xref: /openbmc/linux/fs/ext4/file.c (revision f97cee494dc92395a668445bcd24d34c89f4ff8c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/file.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/file.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  ext4 fs regular file handling primitives
17  *
18  *  64-bit file support on 64-bit platforms by Jakub Jelinek
19  *	(jj@sunsite.ms.mff.cuni.cz)
20  */
21 
22 #include <linux/time.h>
23 #include <linux/fs.h>
24 #include <linux/iomap.h>
25 #include <linux/mount.h>
26 #include <linux/path.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/pagevec.h>
30 #include <linux/uio.h>
31 #include <linux/mman.h>
32 #include <linux/backing-dev.h>
33 #include "ext4.h"
34 #include "ext4_jbd2.h"
35 #include "xattr.h"
36 #include "acl.h"
37 #include "truncate.h"
38 
39 static bool ext4_dio_supported(struct inode *inode)
40 {
41 	if (IS_ENABLED(CONFIG_FS_ENCRYPTION) && IS_ENCRYPTED(inode))
42 		return false;
43 	if (fsverity_active(inode))
44 		return false;
45 	if (ext4_should_journal_data(inode))
46 		return false;
47 	if (ext4_has_inline_data(inode))
48 		return false;
49 	return true;
50 }
51 
52 static ssize_t ext4_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
53 {
54 	ssize_t ret;
55 	struct inode *inode = file_inode(iocb->ki_filp);
56 
57 	if (iocb->ki_flags & IOCB_NOWAIT) {
58 		if (!inode_trylock_shared(inode))
59 			return -EAGAIN;
60 	} else {
61 		inode_lock_shared(inode);
62 	}
63 
64 	if (!ext4_dio_supported(inode)) {
65 		inode_unlock_shared(inode);
66 		/*
67 		 * Fallback to buffered I/O if the operation being performed on
68 		 * the inode is not supported by direct I/O. The IOCB_DIRECT
69 		 * flag needs to be cleared here in order to ensure that the
70 		 * direct I/O path within generic_file_read_iter() is not
71 		 * taken.
72 		 */
73 		iocb->ki_flags &= ~IOCB_DIRECT;
74 		return generic_file_read_iter(iocb, to);
75 	}
76 
77 	ret = iomap_dio_rw(iocb, to, &ext4_iomap_ops, NULL,
78 			   is_sync_kiocb(iocb));
79 	inode_unlock_shared(inode);
80 
81 	file_accessed(iocb->ki_filp);
82 	return ret;
83 }
84 
85 #ifdef CONFIG_FS_DAX
86 static ssize_t ext4_dax_read_iter(struct kiocb *iocb, struct iov_iter *to)
87 {
88 	struct inode *inode = file_inode(iocb->ki_filp);
89 	ssize_t ret;
90 
91 	if (iocb->ki_flags & IOCB_NOWAIT) {
92 		if (!inode_trylock_shared(inode))
93 			return -EAGAIN;
94 	} else {
95 		inode_lock_shared(inode);
96 	}
97 	/*
98 	 * Recheck under inode lock - at this point we are sure it cannot
99 	 * change anymore
100 	 */
101 	if (!IS_DAX(inode)) {
102 		inode_unlock_shared(inode);
103 		/* Fallback to buffered IO in case we cannot support DAX */
104 		return generic_file_read_iter(iocb, to);
105 	}
106 	ret = dax_iomap_rw(iocb, to, &ext4_iomap_ops);
107 	inode_unlock_shared(inode);
108 
109 	file_accessed(iocb->ki_filp);
110 	return ret;
111 }
112 #endif
113 
114 static ssize_t ext4_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
115 {
116 	struct inode *inode = file_inode(iocb->ki_filp);
117 
118 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
119 		return -EIO;
120 
121 	if (!iov_iter_count(to))
122 		return 0; /* skip atime */
123 
124 #ifdef CONFIG_FS_DAX
125 	if (IS_DAX(inode))
126 		return ext4_dax_read_iter(iocb, to);
127 #endif
128 	if (iocb->ki_flags & IOCB_DIRECT)
129 		return ext4_dio_read_iter(iocb, to);
130 
131 	return generic_file_read_iter(iocb, to);
132 }
133 
134 /*
135  * Called when an inode is released. Note that this is different
136  * from ext4_file_open: open gets called at every open, but release
137  * gets called only when /all/ the files are closed.
138  */
139 static int ext4_release_file(struct inode *inode, struct file *filp)
140 {
141 	if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) {
142 		ext4_alloc_da_blocks(inode);
143 		ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
144 	}
145 	/* if we are the last writer on the inode, drop the block reservation */
146 	if ((filp->f_mode & FMODE_WRITE) &&
147 			(atomic_read(&inode->i_writecount) == 1) &&
148 			!EXT4_I(inode)->i_reserved_data_blocks) {
149 		down_write(&EXT4_I(inode)->i_data_sem);
150 		ext4_discard_preallocations(inode, 0);
151 		up_write(&EXT4_I(inode)->i_data_sem);
152 	}
153 	if (is_dx(inode) && filp->private_data)
154 		ext4_htree_free_dir_info(filp->private_data);
155 
156 	return 0;
157 }
158 
159 /*
160  * This tests whether the IO in question is block-aligned or not.
161  * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
162  * are converted to written only after the IO is complete.  Until they are
163  * mapped, these blocks appear as holes, so dio_zero_block() will assume that
164  * it needs to zero out portions of the start and/or end block.  If 2 AIO
165  * threads are at work on the same unwritten block, they must be synchronized
166  * or one thread will zero the other's data, causing corruption.
167  */
168 static bool
169 ext4_unaligned_io(struct inode *inode, struct iov_iter *from, loff_t pos)
170 {
171 	struct super_block *sb = inode->i_sb;
172 	unsigned long blockmask = sb->s_blocksize - 1;
173 
174 	if ((pos | iov_iter_alignment(from)) & blockmask)
175 		return true;
176 
177 	return false;
178 }
179 
180 static bool
181 ext4_extending_io(struct inode *inode, loff_t offset, size_t len)
182 {
183 	if (offset + len > i_size_read(inode) ||
184 	    offset + len > EXT4_I(inode)->i_disksize)
185 		return true;
186 	return false;
187 }
188 
189 /* Is IO overwriting allocated and initialized blocks? */
190 static bool ext4_overwrite_io(struct inode *inode, loff_t pos, loff_t len)
191 {
192 	struct ext4_map_blocks map;
193 	unsigned int blkbits = inode->i_blkbits;
194 	int err, blklen;
195 
196 	if (pos + len > i_size_read(inode))
197 		return false;
198 
199 	map.m_lblk = pos >> blkbits;
200 	map.m_len = EXT4_MAX_BLOCKS(len, pos, blkbits);
201 	blklen = map.m_len;
202 
203 	err = ext4_map_blocks(NULL, inode, &map, 0);
204 	/*
205 	 * 'err==len' means that all of the blocks have been preallocated,
206 	 * regardless of whether they have been initialized or not. To exclude
207 	 * unwritten extents, we need to check m_flags.
208 	 */
209 	return err == blklen && (map.m_flags & EXT4_MAP_MAPPED);
210 }
211 
212 static ssize_t ext4_generic_write_checks(struct kiocb *iocb,
213 					 struct iov_iter *from)
214 {
215 	struct inode *inode = file_inode(iocb->ki_filp);
216 	ssize_t ret;
217 
218 	if (unlikely(IS_IMMUTABLE(inode)))
219 		return -EPERM;
220 
221 	ret = generic_write_checks(iocb, from);
222 	if (ret <= 0)
223 		return ret;
224 
225 	/*
226 	 * If we have encountered a bitmap-format file, the size limit
227 	 * is smaller than s_maxbytes, which is for extent-mapped files.
228 	 */
229 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
230 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
231 
232 		if (iocb->ki_pos >= sbi->s_bitmap_maxbytes)
233 			return -EFBIG;
234 		iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos);
235 	}
236 
237 	return iov_iter_count(from);
238 }
239 
240 static ssize_t ext4_write_checks(struct kiocb *iocb, struct iov_iter *from)
241 {
242 	ssize_t ret, count;
243 
244 	count = ext4_generic_write_checks(iocb, from);
245 	if (count <= 0)
246 		return count;
247 
248 	ret = file_modified(iocb->ki_filp);
249 	if (ret)
250 		return ret;
251 	return count;
252 }
253 
254 static ssize_t ext4_buffered_write_iter(struct kiocb *iocb,
255 					struct iov_iter *from)
256 {
257 	ssize_t ret;
258 	struct inode *inode = file_inode(iocb->ki_filp);
259 
260 	if (iocb->ki_flags & IOCB_NOWAIT)
261 		return -EOPNOTSUPP;
262 
263 	inode_lock(inode);
264 	ret = ext4_write_checks(iocb, from);
265 	if (ret <= 0)
266 		goto out;
267 
268 	current->backing_dev_info = inode_to_bdi(inode);
269 	ret = generic_perform_write(iocb->ki_filp, from, iocb->ki_pos);
270 	current->backing_dev_info = NULL;
271 
272 out:
273 	inode_unlock(inode);
274 	if (likely(ret > 0)) {
275 		iocb->ki_pos += ret;
276 		ret = generic_write_sync(iocb, ret);
277 	}
278 
279 	return ret;
280 }
281 
282 static ssize_t ext4_handle_inode_extension(struct inode *inode, loff_t offset,
283 					   ssize_t written, size_t count)
284 {
285 	handle_t *handle;
286 	bool truncate = false;
287 	u8 blkbits = inode->i_blkbits;
288 	ext4_lblk_t written_blk, end_blk;
289 	int ret;
290 
291 	/*
292 	 * Note that EXT4_I(inode)->i_disksize can get extended up to
293 	 * inode->i_size while the I/O was running due to writeback of delalloc
294 	 * blocks. But, the code in ext4_iomap_alloc() is careful to use
295 	 * zeroed/unwritten extents if this is possible; thus we won't leave
296 	 * uninitialized blocks in a file even if we didn't succeed in writing
297 	 * as much as we intended.
298 	 */
299 	WARN_ON_ONCE(i_size_read(inode) < EXT4_I(inode)->i_disksize);
300 	if (offset + count <= EXT4_I(inode)->i_disksize) {
301 		/*
302 		 * We need to ensure that the inode is removed from the orphan
303 		 * list if it has been added prematurely, due to writeback of
304 		 * delalloc blocks.
305 		 */
306 		if (!list_empty(&EXT4_I(inode)->i_orphan) && inode->i_nlink) {
307 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
308 
309 			if (IS_ERR(handle)) {
310 				ext4_orphan_del(NULL, inode);
311 				return PTR_ERR(handle);
312 			}
313 
314 			ext4_orphan_del(handle, inode);
315 			ext4_journal_stop(handle);
316 		}
317 
318 		return written;
319 	}
320 
321 	if (written < 0)
322 		goto truncate;
323 
324 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
325 	if (IS_ERR(handle)) {
326 		written = PTR_ERR(handle);
327 		goto truncate;
328 	}
329 
330 	if (ext4_update_inode_size(inode, offset + written)) {
331 		ret = ext4_mark_inode_dirty(handle, inode);
332 		if (unlikely(ret)) {
333 			written = ret;
334 			ext4_journal_stop(handle);
335 			goto truncate;
336 		}
337 	}
338 
339 	/*
340 	 * We may need to truncate allocated but not written blocks beyond EOF.
341 	 */
342 	written_blk = ALIGN(offset + written, 1 << blkbits);
343 	end_blk = ALIGN(offset + count, 1 << blkbits);
344 	if (written_blk < end_blk && ext4_can_truncate(inode))
345 		truncate = true;
346 
347 	/*
348 	 * Remove the inode from the orphan list if it has been extended and
349 	 * everything went OK.
350 	 */
351 	if (!truncate && inode->i_nlink)
352 		ext4_orphan_del(handle, inode);
353 	ext4_journal_stop(handle);
354 
355 	if (truncate) {
356 truncate:
357 		ext4_truncate_failed_write(inode);
358 		/*
359 		 * If the truncate operation failed early, then the inode may
360 		 * still be on the orphan list. In that case, we need to try
361 		 * remove the inode from the in-memory linked list.
362 		 */
363 		if (inode->i_nlink)
364 			ext4_orphan_del(NULL, inode);
365 	}
366 
367 	return written;
368 }
369 
370 static int ext4_dio_write_end_io(struct kiocb *iocb, ssize_t size,
371 				 int error, unsigned int flags)
372 {
373 	loff_t offset = iocb->ki_pos;
374 	struct inode *inode = file_inode(iocb->ki_filp);
375 
376 	if (error)
377 		return error;
378 
379 	if (size && flags & IOMAP_DIO_UNWRITTEN)
380 		return ext4_convert_unwritten_extents(NULL, inode,
381 						      offset, size);
382 
383 	return 0;
384 }
385 
386 static const struct iomap_dio_ops ext4_dio_write_ops = {
387 	.end_io = ext4_dio_write_end_io,
388 };
389 
390 /*
391  * The intention here is to start with shared lock acquired then see if any
392  * condition requires an exclusive inode lock. If yes, then we restart the
393  * whole operation by releasing the shared lock and acquiring exclusive lock.
394  *
395  * - For unaligned_io we never take shared lock as it may cause data corruption
396  *   when two unaligned IO tries to modify the same block e.g. while zeroing.
397  *
398  * - For extending writes case we don't take the shared lock, since it requires
399  *   updating inode i_disksize and/or orphan handling with exclusive lock.
400  *
401  * - shared locking will only be true mostly with overwrites. Otherwise we will
402  *   switch to exclusive i_rwsem lock.
403  */
404 static ssize_t ext4_dio_write_checks(struct kiocb *iocb, struct iov_iter *from,
405 				     bool *ilock_shared, bool *extend)
406 {
407 	struct file *file = iocb->ki_filp;
408 	struct inode *inode = file_inode(file);
409 	loff_t offset;
410 	size_t count;
411 	ssize_t ret;
412 
413 restart:
414 	ret = ext4_generic_write_checks(iocb, from);
415 	if (ret <= 0)
416 		goto out;
417 
418 	offset = iocb->ki_pos;
419 	count = ret;
420 	if (ext4_extending_io(inode, offset, count))
421 		*extend = true;
422 	/*
423 	 * Determine whether the IO operation will overwrite allocated
424 	 * and initialized blocks.
425 	 * We need exclusive i_rwsem for changing security info
426 	 * in file_modified().
427 	 */
428 	if (*ilock_shared && (!IS_NOSEC(inode) || *extend ||
429 	     !ext4_overwrite_io(inode, offset, count))) {
430 		if (iocb->ki_flags & IOCB_NOWAIT) {
431 			ret = -EAGAIN;
432 			goto out;
433 		}
434 		inode_unlock_shared(inode);
435 		*ilock_shared = false;
436 		inode_lock(inode);
437 		goto restart;
438 	}
439 
440 	ret = file_modified(file);
441 	if (ret < 0)
442 		goto out;
443 
444 	return count;
445 out:
446 	if (*ilock_shared)
447 		inode_unlock_shared(inode);
448 	else
449 		inode_unlock(inode);
450 	return ret;
451 }
452 
453 static ssize_t ext4_dio_write_iter(struct kiocb *iocb, struct iov_iter *from)
454 {
455 	ssize_t ret;
456 	handle_t *handle;
457 	struct inode *inode = file_inode(iocb->ki_filp);
458 	loff_t offset = iocb->ki_pos;
459 	size_t count = iov_iter_count(from);
460 	const struct iomap_ops *iomap_ops = &ext4_iomap_ops;
461 	bool extend = false, unaligned_io = false;
462 	bool ilock_shared = true;
463 
464 	/*
465 	 * We initially start with shared inode lock unless it is
466 	 * unaligned IO which needs exclusive lock anyways.
467 	 */
468 	if (ext4_unaligned_io(inode, from, offset)) {
469 		unaligned_io = true;
470 		ilock_shared = false;
471 	}
472 	/*
473 	 * Quick check here without any i_rwsem lock to see if it is extending
474 	 * IO. A more reliable check is done in ext4_dio_write_checks() with
475 	 * proper locking in place.
476 	 */
477 	if (offset + count > i_size_read(inode))
478 		ilock_shared = false;
479 
480 	if (iocb->ki_flags & IOCB_NOWAIT) {
481 		if (ilock_shared) {
482 			if (!inode_trylock_shared(inode))
483 				return -EAGAIN;
484 		} else {
485 			if (!inode_trylock(inode))
486 				return -EAGAIN;
487 		}
488 	} else {
489 		if (ilock_shared)
490 			inode_lock_shared(inode);
491 		else
492 			inode_lock(inode);
493 	}
494 
495 	/* Fallback to buffered I/O if the inode does not support direct I/O. */
496 	if (!ext4_dio_supported(inode)) {
497 		if (ilock_shared)
498 			inode_unlock_shared(inode);
499 		else
500 			inode_unlock(inode);
501 		return ext4_buffered_write_iter(iocb, from);
502 	}
503 
504 	ret = ext4_dio_write_checks(iocb, from, &ilock_shared, &extend);
505 	if (ret <= 0)
506 		return ret;
507 
508 	/* if we're going to block and IOCB_NOWAIT is set, return -EAGAIN */
509 	if ((iocb->ki_flags & IOCB_NOWAIT) && (unaligned_io || extend)) {
510 		ret = -EAGAIN;
511 		goto out;
512 	}
513 
514 	offset = iocb->ki_pos;
515 	count = ret;
516 
517 	/*
518 	 * Unaligned direct IO must be serialized among each other as zeroing
519 	 * of partial blocks of two competing unaligned IOs can result in data
520 	 * corruption.
521 	 *
522 	 * So we make sure we don't allow any unaligned IO in flight.
523 	 * For IOs where we need not wait (like unaligned non-AIO DIO),
524 	 * below inode_dio_wait() may anyway become a no-op, since we start
525 	 * with exclusive lock.
526 	 */
527 	if (unaligned_io)
528 		inode_dio_wait(inode);
529 
530 	if (extend) {
531 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
532 		if (IS_ERR(handle)) {
533 			ret = PTR_ERR(handle);
534 			goto out;
535 		}
536 
537 		ret = ext4_orphan_add(handle, inode);
538 		if (ret) {
539 			ext4_journal_stop(handle);
540 			goto out;
541 		}
542 
543 		ext4_journal_stop(handle);
544 	}
545 
546 	if (ilock_shared)
547 		iomap_ops = &ext4_iomap_overwrite_ops;
548 	ret = iomap_dio_rw(iocb, from, iomap_ops, &ext4_dio_write_ops,
549 			   is_sync_kiocb(iocb) || unaligned_io || extend);
550 	if (ret == -ENOTBLK)
551 		ret = 0;
552 
553 	if (extend)
554 		ret = ext4_handle_inode_extension(inode, offset, ret, count);
555 
556 out:
557 	if (ilock_shared)
558 		inode_unlock_shared(inode);
559 	else
560 		inode_unlock(inode);
561 
562 	if (ret >= 0 && iov_iter_count(from)) {
563 		ssize_t err;
564 		loff_t endbyte;
565 
566 		offset = iocb->ki_pos;
567 		err = ext4_buffered_write_iter(iocb, from);
568 		if (err < 0)
569 			return err;
570 
571 		/*
572 		 * We need to ensure that the pages within the page cache for
573 		 * the range covered by this I/O are written to disk and
574 		 * invalidated. This is in attempt to preserve the expected
575 		 * direct I/O semantics in the case we fallback to buffered I/O
576 		 * to complete off the I/O request.
577 		 */
578 		ret += err;
579 		endbyte = offset + err - 1;
580 		err = filemap_write_and_wait_range(iocb->ki_filp->f_mapping,
581 						   offset, endbyte);
582 		if (!err)
583 			invalidate_mapping_pages(iocb->ki_filp->f_mapping,
584 						 offset >> PAGE_SHIFT,
585 						 endbyte >> PAGE_SHIFT);
586 	}
587 
588 	return ret;
589 }
590 
591 #ifdef CONFIG_FS_DAX
592 static ssize_t
593 ext4_dax_write_iter(struct kiocb *iocb, struct iov_iter *from)
594 {
595 	ssize_t ret;
596 	size_t count;
597 	loff_t offset;
598 	handle_t *handle;
599 	bool extend = false;
600 	struct inode *inode = file_inode(iocb->ki_filp);
601 
602 	if (iocb->ki_flags & IOCB_NOWAIT) {
603 		if (!inode_trylock(inode))
604 			return -EAGAIN;
605 	} else {
606 		inode_lock(inode);
607 	}
608 
609 	ret = ext4_write_checks(iocb, from);
610 	if (ret <= 0)
611 		goto out;
612 
613 	offset = iocb->ki_pos;
614 	count = iov_iter_count(from);
615 
616 	if (offset + count > EXT4_I(inode)->i_disksize) {
617 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
618 		if (IS_ERR(handle)) {
619 			ret = PTR_ERR(handle);
620 			goto out;
621 		}
622 
623 		ret = ext4_orphan_add(handle, inode);
624 		if (ret) {
625 			ext4_journal_stop(handle);
626 			goto out;
627 		}
628 
629 		extend = true;
630 		ext4_journal_stop(handle);
631 	}
632 
633 	ret = dax_iomap_rw(iocb, from, &ext4_iomap_ops);
634 
635 	if (extend)
636 		ret = ext4_handle_inode_extension(inode, offset, ret, count);
637 out:
638 	inode_unlock(inode);
639 	if (ret > 0)
640 		ret = generic_write_sync(iocb, ret);
641 	return ret;
642 }
643 #endif
644 
645 static ssize_t
646 ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
647 {
648 	struct inode *inode = file_inode(iocb->ki_filp);
649 
650 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
651 		return -EIO;
652 
653 #ifdef CONFIG_FS_DAX
654 	if (IS_DAX(inode))
655 		return ext4_dax_write_iter(iocb, from);
656 #endif
657 	if (iocb->ki_flags & IOCB_DIRECT)
658 		return ext4_dio_write_iter(iocb, from);
659 
660 	return ext4_buffered_write_iter(iocb, from);
661 }
662 
663 #ifdef CONFIG_FS_DAX
664 static vm_fault_t ext4_dax_huge_fault(struct vm_fault *vmf,
665 		enum page_entry_size pe_size)
666 {
667 	int error = 0;
668 	vm_fault_t result;
669 	int retries = 0;
670 	handle_t *handle = NULL;
671 	struct inode *inode = file_inode(vmf->vma->vm_file);
672 	struct super_block *sb = inode->i_sb;
673 
674 	/*
675 	 * We have to distinguish real writes from writes which will result in a
676 	 * COW page; COW writes should *not* poke the journal (the file will not
677 	 * be changed). Doing so would cause unintended failures when mounted
678 	 * read-only.
679 	 *
680 	 * We check for VM_SHARED rather than vmf->cow_page since the latter is
681 	 * unset for pe_size != PE_SIZE_PTE (i.e. only in do_cow_fault); for
682 	 * other sizes, dax_iomap_fault will handle splitting / fallback so that
683 	 * we eventually come back with a COW page.
684 	 */
685 	bool write = (vmf->flags & FAULT_FLAG_WRITE) &&
686 		(vmf->vma->vm_flags & VM_SHARED);
687 	pfn_t pfn;
688 
689 	if (write) {
690 		sb_start_pagefault(sb);
691 		file_update_time(vmf->vma->vm_file);
692 		down_read(&EXT4_I(inode)->i_mmap_sem);
693 retry:
694 		handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE,
695 					       EXT4_DATA_TRANS_BLOCKS(sb));
696 		if (IS_ERR(handle)) {
697 			up_read(&EXT4_I(inode)->i_mmap_sem);
698 			sb_end_pagefault(sb);
699 			return VM_FAULT_SIGBUS;
700 		}
701 	} else {
702 		down_read(&EXT4_I(inode)->i_mmap_sem);
703 	}
704 	result = dax_iomap_fault(vmf, pe_size, &pfn, &error, &ext4_iomap_ops);
705 	if (write) {
706 		ext4_journal_stop(handle);
707 
708 		if ((result & VM_FAULT_ERROR) && error == -ENOSPC &&
709 		    ext4_should_retry_alloc(sb, &retries))
710 			goto retry;
711 		/* Handling synchronous page fault? */
712 		if (result & VM_FAULT_NEEDDSYNC)
713 			result = dax_finish_sync_fault(vmf, pe_size, pfn);
714 		up_read(&EXT4_I(inode)->i_mmap_sem);
715 		sb_end_pagefault(sb);
716 	} else {
717 		up_read(&EXT4_I(inode)->i_mmap_sem);
718 	}
719 
720 	return result;
721 }
722 
723 static vm_fault_t ext4_dax_fault(struct vm_fault *vmf)
724 {
725 	return ext4_dax_huge_fault(vmf, PE_SIZE_PTE);
726 }
727 
728 static const struct vm_operations_struct ext4_dax_vm_ops = {
729 	.fault		= ext4_dax_fault,
730 	.huge_fault	= ext4_dax_huge_fault,
731 	.page_mkwrite	= ext4_dax_fault,
732 	.pfn_mkwrite	= ext4_dax_fault,
733 };
734 #else
735 #define ext4_dax_vm_ops	ext4_file_vm_ops
736 #endif
737 
738 static const struct vm_operations_struct ext4_file_vm_ops = {
739 	.fault		= ext4_filemap_fault,
740 	.map_pages	= filemap_map_pages,
741 	.page_mkwrite   = ext4_page_mkwrite,
742 };
743 
744 static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
745 {
746 	struct inode *inode = file->f_mapping->host;
747 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
748 	struct dax_device *dax_dev = sbi->s_daxdev;
749 
750 	if (unlikely(ext4_forced_shutdown(sbi)))
751 		return -EIO;
752 
753 	/*
754 	 * We don't support synchronous mappings for non-DAX files and
755 	 * for DAX files if underneath dax_device is not synchronous.
756 	 */
757 	if (!daxdev_mapping_supported(vma, dax_dev))
758 		return -EOPNOTSUPP;
759 
760 	file_accessed(file);
761 	if (IS_DAX(file_inode(file))) {
762 		vma->vm_ops = &ext4_dax_vm_ops;
763 		vma->vm_flags |= VM_HUGEPAGE;
764 	} else {
765 		vma->vm_ops = &ext4_file_vm_ops;
766 	}
767 	return 0;
768 }
769 
770 static int ext4_sample_last_mounted(struct super_block *sb,
771 				    struct vfsmount *mnt)
772 {
773 	struct ext4_sb_info *sbi = EXT4_SB(sb);
774 	struct path path;
775 	char buf[64], *cp;
776 	handle_t *handle;
777 	int err;
778 
779 	if (likely(sbi->s_mount_flags & EXT4_MF_MNTDIR_SAMPLED))
780 		return 0;
781 
782 	if (sb_rdonly(sb) || !sb_start_intwrite_trylock(sb))
783 		return 0;
784 
785 	sbi->s_mount_flags |= EXT4_MF_MNTDIR_SAMPLED;
786 	/*
787 	 * Sample where the filesystem has been mounted and
788 	 * store it in the superblock for sysadmin convenience
789 	 * when trying to sort through large numbers of block
790 	 * devices or filesystem images.
791 	 */
792 	memset(buf, 0, sizeof(buf));
793 	path.mnt = mnt;
794 	path.dentry = mnt->mnt_root;
795 	cp = d_path(&path, buf, sizeof(buf));
796 	err = 0;
797 	if (IS_ERR(cp))
798 		goto out;
799 
800 	handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
801 	err = PTR_ERR(handle);
802 	if (IS_ERR(handle))
803 		goto out;
804 	BUFFER_TRACE(sbi->s_sbh, "get_write_access");
805 	err = ext4_journal_get_write_access(handle, sbi->s_sbh);
806 	if (err)
807 		goto out_journal;
808 	strlcpy(sbi->s_es->s_last_mounted, cp,
809 		sizeof(sbi->s_es->s_last_mounted));
810 	ext4_handle_dirty_super(handle, sb);
811 out_journal:
812 	ext4_journal_stop(handle);
813 out:
814 	sb_end_intwrite(sb);
815 	return err;
816 }
817 
818 static int ext4_file_open(struct inode *inode, struct file *filp)
819 {
820 	int ret;
821 
822 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
823 		return -EIO;
824 
825 	ret = ext4_sample_last_mounted(inode->i_sb, filp->f_path.mnt);
826 	if (ret)
827 		return ret;
828 
829 	ret = fscrypt_file_open(inode, filp);
830 	if (ret)
831 		return ret;
832 
833 	ret = fsverity_file_open(inode, filp);
834 	if (ret)
835 		return ret;
836 
837 	/*
838 	 * Set up the jbd2_inode if we are opening the inode for
839 	 * writing and the journal is present
840 	 */
841 	if (filp->f_mode & FMODE_WRITE) {
842 		ret = ext4_inode_attach_jinode(inode);
843 		if (ret < 0)
844 			return ret;
845 	}
846 
847 	filp->f_mode |= FMODE_NOWAIT;
848 	return dquot_file_open(inode, filp);
849 }
850 
851 /*
852  * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
853  * by calling generic_file_llseek_size() with the appropriate maxbytes
854  * value for each.
855  */
856 loff_t ext4_llseek(struct file *file, loff_t offset, int whence)
857 {
858 	struct inode *inode = file->f_mapping->host;
859 	loff_t maxbytes;
860 
861 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
862 		maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes;
863 	else
864 		maxbytes = inode->i_sb->s_maxbytes;
865 
866 	switch (whence) {
867 	default:
868 		return generic_file_llseek_size(file, offset, whence,
869 						maxbytes, i_size_read(inode));
870 	case SEEK_HOLE:
871 		inode_lock_shared(inode);
872 		offset = iomap_seek_hole(inode, offset,
873 					 &ext4_iomap_report_ops);
874 		inode_unlock_shared(inode);
875 		break;
876 	case SEEK_DATA:
877 		inode_lock_shared(inode);
878 		offset = iomap_seek_data(inode, offset,
879 					 &ext4_iomap_report_ops);
880 		inode_unlock_shared(inode);
881 		break;
882 	}
883 
884 	if (offset < 0)
885 		return offset;
886 	return vfs_setpos(file, offset, maxbytes);
887 }
888 
889 const struct file_operations ext4_file_operations = {
890 	.llseek		= ext4_llseek,
891 	.read_iter	= ext4_file_read_iter,
892 	.write_iter	= ext4_file_write_iter,
893 	.iopoll		= iomap_dio_iopoll,
894 	.unlocked_ioctl = ext4_ioctl,
895 #ifdef CONFIG_COMPAT
896 	.compat_ioctl	= ext4_compat_ioctl,
897 #endif
898 	.mmap		= ext4_file_mmap,
899 	.mmap_supported_flags = MAP_SYNC,
900 	.open		= ext4_file_open,
901 	.release	= ext4_release_file,
902 	.fsync		= ext4_sync_file,
903 	.get_unmapped_area = thp_get_unmapped_area,
904 	.splice_read	= generic_file_splice_read,
905 	.splice_write	= iter_file_splice_write,
906 	.fallocate	= ext4_fallocate,
907 };
908 
909 const struct inode_operations ext4_file_inode_operations = {
910 	.setattr	= ext4_setattr,
911 	.getattr	= ext4_file_getattr,
912 	.listxattr	= ext4_listxattr,
913 	.get_acl	= ext4_get_acl,
914 	.set_acl	= ext4_set_acl,
915 	.fiemap		= ext4_fiemap,
916 };
917 
918