xref: /openbmc/linux/fs/ext4/file.c (revision e5c86679)
1 /*
2  *  linux/fs/ext4/file.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/file.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  ext4 fs regular file handling primitives
16  *
17  *  64-bit file support on 64-bit platforms by Jakub Jelinek
18  *	(jj@sunsite.ms.mff.cuni.cz)
19  */
20 
21 #include <linux/time.h>
22 #include <linux/fs.h>
23 #include <linux/mount.h>
24 #include <linux/path.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/pagevec.h>
28 #include <linux/uio.h>
29 #include "ext4.h"
30 #include "ext4_jbd2.h"
31 #include "xattr.h"
32 #include "acl.h"
33 
34 #ifdef CONFIG_FS_DAX
35 static ssize_t ext4_dax_read_iter(struct kiocb *iocb, struct iov_iter *to)
36 {
37 	struct inode *inode = file_inode(iocb->ki_filp);
38 	ssize_t ret;
39 
40 	inode_lock_shared(inode);
41 	/*
42 	 * Recheck under inode lock - at this point we are sure it cannot
43 	 * change anymore
44 	 */
45 	if (!IS_DAX(inode)) {
46 		inode_unlock_shared(inode);
47 		/* Fallback to buffered IO in case we cannot support DAX */
48 		return generic_file_read_iter(iocb, to);
49 	}
50 	ret = dax_iomap_rw(iocb, to, &ext4_iomap_ops);
51 	inode_unlock_shared(inode);
52 
53 	file_accessed(iocb->ki_filp);
54 	return ret;
55 }
56 #endif
57 
58 static ssize_t ext4_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
59 {
60 	if (unlikely(ext4_forced_shutdown(EXT4_SB(file_inode(iocb->ki_filp)->i_sb))))
61 		return -EIO;
62 
63 	if (!iov_iter_count(to))
64 		return 0; /* skip atime */
65 
66 #ifdef CONFIG_FS_DAX
67 	if (IS_DAX(file_inode(iocb->ki_filp)))
68 		return ext4_dax_read_iter(iocb, to);
69 #endif
70 	return generic_file_read_iter(iocb, to);
71 }
72 
73 /*
74  * Called when an inode is released. Note that this is different
75  * from ext4_file_open: open gets called at every open, but release
76  * gets called only when /all/ the files are closed.
77  */
78 static int ext4_release_file(struct inode *inode, struct file *filp)
79 {
80 	if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) {
81 		ext4_alloc_da_blocks(inode);
82 		ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
83 	}
84 	/* if we are the last writer on the inode, drop the block reservation */
85 	if ((filp->f_mode & FMODE_WRITE) &&
86 			(atomic_read(&inode->i_writecount) == 1) &&
87 		        !EXT4_I(inode)->i_reserved_data_blocks)
88 	{
89 		down_write(&EXT4_I(inode)->i_data_sem);
90 		ext4_discard_preallocations(inode);
91 		up_write(&EXT4_I(inode)->i_data_sem);
92 	}
93 	if (is_dx(inode) && filp->private_data)
94 		ext4_htree_free_dir_info(filp->private_data);
95 
96 	return 0;
97 }
98 
99 static void ext4_unwritten_wait(struct inode *inode)
100 {
101 	wait_queue_head_t *wq = ext4_ioend_wq(inode);
102 
103 	wait_event(*wq, (atomic_read(&EXT4_I(inode)->i_unwritten) == 0));
104 }
105 
106 /*
107  * This tests whether the IO in question is block-aligned or not.
108  * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
109  * are converted to written only after the IO is complete.  Until they are
110  * mapped, these blocks appear as holes, so dio_zero_block() will assume that
111  * it needs to zero out portions of the start and/or end block.  If 2 AIO
112  * threads are at work on the same unwritten block, they must be synchronized
113  * or one thread will zero the other's data, causing corruption.
114  */
115 static int
116 ext4_unaligned_aio(struct inode *inode, struct iov_iter *from, loff_t pos)
117 {
118 	struct super_block *sb = inode->i_sb;
119 	int blockmask = sb->s_blocksize - 1;
120 
121 	if (pos >= i_size_read(inode))
122 		return 0;
123 
124 	if ((pos | iov_iter_alignment(from)) & blockmask)
125 		return 1;
126 
127 	return 0;
128 }
129 
130 /* Is IO overwriting allocated and initialized blocks? */
131 static bool ext4_overwrite_io(struct inode *inode, loff_t pos, loff_t len)
132 {
133 	struct ext4_map_blocks map;
134 	unsigned int blkbits = inode->i_blkbits;
135 	int err, blklen;
136 
137 	if (pos + len > i_size_read(inode))
138 		return false;
139 
140 	map.m_lblk = pos >> blkbits;
141 	map.m_len = EXT4_MAX_BLOCKS(len, pos, blkbits);
142 	blklen = map.m_len;
143 
144 	err = ext4_map_blocks(NULL, inode, &map, 0);
145 	/*
146 	 * 'err==len' means that all of the blocks have been preallocated,
147 	 * regardless of whether they have been initialized or not. To exclude
148 	 * unwritten extents, we need to check m_flags.
149 	 */
150 	return err == blklen && (map.m_flags & EXT4_MAP_MAPPED);
151 }
152 
153 static ssize_t ext4_write_checks(struct kiocb *iocb, struct iov_iter *from)
154 {
155 	struct inode *inode = file_inode(iocb->ki_filp);
156 	ssize_t ret;
157 
158 	ret = generic_write_checks(iocb, from);
159 	if (ret <= 0)
160 		return ret;
161 	/*
162 	 * If we have encountered a bitmap-format file, the size limit
163 	 * is smaller than s_maxbytes, which is for extent-mapped files.
164 	 */
165 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
166 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
167 
168 		if (iocb->ki_pos >= sbi->s_bitmap_maxbytes)
169 			return -EFBIG;
170 		iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos);
171 	}
172 	return iov_iter_count(from);
173 }
174 
175 #ifdef CONFIG_FS_DAX
176 static ssize_t
177 ext4_dax_write_iter(struct kiocb *iocb, struct iov_iter *from)
178 {
179 	struct inode *inode = file_inode(iocb->ki_filp);
180 	ssize_t ret;
181 
182 	inode_lock(inode);
183 	ret = ext4_write_checks(iocb, from);
184 	if (ret <= 0)
185 		goto out;
186 	ret = file_remove_privs(iocb->ki_filp);
187 	if (ret)
188 		goto out;
189 	ret = file_update_time(iocb->ki_filp);
190 	if (ret)
191 		goto out;
192 
193 	ret = dax_iomap_rw(iocb, from, &ext4_iomap_ops);
194 out:
195 	inode_unlock(inode);
196 	if (ret > 0)
197 		ret = generic_write_sync(iocb, ret);
198 	return ret;
199 }
200 #endif
201 
202 static ssize_t
203 ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
204 {
205 	struct inode *inode = file_inode(iocb->ki_filp);
206 	int o_direct = iocb->ki_flags & IOCB_DIRECT;
207 	int unaligned_aio = 0;
208 	int overwrite = 0;
209 	ssize_t ret;
210 
211 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
212 		return -EIO;
213 
214 #ifdef CONFIG_FS_DAX
215 	if (IS_DAX(inode))
216 		return ext4_dax_write_iter(iocb, from);
217 #endif
218 
219 	inode_lock(inode);
220 	ret = ext4_write_checks(iocb, from);
221 	if (ret <= 0)
222 		goto out;
223 
224 	/*
225 	 * Unaligned direct AIO must be serialized among each other as zeroing
226 	 * of partial blocks of two competing unaligned AIOs can result in data
227 	 * corruption.
228 	 */
229 	if (o_direct && ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) &&
230 	    !is_sync_kiocb(iocb) &&
231 	    ext4_unaligned_aio(inode, from, iocb->ki_pos)) {
232 		unaligned_aio = 1;
233 		ext4_unwritten_wait(inode);
234 	}
235 
236 	iocb->private = &overwrite;
237 	/* Check whether we do a DIO overwrite or not */
238 	if (o_direct && ext4_should_dioread_nolock(inode) && !unaligned_aio &&
239 	    ext4_overwrite_io(inode, iocb->ki_pos, iov_iter_count(from)))
240 		overwrite = 1;
241 
242 	ret = __generic_file_write_iter(iocb, from);
243 	inode_unlock(inode);
244 
245 	if (ret > 0)
246 		ret = generic_write_sync(iocb, ret);
247 
248 	return ret;
249 
250 out:
251 	inode_unlock(inode);
252 	return ret;
253 }
254 
255 #ifdef CONFIG_FS_DAX
256 static int ext4_dax_huge_fault(struct vm_fault *vmf,
257 		enum page_entry_size pe_size)
258 {
259 	int result;
260 	struct inode *inode = file_inode(vmf->vma->vm_file);
261 	struct super_block *sb = inode->i_sb;
262 	bool write = vmf->flags & FAULT_FLAG_WRITE;
263 
264 	if (write) {
265 		sb_start_pagefault(sb);
266 		file_update_time(vmf->vma->vm_file);
267 	}
268 	down_read(&EXT4_I(inode)->i_mmap_sem);
269 	result = dax_iomap_fault(vmf, pe_size, &ext4_iomap_ops);
270 	up_read(&EXT4_I(inode)->i_mmap_sem);
271 	if (write)
272 		sb_end_pagefault(sb);
273 
274 	return result;
275 }
276 
277 static int ext4_dax_fault(struct vm_fault *vmf)
278 {
279 	return ext4_dax_huge_fault(vmf, PE_SIZE_PTE);
280 }
281 
282 /*
283  * Handle write fault for VM_MIXEDMAP mappings. Similarly to ext4_dax_fault()
284  * handler we check for races agaist truncate. Note that since we cycle through
285  * i_mmap_sem, we are sure that also any hole punching that began before we
286  * were called is finished by now and so if it included part of the file we
287  * are working on, our pte will get unmapped and the check for pte_same() in
288  * wp_pfn_shared() fails. Thus fault gets retried and things work out as
289  * desired.
290  */
291 static int ext4_dax_pfn_mkwrite(struct vm_fault *vmf)
292 {
293 	struct inode *inode = file_inode(vmf->vma->vm_file);
294 	struct super_block *sb = inode->i_sb;
295 	loff_t size;
296 	int ret;
297 
298 	sb_start_pagefault(sb);
299 	file_update_time(vmf->vma->vm_file);
300 	down_read(&EXT4_I(inode)->i_mmap_sem);
301 	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
302 	if (vmf->pgoff >= size)
303 		ret = VM_FAULT_SIGBUS;
304 	else
305 		ret = dax_pfn_mkwrite(vmf);
306 	up_read(&EXT4_I(inode)->i_mmap_sem);
307 	sb_end_pagefault(sb);
308 
309 	return ret;
310 }
311 
312 static const struct vm_operations_struct ext4_dax_vm_ops = {
313 	.fault		= ext4_dax_fault,
314 	.huge_fault	= ext4_dax_huge_fault,
315 	.page_mkwrite	= ext4_dax_fault,
316 	.pfn_mkwrite	= ext4_dax_pfn_mkwrite,
317 };
318 #else
319 #define ext4_dax_vm_ops	ext4_file_vm_ops
320 #endif
321 
322 static const struct vm_operations_struct ext4_file_vm_ops = {
323 	.fault		= ext4_filemap_fault,
324 	.map_pages	= filemap_map_pages,
325 	.page_mkwrite   = ext4_page_mkwrite,
326 };
327 
328 static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
329 {
330 	struct inode *inode = file->f_mapping->host;
331 
332 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
333 		return -EIO;
334 
335 	if (ext4_encrypted_inode(inode)) {
336 		int err = fscrypt_get_encryption_info(inode);
337 		if (err)
338 			return 0;
339 		if (!fscrypt_has_encryption_key(inode))
340 			return -ENOKEY;
341 	}
342 	file_accessed(file);
343 	if (IS_DAX(file_inode(file))) {
344 		vma->vm_ops = &ext4_dax_vm_ops;
345 		vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
346 	} else {
347 		vma->vm_ops = &ext4_file_vm_ops;
348 	}
349 	return 0;
350 }
351 
352 static int ext4_file_open(struct inode * inode, struct file * filp)
353 {
354 	struct super_block *sb = inode->i_sb;
355 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
356 	struct vfsmount *mnt = filp->f_path.mnt;
357 	struct dentry *dir;
358 	struct path path;
359 	char buf[64], *cp;
360 	int ret;
361 
362 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
363 		return -EIO;
364 
365 	if (unlikely(!(sbi->s_mount_flags & EXT4_MF_MNTDIR_SAMPLED) &&
366 		     !(sb->s_flags & MS_RDONLY))) {
367 		sbi->s_mount_flags |= EXT4_MF_MNTDIR_SAMPLED;
368 		/*
369 		 * Sample where the filesystem has been mounted and
370 		 * store it in the superblock for sysadmin convenience
371 		 * when trying to sort through large numbers of block
372 		 * devices or filesystem images.
373 		 */
374 		memset(buf, 0, sizeof(buf));
375 		path.mnt = mnt;
376 		path.dentry = mnt->mnt_root;
377 		cp = d_path(&path, buf, sizeof(buf));
378 		if (!IS_ERR(cp)) {
379 			handle_t *handle;
380 			int err;
381 
382 			handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
383 			if (IS_ERR(handle))
384 				return PTR_ERR(handle);
385 			BUFFER_TRACE(sbi->s_sbh, "get_write_access");
386 			err = ext4_journal_get_write_access(handle, sbi->s_sbh);
387 			if (err) {
388 				ext4_journal_stop(handle);
389 				return err;
390 			}
391 			strlcpy(sbi->s_es->s_last_mounted, cp,
392 				sizeof(sbi->s_es->s_last_mounted));
393 			ext4_handle_dirty_super(handle, sb);
394 			ext4_journal_stop(handle);
395 		}
396 	}
397 	if (ext4_encrypted_inode(inode)) {
398 		ret = fscrypt_get_encryption_info(inode);
399 		if (ret)
400 			return -EACCES;
401 		if (!fscrypt_has_encryption_key(inode))
402 			return -ENOKEY;
403 	}
404 
405 	dir = dget_parent(file_dentry(filp));
406 	if (ext4_encrypted_inode(d_inode(dir)) &&
407 			!fscrypt_has_permitted_context(d_inode(dir), inode)) {
408 		ext4_warning(inode->i_sb,
409 			     "Inconsistent encryption contexts: %lu/%lu",
410 			     (unsigned long) d_inode(dir)->i_ino,
411 			     (unsigned long) inode->i_ino);
412 		dput(dir);
413 		return -EPERM;
414 	}
415 	dput(dir);
416 	/*
417 	 * Set up the jbd2_inode if we are opening the inode for
418 	 * writing and the journal is present
419 	 */
420 	if (filp->f_mode & FMODE_WRITE) {
421 		ret = ext4_inode_attach_jinode(inode);
422 		if (ret < 0)
423 			return ret;
424 	}
425 	return dquot_file_open(inode, filp);
426 }
427 
428 /*
429  * Here we use ext4_map_blocks() to get a block mapping for a extent-based
430  * file rather than ext4_ext_walk_space() because we can introduce
431  * SEEK_DATA/SEEK_HOLE for block-mapped and extent-mapped file at the same
432  * function.  When extent status tree has been fully implemented, it will
433  * track all extent status for a file and we can directly use it to
434  * retrieve the offset for SEEK_DATA/SEEK_HOLE.
435  */
436 
437 /*
438  * When we retrieve the offset for SEEK_DATA/SEEK_HOLE, we would need to
439  * lookup page cache to check whether or not there has some data between
440  * [startoff, endoff] because, if this range contains an unwritten extent,
441  * we determine this extent as a data or a hole according to whether the
442  * page cache has data or not.
443  */
444 static int ext4_find_unwritten_pgoff(struct inode *inode,
445 				     int whence,
446 				     ext4_lblk_t end_blk,
447 				     loff_t *offset)
448 {
449 	struct pagevec pvec;
450 	unsigned int blkbits;
451 	pgoff_t index;
452 	pgoff_t end;
453 	loff_t endoff;
454 	loff_t startoff;
455 	loff_t lastoff;
456 	int found = 0;
457 
458 	blkbits = inode->i_sb->s_blocksize_bits;
459 	startoff = *offset;
460 	lastoff = startoff;
461 	endoff = (loff_t)end_blk << blkbits;
462 
463 	index = startoff >> PAGE_SHIFT;
464 	end = endoff >> PAGE_SHIFT;
465 
466 	pagevec_init(&pvec, 0);
467 	do {
468 		int i, num;
469 		unsigned long nr_pages;
470 
471 		num = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
472 		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
473 					  (pgoff_t)num);
474 		if (nr_pages == 0) {
475 			if (whence == SEEK_DATA)
476 				break;
477 
478 			BUG_ON(whence != SEEK_HOLE);
479 			/*
480 			 * If this is the first time to go into the loop and
481 			 * offset is not beyond the end offset, it will be a
482 			 * hole at this offset
483 			 */
484 			if (lastoff == startoff || lastoff < endoff)
485 				found = 1;
486 			break;
487 		}
488 
489 		/*
490 		 * If this is the first time to go into the loop and
491 		 * offset is smaller than the first page offset, it will be a
492 		 * hole at this offset.
493 		 */
494 		if (lastoff == startoff && whence == SEEK_HOLE &&
495 		    lastoff < page_offset(pvec.pages[0])) {
496 			found = 1;
497 			break;
498 		}
499 
500 		for (i = 0; i < nr_pages; i++) {
501 			struct page *page = pvec.pages[i];
502 			struct buffer_head *bh, *head;
503 
504 			/*
505 			 * If the current offset is not beyond the end of given
506 			 * range, it will be a hole.
507 			 */
508 			if (lastoff < endoff && whence == SEEK_HOLE &&
509 			    page->index > end) {
510 				found = 1;
511 				*offset = lastoff;
512 				goto out;
513 			}
514 
515 			lock_page(page);
516 
517 			if (unlikely(page->mapping != inode->i_mapping)) {
518 				unlock_page(page);
519 				continue;
520 			}
521 
522 			if (!page_has_buffers(page)) {
523 				unlock_page(page);
524 				continue;
525 			}
526 
527 			if (page_has_buffers(page)) {
528 				lastoff = page_offset(page);
529 				bh = head = page_buffers(page);
530 				do {
531 					if (buffer_uptodate(bh) ||
532 					    buffer_unwritten(bh)) {
533 						if (whence == SEEK_DATA)
534 							found = 1;
535 					} else {
536 						if (whence == SEEK_HOLE)
537 							found = 1;
538 					}
539 					if (found) {
540 						*offset = max_t(loff_t,
541 							startoff, lastoff);
542 						unlock_page(page);
543 						goto out;
544 					}
545 					lastoff += bh->b_size;
546 					bh = bh->b_this_page;
547 				} while (bh != head);
548 			}
549 
550 			lastoff = page_offset(page) + PAGE_SIZE;
551 			unlock_page(page);
552 		}
553 
554 		/*
555 		 * The no. of pages is less than our desired, that would be a
556 		 * hole in there.
557 		 */
558 		if (nr_pages < num && whence == SEEK_HOLE) {
559 			found = 1;
560 			*offset = lastoff;
561 			break;
562 		}
563 
564 		index = pvec.pages[i - 1]->index + 1;
565 		pagevec_release(&pvec);
566 	} while (index <= end);
567 
568 out:
569 	pagevec_release(&pvec);
570 	return found;
571 }
572 
573 /*
574  * ext4_seek_data() retrieves the offset for SEEK_DATA.
575  */
576 static loff_t ext4_seek_data(struct file *file, loff_t offset, loff_t maxsize)
577 {
578 	struct inode *inode = file->f_mapping->host;
579 	struct extent_status es;
580 	ext4_lblk_t start, last, end;
581 	loff_t dataoff, isize;
582 	int blkbits;
583 	int ret;
584 
585 	inode_lock(inode);
586 
587 	isize = i_size_read(inode);
588 	if (offset >= isize) {
589 		inode_unlock(inode);
590 		return -ENXIO;
591 	}
592 
593 	blkbits = inode->i_sb->s_blocksize_bits;
594 	start = offset >> blkbits;
595 	last = start;
596 	end = isize >> blkbits;
597 	dataoff = offset;
598 
599 	do {
600 		ret = ext4_get_next_extent(inode, last, end - last + 1, &es);
601 		if (ret <= 0) {
602 			/* No extent found -> no data */
603 			if (ret == 0)
604 				ret = -ENXIO;
605 			inode_unlock(inode);
606 			return ret;
607 		}
608 
609 		last = es.es_lblk;
610 		if (last != start)
611 			dataoff = (loff_t)last << blkbits;
612 		if (!ext4_es_is_unwritten(&es))
613 			break;
614 
615 		/*
616 		 * If there is a unwritten extent at this offset,
617 		 * it will be as a data or a hole according to page
618 		 * cache that has data or not.
619 		 */
620 		if (ext4_find_unwritten_pgoff(inode, SEEK_DATA,
621 					      es.es_lblk + es.es_len, &dataoff))
622 			break;
623 		last += es.es_len;
624 		dataoff = (loff_t)last << blkbits;
625 		cond_resched();
626 	} while (last <= end);
627 
628 	inode_unlock(inode);
629 
630 	if (dataoff > isize)
631 		return -ENXIO;
632 
633 	return vfs_setpos(file, dataoff, maxsize);
634 }
635 
636 /*
637  * ext4_seek_hole() retrieves the offset for SEEK_HOLE.
638  */
639 static loff_t ext4_seek_hole(struct file *file, loff_t offset, loff_t maxsize)
640 {
641 	struct inode *inode = file->f_mapping->host;
642 	struct extent_status es;
643 	ext4_lblk_t start, last, end;
644 	loff_t holeoff, isize;
645 	int blkbits;
646 	int ret;
647 
648 	inode_lock(inode);
649 
650 	isize = i_size_read(inode);
651 	if (offset >= isize) {
652 		inode_unlock(inode);
653 		return -ENXIO;
654 	}
655 
656 	blkbits = inode->i_sb->s_blocksize_bits;
657 	start = offset >> blkbits;
658 	last = start;
659 	end = isize >> blkbits;
660 	holeoff = offset;
661 
662 	do {
663 		ret = ext4_get_next_extent(inode, last, end - last + 1, &es);
664 		if (ret < 0) {
665 			inode_unlock(inode);
666 			return ret;
667 		}
668 		/* Found a hole? */
669 		if (ret == 0 || es.es_lblk > last) {
670 			if (last != start)
671 				holeoff = (loff_t)last << blkbits;
672 			break;
673 		}
674 		/*
675 		 * If there is a unwritten extent at this offset,
676 		 * it will be as a data or a hole according to page
677 		 * cache that has data or not.
678 		 */
679 		if (ext4_es_is_unwritten(&es) &&
680 		    ext4_find_unwritten_pgoff(inode, SEEK_HOLE,
681 					      last + es.es_len, &holeoff))
682 			break;
683 
684 		last += es.es_len;
685 		holeoff = (loff_t)last << blkbits;
686 		cond_resched();
687 	} while (last <= end);
688 
689 	inode_unlock(inode);
690 
691 	if (holeoff > isize)
692 		holeoff = isize;
693 
694 	return vfs_setpos(file, holeoff, maxsize);
695 }
696 
697 /*
698  * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
699  * by calling generic_file_llseek_size() with the appropriate maxbytes
700  * value for each.
701  */
702 loff_t ext4_llseek(struct file *file, loff_t offset, int whence)
703 {
704 	struct inode *inode = file->f_mapping->host;
705 	loff_t maxbytes;
706 
707 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
708 		maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes;
709 	else
710 		maxbytes = inode->i_sb->s_maxbytes;
711 
712 	switch (whence) {
713 	case SEEK_SET:
714 	case SEEK_CUR:
715 	case SEEK_END:
716 		return generic_file_llseek_size(file, offset, whence,
717 						maxbytes, i_size_read(inode));
718 	case SEEK_DATA:
719 		return ext4_seek_data(file, offset, maxbytes);
720 	case SEEK_HOLE:
721 		return ext4_seek_hole(file, offset, maxbytes);
722 	}
723 
724 	return -EINVAL;
725 }
726 
727 const struct file_operations ext4_file_operations = {
728 	.llseek		= ext4_llseek,
729 	.read_iter	= ext4_file_read_iter,
730 	.write_iter	= ext4_file_write_iter,
731 	.unlocked_ioctl = ext4_ioctl,
732 #ifdef CONFIG_COMPAT
733 	.compat_ioctl	= ext4_compat_ioctl,
734 #endif
735 	.mmap		= ext4_file_mmap,
736 	.open		= ext4_file_open,
737 	.release	= ext4_release_file,
738 	.fsync		= ext4_sync_file,
739 	.get_unmapped_area = thp_get_unmapped_area,
740 	.splice_read	= generic_file_splice_read,
741 	.splice_write	= iter_file_splice_write,
742 	.fallocate	= ext4_fallocate,
743 };
744 
745 const struct inode_operations ext4_file_inode_operations = {
746 	.setattr	= ext4_setattr,
747 	.getattr	= ext4_file_getattr,
748 	.listxattr	= ext4_listxattr,
749 	.get_acl	= ext4_get_acl,
750 	.set_acl	= ext4_set_acl,
751 	.fiemap		= ext4_fiemap,
752 };
753 
754