1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/file.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/file.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * ext4 fs regular file handling primitives 17 * 18 * 64-bit file support on 64-bit platforms by Jakub Jelinek 19 * (jj@sunsite.ms.mff.cuni.cz) 20 */ 21 22 #include <linux/time.h> 23 #include <linux/fs.h> 24 #include <linux/iomap.h> 25 #include <linux/mount.h> 26 #include <linux/path.h> 27 #include <linux/dax.h> 28 #include <linux/quotaops.h> 29 #include <linux/pagevec.h> 30 #include <linux/uio.h> 31 #include <linux/mman.h> 32 #include <linux/backing-dev.h> 33 #include "ext4.h" 34 #include "ext4_jbd2.h" 35 #include "xattr.h" 36 #include "acl.h" 37 #include "truncate.h" 38 39 static bool ext4_dio_supported(struct inode *inode) 40 { 41 if (IS_ENABLED(CONFIG_FS_ENCRYPTION) && IS_ENCRYPTED(inode)) 42 return false; 43 if (fsverity_active(inode)) 44 return false; 45 if (ext4_should_journal_data(inode)) 46 return false; 47 if (ext4_has_inline_data(inode)) 48 return false; 49 return true; 50 } 51 52 static ssize_t ext4_dio_read_iter(struct kiocb *iocb, struct iov_iter *to) 53 { 54 ssize_t ret; 55 struct inode *inode = file_inode(iocb->ki_filp); 56 57 if (iocb->ki_flags & IOCB_NOWAIT) { 58 if (!inode_trylock_shared(inode)) 59 return -EAGAIN; 60 } else { 61 inode_lock_shared(inode); 62 } 63 64 if (!ext4_dio_supported(inode)) { 65 inode_unlock_shared(inode); 66 /* 67 * Fallback to buffered I/O if the operation being performed on 68 * the inode is not supported by direct I/O. The IOCB_DIRECT 69 * flag needs to be cleared here in order to ensure that the 70 * direct I/O path within generic_file_read_iter() is not 71 * taken. 72 */ 73 iocb->ki_flags &= ~IOCB_DIRECT; 74 return generic_file_read_iter(iocb, to); 75 } 76 77 ret = iomap_dio_rw(iocb, to, &ext4_iomap_ops, NULL, 0); 78 inode_unlock_shared(inode); 79 80 file_accessed(iocb->ki_filp); 81 return ret; 82 } 83 84 #ifdef CONFIG_FS_DAX 85 static ssize_t ext4_dax_read_iter(struct kiocb *iocb, struct iov_iter *to) 86 { 87 struct inode *inode = file_inode(iocb->ki_filp); 88 ssize_t ret; 89 90 if (iocb->ki_flags & IOCB_NOWAIT) { 91 if (!inode_trylock_shared(inode)) 92 return -EAGAIN; 93 } else { 94 inode_lock_shared(inode); 95 } 96 /* 97 * Recheck under inode lock - at this point we are sure it cannot 98 * change anymore 99 */ 100 if (!IS_DAX(inode)) { 101 inode_unlock_shared(inode); 102 /* Fallback to buffered IO in case we cannot support DAX */ 103 return generic_file_read_iter(iocb, to); 104 } 105 ret = dax_iomap_rw(iocb, to, &ext4_iomap_ops); 106 inode_unlock_shared(inode); 107 108 file_accessed(iocb->ki_filp); 109 return ret; 110 } 111 #endif 112 113 static ssize_t ext4_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 114 { 115 struct inode *inode = file_inode(iocb->ki_filp); 116 117 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 118 return -EIO; 119 120 if (!iov_iter_count(to)) 121 return 0; /* skip atime */ 122 123 #ifdef CONFIG_FS_DAX 124 if (IS_DAX(inode)) 125 return ext4_dax_read_iter(iocb, to); 126 #endif 127 if (iocb->ki_flags & IOCB_DIRECT) 128 return ext4_dio_read_iter(iocb, to); 129 130 return generic_file_read_iter(iocb, to); 131 } 132 133 /* 134 * Called when an inode is released. Note that this is different 135 * from ext4_file_open: open gets called at every open, but release 136 * gets called only when /all/ the files are closed. 137 */ 138 static int ext4_release_file(struct inode *inode, struct file *filp) 139 { 140 if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) { 141 ext4_alloc_da_blocks(inode); 142 ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 143 } 144 /* if we are the last writer on the inode, drop the block reservation */ 145 if ((filp->f_mode & FMODE_WRITE) && 146 (atomic_read(&inode->i_writecount) == 1) && 147 !EXT4_I(inode)->i_reserved_data_blocks) { 148 down_write(&EXT4_I(inode)->i_data_sem); 149 ext4_discard_preallocations(inode, 0); 150 up_write(&EXT4_I(inode)->i_data_sem); 151 } 152 if (is_dx(inode) && filp->private_data) 153 ext4_htree_free_dir_info(filp->private_data); 154 155 return 0; 156 } 157 158 /* 159 * This tests whether the IO in question is block-aligned or not. 160 * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they 161 * are converted to written only after the IO is complete. Until they are 162 * mapped, these blocks appear as holes, so dio_zero_block() will assume that 163 * it needs to zero out portions of the start and/or end block. If 2 AIO 164 * threads are at work on the same unwritten block, they must be synchronized 165 * or one thread will zero the other's data, causing corruption. 166 */ 167 static bool 168 ext4_unaligned_io(struct inode *inode, struct iov_iter *from, loff_t pos) 169 { 170 struct super_block *sb = inode->i_sb; 171 unsigned long blockmask = sb->s_blocksize - 1; 172 173 if ((pos | iov_iter_alignment(from)) & blockmask) 174 return true; 175 176 return false; 177 } 178 179 static bool 180 ext4_extending_io(struct inode *inode, loff_t offset, size_t len) 181 { 182 if (offset + len > i_size_read(inode) || 183 offset + len > EXT4_I(inode)->i_disksize) 184 return true; 185 return false; 186 } 187 188 /* Is IO overwriting allocated and initialized blocks? */ 189 static bool ext4_overwrite_io(struct inode *inode, loff_t pos, loff_t len) 190 { 191 struct ext4_map_blocks map; 192 unsigned int blkbits = inode->i_blkbits; 193 int err, blklen; 194 195 if (pos + len > i_size_read(inode)) 196 return false; 197 198 map.m_lblk = pos >> blkbits; 199 map.m_len = EXT4_MAX_BLOCKS(len, pos, blkbits); 200 blklen = map.m_len; 201 202 err = ext4_map_blocks(NULL, inode, &map, 0); 203 /* 204 * 'err==len' means that all of the blocks have been preallocated, 205 * regardless of whether they have been initialized or not. To exclude 206 * unwritten extents, we need to check m_flags. 207 */ 208 return err == blklen && (map.m_flags & EXT4_MAP_MAPPED); 209 } 210 211 static ssize_t ext4_generic_write_checks(struct kiocb *iocb, 212 struct iov_iter *from) 213 { 214 struct inode *inode = file_inode(iocb->ki_filp); 215 ssize_t ret; 216 217 if (unlikely(IS_IMMUTABLE(inode))) 218 return -EPERM; 219 220 ret = generic_write_checks(iocb, from); 221 if (ret <= 0) 222 return ret; 223 224 /* 225 * If we have encountered a bitmap-format file, the size limit 226 * is smaller than s_maxbytes, which is for extent-mapped files. 227 */ 228 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 229 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 230 231 if (iocb->ki_pos >= sbi->s_bitmap_maxbytes) 232 return -EFBIG; 233 iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos); 234 } 235 236 return iov_iter_count(from); 237 } 238 239 static ssize_t ext4_write_checks(struct kiocb *iocb, struct iov_iter *from) 240 { 241 ssize_t ret, count; 242 243 count = ext4_generic_write_checks(iocb, from); 244 if (count <= 0) 245 return count; 246 247 ret = file_modified(iocb->ki_filp); 248 if (ret) 249 return ret; 250 return count; 251 } 252 253 static ssize_t ext4_buffered_write_iter(struct kiocb *iocb, 254 struct iov_iter *from) 255 { 256 ssize_t ret; 257 struct inode *inode = file_inode(iocb->ki_filp); 258 259 if (iocb->ki_flags & IOCB_NOWAIT) 260 return -EOPNOTSUPP; 261 262 ext4_fc_start_update(inode); 263 inode_lock(inode); 264 ret = ext4_write_checks(iocb, from); 265 if (ret <= 0) 266 goto out; 267 268 current->backing_dev_info = inode_to_bdi(inode); 269 ret = generic_perform_write(iocb->ki_filp, from, iocb->ki_pos); 270 current->backing_dev_info = NULL; 271 272 out: 273 inode_unlock(inode); 274 ext4_fc_stop_update(inode); 275 if (likely(ret > 0)) { 276 iocb->ki_pos += ret; 277 ret = generic_write_sync(iocb, ret); 278 } 279 280 return ret; 281 } 282 283 static ssize_t ext4_handle_inode_extension(struct inode *inode, loff_t offset, 284 ssize_t written, size_t count) 285 { 286 handle_t *handle; 287 bool truncate = false; 288 u8 blkbits = inode->i_blkbits; 289 ext4_lblk_t written_blk, end_blk; 290 int ret; 291 292 /* 293 * Note that EXT4_I(inode)->i_disksize can get extended up to 294 * inode->i_size while the I/O was running due to writeback of delalloc 295 * blocks. But, the code in ext4_iomap_alloc() is careful to use 296 * zeroed/unwritten extents if this is possible; thus we won't leave 297 * uninitialized blocks in a file even if we didn't succeed in writing 298 * as much as we intended. 299 */ 300 WARN_ON_ONCE(i_size_read(inode) < EXT4_I(inode)->i_disksize); 301 if (offset + count <= EXT4_I(inode)->i_disksize) { 302 /* 303 * We need to ensure that the inode is removed from the orphan 304 * list if it has been added prematurely, due to writeback of 305 * delalloc blocks. 306 */ 307 if (!list_empty(&EXT4_I(inode)->i_orphan) && inode->i_nlink) { 308 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 309 310 if (IS_ERR(handle)) { 311 ext4_orphan_del(NULL, inode); 312 return PTR_ERR(handle); 313 } 314 315 ext4_orphan_del(handle, inode); 316 ext4_journal_stop(handle); 317 } 318 319 return written; 320 } 321 322 if (written < 0) 323 goto truncate; 324 325 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 326 if (IS_ERR(handle)) { 327 written = PTR_ERR(handle); 328 goto truncate; 329 } 330 331 if (ext4_update_inode_size(inode, offset + written)) { 332 ret = ext4_mark_inode_dirty(handle, inode); 333 if (unlikely(ret)) { 334 written = ret; 335 ext4_journal_stop(handle); 336 goto truncate; 337 } 338 } 339 340 /* 341 * We may need to truncate allocated but not written blocks beyond EOF. 342 */ 343 written_blk = ALIGN(offset + written, 1 << blkbits); 344 end_blk = ALIGN(offset + count, 1 << blkbits); 345 if (written_blk < end_blk && ext4_can_truncate(inode)) 346 truncate = true; 347 348 /* 349 * Remove the inode from the orphan list if it has been extended and 350 * everything went OK. 351 */ 352 if (!truncate && inode->i_nlink) 353 ext4_orphan_del(handle, inode); 354 ext4_journal_stop(handle); 355 356 if (truncate) { 357 truncate: 358 ext4_truncate_failed_write(inode); 359 /* 360 * If the truncate operation failed early, then the inode may 361 * still be on the orphan list. In that case, we need to try 362 * remove the inode from the in-memory linked list. 363 */ 364 if (inode->i_nlink) 365 ext4_orphan_del(NULL, inode); 366 } 367 368 return written; 369 } 370 371 static int ext4_dio_write_end_io(struct kiocb *iocb, ssize_t size, 372 int error, unsigned int flags) 373 { 374 loff_t offset = iocb->ki_pos; 375 struct inode *inode = file_inode(iocb->ki_filp); 376 377 if (error) 378 return error; 379 380 if (size && flags & IOMAP_DIO_UNWRITTEN) 381 return ext4_convert_unwritten_extents(NULL, inode, 382 offset, size); 383 384 return 0; 385 } 386 387 static const struct iomap_dio_ops ext4_dio_write_ops = { 388 .end_io = ext4_dio_write_end_io, 389 }; 390 391 /* 392 * The intention here is to start with shared lock acquired then see if any 393 * condition requires an exclusive inode lock. If yes, then we restart the 394 * whole operation by releasing the shared lock and acquiring exclusive lock. 395 * 396 * - For unaligned_io we never take shared lock as it may cause data corruption 397 * when two unaligned IO tries to modify the same block e.g. while zeroing. 398 * 399 * - For extending writes case we don't take the shared lock, since it requires 400 * updating inode i_disksize and/or orphan handling with exclusive lock. 401 * 402 * - shared locking will only be true mostly with overwrites. Otherwise we will 403 * switch to exclusive i_rwsem lock. 404 */ 405 static ssize_t ext4_dio_write_checks(struct kiocb *iocb, struct iov_iter *from, 406 bool *ilock_shared, bool *extend) 407 { 408 struct file *file = iocb->ki_filp; 409 struct inode *inode = file_inode(file); 410 loff_t offset; 411 size_t count; 412 ssize_t ret; 413 414 restart: 415 ret = ext4_generic_write_checks(iocb, from); 416 if (ret <= 0) 417 goto out; 418 419 offset = iocb->ki_pos; 420 count = ret; 421 if (ext4_extending_io(inode, offset, count)) 422 *extend = true; 423 /* 424 * Determine whether the IO operation will overwrite allocated 425 * and initialized blocks. 426 * We need exclusive i_rwsem for changing security info 427 * in file_modified(). 428 */ 429 if (*ilock_shared && (!IS_NOSEC(inode) || *extend || 430 !ext4_overwrite_io(inode, offset, count))) { 431 if (iocb->ki_flags & IOCB_NOWAIT) { 432 ret = -EAGAIN; 433 goto out; 434 } 435 inode_unlock_shared(inode); 436 *ilock_shared = false; 437 inode_lock(inode); 438 goto restart; 439 } 440 441 ret = file_modified(file); 442 if (ret < 0) 443 goto out; 444 445 return count; 446 out: 447 if (*ilock_shared) 448 inode_unlock_shared(inode); 449 else 450 inode_unlock(inode); 451 return ret; 452 } 453 454 static ssize_t ext4_dio_write_iter(struct kiocb *iocb, struct iov_iter *from) 455 { 456 ssize_t ret; 457 handle_t *handle; 458 struct inode *inode = file_inode(iocb->ki_filp); 459 loff_t offset = iocb->ki_pos; 460 size_t count = iov_iter_count(from); 461 const struct iomap_ops *iomap_ops = &ext4_iomap_ops; 462 bool extend = false, unaligned_io = false; 463 bool ilock_shared = true; 464 465 /* 466 * We initially start with shared inode lock unless it is 467 * unaligned IO which needs exclusive lock anyways. 468 */ 469 if (ext4_unaligned_io(inode, from, offset)) { 470 unaligned_io = true; 471 ilock_shared = false; 472 } 473 /* 474 * Quick check here without any i_rwsem lock to see if it is extending 475 * IO. A more reliable check is done in ext4_dio_write_checks() with 476 * proper locking in place. 477 */ 478 if (offset + count > i_size_read(inode)) 479 ilock_shared = false; 480 481 if (iocb->ki_flags & IOCB_NOWAIT) { 482 if (ilock_shared) { 483 if (!inode_trylock_shared(inode)) 484 return -EAGAIN; 485 } else { 486 if (!inode_trylock(inode)) 487 return -EAGAIN; 488 } 489 } else { 490 if (ilock_shared) 491 inode_lock_shared(inode); 492 else 493 inode_lock(inode); 494 } 495 496 /* Fallback to buffered I/O if the inode does not support direct I/O. */ 497 if (!ext4_dio_supported(inode)) { 498 if (ilock_shared) 499 inode_unlock_shared(inode); 500 else 501 inode_unlock(inode); 502 return ext4_buffered_write_iter(iocb, from); 503 } 504 505 ret = ext4_dio_write_checks(iocb, from, &ilock_shared, &extend); 506 if (ret <= 0) 507 return ret; 508 509 /* if we're going to block and IOCB_NOWAIT is set, return -EAGAIN */ 510 if ((iocb->ki_flags & IOCB_NOWAIT) && (unaligned_io || extend)) { 511 ret = -EAGAIN; 512 goto out; 513 } 514 515 offset = iocb->ki_pos; 516 count = ret; 517 518 /* 519 * Unaligned direct IO must be serialized among each other as zeroing 520 * of partial blocks of two competing unaligned IOs can result in data 521 * corruption. 522 * 523 * So we make sure we don't allow any unaligned IO in flight. 524 * For IOs where we need not wait (like unaligned non-AIO DIO), 525 * below inode_dio_wait() may anyway become a no-op, since we start 526 * with exclusive lock. 527 */ 528 if (unaligned_io) 529 inode_dio_wait(inode); 530 531 if (extend) { 532 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 533 if (IS_ERR(handle)) { 534 ret = PTR_ERR(handle); 535 goto out; 536 } 537 538 ext4_fc_start_update(inode); 539 ret = ext4_orphan_add(handle, inode); 540 ext4_fc_stop_update(inode); 541 if (ret) { 542 ext4_journal_stop(handle); 543 goto out; 544 } 545 546 ext4_journal_stop(handle); 547 } 548 549 if (ilock_shared) 550 iomap_ops = &ext4_iomap_overwrite_ops; 551 ret = iomap_dio_rw(iocb, from, iomap_ops, &ext4_dio_write_ops, 552 (unaligned_io || extend) ? IOMAP_DIO_FORCE_WAIT : 0); 553 if (ret == -ENOTBLK) 554 ret = 0; 555 556 if (extend) 557 ret = ext4_handle_inode_extension(inode, offset, ret, count); 558 559 out: 560 if (ilock_shared) 561 inode_unlock_shared(inode); 562 else 563 inode_unlock(inode); 564 565 if (ret >= 0 && iov_iter_count(from)) { 566 ssize_t err; 567 loff_t endbyte; 568 569 offset = iocb->ki_pos; 570 err = ext4_buffered_write_iter(iocb, from); 571 if (err < 0) 572 return err; 573 574 /* 575 * We need to ensure that the pages within the page cache for 576 * the range covered by this I/O are written to disk and 577 * invalidated. This is in attempt to preserve the expected 578 * direct I/O semantics in the case we fallback to buffered I/O 579 * to complete off the I/O request. 580 */ 581 ret += err; 582 endbyte = offset + err - 1; 583 err = filemap_write_and_wait_range(iocb->ki_filp->f_mapping, 584 offset, endbyte); 585 if (!err) 586 invalidate_mapping_pages(iocb->ki_filp->f_mapping, 587 offset >> PAGE_SHIFT, 588 endbyte >> PAGE_SHIFT); 589 } 590 591 return ret; 592 } 593 594 #ifdef CONFIG_FS_DAX 595 static ssize_t 596 ext4_dax_write_iter(struct kiocb *iocb, struct iov_iter *from) 597 { 598 ssize_t ret; 599 size_t count; 600 loff_t offset; 601 handle_t *handle; 602 bool extend = false; 603 struct inode *inode = file_inode(iocb->ki_filp); 604 605 if (iocb->ki_flags & IOCB_NOWAIT) { 606 if (!inode_trylock(inode)) 607 return -EAGAIN; 608 } else { 609 inode_lock(inode); 610 } 611 612 ret = ext4_write_checks(iocb, from); 613 if (ret <= 0) 614 goto out; 615 616 offset = iocb->ki_pos; 617 count = iov_iter_count(from); 618 619 if (offset + count > EXT4_I(inode)->i_disksize) { 620 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 621 if (IS_ERR(handle)) { 622 ret = PTR_ERR(handle); 623 goto out; 624 } 625 626 ret = ext4_orphan_add(handle, inode); 627 if (ret) { 628 ext4_journal_stop(handle); 629 goto out; 630 } 631 632 extend = true; 633 ext4_journal_stop(handle); 634 } 635 636 ret = dax_iomap_rw(iocb, from, &ext4_iomap_ops); 637 638 if (extend) 639 ret = ext4_handle_inode_extension(inode, offset, ret, count); 640 out: 641 inode_unlock(inode); 642 if (ret > 0) 643 ret = generic_write_sync(iocb, ret); 644 return ret; 645 } 646 #endif 647 648 static ssize_t 649 ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 650 { 651 struct inode *inode = file_inode(iocb->ki_filp); 652 653 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 654 return -EIO; 655 656 #ifdef CONFIG_FS_DAX 657 if (IS_DAX(inode)) 658 return ext4_dax_write_iter(iocb, from); 659 #endif 660 if (iocb->ki_flags & IOCB_DIRECT) 661 return ext4_dio_write_iter(iocb, from); 662 else 663 return ext4_buffered_write_iter(iocb, from); 664 } 665 666 #ifdef CONFIG_FS_DAX 667 static vm_fault_t ext4_dax_huge_fault(struct vm_fault *vmf, 668 enum page_entry_size pe_size) 669 { 670 int error = 0; 671 vm_fault_t result; 672 int retries = 0; 673 handle_t *handle = NULL; 674 struct inode *inode = file_inode(vmf->vma->vm_file); 675 struct super_block *sb = inode->i_sb; 676 677 /* 678 * We have to distinguish real writes from writes which will result in a 679 * COW page; COW writes should *not* poke the journal (the file will not 680 * be changed). Doing so would cause unintended failures when mounted 681 * read-only. 682 * 683 * We check for VM_SHARED rather than vmf->cow_page since the latter is 684 * unset for pe_size != PE_SIZE_PTE (i.e. only in do_cow_fault); for 685 * other sizes, dax_iomap_fault will handle splitting / fallback so that 686 * we eventually come back with a COW page. 687 */ 688 bool write = (vmf->flags & FAULT_FLAG_WRITE) && 689 (vmf->vma->vm_flags & VM_SHARED); 690 pfn_t pfn; 691 692 if (write) { 693 sb_start_pagefault(sb); 694 file_update_time(vmf->vma->vm_file); 695 down_read(&EXT4_I(inode)->i_mmap_sem); 696 retry: 697 handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE, 698 EXT4_DATA_TRANS_BLOCKS(sb)); 699 if (IS_ERR(handle)) { 700 up_read(&EXT4_I(inode)->i_mmap_sem); 701 sb_end_pagefault(sb); 702 return VM_FAULT_SIGBUS; 703 } 704 } else { 705 down_read(&EXT4_I(inode)->i_mmap_sem); 706 } 707 result = dax_iomap_fault(vmf, pe_size, &pfn, &error, &ext4_iomap_ops); 708 if (write) { 709 ext4_journal_stop(handle); 710 711 if ((result & VM_FAULT_ERROR) && error == -ENOSPC && 712 ext4_should_retry_alloc(sb, &retries)) 713 goto retry; 714 /* Handling synchronous page fault? */ 715 if (result & VM_FAULT_NEEDDSYNC) 716 result = dax_finish_sync_fault(vmf, pe_size, pfn); 717 up_read(&EXT4_I(inode)->i_mmap_sem); 718 sb_end_pagefault(sb); 719 } else { 720 up_read(&EXT4_I(inode)->i_mmap_sem); 721 } 722 723 return result; 724 } 725 726 static vm_fault_t ext4_dax_fault(struct vm_fault *vmf) 727 { 728 return ext4_dax_huge_fault(vmf, PE_SIZE_PTE); 729 } 730 731 static const struct vm_operations_struct ext4_dax_vm_ops = { 732 .fault = ext4_dax_fault, 733 .huge_fault = ext4_dax_huge_fault, 734 .page_mkwrite = ext4_dax_fault, 735 .pfn_mkwrite = ext4_dax_fault, 736 }; 737 #else 738 #define ext4_dax_vm_ops ext4_file_vm_ops 739 #endif 740 741 static const struct vm_operations_struct ext4_file_vm_ops = { 742 .fault = ext4_filemap_fault, 743 .map_pages = filemap_map_pages, 744 .page_mkwrite = ext4_page_mkwrite, 745 }; 746 747 static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma) 748 { 749 struct inode *inode = file->f_mapping->host; 750 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 751 struct dax_device *dax_dev = sbi->s_daxdev; 752 753 if (unlikely(ext4_forced_shutdown(sbi))) 754 return -EIO; 755 756 /* 757 * We don't support synchronous mappings for non-DAX files and 758 * for DAX files if underneath dax_device is not synchronous. 759 */ 760 if (!daxdev_mapping_supported(vma, dax_dev)) 761 return -EOPNOTSUPP; 762 763 file_accessed(file); 764 if (IS_DAX(file_inode(file))) { 765 vma->vm_ops = &ext4_dax_vm_ops; 766 vma->vm_flags |= VM_HUGEPAGE; 767 } else { 768 vma->vm_ops = &ext4_file_vm_ops; 769 } 770 return 0; 771 } 772 773 static int ext4_sample_last_mounted(struct super_block *sb, 774 struct vfsmount *mnt) 775 { 776 struct ext4_sb_info *sbi = EXT4_SB(sb); 777 struct path path; 778 char buf[64], *cp; 779 handle_t *handle; 780 int err; 781 782 if (likely(ext4_test_mount_flag(sb, EXT4_MF_MNTDIR_SAMPLED))) 783 return 0; 784 785 if (sb_rdonly(sb) || !sb_start_intwrite_trylock(sb)) 786 return 0; 787 788 ext4_set_mount_flag(sb, EXT4_MF_MNTDIR_SAMPLED); 789 /* 790 * Sample where the filesystem has been mounted and 791 * store it in the superblock for sysadmin convenience 792 * when trying to sort through large numbers of block 793 * devices or filesystem images. 794 */ 795 memset(buf, 0, sizeof(buf)); 796 path.mnt = mnt; 797 path.dentry = mnt->mnt_root; 798 cp = d_path(&path, buf, sizeof(buf)); 799 err = 0; 800 if (IS_ERR(cp)) 801 goto out; 802 803 handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1); 804 err = PTR_ERR(handle); 805 if (IS_ERR(handle)) 806 goto out; 807 BUFFER_TRACE(sbi->s_sbh, "get_write_access"); 808 err = ext4_journal_get_write_access(handle, sbi->s_sbh); 809 if (err) 810 goto out_journal; 811 lock_buffer(sbi->s_sbh); 812 strncpy(sbi->s_es->s_last_mounted, cp, 813 sizeof(sbi->s_es->s_last_mounted)); 814 ext4_superblock_csum_set(sb); 815 unlock_buffer(sbi->s_sbh); 816 ext4_handle_dirty_metadata(handle, NULL, sbi->s_sbh); 817 out_journal: 818 ext4_journal_stop(handle); 819 out: 820 sb_end_intwrite(sb); 821 return err; 822 } 823 824 static int ext4_file_open(struct inode *inode, struct file *filp) 825 { 826 int ret; 827 828 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 829 return -EIO; 830 831 ret = ext4_sample_last_mounted(inode->i_sb, filp->f_path.mnt); 832 if (ret) 833 return ret; 834 835 ret = fscrypt_file_open(inode, filp); 836 if (ret) 837 return ret; 838 839 ret = fsverity_file_open(inode, filp); 840 if (ret) 841 return ret; 842 843 /* 844 * Set up the jbd2_inode if we are opening the inode for 845 * writing and the journal is present 846 */ 847 if (filp->f_mode & FMODE_WRITE) { 848 ret = ext4_inode_attach_jinode(inode); 849 if (ret < 0) 850 return ret; 851 } 852 853 filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC; 854 return dquot_file_open(inode, filp); 855 } 856 857 /* 858 * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values 859 * by calling generic_file_llseek_size() with the appropriate maxbytes 860 * value for each. 861 */ 862 loff_t ext4_llseek(struct file *file, loff_t offset, int whence) 863 { 864 struct inode *inode = file->f_mapping->host; 865 loff_t maxbytes; 866 867 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 868 maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes; 869 else 870 maxbytes = inode->i_sb->s_maxbytes; 871 872 switch (whence) { 873 default: 874 return generic_file_llseek_size(file, offset, whence, 875 maxbytes, i_size_read(inode)); 876 case SEEK_HOLE: 877 inode_lock_shared(inode); 878 offset = iomap_seek_hole(inode, offset, 879 &ext4_iomap_report_ops); 880 inode_unlock_shared(inode); 881 break; 882 case SEEK_DATA: 883 inode_lock_shared(inode); 884 offset = iomap_seek_data(inode, offset, 885 &ext4_iomap_report_ops); 886 inode_unlock_shared(inode); 887 break; 888 } 889 890 if (offset < 0) 891 return offset; 892 return vfs_setpos(file, offset, maxbytes); 893 } 894 895 const struct file_operations ext4_file_operations = { 896 .llseek = ext4_llseek, 897 .read_iter = ext4_file_read_iter, 898 .write_iter = ext4_file_write_iter, 899 .iopoll = iomap_dio_iopoll, 900 .unlocked_ioctl = ext4_ioctl, 901 #ifdef CONFIG_COMPAT 902 .compat_ioctl = ext4_compat_ioctl, 903 #endif 904 .mmap = ext4_file_mmap, 905 .mmap_supported_flags = MAP_SYNC, 906 .open = ext4_file_open, 907 .release = ext4_release_file, 908 .fsync = ext4_sync_file, 909 .get_unmapped_area = thp_get_unmapped_area, 910 .splice_read = generic_file_splice_read, 911 .splice_write = iter_file_splice_write, 912 .fallocate = ext4_fallocate, 913 }; 914 915 const struct inode_operations ext4_file_inode_operations = { 916 .setattr = ext4_setattr, 917 .getattr = ext4_file_getattr, 918 .listxattr = ext4_listxattr, 919 .get_acl = ext4_get_acl, 920 .set_acl = ext4_set_acl, 921 .fiemap = ext4_fiemap, 922 }; 923 924