xref: /openbmc/linux/fs/ext4/file.c (revision f16fe2d3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/file.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/file.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  ext4 fs regular file handling primitives
17  *
18  *  64-bit file support on 64-bit platforms by Jakub Jelinek
19  *	(jj@sunsite.ms.mff.cuni.cz)
20  */
21 
22 #include <linux/time.h>
23 #include <linux/fs.h>
24 #include <linux/iomap.h>
25 #include <linux/mount.h>
26 #include <linux/path.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/pagevec.h>
30 #include <linux/uio.h>
31 #include <linux/mman.h>
32 #include <linux/backing-dev.h>
33 #include "ext4.h"
34 #include "ext4_jbd2.h"
35 #include "xattr.h"
36 #include "acl.h"
37 #include "truncate.h"
38 
39 static bool ext4_dio_supported(struct inode *inode)
40 {
41 	if (IS_ENABLED(CONFIG_FS_ENCRYPTION) && IS_ENCRYPTED(inode))
42 		return false;
43 	if (fsverity_active(inode))
44 		return false;
45 	if (ext4_should_journal_data(inode))
46 		return false;
47 	if (ext4_has_inline_data(inode))
48 		return false;
49 	return true;
50 }
51 
52 static ssize_t ext4_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
53 {
54 	ssize_t ret;
55 	struct inode *inode = file_inode(iocb->ki_filp);
56 
57 	if (iocb->ki_flags & IOCB_NOWAIT) {
58 		if (!inode_trylock_shared(inode))
59 			return -EAGAIN;
60 	} else {
61 		inode_lock_shared(inode);
62 	}
63 
64 	if (!ext4_dio_supported(inode)) {
65 		inode_unlock_shared(inode);
66 		/*
67 		 * Fallback to buffered I/O if the operation being performed on
68 		 * the inode is not supported by direct I/O. The IOCB_DIRECT
69 		 * flag needs to be cleared here in order to ensure that the
70 		 * direct I/O path within generic_file_read_iter() is not
71 		 * taken.
72 		 */
73 		iocb->ki_flags &= ~IOCB_DIRECT;
74 		return generic_file_read_iter(iocb, to);
75 	}
76 
77 	ret = iomap_dio_rw(iocb, to, &ext4_iomap_ops, NULL, 0, 0);
78 	inode_unlock_shared(inode);
79 
80 	file_accessed(iocb->ki_filp);
81 	return ret;
82 }
83 
84 #ifdef CONFIG_FS_DAX
85 static ssize_t ext4_dax_read_iter(struct kiocb *iocb, struct iov_iter *to)
86 {
87 	struct inode *inode = file_inode(iocb->ki_filp);
88 	ssize_t ret;
89 
90 	if (iocb->ki_flags & IOCB_NOWAIT) {
91 		if (!inode_trylock_shared(inode))
92 			return -EAGAIN;
93 	} else {
94 		inode_lock_shared(inode);
95 	}
96 	/*
97 	 * Recheck under inode lock - at this point we are sure it cannot
98 	 * change anymore
99 	 */
100 	if (!IS_DAX(inode)) {
101 		inode_unlock_shared(inode);
102 		/* Fallback to buffered IO in case we cannot support DAX */
103 		return generic_file_read_iter(iocb, to);
104 	}
105 	ret = dax_iomap_rw(iocb, to, &ext4_iomap_ops);
106 	inode_unlock_shared(inode);
107 
108 	file_accessed(iocb->ki_filp);
109 	return ret;
110 }
111 #endif
112 
113 static ssize_t ext4_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
114 {
115 	struct inode *inode = file_inode(iocb->ki_filp);
116 
117 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
118 		return -EIO;
119 
120 	if (!iov_iter_count(to))
121 		return 0; /* skip atime */
122 
123 #ifdef CONFIG_FS_DAX
124 	if (IS_DAX(inode))
125 		return ext4_dax_read_iter(iocb, to);
126 #endif
127 	if (iocb->ki_flags & IOCB_DIRECT)
128 		return ext4_dio_read_iter(iocb, to);
129 
130 	return generic_file_read_iter(iocb, to);
131 }
132 
133 /*
134  * Called when an inode is released. Note that this is different
135  * from ext4_file_open: open gets called at every open, but release
136  * gets called only when /all/ the files are closed.
137  */
138 static int ext4_release_file(struct inode *inode, struct file *filp)
139 {
140 	if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) {
141 		ext4_alloc_da_blocks(inode);
142 		ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
143 	}
144 	/* if we are the last writer on the inode, drop the block reservation */
145 	if ((filp->f_mode & FMODE_WRITE) &&
146 			(atomic_read(&inode->i_writecount) == 1) &&
147 			!EXT4_I(inode)->i_reserved_data_blocks) {
148 		down_write(&EXT4_I(inode)->i_data_sem);
149 		ext4_discard_preallocations(inode, 0);
150 		up_write(&EXT4_I(inode)->i_data_sem);
151 	}
152 	if (is_dx(inode) && filp->private_data)
153 		ext4_htree_free_dir_info(filp->private_data);
154 
155 	return 0;
156 }
157 
158 /*
159  * This tests whether the IO in question is block-aligned or not.
160  * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
161  * are converted to written only after the IO is complete.  Until they are
162  * mapped, these blocks appear as holes, so dio_zero_block() will assume that
163  * it needs to zero out portions of the start and/or end block.  If 2 AIO
164  * threads are at work on the same unwritten block, they must be synchronized
165  * or one thread will zero the other's data, causing corruption.
166  */
167 static bool
168 ext4_unaligned_io(struct inode *inode, struct iov_iter *from, loff_t pos)
169 {
170 	struct super_block *sb = inode->i_sb;
171 	unsigned long blockmask = sb->s_blocksize - 1;
172 
173 	if ((pos | iov_iter_alignment(from)) & blockmask)
174 		return true;
175 
176 	return false;
177 }
178 
179 static bool
180 ext4_extending_io(struct inode *inode, loff_t offset, size_t len)
181 {
182 	if (offset + len > i_size_read(inode) ||
183 	    offset + len > EXT4_I(inode)->i_disksize)
184 		return true;
185 	return false;
186 }
187 
188 /* Is IO overwriting allocated and initialized blocks? */
189 static bool ext4_overwrite_io(struct inode *inode, loff_t pos, loff_t len)
190 {
191 	struct ext4_map_blocks map;
192 	unsigned int blkbits = inode->i_blkbits;
193 	int err, blklen;
194 
195 	if (pos + len > i_size_read(inode))
196 		return false;
197 
198 	map.m_lblk = pos >> blkbits;
199 	map.m_len = EXT4_MAX_BLOCKS(len, pos, blkbits);
200 	blklen = map.m_len;
201 
202 	err = ext4_map_blocks(NULL, inode, &map, 0);
203 	/*
204 	 * 'err==len' means that all of the blocks have been preallocated,
205 	 * regardless of whether they have been initialized or not. To exclude
206 	 * unwritten extents, we need to check m_flags.
207 	 */
208 	return err == blklen && (map.m_flags & EXT4_MAP_MAPPED);
209 }
210 
211 static ssize_t ext4_generic_write_checks(struct kiocb *iocb,
212 					 struct iov_iter *from)
213 {
214 	struct inode *inode = file_inode(iocb->ki_filp);
215 	ssize_t ret;
216 
217 	if (unlikely(IS_IMMUTABLE(inode)))
218 		return -EPERM;
219 
220 	ret = generic_write_checks(iocb, from);
221 	if (ret <= 0)
222 		return ret;
223 
224 	/*
225 	 * If we have encountered a bitmap-format file, the size limit
226 	 * is smaller than s_maxbytes, which is for extent-mapped files.
227 	 */
228 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
229 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
230 
231 		if (iocb->ki_pos >= sbi->s_bitmap_maxbytes)
232 			return -EFBIG;
233 		iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos);
234 	}
235 
236 	return iov_iter_count(from);
237 }
238 
239 static ssize_t ext4_write_checks(struct kiocb *iocb, struct iov_iter *from)
240 {
241 	ssize_t ret, count;
242 
243 	count = ext4_generic_write_checks(iocb, from);
244 	if (count <= 0)
245 		return count;
246 
247 	ret = file_modified(iocb->ki_filp);
248 	if (ret)
249 		return ret;
250 	return count;
251 }
252 
253 static ssize_t ext4_buffered_write_iter(struct kiocb *iocb,
254 					struct iov_iter *from)
255 {
256 	ssize_t ret;
257 	struct inode *inode = file_inode(iocb->ki_filp);
258 
259 	if (iocb->ki_flags & IOCB_NOWAIT)
260 		return -EOPNOTSUPP;
261 
262 	inode_lock(inode);
263 	ret = ext4_write_checks(iocb, from);
264 	if (ret <= 0)
265 		goto out;
266 
267 	current->backing_dev_info = inode_to_bdi(inode);
268 	ret = generic_perform_write(iocb->ki_filp, from, iocb->ki_pos);
269 	current->backing_dev_info = NULL;
270 
271 out:
272 	inode_unlock(inode);
273 	if (likely(ret > 0)) {
274 		iocb->ki_pos += ret;
275 		ret = generic_write_sync(iocb, ret);
276 	}
277 
278 	return ret;
279 }
280 
281 static ssize_t ext4_handle_inode_extension(struct inode *inode, loff_t offset,
282 					   ssize_t written, size_t count)
283 {
284 	handle_t *handle;
285 	bool truncate = false;
286 	u8 blkbits = inode->i_blkbits;
287 	ext4_lblk_t written_blk, end_blk;
288 	int ret;
289 
290 	/*
291 	 * Note that EXT4_I(inode)->i_disksize can get extended up to
292 	 * inode->i_size while the I/O was running due to writeback of delalloc
293 	 * blocks. But, the code in ext4_iomap_alloc() is careful to use
294 	 * zeroed/unwritten extents if this is possible; thus we won't leave
295 	 * uninitialized blocks in a file even if we didn't succeed in writing
296 	 * as much as we intended.
297 	 */
298 	WARN_ON_ONCE(i_size_read(inode) < EXT4_I(inode)->i_disksize);
299 	if (offset + count <= EXT4_I(inode)->i_disksize) {
300 		/*
301 		 * We need to ensure that the inode is removed from the orphan
302 		 * list if it has been added prematurely, due to writeback of
303 		 * delalloc blocks.
304 		 */
305 		if (!list_empty(&EXT4_I(inode)->i_orphan) && inode->i_nlink) {
306 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
307 
308 			if (IS_ERR(handle)) {
309 				ext4_orphan_del(NULL, inode);
310 				return PTR_ERR(handle);
311 			}
312 
313 			ext4_orphan_del(handle, inode);
314 			ext4_journal_stop(handle);
315 		}
316 
317 		return written;
318 	}
319 
320 	if (written < 0)
321 		goto truncate;
322 
323 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
324 	if (IS_ERR(handle)) {
325 		written = PTR_ERR(handle);
326 		goto truncate;
327 	}
328 
329 	if (ext4_update_inode_size(inode, offset + written)) {
330 		ret = ext4_mark_inode_dirty(handle, inode);
331 		if (unlikely(ret)) {
332 			written = ret;
333 			ext4_journal_stop(handle);
334 			goto truncate;
335 		}
336 	}
337 
338 	/*
339 	 * We may need to truncate allocated but not written blocks beyond EOF.
340 	 */
341 	written_blk = ALIGN(offset + written, 1 << blkbits);
342 	end_blk = ALIGN(offset + count, 1 << blkbits);
343 	if (written_blk < end_blk && ext4_can_truncate(inode))
344 		truncate = true;
345 
346 	/*
347 	 * Remove the inode from the orphan list if it has been extended and
348 	 * everything went OK.
349 	 */
350 	if (!truncate && inode->i_nlink)
351 		ext4_orphan_del(handle, inode);
352 	ext4_journal_stop(handle);
353 
354 	if (truncate) {
355 truncate:
356 		ext4_truncate_failed_write(inode);
357 		/*
358 		 * If the truncate operation failed early, then the inode may
359 		 * still be on the orphan list. In that case, we need to try
360 		 * remove the inode from the in-memory linked list.
361 		 */
362 		if (inode->i_nlink)
363 			ext4_orphan_del(NULL, inode);
364 	}
365 
366 	return written;
367 }
368 
369 static int ext4_dio_write_end_io(struct kiocb *iocb, ssize_t size,
370 				 int error, unsigned int flags)
371 {
372 	loff_t pos = iocb->ki_pos;
373 	struct inode *inode = file_inode(iocb->ki_filp);
374 
375 	if (error)
376 		return error;
377 
378 	if (size && flags & IOMAP_DIO_UNWRITTEN) {
379 		error = ext4_convert_unwritten_extents(NULL, inode, pos, size);
380 		if (error < 0)
381 			return error;
382 	}
383 	/*
384 	 * If we are extending the file, we have to update i_size here before
385 	 * page cache gets invalidated in iomap_dio_rw(). Otherwise racing
386 	 * buffered reads could zero out too much from page cache pages. Update
387 	 * of on-disk size will happen later in ext4_dio_write_iter() where
388 	 * we have enough information to also perform orphan list handling etc.
389 	 * Note that we perform all extending writes synchronously under
390 	 * i_rwsem held exclusively so i_size update is safe here in that case.
391 	 * If the write was not extending, we cannot see pos > i_size here
392 	 * because operations reducing i_size like truncate wait for all
393 	 * outstanding DIO before updating i_size.
394 	 */
395 	pos += size;
396 	if (pos > i_size_read(inode))
397 		i_size_write(inode, pos);
398 
399 	return 0;
400 }
401 
402 static const struct iomap_dio_ops ext4_dio_write_ops = {
403 	.end_io = ext4_dio_write_end_io,
404 };
405 
406 /*
407  * The intention here is to start with shared lock acquired then see if any
408  * condition requires an exclusive inode lock. If yes, then we restart the
409  * whole operation by releasing the shared lock and acquiring exclusive lock.
410  *
411  * - For unaligned_io we never take shared lock as it may cause data corruption
412  *   when two unaligned IO tries to modify the same block e.g. while zeroing.
413  *
414  * - For extending writes case we don't take the shared lock, since it requires
415  *   updating inode i_disksize and/or orphan handling with exclusive lock.
416  *
417  * - shared locking will only be true mostly with overwrites. Otherwise we will
418  *   switch to exclusive i_rwsem lock.
419  */
420 static ssize_t ext4_dio_write_checks(struct kiocb *iocb, struct iov_iter *from,
421 				     bool *ilock_shared, bool *extend)
422 {
423 	struct file *file = iocb->ki_filp;
424 	struct inode *inode = file_inode(file);
425 	loff_t offset;
426 	size_t count;
427 	ssize_t ret;
428 
429 restart:
430 	ret = ext4_generic_write_checks(iocb, from);
431 	if (ret <= 0)
432 		goto out;
433 
434 	offset = iocb->ki_pos;
435 	count = ret;
436 	if (ext4_extending_io(inode, offset, count))
437 		*extend = true;
438 	/*
439 	 * Determine whether the IO operation will overwrite allocated
440 	 * and initialized blocks.
441 	 * We need exclusive i_rwsem for changing security info
442 	 * in file_modified().
443 	 */
444 	if (*ilock_shared && (!IS_NOSEC(inode) || *extend ||
445 	     !ext4_overwrite_io(inode, offset, count))) {
446 		if (iocb->ki_flags & IOCB_NOWAIT) {
447 			ret = -EAGAIN;
448 			goto out;
449 		}
450 		inode_unlock_shared(inode);
451 		*ilock_shared = false;
452 		inode_lock(inode);
453 		goto restart;
454 	}
455 
456 	ret = file_modified(file);
457 	if (ret < 0)
458 		goto out;
459 
460 	return count;
461 out:
462 	if (*ilock_shared)
463 		inode_unlock_shared(inode);
464 	else
465 		inode_unlock(inode);
466 	return ret;
467 }
468 
469 static ssize_t ext4_dio_write_iter(struct kiocb *iocb, struct iov_iter *from)
470 {
471 	ssize_t ret;
472 	handle_t *handle;
473 	struct inode *inode = file_inode(iocb->ki_filp);
474 	loff_t offset = iocb->ki_pos;
475 	size_t count = iov_iter_count(from);
476 	const struct iomap_ops *iomap_ops = &ext4_iomap_ops;
477 	bool extend = false, unaligned_io = false;
478 	bool ilock_shared = true;
479 
480 	/*
481 	 * We initially start with shared inode lock unless it is
482 	 * unaligned IO which needs exclusive lock anyways.
483 	 */
484 	if (ext4_unaligned_io(inode, from, offset)) {
485 		unaligned_io = true;
486 		ilock_shared = false;
487 	}
488 	/*
489 	 * Quick check here without any i_rwsem lock to see if it is extending
490 	 * IO. A more reliable check is done in ext4_dio_write_checks() with
491 	 * proper locking in place.
492 	 */
493 	if (offset + count > i_size_read(inode))
494 		ilock_shared = false;
495 
496 	if (iocb->ki_flags & IOCB_NOWAIT) {
497 		if (ilock_shared) {
498 			if (!inode_trylock_shared(inode))
499 				return -EAGAIN;
500 		} else {
501 			if (!inode_trylock(inode))
502 				return -EAGAIN;
503 		}
504 	} else {
505 		if (ilock_shared)
506 			inode_lock_shared(inode);
507 		else
508 			inode_lock(inode);
509 	}
510 
511 	/* Fallback to buffered I/O if the inode does not support direct I/O. */
512 	if (!ext4_dio_supported(inode)) {
513 		if (ilock_shared)
514 			inode_unlock_shared(inode);
515 		else
516 			inode_unlock(inode);
517 		return ext4_buffered_write_iter(iocb, from);
518 	}
519 
520 	ret = ext4_dio_write_checks(iocb, from, &ilock_shared, &extend);
521 	if (ret <= 0)
522 		return ret;
523 
524 	/* if we're going to block and IOCB_NOWAIT is set, return -EAGAIN */
525 	if ((iocb->ki_flags & IOCB_NOWAIT) && (unaligned_io || extend)) {
526 		ret = -EAGAIN;
527 		goto out;
528 	}
529 
530 	offset = iocb->ki_pos;
531 	count = ret;
532 
533 	/*
534 	 * Unaligned direct IO must be serialized among each other as zeroing
535 	 * of partial blocks of two competing unaligned IOs can result in data
536 	 * corruption.
537 	 *
538 	 * So we make sure we don't allow any unaligned IO in flight.
539 	 * For IOs where we need not wait (like unaligned non-AIO DIO),
540 	 * below inode_dio_wait() may anyway become a no-op, since we start
541 	 * with exclusive lock.
542 	 */
543 	if (unaligned_io)
544 		inode_dio_wait(inode);
545 
546 	if (extend) {
547 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
548 		if (IS_ERR(handle)) {
549 			ret = PTR_ERR(handle);
550 			goto out;
551 		}
552 
553 		ret = ext4_orphan_add(handle, inode);
554 		if (ret) {
555 			ext4_journal_stop(handle);
556 			goto out;
557 		}
558 
559 		ext4_journal_stop(handle);
560 	}
561 
562 	if (ilock_shared)
563 		iomap_ops = &ext4_iomap_overwrite_ops;
564 	ret = iomap_dio_rw(iocb, from, iomap_ops, &ext4_dio_write_ops,
565 			   (unaligned_io || extend) ? IOMAP_DIO_FORCE_WAIT : 0,
566 			   0);
567 	if (ret == -ENOTBLK)
568 		ret = 0;
569 
570 	if (extend)
571 		ret = ext4_handle_inode_extension(inode, offset, ret, count);
572 
573 out:
574 	if (ilock_shared)
575 		inode_unlock_shared(inode);
576 	else
577 		inode_unlock(inode);
578 
579 	if (ret >= 0 && iov_iter_count(from)) {
580 		ssize_t err;
581 		loff_t endbyte;
582 
583 		offset = iocb->ki_pos;
584 		err = ext4_buffered_write_iter(iocb, from);
585 		if (err < 0)
586 			return err;
587 
588 		/*
589 		 * We need to ensure that the pages within the page cache for
590 		 * the range covered by this I/O are written to disk and
591 		 * invalidated. This is in attempt to preserve the expected
592 		 * direct I/O semantics in the case we fallback to buffered I/O
593 		 * to complete off the I/O request.
594 		 */
595 		ret += err;
596 		endbyte = offset + err - 1;
597 		err = filemap_write_and_wait_range(iocb->ki_filp->f_mapping,
598 						   offset, endbyte);
599 		if (!err)
600 			invalidate_mapping_pages(iocb->ki_filp->f_mapping,
601 						 offset >> PAGE_SHIFT,
602 						 endbyte >> PAGE_SHIFT);
603 	}
604 
605 	return ret;
606 }
607 
608 #ifdef CONFIG_FS_DAX
609 static ssize_t
610 ext4_dax_write_iter(struct kiocb *iocb, struct iov_iter *from)
611 {
612 	ssize_t ret;
613 	size_t count;
614 	loff_t offset;
615 	handle_t *handle;
616 	bool extend = false;
617 	struct inode *inode = file_inode(iocb->ki_filp);
618 
619 	if (iocb->ki_flags & IOCB_NOWAIT) {
620 		if (!inode_trylock(inode))
621 			return -EAGAIN;
622 	} else {
623 		inode_lock(inode);
624 	}
625 
626 	ret = ext4_write_checks(iocb, from);
627 	if (ret <= 0)
628 		goto out;
629 
630 	offset = iocb->ki_pos;
631 	count = iov_iter_count(from);
632 
633 	if (offset + count > EXT4_I(inode)->i_disksize) {
634 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
635 		if (IS_ERR(handle)) {
636 			ret = PTR_ERR(handle);
637 			goto out;
638 		}
639 
640 		ret = ext4_orphan_add(handle, inode);
641 		if (ret) {
642 			ext4_journal_stop(handle);
643 			goto out;
644 		}
645 
646 		extend = true;
647 		ext4_journal_stop(handle);
648 	}
649 
650 	ret = dax_iomap_rw(iocb, from, &ext4_iomap_ops);
651 
652 	if (extend)
653 		ret = ext4_handle_inode_extension(inode, offset, ret, count);
654 out:
655 	inode_unlock(inode);
656 	if (ret > 0)
657 		ret = generic_write_sync(iocb, ret);
658 	return ret;
659 }
660 #endif
661 
662 static ssize_t
663 ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
664 {
665 	struct inode *inode = file_inode(iocb->ki_filp);
666 
667 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
668 		return -EIO;
669 
670 #ifdef CONFIG_FS_DAX
671 	if (IS_DAX(inode))
672 		return ext4_dax_write_iter(iocb, from);
673 #endif
674 	if (iocb->ki_flags & IOCB_DIRECT)
675 		return ext4_dio_write_iter(iocb, from);
676 	else
677 		return ext4_buffered_write_iter(iocb, from);
678 }
679 
680 #ifdef CONFIG_FS_DAX
681 static vm_fault_t ext4_dax_huge_fault(struct vm_fault *vmf,
682 		enum page_entry_size pe_size)
683 {
684 	int error = 0;
685 	vm_fault_t result;
686 	int retries = 0;
687 	handle_t *handle = NULL;
688 	struct inode *inode = file_inode(vmf->vma->vm_file);
689 	struct super_block *sb = inode->i_sb;
690 
691 	/*
692 	 * We have to distinguish real writes from writes which will result in a
693 	 * COW page; COW writes should *not* poke the journal (the file will not
694 	 * be changed). Doing so would cause unintended failures when mounted
695 	 * read-only.
696 	 *
697 	 * We check for VM_SHARED rather than vmf->cow_page since the latter is
698 	 * unset for pe_size != PE_SIZE_PTE (i.e. only in do_cow_fault); for
699 	 * other sizes, dax_iomap_fault will handle splitting / fallback so that
700 	 * we eventually come back with a COW page.
701 	 */
702 	bool write = (vmf->flags & FAULT_FLAG_WRITE) &&
703 		(vmf->vma->vm_flags & VM_SHARED);
704 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
705 	pfn_t pfn;
706 
707 	if (write) {
708 		sb_start_pagefault(sb);
709 		file_update_time(vmf->vma->vm_file);
710 		filemap_invalidate_lock_shared(mapping);
711 retry:
712 		handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE,
713 					       EXT4_DATA_TRANS_BLOCKS(sb));
714 		if (IS_ERR(handle)) {
715 			filemap_invalidate_unlock_shared(mapping);
716 			sb_end_pagefault(sb);
717 			return VM_FAULT_SIGBUS;
718 		}
719 	} else {
720 		filemap_invalidate_lock_shared(mapping);
721 	}
722 	result = dax_iomap_fault(vmf, pe_size, &pfn, &error, &ext4_iomap_ops);
723 	if (write) {
724 		ext4_journal_stop(handle);
725 
726 		if ((result & VM_FAULT_ERROR) && error == -ENOSPC &&
727 		    ext4_should_retry_alloc(sb, &retries))
728 			goto retry;
729 		/* Handling synchronous page fault? */
730 		if (result & VM_FAULT_NEEDDSYNC)
731 			result = dax_finish_sync_fault(vmf, pe_size, pfn);
732 		filemap_invalidate_unlock_shared(mapping);
733 		sb_end_pagefault(sb);
734 	} else {
735 		filemap_invalidate_unlock_shared(mapping);
736 	}
737 
738 	return result;
739 }
740 
741 static vm_fault_t ext4_dax_fault(struct vm_fault *vmf)
742 {
743 	return ext4_dax_huge_fault(vmf, PE_SIZE_PTE);
744 }
745 
746 static const struct vm_operations_struct ext4_dax_vm_ops = {
747 	.fault		= ext4_dax_fault,
748 	.huge_fault	= ext4_dax_huge_fault,
749 	.page_mkwrite	= ext4_dax_fault,
750 	.pfn_mkwrite	= ext4_dax_fault,
751 };
752 #else
753 #define ext4_dax_vm_ops	ext4_file_vm_ops
754 #endif
755 
756 static const struct vm_operations_struct ext4_file_vm_ops = {
757 	.fault		= filemap_fault,
758 	.map_pages	= filemap_map_pages,
759 	.page_mkwrite   = ext4_page_mkwrite,
760 };
761 
762 static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
763 {
764 	struct inode *inode = file->f_mapping->host;
765 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
766 	struct dax_device *dax_dev = sbi->s_daxdev;
767 
768 	if (unlikely(ext4_forced_shutdown(sbi)))
769 		return -EIO;
770 
771 	/*
772 	 * We don't support synchronous mappings for non-DAX files and
773 	 * for DAX files if underneath dax_device is not synchronous.
774 	 */
775 	if (!daxdev_mapping_supported(vma, dax_dev))
776 		return -EOPNOTSUPP;
777 
778 	file_accessed(file);
779 	if (IS_DAX(file_inode(file))) {
780 		vma->vm_ops = &ext4_dax_vm_ops;
781 		vma->vm_flags |= VM_HUGEPAGE;
782 	} else {
783 		vma->vm_ops = &ext4_file_vm_ops;
784 	}
785 	return 0;
786 }
787 
788 static int ext4_sample_last_mounted(struct super_block *sb,
789 				    struct vfsmount *mnt)
790 {
791 	struct ext4_sb_info *sbi = EXT4_SB(sb);
792 	struct path path;
793 	char buf[64], *cp;
794 	handle_t *handle;
795 	int err;
796 
797 	if (likely(ext4_test_mount_flag(sb, EXT4_MF_MNTDIR_SAMPLED)))
798 		return 0;
799 
800 	if (sb_rdonly(sb) || !sb_start_intwrite_trylock(sb))
801 		return 0;
802 
803 	ext4_set_mount_flag(sb, EXT4_MF_MNTDIR_SAMPLED);
804 	/*
805 	 * Sample where the filesystem has been mounted and
806 	 * store it in the superblock for sysadmin convenience
807 	 * when trying to sort through large numbers of block
808 	 * devices or filesystem images.
809 	 */
810 	memset(buf, 0, sizeof(buf));
811 	path.mnt = mnt;
812 	path.dentry = mnt->mnt_root;
813 	cp = d_path(&path, buf, sizeof(buf));
814 	err = 0;
815 	if (IS_ERR(cp))
816 		goto out;
817 
818 	handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
819 	err = PTR_ERR(handle);
820 	if (IS_ERR(handle))
821 		goto out;
822 	BUFFER_TRACE(sbi->s_sbh, "get_write_access");
823 	err = ext4_journal_get_write_access(handle, sb, sbi->s_sbh,
824 					    EXT4_JTR_NONE);
825 	if (err)
826 		goto out_journal;
827 	lock_buffer(sbi->s_sbh);
828 	strncpy(sbi->s_es->s_last_mounted, cp,
829 		sizeof(sbi->s_es->s_last_mounted));
830 	ext4_superblock_csum_set(sb);
831 	unlock_buffer(sbi->s_sbh);
832 	ext4_handle_dirty_metadata(handle, NULL, sbi->s_sbh);
833 out_journal:
834 	ext4_journal_stop(handle);
835 out:
836 	sb_end_intwrite(sb);
837 	return err;
838 }
839 
840 static int ext4_file_open(struct inode *inode, struct file *filp)
841 {
842 	int ret;
843 
844 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
845 		return -EIO;
846 
847 	ret = ext4_sample_last_mounted(inode->i_sb, filp->f_path.mnt);
848 	if (ret)
849 		return ret;
850 
851 	ret = fscrypt_file_open(inode, filp);
852 	if (ret)
853 		return ret;
854 
855 	ret = fsverity_file_open(inode, filp);
856 	if (ret)
857 		return ret;
858 
859 	/*
860 	 * Set up the jbd2_inode if we are opening the inode for
861 	 * writing and the journal is present
862 	 */
863 	if (filp->f_mode & FMODE_WRITE) {
864 		ret = ext4_inode_attach_jinode(inode);
865 		if (ret < 0)
866 			return ret;
867 	}
868 
869 	filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
870 	return dquot_file_open(inode, filp);
871 }
872 
873 /*
874  * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
875  * by calling generic_file_llseek_size() with the appropriate maxbytes
876  * value for each.
877  */
878 loff_t ext4_llseek(struct file *file, loff_t offset, int whence)
879 {
880 	struct inode *inode = file->f_mapping->host;
881 	loff_t maxbytes;
882 
883 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
884 		maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes;
885 	else
886 		maxbytes = inode->i_sb->s_maxbytes;
887 
888 	switch (whence) {
889 	default:
890 		return generic_file_llseek_size(file, offset, whence,
891 						maxbytes, i_size_read(inode));
892 	case SEEK_HOLE:
893 		inode_lock_shared(inode);
894 		offset = iomap_seek_hole(inode, offset,
895 					 &ext4_iomap_report_ops);
896 		inode_unlock_shared(inode);
897 		break;
898 	case SEEK_DATA:
899 		inode_lock_shared(inode);
900 		offset = iomap_seek_data(inode, offset,
901 					 &ext4_iomap_report_ops);
902 		inode_unlock_shared(inode);
903 		break;
904 	}
905 
906 	if (offset < 0)
907 		return offset;
908 	return vfs_setpos(file, offset, maxbytes);
909 }
910 
911 const struct file_operations ext4_file_operations = {
912 	.llseek		= ext4_llseek,
913 	.read_iter	= ext4_file_read_iter,
914 	.write_iter	= ext4_file_write_iter,
915 	.iopoll		= iocb_bio_iopoll,
916 	.unlocked_ioctl = ext4_ioctl,
917 #ifdef CONFIG_COMPAT
918 	.compat_ioctl	= ext4_compat_ioctl,
919 #endif
920 	.mmap		= ext4_file_mmap,
921 	.mmap_supported_flags = MAP_SYNC,
922 	.open		= ext4_file_open,
923 	.release	= ext4_release_file,
924 	.fsync		= ext4_sync_file,
925 	.get_unmapped_area = thp_get_unmapped_area,
926 	.splice_read	= generic_file_splice_read,
927 	.splice_write	= iter_file_splice_write,
928 	.fallocate	= ext4_fallocate,
929 };
930 
931 const struct inode_operations ext4_file_inode_operations = {
932 	.setattr	= ext4_setattr,
933 	.getattr	= ext4_file_getattr,
934 	.listxattr	= ext4_listxattr,
935 	.get_acl	= ext4_get_acl,
936 	.set_acl	= ext4_set_acl,
937 	.fiemap		= ext4_fiemap,
938 	.fileattr_get	= ext4_fileattr_get,
939 	.fileattr_set	= ext4_fileattr_set,
940 };
941 
942