xref: /openbmc/linux/fs/ext4/file.c (revision d9fd5a71)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/file.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/file.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  ext4 fs regular file handling primitives
17  *
18  *  64-bit file support on 64-bit platforms by Jakub Jelinek
19  *	(jj@sunsite.ms.mff.cuni.cz)
20  */
21 
22 #include <linux/time.h>
23 #include <linux/fs.h>
24 #include <linux/iomap.h>
25 #include <linux/mount.h>
26 #include <linux/path.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/pagevec.h>
30 #include <linux/uio.h>
31 #include <linux/mman.h>
32 #include <linux/backing-dev.h>
33 #include "ext4.h"
34 #include "ext4_jbd2.h"
35 #include "xattr.h"
36 #include "acl.h"
37 #include "truncate.h"
38 
39 static bool ext4_dio_supported(struct inode *inode)
40 {
41 	if (IS_ENABLED(CONFIG_FS_ENCRYPTION) && IS_ENCRYPTED(inode))
42 		return false;
43 	if (fsverity_active(inode))
44 		return false;
45 	if (ext4_should_journal_data(inode))
46 		return false;
47 	if (ext4_has_inline_data(inode))
48 		return false;
49 	return true;
50 }
51 
52 static ssize_t ext4_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
53 {
54 	ssize_t ret;
55 	struct inode *inode = file_inode(iocb->ki_filp);
56 
57 	if (iocb->ki_flags & IOCB_NOWAIT) {
58 		if (!inode_trylock_shared(inode))
59 			return -EAGAIN;
60 	} else {
61 		inode_lock_shared(inode);
62 	}
63 
64 	if (!ext4_dio_supported(inode)) {
65 		inode_unlock_shared(inode);
66 		/*
67 		 * Fallback to buffered I/O if the operation being performed on
68 		 * the inode is not supported by direct I/O. The IOCB_DIRECT
69 		 * flag needs to be cleared here in order to ensure that the
70 		 * direct I/O path within generic_file_read_iter() is not
71 		 * taken.
72 		 */
73 		iocb->ki_flags &= ~IOCB_DIRECT;
74 		return generic_file_read_iter(iocb, to);
75 	}
76 
77 	ret = iomap_dio_rw(iocb, to, &ext4_iomap_ops, NULL, 0);
78 	inode_unlock_shared(inode);
79 
80 	file_accessed(iocb->ki_filp);
81 	return ret;
82 }
83 
84 #ifdef CONFIG_FS_DAX
85 static ssize_t ext4_dax_read_iter(struct kiocb *iocb, struct iov_iter *to)
86 {
87 	struct inode *inode = file_inode(iocb->ki_filp);
88 	ssize_t ret;
89 
90 	if (iocb->ki_flags & IOCB_NOWAIT) {
91 		if (!inode_trylock_shared(inode))
92 			return -EAGAIN;
93 	} else {
94 		inode_lock_shared(inode);
95 	}
96 	/*
97 	 * Recheck under inode lock - at this point we are sure it cannot
98 	 * change anymore
99 	 */
100 	if (!IS_DAX(inode)) {
101 		inode_unlock_shared(inode);
102 		/* Fallback to buffered IO in case we cannot support DAX */
103 		return generic_file_read_iter(iocb, to);
104 	}
105 	ret = dax_iomap_rw(iocb, to, &ext4_iomap_ops);
106 	inode_unlock_shared(inode);
107 
108 	file_accessed(iocb->ki_filp);
109 	return ret;
110 }
111 #endif
112 
113 static ssize_t ext4_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
114 {
115 	struct inode *inode = file_inode(iocb->ki_filp);
116 
117 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
118 		return -EIO;
119 
120 	if (!iov_iter_count(to))
121 		return 0; /* skip atime */
122 
123 #ifdef CONFIG_FS_DAX
124 	if (IS_DAX(inode))
125 		return ext4_dax_read_iter(iocb, to);
126 #endif
127 	if (iocb->ki_flags & IOCB_DIRECT)
128 		return ext4_dio_read_iter(iocb, to);
129 
130 	return generic_file_read_iter(iocb, to);
131 }
132 
133 /*
134  * Called when an inode is released. Note that this is different
135  * from ext4_file_open: open gets called at every open, but release
136  * gets called only when /all/ the files are closed.
137  */
138 static int ext4_release_file(struct inode *inode, struct file *filp)
139 {
140 	if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) {
141 		ext4_alloc_da_blocks(inode);
142 		ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
143 	}
144 	/* if we are the last writer on the inode, drop the block reservation */
145 	if ((filp->f_mode & FMODE_WRITE) &&
146 			(atomic_read(&inode->i_writecount) == 1) &&
147 			!EXT4_I(inode)->i_reserved_data_blocks) {
148 		down_write(&EXT4_I(inode)->i_data_sem);
149 		ext4_discard_preallocations(inode, 0);
150 		up_write(&EXT4_I(inode)->i_data_sem);
151 	}
152 	if (is_dx(inode) && filp->private_data)
153 		ext4_htree_free_dir_info(filp->private_data);
154 
155 	return 0;
156 }
157 
158 /*
159  * This tests whether the IO in question is block-aligned or not.
160  * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
161  * are converted to written only after the IO is complete.  Until they are
162  * mapped, these blocks appear as holes, so dio_zero_block() will assume that
163  * it needs to zero out portions of the start and/or end block.  If 2 AIO
164  * threads are at work on the same unwritten block, they must be synchronized
165  * or one thread will zero the other's data, causing corruption.
166  */
167 static bool
168 ext4_unaligned_io(struct inode *inode, struct iov_iter *from, loff_t pos)
169 {
170 	struct super_block *sb = inode->i_sb;
171 	unsigned long blockmask = sb->s_blocksize - 1;
172 
173 	if ((pos | iov_iter_alignment(from)) & blockmask)
174 		return true;
175 
176 	return false;
177 }
178 
179 static bool
180 ext4_extending_io(struct inode *inode, loff_t offset, size_t len)
181 {
182 	if (offset + len > i_size_read(inode) ||
183 	    offset + len > EXT4_I(inode)->i_disksize)
184 		return true;
185 	return false;
186 }
187 
188 /* Is IO overwriting allocated and initialized blocks? */
189 static bool ext4_overwrite_io(struct inode *inode, loff_t pos, loff_t len)
190 {
191 	struct ext4_map_blocks map;
192 	unsigned int blkbits = inode->i_blkbits;
193 	int err, blklen;
194 
195 	if (pos + len > i_size_read(inode))
196 		return false;
197 
198 	map.m_lblk = pos >> blkbits;
199 	map.m_len = EXT4_MAX_BLOCKS(len, pos, blkbits);
200 	blklen = map.m_len;
201 
202 	err = ext4_map_blocks(NULL, inode, &map, 0);
203 	/*
204 	 * 'err==len' means that all of the blocks have been preallocated,
205 	 * regardless of whether they have been initialized or not. To exclude
206 	 * unwritten extents, we need to check m_flags.
207 	 */
208 	return err == blklen && (map.m_flags & EXT4_MAP_MAPPED);
209 }
210 
211 static ssize_t ext4_generic_write_checks(struct kiocb *iocb,
212 					 struct iov_iter *from)
213 {
214 	struct inode *inode = file_inode(iocb->ki_filp);
215 	ssize_t ret;
216 
217 	if (unlikely(IS_IMMUTABLE(inode)))
218 		return -EPERM;
219 
220 	ret = generic_write_checks(iocb, from);
221 	if (ret <= 0)
222 		return ret;
223 
224 	/*
225 	 * If we have encountered a bitmap-format file, the size limit
226 	 * is smaller than s_maxbytes, which is for extent-mapped files.
227 	 */
228 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
229 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
230 
231 		if (iocb->ki_pos >= sbi->s_bitmap_maxbytes)
232 			return -EFBIG;
233 		iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos);
234 	}
235 
236 	return iov_iter_count(from);
237 }
238 
239 static ssize_t ext4_write_checks(struct kiocb *iocb, struct iov_iter *from)
240 {
241 	ssize_t ret, count;
242 
243 	count = ext4_generic_write_checks(iocb, from);
244 	if (count <= 0)
245 		return count;
246 
247 	ret = file_modified(iocb->ki_filp);
248 	if (ret)
249 		return ret;
250 	return count;
251 }
252 
253 static ssize_t ext4_buffered_write_iter(struct kiocb *iocb,
254 					struct iov_iter *from)
255 {
256 	ssize_t ret;
257 	struct inode *inode = file_inode(iocb->ki_filp);
258 
259 	if (iocb->ki_flags & IOCB_NOWAIT)
260 		return -EOPNOTSUPP;
261 
262 	ext4_fc_start_update(inode);
263 	inode_lock(inode);
264 	ret = ext4_write_checks(iocb, from);
265 	if (ret <= 0)
266 		goto out;
267 
268 	current->backing_dev_info = inode_to_bdi(inode);
269 	ret = generic_perform_write(iocb->ki_filp, from, iocb->ki_pos);
270 	current->backing_dev_info = NULL;
271 
272 out:
273 	inode_unlock(inode);
274 	ext4_fc_stop_update(inode);
275 	if (likely(ret > 0)) {
276 		iocb->ki_pos += ret;
277 		ret = generic_write_sync(iocb, ret);
278 	}
279 
280 	return ret;
281 }
282 
283 static ssize_t ext4_handle_inode_extension(struct inode *inode, loff_t offset,
284 					   ssize_t written, size_t count)
285 {
286 	handle_t *handle;
287 	bool truncate = false;
288 	u8 blkbits = inode->i_blkbits;
289 	ext4_lblk_t written_blk, end_blk;
290 	int ret;
291 
292 	/*
293 	 * Note that EXT4_I(inode)->i_disksize can get extended up to
294 	 * inode->i_size while the I/O was running due to writeback of delalloc
295 	 * blocks. But, the code in ext4_iomap_alloc() is careful to use
296 	 * zeroed/unwritten extents if this is possible; thus we won't leave
297 	 * uninitialized blocks in a file even if we didn't succeed in writing
298 	 * as much as we intended.
299 	 */
300 	WARN_ON_ONCE(i_size_read(inode) < EXT4_I(inode)->i_disksize);
301 	if (offset + count <= EXT4_I(inode)->i_disksize) {
302 		/*
303 		 * We need to ensure that the inode is removed from the orphan
304 		 * list if it has been added prematurely, due to writeback of
305 		 * delalloc blocks.
306 		 */
307 		if (!list_empty(&EXT4_I(inode)->i_orphan) && inode->i_nlink) {
308 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
309 
310 			if (IS_ERR(handle)) {
311 				ext4_orphan_del(NULL, inode);
312 				return PTR_ERR(handle);
313 			}
314 
315 			ext4_orphan_del(handle, inode);
316 			ext4_journal_stop(handle);
317 		}
318 
319 		return written;
320 	}
321 
322 	if (written < 0)
323 		goto truncate;
324 
325 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
326 	if (IS_ERR(handle)) {
327 		written = PTR_ERR(handle);
328 		goto truncate;
329 	}
330 
331 	if (ext4_update_inode_size(inode, offset + written)) {
332 		ret = ext4_mark_inode_dirty(handle, inode);
333 		if (unlikely(ret)) {
334 			written = ret;
335 			ext4_journal_stop(handle);
336 			goto truncate;
337 		}
338 	}
339 
340 	/*
341 	 * We may need to truncate allocated but not written blocks beyond EOF.
342 	 */
343 	written_blk = ALIGN(offset + written, 1 << blkbits);
344 	end_blk = ALIGN(offset + count, 1 << blkbits);
345 	if (written_blk < end_blk && ext4_can_truncate(inode))
346 		truncate = true;
347 
348 	/*
349 	 * Remove the inode from the orphan list if it has been extended and
350 	 * everything went OK.
351 	 */
352 	if (!truncate && inode->i_nlink)
353 		ext4_orphan_del(handle, inode);
354 	ext4_journal_stop(handle);
355 
356 	if (truncate) {
357 truncate:
358 		ext4_truncate_failed_write(inode);
359 		/*
360 		 * If the truncate operation failed early, then the inode may
361 		 * still be on the orphan list. In that case, we need to try
362 		 * remove the inode from the in-memory linked list.
363 		 */
364 		if (inode->i_nlink)
365 			ext4_orphan_del(NULL, inode);
366 	}
367 
368 	return written;
369 }
370 
371 static int ext4_dio_write_end_io(struct kiocb *iocb, ssize_t size,
372 				 int error, unsigned int flags)
373 {
374 	loff_t offset = iocb->ki_pos;
375 	struct inode *inode = file_inode(iocb->ki_filp);
376 
377 	if (error)
378 		return error;
379 
380 	if (size && flags & IOMAP_DIO_UNWRITTEN)
381 		return ext4_convert_unwritten_extents(NULL, inode,
382 						      offset, size);
383 
384 	return 0;
385 }
386 
387 static const struct iomap_dio_ops ext4_dio_write_ops = {
388 	.end_io = ext4_dio_write_end_io,
389 };
390 
391 /*
392  * The intention here is to start with shared lock acquired then see if any
393  * condition requires an exclusive inode lock. If yes, then we restart the
394  * whole operation by releasing the shared lock and acquiring exclusive lock.
395  *
396  * - For unaligned_io we never take shared lock as it may cause data corruption
397  *   when two unaligned IO tries to modify the same block e.g. while zeroing.
398  *
399  * - For extending writes case we don't take the shared lock, since it requires
400  *   updating inode i_disksize and/or orphan handling with exclusive lock.
401  *
402  * - shared locking will only be true mostly with overwrites. Otherwise we will
403  *   switch to exclusive i_rwsem lock.
404  */
405 static ssize_t ext4_dio_write_checks(struct kiocb *iocb, struct iov_iter *from,
406 				     bool *ilock_shared, bool *extend)
407 {
408 	struct file *file = iocb->ki_filp;
409 	struct inode *inode = file_inode(file);
410 	loff_t offset;
411 	size_t count;
412 	ssize_t ret;
413 
414 restart:
415 	ret = ext4_generic_write_checks(iocb, from);
416 	if (ret <= 0)
417 		goto out;
418 
419 	offset = iocb->ki_pos;
420 	count = ret;
421 	if (ext4_extending_io(inode, offset, count))
422 		*extend = true;
423 	/*
424 	 * Determine whether the IO operation will overwrite allocated
425 	 * and initialized blocks.
426 	 * We need exclusive i_rwsem for changing security info
427 	 * in file_modified().
428 	 */
429 	if (*ilock_shared && (!IS_NOSEC(inode) || *extend ||
430 	     !ext4_overwrite_io(inode, offset, count))) {
431 		if (iocb->ki_flags & IOCB_NOWAIT) {
432 			ret = -EAGAIN;
433 			goto out;
434 		}
435 		inode_unlock_shared(inode);
436 		*ilock_shared = false;
437 		inode_lock(inode);
438 		goto restart;
439 	}
440 
441 	ret = file_modified(file);
442 	if (ret < 0)
443 		goto out;
444 
445 	return count;
446 out:
447 	if (*ilock_shared)
448 		inode_unlock_shared(inode);
449 	else
450 		inode_unlock(inode);
451 	return ret;
452 }
453 
454 static ssize_t ext4_dio_write_iter(struct kiocb *iocb, struct iov_iter *from)
455 {
456 	ssize_t ret;
457 	handle_t *handle;
458 	struct inode *inode = file_inode(iocb->ki_filp);
459 	loff_t offset = iocb->ki_pos;
460 	size_t count = iov_iter_count(from);
461 	const struct iomap_ops *iomap_ops = &ext4_iomap_ops;
462 	bool extend = false, unaligned_io = false;
463 	bool ilock_shared = true;
464 
465 	/*
466 	 * We initially start with shared inode lock unless it is
467 	 * unaligned IO which needs exclusive lock anyways.
468 	 */
469 	if (ext4_unaligned_io(inode, from, offset)) {
470 		unaligned_io = true;
471 		ilock_shared = false;
472 	}
473 	/*
474 	 * Quick check here without any i_rwsem lock to see if it is extending
475 	 * IO. A more reliable check is done in ext4_dio_write_checks() with
476 	 * proper locking in place.
477 	 */
478 	if (offset + count > i_size_read(inode))
479 		ilock_shared = false;
480 
481 	if (iocb->ki_flags & IOCB_NOWAIT) {
482 		if (ilock_shared) {
483 			if (!inode_trylock_shared(inode))
484 				return -EAGAIN;
485 		} else {
486 			if (!inode_trylock(inode))
487 				return -EAGAIN;
488 		}
489 	} else {
490 		if (ilock_shared)
491 			inode_lock_shared(inode);
492 		else
493 			inode_lock(inode);
494 	}
495 
496 	/* Fallback to buffered I/O if the inode does not support direct I/O. */
497 	if (!ext4_dio_supported(inode)) {
498 		if (ilock_shared)
499 			inode_unlock_shared(inode);
500 		else
501 			inode_unlock(inode);
502 		return ext4_buffered_write_iter(iocb, from);
503 	}
504 
505 	ret = ext4_dio_write_checks(iocb, from, &ilock_shared, &extend);
506 	if (ret <= 0)
507 		return ret;
508 
509 	/* if we're going to block and IOCB_NOWAIT is set, return -EAGAIN */
510 	if ((iocb->ki_flags & IOCB_NOWAIT) && (unaligned_io || extend)) {
511 		ret = -EAGAIN;
512 		goto out;
513 	}
514 
515 	offset = iocb->ki_pos;
516 	count = ret;
517 
518 	/*
519 	 * Unaligned direct IO must be serialized among each other as zeroing
520 	 * of partial blocks of two competing unaligned IOs can result in data
521 	 * corruption.
522 	 *
523 	 * So we make sure we don't allow any unaligned IO in flight.
524 	 * For IOs where we need not wait (like unaligned non-AIO DIO),
525 	 * below inode_dio_wait() may anyway become a no-op, since we start
526 	 * with exclusive lock.
527 	 */
528 	if (unaligned_io)
529 		inode_dio_wait(inode);
530 
531 	if (extend) {
532 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
533 		if (IS_ERR(handle)) {
534 			ret = PTR_ERR(handle);
535 			goto out;
536 		}
537 
538 		ext4_fc_start_update(inode);
539 		ret = ext4_orphan_add(handle, inode);
540 		ext4_fc_stop_update(inode);
541 		if (ret) {
542 			ext4_journal_stop(handle);
543 			goto out;
544 		}
545 
546 		ext4_journal_stop(handle);
547 	}
548 
549 	if (ilock_shared)
550 		iomap_ops = &ext4_iomap_overwrite_ops;
551 	ret = iomap_dio_rw(iocb, from, iomap_ops, &ext4_dio_write_ops,
552 			   (unaligned_io || extend) ? IOMAP_DIO_FORCE_WAIT : 0);
553 	if (ret == -ENOTBLK)
554 		ret = 0;
555 
556 	if (extend)
557 		ret = ext4_handle_inode_extension(inode, offset, ret, count);
558 
559 out:
560 	if (ilock_shared)
561 		inode_unlock_shared(inode);
562 	else
563 		inode_unlock(inode);
564 
565 	if (ret >= 0 && iov_iter_count(from)) {
566 		ssize_t err;
567 		loff_t endbyte;
568 
569 		offset = iocb->ki_pos;
570 		err = ext4_buffered_write_iter(iocb, from);
571 		if (err < 0)
572 			return err;
573 
574 		/*
575 		 * We need to ensure that the pages within the page cache for
576 		 * the range covered by this I/O are written to disk and
577 		 * invalidated. This is in attempt to preserve the expected
578 		 * direct I/O semantics in the case we fallback to buffered I/O
579 		 * to complete off the I/O request.
580 		 */
581 		ret += err;
582 		endbyte = offset + err - 1;
583 		err = filemap_write_and_wait_range(iocb->ki_filp->f_mapping,
584 						   offset, endbyte);
585 		if (!err)
586 			invalidate_mapping_pages(iocb->ki_filp->f_mapping,
587 						 offset >> PAGE_SHIFT,
588 						 endbyte >> PAGE_SHIFT);
589 	}
590 
591 	return ret;
592 }
593 
594 #ifdef CONFIG_FS_DAX
595 static ssize_t
596 ext4_dax_write_iter(struct kiocb *iocb, struct iov_iter *from)
597 {
598 	ssize_t ret;
599 	size_t count;
600 	loff_t offset;
601 	handle_t *handle;
602 	bool extend = false;
603 	struct inode *inode = file_inode(iocb->ki_filp);
604 
605 	if (iocb->ki_flags & IOCB_NOWAIT) {
606 		if (!inode_trylock(inode))
607 			return -EAGAIN;
608 	} else {
609 		inode_lock(inode);
610 	}
611 
612 	ret = ext4_write_checks(iocb, from);
613 	if (ret <= 0)
614 		goto out;
615 
616 	offset = iocb->ki_pos;
617 	count = iov_iter_count(from);
618 
619 	if (offset + count > EXT4_I(inode)->i_disksize) {
620 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
621 		if (IS_ERR(handle)) {
622 			ret = PTR_ERR(handle);
623 			goto out;
624 		}
625 
626 		ret = ext4_orphan_add(handle, inode);
627 		if (ret) {
628 			ext4_journal_stop(handle);
629 			goto out;
630 		}
631 
632 		extend = true;
633 		ext4_journal_stop(handle);
634 	}
635 
636 	ret = dax_iomap_rw(iocb, from, &ext4_iomap_ops);
637 
638 	if (extend)
639 		ret = ext4_handle_inode_extension(inode, offset, ret, count);
640 out:
641 	inode_unlock(inode);
642 	if (ret > 0)
643 		ret = generic_write_sync(iocb, ret);
644 	return ret;
645 }
646 #endif
647 
648 static ssize_t
649 ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
650 {
651 	struct inode *inode = file_inode(iocb->ki_filp);
652 
653 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
654 		return -EIO;
655 
656 #ifdef CONFIG_FS_DAX
657 	if (IS_DAX(inode))
658 		return ext4_dax_write_iter(iocb, from);
659 #endif
660 	if (iocb->ki_flags & IOCB_DIRECT)
661 		return ext4_dio_write_iter(iocb, from);
662 	else
663 		return ext4_buffered_write_iter(iocb, from);
664 }
665 
666 #ifdef CONFIG_FS_DAX
667 static vm_fault_t ext4_dax_huge_fault(struct vm_fault *vmf,
668 		enum page_entry_size pe_size)
669 {
670 	int error = 0;
671 	vm_fault_t result;
672 	int retries = 0;
673 	handle_t *handle = NULL;
674 	struct inode *inode = file_inode(vmf->vma->vm_file);
675 	struct super_block *sb = inode->i_sb;
676 
677 	/*
678 	 * We have to distinguish real writes from writes which will result in a
679 	 * COW page; COW writes should *not* poke the journal (the file will not
680 	 * be changed). Doing so would cause unintended failures when mounted
681 	 * read-only.
682 	 *
683 	 * We check for VM_SHARED rather than vmf->cow_page since the latter is
684 	 * unset for pe_size != PE_SIZE_PTE (i.e. only in do_cow_fault); for
685 	 * other sizes, dax_iomap_fault will handle splitting / fallback so that
686 	 * we eventually come back with a COW page.
687 	 */
688 	bool write = (vmf->flags & FAULT_FLAG_WRITE) &&
689 		(vmf->vma->vm_flags & VM_SHARED);
690 	pfn_t pfn;
691 
692 	if (write) {
693 		sb_start_pagefault(sb);
694 		file_update_time(vmf->vma->vm_file);
695 		down_read(&EXT4_I(inode)->i_mmap_sem);
696 retry:
697 		handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE,
698 					       EXT4_DATA_TRANS_BLOCKS(sb));
699 		if (IS_ERR(handle)) {
700 			up_read(&EXT4_I(inode)->i_mmap_sem);
701 			sb_end_pagefault(sb);
702 			return VM_FAULT_SIGBUS;
703 		}
704 	} else {
705 		down_read(&EXT4_I(inode)->i_mmap_sem);
706 	}
707 	result = dax_iomap_fault(vmf, pe_size, &pfn, &error, &ext4_iomap_ops);
708 	if (write) {
709 		ext4_journal_stop(handle);
710 
711 		if ((result & VM_FAULT_ERROR) && error == -ENOSPC &&
712 		    ext4_should_retry_alloc(sb, &retries))
713 			goto retry;
714 		/* Handling synchronous page fault? */
715 		if (result & VM_FAULT_NEEDDSYNC)
716 			result = dax_finish_sync_fault(vmf, pe_size, pfn);
717 		up_read(&EXT4_I(inode)->i_mmap_sem);
718 		sb_end_pagefault(sb);
719 	} else {
720 		up_read(&EXT4_I(inode)->i_mmap_sem);
721 	}
722 
723 	return result;
724 }
725 
726 static vm_fault_t ext4_dax_fault(struct vm_fault *vmf)
727 {
728 	return ext4_dax_huge_fault(vmf, PE_SIZE_PTE);
729 }
730 
731 static const struct vm_operations_struct ext4_dax_vm_ops = {
732 	.fault		= ext4_dax_fault,
733 	.huge_fault	= ext4_dax_huge_fault,
734 	.page_mkwrite	= ext4_dax_fault,
735 	.pfn_mkwrite	= ext4_dax_fault,
736 };
737 #else
738 #define ext4_dax_vm_ops	ext4_file_vm_ops
739 #endif
740 
741 static const struct vm_operations_struct ext4_file_vm_ops = {
742 	.fault		= ext4_filemap_fault,
743 	.map_pages	= filemap_map_pages,
744 	.page_mkwrite   = ext4_page_mkwrite,
745 };
746 
747 static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
748 {
749 	struct inode *inode = file->f_mapping->host;
750 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
751 	struct dax_device *dax_dev = sbi->s_daxdev;
752 
753 	if (unlikely(ext4_forced_shutdown(sbi)))
754 		return -EIO;
755 
756 	/*
757 	 * We don't support synchronous mappings for non-DAX files and
758 	 * for DAX files if underneath dax_device is not synchronous.
759 	 */
760 	if (!daxdev_mapping_supported(vma, dax_dev))
761 		return -EOPNOTSUPP;
762 
763 	file_accessed(file);
764 	if (IS_DAX(file_inode(file))) {
765 		vma->vm_ops = &ext4_dax_vm_ops;
766 		vma->vm_flags |= VM_HUGEPAGE;
767 	} else {
768 		vma->vm_ops = &ext4_file_vm_ops;
769 	}
770 	return 0;
771 }
772 
773 static int ext4_sample_last_mounted(struct super_block *sb,
774 				    struct vfsmount *mnt)
775 {
776 	struct ext4_sb_info *sbi = EXT4_SB(sb);
777 	struct path path;
778 	char buf[64], *cp;
779 	handle_t *handle;
780 	int err;
781 
782 	if (likely(ext4_test_mount_flag(sb, EXT4_MF_MNTDIR_SAMPLED)))
783 		return 0;
784 
785 	if (sb_rdonly(sb) || !sb_start_intwrite_trylock(sb))
786 		return 0;
787 
788 	ext4_set_mount_flag(sb, EXT4_MF_MNTDIR_SAMPLED);
789 	/*
790 	 * Sample where the filesystem has been mounted and
791 	 * store it in the superblock for sysadmin convenience
792 	 * when trying to sort through large numbers of block
793 	 * devices or filesystem images.
794 	 */
795 	memset(buf, 0, sizeof(buf));
796 	path.mnt = mnt;
797 	path.dentry = mnt->mnt_root;
798 	cp = d_path(&path, buf, sizeof(buf));
799 	err = 0;
800 	if (IS_ERR(cp))
801 		goto out;
802 
803 	handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
804 	err = PTR_ERR(handle);
805 	if (IS_ERR(handle))
806 		goto out;
807 	BUFFER_TRACE(sbi->s_sbh, "get_write_access");
808 	err = ext4_journal_get_write_access(handle, sbi->s_sbh);
809 	if (err)
810 		goto out_journal;
811 	lock_buffer(sbi->s_sbh);
812 	strncpy(sbi->s_es->s_last_mounted, cp,
813 		sizeof(sbi->s_es->s_last_mounted));
814 	ext4_superblock_csum_set(sb);
815 	unlock_buffer(sbi->s_sbh);
816 	ext4_handle_dirty_metadata(handle, NULL, sbi->s_sbh);
817 out_journal:
818 	ext4_journal_stop(handle);
819 out:
820 	sb_end_intwrite(sb);
821 	return err;
822 }
823 
824 static int ext4_file_open(struct inode *inode, struct file *filp)
825 {
826 	int ret;
827 
828 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
829 		return -EIO;
830 
831 	ret = ext4_sample_last_mounted(inode->i_sb, filp->f_path.mnt);
832 	if (ret)
833 		return ret;
834 
835 	ret = fscrypt_file_open(inode, filp);
836 	if (ret)
837 		return ret;
838 
839 	ret = fsverity_file_open(inode, filp);
840 	if (ret)
841 		return ret;
842 
843 	/*
844 	 * Set up the jbd2_inode if we are opening the inode for
845 	 * writing and the journal is present
846 	 */
847 	if (filp->f_mode & FMODE_WRITE) {
848 		ret = ext4_inode_attach_jinode(inode);
849 		if (ret < 0)
850 			return ret;
851 	}
852 
853 	filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
854 	return dquot_file_open(inode, filp);
855 }
856 
857 /*
858  * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
859  * by calling generic_file_llseek_size() with the appropriate maxbytes
860  * value for each.
861  */
862 loff_t ext4_llseek(struct file *file, loff_t offset, int whence)
863 {
864 	struct inode *inode = file->f_mapping->host;
865 	loff_t maxbytes;
866 
867 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
868 		maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes;
869 	else
870 		maxbytes = inode->i_sb->s_maxbytes;
871 
872 	switch (whence) {
873 	default:
874 		return generic_file_llseek_size(file, offset, whence,
875 						maxbytes, i_size_read(inode));
876 	case SEEK_HOLE:
877 		inode_lock_shared(inode);
878 		offset = iomap_seek_hole(inode, offset,
879 					 &ext4_iomap_report_ops);
880 		inode_unlock_shared(inode);
881 		break;
882 	case SEEK_DATA:
883 		inode_lock_shared(inode);
884 		offset = iomap_seek_data(inode, offset,
885 					 &ext4_iomap_report_ops);
886 		inode_unlock_shared(inode);
887 		break;
888 	}
889 
890 	if (offset < 0)
891 		return offset;
892 	return vfs_setpos(file, offset, maxbytes);
893 }
894 
895 const struct file_operations ext4_file_operations = {
896 	.llseek		= ext4_llseek,
897 	.read_iter	= ext4_file_read_iter,
898 	.write_iter	= ext4_file_write_iter,
899 	.iopoll		= iomap_dio_iopoll,
900 	.unlocked_ioctl = ext4_ioctl,
901 #ifdef CONFIG_COMPAT
902 	.compat_ioctl	= ext4_compat_ioctl,
903 #endif
904 	.mmap		= ext4_file_mmap,
905 	.mmap_supported_flags = MAP_SYNC,
906 	.open		= ext4_file_open,
907 	.release	= ext4_release_file,
908 	.fsync		= ext4_sync_file,
909 	.get_unmapped_area = thp_get_unmapped_area,
910 	.splice_read	= generic_file_splice_read,
911 	.splice_write	= iter_file_splice_write,
912 	.fallocate	= ext4_fallocate,
913 };
914 
915 const struct inode_operations ext4_file_inode_operations = {
916 	.setattr	= ext4_setattr,
917 	.getattr	= ext4_file_getattr,
918 	.listxattr	= ext4_listxattr,
919 	.get_acl	= ext4_get_acl,
920 	.set_acl	= ext4_set_acl,
921 	.fiemap		= ext4_fiemap,
922 };
923 
924