xref: /openbmc/linux/fs/ext4/file.c (revision d3741027)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/file.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/file.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  ext4 fs regular file handling primitives
17  *
18  *  64-bit file support on 64-bit platforms by Jakub Jelinek
19  *	(jj@sunsite.ms.mff.cuni.cz)
20  */
21 
22 #include <linux/time.h>
23 #include <linux/fs.h>
24 #include <linux/iomap.h>
25 #include <linux/mount.h>
26 #include <linux/path.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/pagevec.h>
30 #include <linux/uio.h>
31 #include <linux/mman.h>
32 #include <linux/backing-dev.h>
33 #include "ext4.h"
34 #include "ext4_jbd2.h"
35 #include "xattr.h"
36 #include "acl.h"
37 #include "truncate.h"
38 
39 static bool ext4_dio_supported(struct kiocb *iocb, struct iov_iter *iter)
40 {
41 	struct inode *inode = file_inode(iocb->ki_filp);
42 
43 	if (!fscrypt_dio_supported(iocb, iter))
44 		return false;
45 	if (fsverity_active(inode))
46 		return false;
47 	if (ext4_should_journal_data(inode))
48 		return false;
49 	if (ext4_has_inline_data(inode))
50 		return false;
51 	return true;
52 }
53 
54 static ssize_t ext4_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
55 {
56 	ssize_t ret;
57 	struct inode *inode = file_inode(iocb->ki_filp);
58 
59 	if (iocb->ki_flags & IOCB_NOWAIT) {
60 		if (!inode_trylock_shared(inode))
61 			return -EAGAIN;
62 	} else {
63 		inode_lock_shared(inode);
64 	}
65 
66 	if (!ext4_dio_supported(iocb, to)) {
67 		inode_unlock_shared(inode);
68 		/*
69 		 * Fallback to buffered I/O if the operation being performed on
70 		 * the inode is not supported by direct I/O. The IOCB_DIRECT
71 		 * flag needs to be cleared here in order to ensure that the
72 		 * direct I/O path within generic_file_read_iter() is not
73 		 * taken.
74 		 */
75 		iocb->ki_flags &= ~IOCB_DIRECT;
76 		return generic_file_read_iter(iocb, to);
77 	}
78 
79 	ret = iomap_dio_rw(iocb, to, &ext4_iomap_ops, NULL, 0, NULL, 0);
80 	inode_unlock_shared(inode);
81 
82 	file_accessed(iocb->ki_filp);
83 	return ret;
84 }
85 
86 #ifdef CONFIG_FS_DAX
87 static ssize_t ext4_dax_read_iter(struct kiocb *iocb, struct iov_iter *to)
88 {
89 	struct inode *inode = file_inode(iocb->ki_filp);
90 	ssize_t ret;
91 
92 	if (iocb->ki_flags & IOCB_NOWAIT) {
93 		if (!inode_trylock_shared(inode))
94 			return -EAGAIN;
95 	} else {
96 		inode_lock_shared(inode);
97 	}
98 	/*
99 	 * Recheck under inode lock - at this point we are sure it cannot
100 	 * change anymore
101 	 */
102 	if (!IS_DAX(inode)) {
103 		inode_unlock_shared(inode);
104 		/* Fallback to buffered IO in case we cannot support DAX */
105 		return generic_file_read_iter(iocb, to);
106 	}
107 	ret = dax_iomap_rw(iocb, to, &ext4_iomap_ops);
108 	inode_unlock_shared(inode);
109 
110 	file_accessed(iocb->ki_filp);
111 	return ret;
112 }
113 #endif
114 
115 static ssize_t ext4_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
116 {
117 	struct inode *inode = file_inode(iocb->ki_filp);
118 
119 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
120 		return -EIO;
121 
122 	if (!iov_iter_count(to))
123 		return 0; /* skip atime */
124 
125 #ifdef CONFIG_FS_DAX
126 	if (IS_DAX(inode))
127 		return ext4_dax_read_iter(iocb, to);
128 #endif
129 	if (iocb->ki_flags & IOCB_DIRECT)
130 		return ext4_dio_read_iter(iocb, to);
131 
132 	return generic_file_read_iter(iocb, to);
133 }
134 
135 /*
136  * Called when an inode is released. Note that this is different
137  * from ext4_file_open: open gets called at every open, but release
138  * gets called only when /all/ the files are closed.
139  */
140 static int ext4_release_file(struct inode *inode, struct file *filp)
141 {
142 	if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) {
143 		ext4_alloc_da_blocks(inode);
144 		ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
145 	}
146 	/* if we are the last writer on the inode, drop the block reservation */
147 	if ((filp->f_mode & FMODE_WRITE) &&
148 			(atomic_read(&inode->i_writecount) == 1) &&
149 			!EXT4_I(inode)->i_reserved_data_blocks) {
150 		down_write(&EXT4_I(inode)->i_data_sem);
151 		ext4_discard_preallocations(inode, 0);
152 		up_write(&EXT4_I(inode)->i_data_sem);
153 	}
154 	if (is_dx(inode) && filp->private_data)
155 		ext4_htree_free_dir_info(filp->private_data);
156 
157 	return 0;
158 }
159 
160 /*
161  * This tests whether the IO in question is block-aligned or not.
162  * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
163  * are converted to written only after the IO is complete.  Until they are
164  * mapped, these blocks appear as holes, so dio_zero_block() will assume that
165  * it needs to zero out portions of the start and/or end block.  If 2 AIO
166  * threads are at work on the same unwritten block, they must be synchronized
167  * or one thread will zero the other's data, causing corruption.
168  */
169 static bool
170 ext4_unaligned_io(struct inode *inode, struct iov_iter *from, loff_t pos)
171 {
172 	struct super_block *sb = inode->i_sb;
173 	unsigned long blockmask = sb->s_blocksize - 1;
174 
175 	if ((pos | iov_iter_alignment(from)) & blockmask)
176 		return true;
177 
178 	return false;
179 }
180 
181 static bool
182 ext4_extending_io(struct inode *inode, loff_t offset, size_t len)
183 {
184 	if (offset + len > i_size_read(inode) ||
185 	    offset + len > EXT4_I(inode)->i_disksize)
186 		return true;
187 	return false;
188 }
189 
190 /* Is IO overwriting allocated and initialized blocks? */
191 static bool ext4_overwrite_io(struct inode *inode, loff_t pos, loff_t len)
192 {
193 	struct ext4_map_blocks map;
194 	unsigned int blkbits = inode->i_blkbits;
195 	int err, blklen;
196 
197 	if (pos + len > i_size_read(inode))
198 		return false;
199 
200 	map.m_lblk = pos >> blkbits;
201 	map.m_len = EXT4_MAX_BLOCKS(len, pos, blkbits);
202 	blklen = map.m_len;
203 
204 	err = ext4_map_blocks(NULL, inode, &map, 0);
205 	/*
206 	 * 'err==len' means that all of the blocks have been preallocated,
207 	 * regardless of whether they have been initialized or not. To exclude
208 	 * unwritten extents, we need to check m_flags.
209 	 */
210 	return err == blklen && (map.m_flags & EXT4_MAP_MAPPED);
211 }
212 
213 static ssize_t ext4_generic_write_checks(struct kiocb *iocb,
214 					 struct iov_iter *from)
215 {
216 	struct inode *inode = file_inode(iocb->ki_filp);
217 	ssize_t ret;
218 
219 	if (unlikely(IS_IMMUTABLE(inode)))
220 		return -EPERM;
221 
222 	ret = generic_write_checks(iocb, from);
223 	if (ret <= 0)
224 		return ret;
225 
226 	/*
227 	 * If we have encountered a bitmap-format file, the size limit
228 	 * is smaller than s_maxbytes, which is for extent-mapped files.
229 	 */
230 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
231 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
232 
233 		if (iocb->ki_pos >= sbi->s_bitmap_maxbytes)
234 			return -EFBIG;
235 		iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos);
236 	}
237 
238 	return iov_iter_count(from);
239 }
240 
241 static ssize_t ext4_write_checks(struct kiocb *iocb, struct iov_iter *from)
242 {
243 	ssize_t ret, count;
244 
245 	count = ext4_generic_write_checks(iocb, from);
246 	if (count <= 0)
247 		return count;
248 
249 	ret = file_modified(iocb->ki_filp);
250 	if (ret)
251 		return ret;
252 	return count;
253 }
254 
255 static ssize_t ext4_buffered_write_iter(struct kiocb *iocb,
256 					struct iov_iter *from)
257 {
258 	ssize_t ret;
259 	struct inode *inode = file_inode(iocb->ki_filp);
260 
261 	if (iocb->ki_flags & IOCB_NOWAIT)
262 		return -EOPNOTSUPP;
263 
264 	inode_lock(inode);
265 	ret = ext4_write_checks(iocb, from);
266 	if (ret <= 0)
267 		goto out;
268 
269 	current->backing_dev_info = inode_to_bdi(inode);
270 	ret = generic_perform_write(iocb, from);
271 	current->backing_dev_info = NULL;
272 
273 out:
274 	inode_unlock(inode);
275 	if (likely(ret > 0)) {
276 		iocb->ki_pos += ret;
277 		ret = generic_write_sync(iocb, ret);
278 	}
279 
280 	return ret;
281 }
282 
283 static ssize_t ext4_handle_inode_extension(struct inode *inode, loff_t offset,
284 					   ssize_t written, size_t count)
285 {
286 	handle_t *handle;
287 	bool truncate = false;
288 	u8 blkbits = inode->i_blkbits;
289 	ext4_lblk_t written_blk, end_blk;
290 	int ret;
291 
292 	/*
293 	 * Note that EXT4_I(inode)->i_disksize can get extended up to
294 	 * inode->i_size while the I/O was running due to writeback of delalloc
295 	 * blocks. But, the code in ext4_iomap_alloc() is careful to use
296 	 * zeroed/unwritten extents if this is possible; thus we won't leave
297 	 * uninitialized blocks in a file even if we didn't succeed in writing
298 	 * as much as we intended.
299 	 */
300 	WARN_ON_ONCE(i_size_read(inode) < EXT4_I(inode)->i_disksize);
301 	if (offset + count <= EXT4_I(inode)->i_disksize) {
302 		/*
303 		 * We need to ensure that the inode is removed from the orphan
304 		 * list if it has been added prematurely, due to writeback of
305 		 * delalloc blocks.
306 		 */
307 		if (!list_empty(&EXT4_I(inode)->i_orphan) && inode->i_nlink) {
308 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
309 
310 			if (IS_ERR(handle)) {
311 				ext4_orphan_del(NULL, inode);
312 				return PTR_ERR(handle);
313 			}
314 
315 			ext4_orphan_del(handle, inode);
316 			ext4_journal_stop(handle);
317 		}
318 
319 		return written;
320 	}
321 
322 	if (written < 0)
323 		goto truncate;
324 
325 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
326 	if (IS_ERR(handle)) {
327 		written = PTR_ERR(handle);
328 		goto truncate;
329 	}
330 
331 	if (ext4_update_inode_size(inode, offset + written)) {
332 		ret = ext4_mark_inode_dirty(handle, inode);
333 		if (unlikely(ret)) {
334 			written = ret;
335 			ext4_journal_stop(handle);
336 			goto truncate;
337 		}
338 	}
339 
340 	/*
341 	 * We may need to truncate allocated but not written blocks beyond EOF.
342 	 */
343 	written_blk = ALIGN(offset + written, 1 << blkbits);
344 	end_blk = ALIGN(offset + count, 1 << blkbits);
345 	if (written_blk < end_blk && ext4_can_truncate(inode))
346 		truncate = true;
347 
348 	/*
349 	 * Remove the inode from the orphan list if it has been extended and
350 	 * everything went OK.
351 	 */
352 	if (!truncate && inode->i_nlink)
353 		ext4_orphan_del(handle, inode);
354 	ext4_journal_stop(handle);
355 
356 	if (truncate) {
357 truncate:
358 		ext4_truncate_failed_write(inode);
359 		/*
360 		 * If the truncate operation failed early, then the inode may
361 		 * still be on the orphan list. In that case, we need to try
362 		 * remove the inode from the in-memory linked list.
363 		 */
364 		if (inode->i_nlink)
365 			ext4_orphan_del(NULL, inode);
366 	}
367 
368 	return written;
369 }
370 
371 static int ext4_dio_write_end_io(struct kiocb *iocb, ssize_t size,
372 				 int error, unsigned int flags)
373 {
374 	loff_t pos = iocb->ki_pos;
375 	struct inode *inode = file_inode(iocb->ki_filp);
376 
377 	if (error)
378 		return error;
379 
380 	if (size && flags & IOMAP_DIO_UNWRITTEN) {
381 		error = ext4_convert_unwritten_extents(NULL, inode, pos, size);
382 		if (error < 0)
383 			return error;
384 	}
385 	/*
386 	 * If we are extending the file, we have to update i_size here before
387 	 * page cache gets invalidated in iomap_dio_rw(). Otherwise racing
388 	 * buffered reads could zero out too much from page cache pages. Update
389 	 * of on-disk size will happen later in ext4_dio_write_iter() where
390 	 * we have enough information to also perform orphan list handling etc.
391 	 * Note that we perform all extending writes synchronously under
392 	 * i_rwsem held exclusively so i_size update is safe here in that case.
393 	 * If the write was not extending, we cannot see pos > i_size here
394 	 * because operations reducing i_size like truncate wait for all
395 	 * outstanding DIO before updating i_size.
396 	 */
397 	pos += size;
398 	if (pos > i_size_read(inode))
399 		i_size_write(inode, pos);
400 
401 	return 0;
402 }
403 
404 static const struct iomap_dio_ops ext4_dio_write_ops = {
405 	.end_io = ext4_dio_write_end_io,
406 };
407 
408 /*
409  * The intention here is to start with shared lock acquired then see if any
410  * condition requires an exclusive inode lock. If yes, then we restart the
411  * whole operation by releasing the shared lock and acquiring exclusive lock.
412  *
413  * - For unaligned_io we never take shared lock as it may cause data corruption
414  *   when two unaligned IO tries to modify the same block e.g. while zeroing.
415  *
416  * - For extending writes case we don't take the shared lock, since it requires
417  *   updating inode i_disksize and/or orphan handling with exclusive lock.
418  *
419  * - shared locking will only be true mostly with overwrites. Otherwise we will
420  *   switch to exclusive i_rwsem lock.
421  */
422 static ssize_t ext4_dio_write_checks(struct kiocb *iocb, struct iov_iter *from,
423 				     bool *ilock_shared, bool *extend)
424 {
425 	struct file *file = iocb->ki_filp;
426 	struct inode *inode = file_inode(file);
427 	loff_t offset;
428 	size_t count;
429 	ssize_t ret;
430 
431 restart:
432 	ret = ext4_generic_write_checks(iocb, from);
433 	if (ret <= 0)
434 		goto out;
435 
436 	offset = iocb->ki_pos;
437 	count = ret;
438 	if (ext4_extending_io(inode, offset, count))
439 		*extend = true;
440 	/*
441 	 * Determine whether the IO operation will overwrite allocated
442 	 * and initialized blocks.
443 	 * We need exclusive i_rwsem for changing security info
444 	 * in file_modified().
445 	 */
446 	if (*ilock_shared && (!IS_NOSEC(inode) || *extend ||
447 	     !ext4_overwrite_io(inode, offset, count))) {
448 		if (iocb->ki_flags & IOCB_NOWAIT) {
449 			ret = -EAGAIN;
450 			goto out;
451 		}
452 		inode_unlock_shared(inode);
453 		*ilock_shared = false;
454 		inode_lock(inode);
455 		goto restart;
456 	}
457 
458 	ret = file_modified(file);
459 	if (ret < 0)
460 		goto out;
461 
462 	return count;
463 out:
464 	if (*ilock_shared)
465 		inode_unlock_shared(inode);
466 	else
467 		inode_unlock(inode);
468 	return ret;
469 }
470 
471 static ssize_t ext4_dio_write_iter(struct kiocb *iocb, struct iov_iter *from)
472 {
473 	ssize_t ret;
474 	handle_t *handle;
475 	struct inode *inode = file_inode(iocb->ki_filp);
476 	loff_t offset = iocb->ki_pos;
477 	size_t count = iov_iter_count(from);
478 	const struct iomap_ops *iomap_ops = &ext4_iomap_ops;
479 	bool extend = false, unaligned_io = false;
480 	bool ilock_shared = true;
481 
482 	/*
483 	 * We initially start with shared inode lock unless it is
484 	 * unaligned IO which needs exclusive lock anyways.
485 	 */
486 	if (ext4_unaligned_io(inode, from, offset)) {
487 		unaligned_io = true;
488 		ilock_shared = false;
489 	}
490 	/*
491 	 * Quick check here without any i_rwsem lock to see if it is extending
492 	 * IO. A more reliable check is done in ext4_dio_write_checks() with
493 	 * proper locking in place.
494 	 */
495 	if (offset + count > i_size_read(inode))
496 		ilock_shared = false;
497 
498 	if (iocb->ki_flags & IOCB_NOWAIT) {
499 		if (ilock_shared) {
500 			if (!inode_trylock_shared(inode))
501 				return -EAGAIN;
502 		} else {
503 			if (!inode_trylock(inode))
504 				return -EAGAIN;
505 		}
506 	} else {
507 		if (ilock_shared)
508 			inode_lock_shared(inode);
509 		else
510 			inode_lock(inode);
511 	}
512 
513 	/* Fallback to buffered I/O if the inode does not support direct I/O. */
514 	if (!ext4_dio_supported(iocb, from)) {
515 		if (ilock_shared)
516 			inode_unlock_shared(inode);
517 		else
518 			inode_unlock(inode);
519 		return ext4_buffered_write_iter(iocb, from);
520 	}
521 
522 	ret = ext4_dio_write_checks(iocb, from, &ilock_shared, &extend);
523 	if (ret <= 0)
524 		return ret;
525 
526 	/* if we're going to block and IOCB_NOWAIT is set, return -EAGAIN */
527 	if ((iocb->ki_flags & IOCB_NOWAIT) && (unaligned_io || extend)) {
528 		ret = -EAGAIN;
529 		goto out;
530 	}
531 
532 	offset = iocb->ki_pos;
533 	count = ret;
534 
535 	/*
536 	 * Unaligned direct IO must be serialized among each other as zeroing
537 	 * of partial blocks of two competing unaligned IOs can result in data
538 	 * corruption.
539 	 *
540 	 * So we make sure we don't allow any unaligned IO in flight.
541 	 * For IOs where we need not wait (like unaligned non-AIO DIO),
542 	 * below inode_dio_wait() may anyway become a no-op, since we start
543 	 * with exclusive lock.
544 	 */
545 	if (unaligned_io)
546 		inode_dio_wait(inode);
547 
548 	if (extend) {
549 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
550 		if (IS_ERR(handle)) {
551 			ret = PTR_ERR(handle);
552 			goto out;
553 		}
554 
555 		ret = ext4_orphan_add(handle, inode);
556 		if (ret) {
557 			ext4_journal_stop(handle);
558 			goto out;
559 		}
560 
561 		ext4_journal_stop(handle);
562 	}
563 
564 	if (ilock_shared)
565 		iomap_ops = &ext4_iomap_overwrite_ops;
566 	ret = iomap_dio_rw(iocb, from, iomap_ops, &ext4_dio_write_ops,
567 			   (unaligned_io || extend) ? IOMAP_DIO_FORCE_WAIT : 0,
568 			   NULL, 0);
569 	if (ret == -ENOTBLK)
570 		ret = 0;
571 
572 	if (extend)
573 		ret = ext4_handle_inode_extension(inode, offset, ret, count);
574 
575 out:
576 	if (ilock_shared)
577 		inode_unlock_shared(inode);
578 	else
579 		inode_unlock(inode);
580 
581 	if (ret >= 0 && iov_iter_count(from)) {
582 		ssize_t err;
583 		loff_t endbyte;
584 
585 		offset = iocb->ki_pos;
586 		err = ext4_buffered_write_iter(iocb, from);
587 		if (err < 0)
588 			return err;
589 
590 		/*
591 		 * We need to ensure that the pages within the page cache for
592 		 * the range covered by this I/O are written to disk and
593 		 * invalidated. This is in attempt to preserve the expected
594 		 * direct I/O semantics in the case we fallback to buffered I/O
595 		 * to complete off the I/O request.
596 		 */
597 		ret += err;
598 		endbyte = offset + err - 1;
599 		err = filemap_write_and_wait_range(iocb->ki_filp->f_mapping,
600 						   offset, endbyte);
601 		if (!err)
602 			invalidate_mapping_pages(iocb->ki_filp->f_mapping,
603 						 offset >> PAGE_SHIFT,
604 						 endbyte >> PAGE_SHIFT);
605 	}
606 
607 	return ret;
608 }
609 
610 #ifdef CONFIG_FS_DAX
611 static ssize_t
612 ext4_dax_write_iter(struct kiocb *iocb, struct iov_iter *from)
613 {
614 	ssize_t ret;
615 	size_t count;
616 	loff_t offset;
617 	handle_t *handle;
618 	bool extend = false;
619 	struct inode *inode = file_inode(iocb->ki_filp);
620 
621 	if (iocb->ki_flags & IOCB_NOWAIT) {
622 		if (!inode_trylock(inode))
623 			return -EAGAIN;
624 	} else {
625 		inode_lock(inode);
626 	}
627 
628 	ret = ext4_write_checks(iocb, from);
629 	if (ret <= 0)
630 		goto out;
631 
632 	offset = iocb->ki_pos;
633 	count = iov_iter_count(from);
634 
635 	if (offset + count > EXT4_I(inode)->i_disksize) {
636 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
637 		if (IS_ERR(handle)) {
638 			ret = PTR_ERR(handle);
639 			goto out;
640 		}
641 
642 		ret = ext4_orphan_add(handle, inode);
643 		if (ret) {
644 			ext4_journal_stop(handle);
645 			goto out;
646 		}
647 
648 		extend = true;
649 		ext4_journal_stop(handle);
650 	}
651 
652 	ret = dax_iomap_rw(iocb, from, &ext4_iomap_ops);
653 
654 	if (extend)
655 		ret = ext4_handle_inode_extension(inode, offset, ret, count);
656 out:
657 	inode_unlock(inode);
658 	if (ret > 0)
659 		ret = generic_write_sync(iocb, ret);
660 	return ret;
661 }
662 #endif
663 
664 static ssize_t
665 ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
666 {
667 	struct inode *inode = file_inode(iocb->ki_filp);
668 
669 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
670 		return -EIO;
671 
672 #ifdef CONFIG_FS_DAX
673 	if (IS_DAX(inode))
674 		return ext4_dax_write_iter(iocb, from);
675 #endif
676 	if (iocb->ki_flags & IOCB_DIRECT)
677 		return ext4_dio_write_iter(iocb, from);
678 	else
679 		return ext4_buffered_write_iter(iocb, from);
680 }
681 
682 #ifdef CONFIG_FS_DAX
683 static vm_fault_t ext4_dax_huge_fault(struct vm_fault *vmf,
684 		enum page_entry_size pe_size)
685 {
686 	int error = 0;
687 	vm_fault_t result;
688 	int retries = 0;
689 	handle_t *handle = NULL;
690 	struct inode *inode = file_inode(vmf->vma->vm_file);
691 	struct super_block *sb = inode->i_sb;
692 
693 	/*
694 	 * We have to distinguish real writes from writes which will result in a
695 	 * COW page; COW writes should *not* poke the journal (the file will not
696 	 * be changed). Doing so would cause unintended failures when mounted
697 	 * read-only.
698 	 *
699 	 * We check for VM_SHARED rather than vmf->cow_page since the latter is
700 	 * unset for pe_size != PE_SIZE_PTE (i.e. only in do_cow_fault); for
701 	 * other sizes, dax_iomap_fault will handle splitting / fallback so that
702 	 * we eventually come back with a COW page.
703 	 */
704 	bool write = (vmf->flags & FAULT_FLAG_WRITE) &&
705 		(vmf->vma->vm_flags & VM_SHARED);
706 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
707 	pfn_t pfn;
708 
709 	if (write) {
710 		sb_start_pagefault(sb);
711 		file_update_time(vmf->vma->vm_file);
712 		filemap_invalidate_lock_shared(mapping);
713 retry:
714 		handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE,
715 					       EXT4_DATA_TRANS_BLOCKS(sb));
716 		if (IS_ERR(handle)) {
717 			filemap_invalidate_unlock_shared(mapping);
718 			sb_end_pagefault(sb);
719 			return VM_FAULT_SIGBUS;
720 		}
721 	} else {
722 		filemap_invalidate_lock_shared(mapping);
723 	}
724 	result = dax_iomap_fault(vmf, pe_size, &pfn, &error, &ext4_iomap_ops);
725 	if (write) {
726 		ext4_journal_stop(handle);
727 
728 		if ((result & VM_FAULT_ERROR) && error == -ENOSPC &&
729 		    ext4_should_retry_alloc(sb, &retries))
730 			goto retry;
731 		/* Handling synchronous page fault? */
732 		if (result & VM_FAULT_NEEDDSYNC)
733 			result = dax_finish_sync_fault(vmf, pe_size, pfn);
734 		filemap_invalidate_unlock_shared(mapping);
735 		sb_end_pagefault(sb);
736 	} else {
737 		filemap_invalidate_unlock_shared(mapping);
738 	}
739 
740 	return result;
741 }
742 
743 static vm_fault_t ext4_dax_fault(struct vm_fault *vmf)
744 {
745 	return ext4_dax_huge_fault(vmf, PE_SIZE_PTE);
746 }
747 
748 static const struct vm_operations_struct ext4_dax_vm_ops = {
749 	.fault		= ext4_dax_fault,
750 	.huge_fault	= ext4_dax_huge_fault,
751 	.page_mkwrite	= ext4_dax_fault,
752 	.pfn_mkwrite	= ext4_dax_fault,
753 };
754 #else
755 #define ext4_dax_vm_ops	ext4_file_vm_ops
756 #endif
757 
758 static const struct vm_operations_struct ext4_file_vm_ops = {
759 	.fault		= filemap_fault,
760 	.map_pages	= filemap_map_pages,
761 	.page_mkwrite   = ext4_page_mkwrite,
762 };
763 
764 static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
765 {
766 	struct inode *inode = file->f_mapping->host;
767 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
768 	struct dax_device *dax_dev = sbi->s_daxdev;
769 
770 	if (unlikely(ext4_forced_shutdown(sbi)))
771 		return -EIO;
772 
773 	/*
774 	 * We don't support synchronous mappings for non-DAX files and
775 	 * for DAX files if underneath dax_device is not synchronous.
776 	 */
777 	if (!daxdev_mapping_supported(vma, dax_dev))
778 		return -EOPNOTSUPP;
779 
780 	file_accessed(file);
781 	if (IS_DAX(file_inode(file))) {
782 		vma->vm_ops = &ext4_dax_vm_ops;
783 		vma->vm_flags |= VM_HUGEPAGE;
784 	} else {
785 		vma->vm_ops = &ext4_file_vm_ops;
786 	}
787 	return 0;
788 }
789 
790 static int ext4_sample_last_mounted(struct super_block *sb,
791 				    struct vfsmount *mnt)
792 {
793 	struct ext4_sb_info *sbi = EXT4_SB(sb);
794 	struct path path;
795 	char buf[64], *cp;
796 	handle_t *handle;
797 	int err;
798 
799 	if (likely(ext4_test_mount_flag(sb, EXT4_MF_MNTDIR_SAMPLED)))
800 		return 0;
801 
802 	if (sb_rdonly(sb) || !sb_start_intwrite_trylock(sb))
803 		return 0;
804 
805 	ext4_set_mount_flag(sb, EXT4_MF_MNTDIR_SAMPLED);
806 	/*
807 	 * Sample where the filesystem has been mounted and
808 	 * store it in the superblock for sysadmin convenience
809 	 * when trying to sort through large numbers of block
810 	 * devices or filesystem images.
811 	 */
812 	memset(buf, 0, sizeof(buf));
813 	path.mnt = mnt;
814 	path.dentry = mnt->mnt_root;
815 	cp = d_path(&path, buf, sizeof(buf));
816 	err = 0;
817 	if (IS_ERR(cp))
818 		goto out;
819 
820 	handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
821 	err = PTR_ERR(handle);
822 	if (IS_ERR(handle))
823 		goto out;
824 	BUFFER_TRACE(sbi->s_sbh, "get_write_access");
825 	err = ext4_journal_get_write_access(handle, sb, sbi->s_sbh,
826 					    EXT4_JTR_NONE);
827 	if (err)
828 		goto out_journal;
829 	lock_buffer(sbi->s_sbh);
830 	strncpy(sbi->s_es->s_last_mounted, cp,
831 		sizeof(sbi->s_es->s_last_mounted));
832 	ext4_superblock_csum_set(sb);
833 	unlock_buffer(sbi->s_sbh);
834 	ext4_handle_dirty_metadata(handle, NULL, sbi->s_sbh);
835 out_journal:
836 	ext4_journal_stop(handle);
837 out:
838 	sb_end_intwrite(sb);
839 	return err;
840 }
841 
842 static int ext4_file_open(struct inode *inode, struct file *filp)
843 {
844 	int ret;
845 
846 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
847 		return -EIO;
848 
849 	ret = ext4_sample_last_mounted(inode->i_sb, filp->f_path.mnt);
850 	if (ret)
851 		return ret;
852 
853 	ret = fscrypt_file_open(inode, filp);
854 	if (ret)
855 		return ret;
856 
857 	ret = fsverity_file_open(inode, filp);
858 	if (ret)
859 		return ret;
860 
861 	/*
862 	 * Set up the jbd2_inode if we are opening the inode for
863 	 * writing and the journal is present
864 	 */
865 	if (filp->f_mode & FMODE_WRITE) {
866 		ret = ext4_inode_attach_jinode(inode);
867 		if (ret < 0)
868 			return ret;
869 	}
870 
871 	filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
872 	return dquot_file_open(inode, filp);
873 }
874 
875 /*
876  * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
877  * by calling generic_file_llseek_size() with the appropriate maxbytes
878  * value for each.
879  */
880 loff_t ext4_llseek(struct file *file, loff_t offset, int whence)
881 {
882 	struct inode *inode = file->f_mapping->host;
883 	loff_t maxbytes;
884 
885 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
886 		maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes;
887 	else
888 		maxbytes = inode->i_sb->s_maxbytes;
889 
890 	switch (whence) {
891 	default:
892 		return generic_file_llseek_size(file, offset, whence,
893 						maxbytes, i_size_read(inode));
894 	case SEEK_HOLE:
895 		inode_lock_shared(inode);
896 		offset = iomap_seek_hole(inode, offset,
897 					 &ext4_iomap_report_ops);
898 		inode_unlock_shared(inode);
899 		break;
900 	case SEEK_DATA:
901 		inode_lock_shared(inode);
902 		offset = iomap_seek_data(inode, offset,
903 					 &ext4_iomap_report_ops);
904 		inode_unlock_shared(inode);
905 		break;
906 	}
907 
908 	if (offset < 0)
909 		return offset;
910 	return vfs_setpos(file, offset, maxbytes);
911 }
912 
913 const struct file_operations ext4_file_operations = {
914 	.llseek		= ext4_llseek,
915 	.read_iter	= ext4_file_read_iter,
916 	.write_iter	= ext4_file_write_iter,
917 	.iopoll		= iocb_bio_iopoll,
918 	.unlocked_ioctl = ext4_ioctl,
919 #ifdef CONFIG_COMPAT
920 	.compat_ioctl	= ext4_compat_ioctl,
921 #endif
922 	.mmap		= ext4_file_mmap,
923 	.mmap_supported_flags = MAP_SYNC,
924 	.open		= ext4_file_open,
925 	.release	= ext4_release_file,
926 	.fsync		= ext4_sync_file,
927 	.get_unmapped_area = thp_get_unmapped_area,
928 	.splice_read	= generic_file_splice_read,
929 	.splice_write	= iter_file_splice_write,
930 	.fallocate	= ext4_fallocate,
931 };
932 
933 const struct inode_operations ext4_file_inode_operations = {
934 	.setattr	= ext4_setattr,
935 	.getattr	= ext4_file_getattr,
936 	.listxattr	= ext4_listxattr,
937 	.get_acl	= ext4_get_acl,
938 	.set_acl	= ext4_set_acl,
939 	.fiemap		= ext4_fiemap,
940 	.fileattr_get	= ext4_fileattr_get,
941 	.fileattr_set	= ext4_fileattr_set,
942 };
943 
944