796 sb_end_intwrite(sb); 797 return err; 798 } 799 800 static int ext4_file_open(struct inode * inode, struct file * filp) 801 { 802 int ret; 803 804 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 805 return -EIO; 806 807 ret = ext4_sample_last_mounted(inode->i_sb, filp->f_path.mnt); 808 if (ret) 809 return ret; 810 811 ret = fscrypt_file_open(inode, filp); 812 if (ret) 813 return ret; 814 815 ret = fsverity_file_open(inode, filp); 816 if (ret) 817 return ret; 818 819 /* 820 * Set up the jbd2_inode if we are opening the inode for 821 * writing and the journal is present 822 */ 823 if (filp->f_mode & FMODE_WRITE) { 824 ret = ext4_inode_attach_jinode(inode); 825 if (ret < 0) 826 return ret; 827 } 828 829 filp->f_mode |= FMODE_NOWAIT; 830 return dquot_file_open(inode, filp); 831 } 832 833 /* 834 * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values 835 * by calling generic_file_llseek_size() with the appropriate maxbytes 836 * value for each. 837 */ 838 loff_t ext4_llseek(struct file *file, loff_t offset, int whence) 839 { 840 struct inode *inode = file->f_mapping->host; 841 loff_t maxbytes; 842 843 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 844 maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes; 845 else 846 maxbytes = inode->i_sb->s_maxbytes; 847 848 switch (whence) { 849 default: 850 return generic_file_llseek_size(file, offset, whence, 851 maxbytes, i_size_read(inode)); 852 case SEEK_HOLE: 853 inode_lock_shared(inode); 854 offset = iomap_seek_hole(inode, offset, 855 &ext4_iomap_report_ops); 856 inode_unlock_shared(inode); 857 break; 858 case SEEK_DATA: 859 inode_lock_shared(inode); 860 offset = iomap_seek_data(inode, offset, 861 &ext4_iomap_report_ops); 862 inode_unlock_shared(inode); 863 break; 864 } 865 866 if (offset < 0) 867 return offset; 868 return vfs_setpos(file, offset, maxbytes); 869 } 870 871 const struct file_operations ext4_file_operations = { 872 .llseek = ext4_llseek, 873 .read_iter = ext4_file_read_iter, 874 .write_iter = ext4_file_write_iter, 875 .unlocked_ioctl = ext4_ioctl, 876 #ifdef CONFIG_COMPAT 877 .compat_ioctl = ext4_compat_ioctl, 878 #endif 879 .mmap = ext4_file_mmap, 880 .mmap_supported_flags = MAP_SYNC, 881 .open = ext4_file_open, 882 .release = ext4_release_file, 883 .fsync = ext4_sync_file, 884 .get_unmapped_area = thp_get_unmapped_area, 885 .splice_read = generic_file_splice_read, 886 .splice_write = iter_file_splice_write, 887 .fallocate = ext4_fallocate, 888 }; 889 890 const struct inode_operations ext4_file_inode_operations = { 891 .setattr = ext4_setattr, 892 .getattr = ext4_file_getattr, 893 .listxattr = ext4_listxattr, 894 .get_acl = ext4_get_acl, 895 .set_acl = ext4_set_acl, 896 .fiemap = ext4_fiemap, 897 }; 898 899