1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/file.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/file.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * ext4 fs regular file handling primitives 17 * 18 * 64-bit file support on 64-bit platforms by Jakub Jelinek 19 * (jj@sunsite.ms.mff.cuni.cz) 20 */ 21 22 #include <linux/time.h> 23 #include <linux/fs.h> 24 #include <linux/iomap.h> 25 #include <linux/mount.h> 26 #include <linux/path.h> 27 #include <linux/dax.h> 28 #include <linux/quotaops.h> 29 #include <linux/pagevec.h> 30 #include <linux/uio.h> 31 #include <linux/mman.h> 32 #include <linux/backing-dev.h> 33 #include "ext4.h" 34 #include "ext4_jbd2.h" 35 #include "xattr.h" 36 #include "acl.h" 37 #include "truncate.h" 38 39 /* 40 * Returns %true if the given DIO request should be attempted with DIO, or 41 * %false if it should fall back to buffered I/O. 42 * 43 * DIO isn't well specified; when it's unsupported (either due to the request 44 * being misaligned, or due to the file not supporting DIO at all), filesystems 45 * either fall back to buffered I/O or return EINVAL. For files that don't use 46 * any special features like encryption or verity, ext4 has traditionally 47 * returned EINVAL for misaligned DIO. iomap_dio_rw() uses this convention too. 48 * In this case, we should attempt the DIO, *not* fall back to buffered I/O. 49 * 50 * In contrast, in cases where DIO is unsupported due to ext4 features, ext4 51 * traditionally falls back to buffered I/O. 52 * 53 * This function implements the traditional ext4 behavior in all these cases. 54 */ 55 static bool ext4_should_use_dio(struct kiocb *iocb, struct iov_iter *iter) 56 { 57 struct inode *inode = file_inode(iocb->ki_filp); 58 u32 dio_align = ext4_dio_alignment(inode); 59 60 if (dio_align == 0) 61 return false; 62 63 if (dio_align == 1) 64 return true; 65 66 return IS_ALIGNED(iocb->ki_pos | iov_iter_alignment(iter), dio_align); 67 } 68 69 static ssize_t ext4_dio_read_iter(struct kiocb *iocb, struct iov_iter *to) 70 { 71 ssize_t ret; 72 struct inode *inode = file_inode(iocb->ki_filp); 73 74 if (iocb->ki_flags & IOCB_NOWAIT) { 75 if (!inode_trylock_shared(inode)) 76 return -EAGAIN; 77 } else { 78 inode_lock_shared(inode); 79 } 80 81 if (!ext4_should_use_dio(iocb, to)) { 82 inode_unlock_shared(inode); 83 /* 84 * Fallback to buffered I/O if the operation being performed on 85 * the inode is not supported by direct I/O. The IOCB_DIRECT 86 * flag needs to be cleared here in order to ensure that the 87 * direct I/O path within generic_file_read_iter() is not 88 * taken. 89 */ 90 iocb->ki_flags &= ~IOCB_DIRECT; 91 return generic_file_read_iter(iocb, to); 92 } 93 94 ret = iomap_dio_rw(iocb, to, &ext4_iomap_ops, NULL, 0, NULL, 0); 95 inode_unlock_shared(inode); 96 97 file_accessed(iocb->ki_filp); 98 return ret; 99 } 100 101 #ifdef CONFIG_FS_DAX 102 static ssize_t ext4_dax_read_iter(struct kiocb *iocb, struct iov_iter *to) 103 { 104 struct inode *inode = file_inode(iocb->ki_filp); 105 ssize_t ret; 106 107 if (iocb->ki_flags & IOCB_NOWAIT) { 108 if (!inode_trylock_shared(inode)) 109 return -EAGAIN; 110 } else { 111 inode_lock_shared(inode); 112 } 113 /* 114 * Recheck under inode lock - at this point we are sure it cannot 115 * change anymore 116 */ 117 if (!IS_DAX(inode)) { 118 inode_unlock_shared(inode); 119 /* Fallback to buffered IO in case we cannot support DAX */ 120 return generic_file_read_iter(iocb, to); 121 } 122 ret = dax_iomap_rw(iocb, to, &ext4_iomap_ops); 123 inode_unlock_shared(inode); 124 125 file_accessed(iocb->ki_filp); 126 return ret; 127 } 128 #endif 129 130 static ssize_t ext4_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 131 { 132 struct inode *inode = file_inode(iocb->ki_filp); 133 134 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 135 return -EIO; 136 137 if (!iov_iter_count(to)) 138 return 0; /* skip atime */ 139 140 #ifdef CONFIG_FS_DAX 141 if (IS_DAX(inode)) 142 return ext4_dax_read_iter(iocb, to); 143 #endif 144 if (iocb->ki_flags & IOCB_DIRECT) 145 return ext4_dio_read_iter(iocb, to); 146 147 return generic_file_read_iter(iocb, to); 148 } 149 150 /* 151 * Called when an inode is released. Note that this is different 152 * from ext4_file_open: open gets called at every open, but release 153 * gets called only when /all/ the files are closed. 154 */ 155 static int ext4_release_file(struct inode *inode, struct file *filp) 156 { 157 if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) { 158 ext4_alloc_da_blocks(inode); 159 ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 160 } 161 /* if we are the last writer on the inode, drop the block reservation */ 162 if ((filp->f_mode & FMODE_WRITE) && 163 (atomic_read(&inode->i_writecount) == 1) && 164 !EXT4_I(inode)->i_reserved_data_blocks) { 165 down_write(&EXT4_I(inode)->i_data_sem); 166 ext4_discard_preallocations(inode, 0); 167 up_write(&EXT4_I(inode)->i_data_sem); 168 } 169 if (is_dx(inode) && filp->private_data) 170 ext4_htree_free_dir_info(filp->private_data); 171 172 return 0; 173 } 174 175 /* 176 * This tests whether the IO in question is block-aligned or not. 177 * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they 178 * are converted to written only after the IO is complete. Until they are 179 * mapped, these blocks appear as holes, so dio_zero_block() will assume that 180 * it needs to zero out portions of the start and/or end block. If 2 AIO 181 * threads are at work on the same unwritten block, they must be synchronized 182 * or one thread will zero the other's data, causing corruption. 183 */ 184 static bool 185 ext4_unaligned_io(struct inode *inode, struct iov_iter *from, loff_t pos) 186 { 187 struct super_block *sb = inode->i_sb; 188 unsigned long blockmask = sb->s_blocksize - 1; 189 190 if ((pos | iov_iter_alignment(from)) & blockmask) 191 return true; 192 193 return false; 194 } 195 196 static bool 197 ext4_extending_io(struct inode *inode, loff_t offset, size_t len) 198 { 199 if (offset + len > i_size_read(inode) || 200 offset + len > EXT4_I(inode)->i_disksize) 201 return true; 202 return false; 203 } 204 205 /* Is IO overwriting allocated or initialized blocks? */ 206 static bool ext4_overwrite_io(struct inode *inode, 207 loff_t pos, loff_t len, bool *unwritten) 208 { 209 struct ext4_map_blocks map; 210 unsigned int blkbits = inode->i_blkbits; 211 int err, blklen; 212 213 if (pos + len > i_size_read(inode)) 214 return false; 215 216 map.m_lblk = pos >> blkbits; 217 map.m_len = EXT4_MAX_BLOCKS(len, pos, blkbits); 218 blklen = map.m_len; 219 220 err = ext4_map_blocks(NULL, inode, &map, 0); 221 if (err != blklen) 222 return false; 223 /* 224 * 'err==len' means that all of the blocks have been preallocated, 225 * regardless of whether they have been initialized or not. We need to 226 * check m_flags to distinguish the unwritten extents. 227 */ 228 *unwritten = !(map.m_flags & EXT4_MAP_MAPPED); 229 return true; 230 } 231 232 static ssize_t ext4_generic_write_checks(struct kiocb *iocb, 233 struct iov_iter *from) 234 { 235 struct inode *inode = file_inode(iocb->ki_filp); 236 ssize_t ret; 237 238 if (unlikely(IS_IMMUTABLE(inode))) 239 return -EPERM; 240 241 ret = generic_write_checks(iocb, from); 242 if (ret <= 0) 243 return ret; 244 245 /* 246 * If we have encountered a bitmap-format file, the size limit 247 * is smaller than s_maxbytes, which is for extent-mapped files. 248 */ 249 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 250 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 251 252 if (iocb->ki_pos >= sbi->s_bitmap_maxbytes) 253 return -EFBIG; 254 iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos); 255 } 256 257 return iov_iter_count(from); 258 } 259 260 static ssize_t ext4_write_checks(struct kiocb *iocb, struct iov_iter *from) 261 { 262 ssize_t ret, count; 263 264 count = ext4_generic_write_checks(iocb, from); 265 if (count <= 0) 266 return count; 267 268 ret = file_modified(iocb->ki_filp); 269 if (ret) 270 return ret; 271 return count; 272 } 273 274 static ssize_t ext4_buffered_write_iter(struct kiocb *iocb, 275 struct iov_iter *from) 276 { 277 ssize_t ret; 278 struct inode *inode = file_inode(iocb->ki_filp); 279 280 if (iocb->ki_flags & IOCB_NOWAIT) 281 return -EOPNOTSUPP; 282 283 inode_lock(inode); 284 ret = ext4_write_checks(iocb, from); 285 if (ret <= 0) 286 goto out; 287 288 ret = generic_perform_write(iocb, from); 289 290 out: 291 inode_unlock(inode); 292 if (unlikely(ret <= 0)) 293 return ret; 294 return generic_write_sync(iocb, ret); 295 } 296 297 static ssize_t ext4_handle_inode_extension(struct inode *inode, loff_t offset, 298 ssize_t written, size_t count) 299 { 300 handle_t *handle; 301 bool truncate = false; 302 u8 blkbits = inode->i_blkbits; 303 ext4_lblk_t written_blk, end_blk; 304 int ret; 305 306 /* 307 * Note that EXT4_I(inode)->i_disksize can get extended up to 308 * inode->i_size while the I/O was running due to writeback of delalloc 309 * blocks. But, the code in ext4_iomap_alloc() is careful to use 310 * zeroed/unwritten extents if this is possible; thus we won't leave 311 * uninitialized blocks in a file even if we didn't succeed in writing 312 * as much as we intended. 313 */ 314 WARN_ON_ONCE(i_size_read(inode) < EXT4_I(inode)->i_disksize); 315 if (offset + count <= EXT4_I(inode)->i_disksize) { 316 /* 317 * We need to ensure that the inode is removed from the orphan 318 * list if it has been added prematurely, due to writeback of 319 * delalloc blocks. 320 */ 321 if (!list_empty(&EXT4_I(inode)->i_orphan) && inode->i_nlink) { 322 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 323 324 if (IS_ERR(handle)) { 325 ext4_orphan_del(NULL, inode); 326 return PTR_ERR(handle); 327 } 328 329 ext4_orphan_del(handle, inode); 330 ext4_journal_stop(handle); 331 } 332 333 return written; 334 } 335 336 if (written < 0) 337 goto truncate; 338 339 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 340 if (IS_ERR(handle)) { 341 written = PTR_ERR(handle); 342 goto truncate; 343 } 344 345 if (ext4_update_inode_size(inode, offset + written)) { 346 ret = ext4_mark_inode_dirty(handle, inode); 347 if (unlikely(ret)) { 348 written = ret; 349 ext4_journal_stop(handle); 350 goto truncate; 351 } 352 } 353 354 /* 355 * We may need to truncate allocated but not written blocks beyond EOF. 356 */ 357 written_blk = ALIGN(offset + written, 1 << blkbits); 358 end_blk = ALIGN(offset + count, 1 << blkbits); 359 if (written_blk < end_blk && ext4_can_truncate(inode)) 360 truncate = true; 361 362 /* 363 * Remove the inode from the orphan list if it has been extended and 364 * everything went OK. 365 */ 366 if (!truncate && inode->i_nlink) 367 ext4_orphan_del(handle, inode); 368 ext4_journal_stop(handle); 369 370 if (truncate) { 371 truncate: 372 ext4_truncate_failed_write(inode); 373 /* 374 * If the truncate operation failed early, then the inode may 375 * still be on the orphan list. In that case, we need to try 376 * remove the inode from the in-memory linked list. 377 */ 378 if (inode->i_nlink) 379 ext4_orphan_del(NULL, inode); 380 } 381 382 return written; 383 } 384 385 static int ext4_dio_write_end_io(struct kiocb *iocb, ssize_t size, 386 int error, unsigned int flags) 387 { 388 loff_t pos = iocb->ki_pos; 389 struct inode *inode = file_inode(iocb->ki_filp); 390 391 if (error) 392 return error; 393 394 if (size && flags & IOMAP_DIO_UNWRITTEN) { 395 error = ext4_convert_unwritten_extents(NULL, inode, pos, size); 396 if (error < 0) 397 return error; 398 } 399 /* 400 * If we are extending the file, we have to update i_size here before 401 * page cache gets invalidated in iomap_dio_rw(). Otherwise racing 402 * buffered reads could zero out too much from page cache pages. Update 403 * of on-disk size will happen later in ext4_dio_write_iter() where 404 * we have enough information to also perform orphan list handling etc. 405 * Note that we perform all extending writes synchronously under 406 * i_rwsem held exclusively so i_size update is safe here in that case. 407 * If the write was not extending, we cannot see pos > i_size here 408 * because operations reducing i_size like truncate wait for all 409 * outstanding DIO before updating i_size. 410 */ 411 pos += size; 412 if (pos > i_size_read(inode)) 413 i_size_write(inode, pos); 414 415 return 0; 416 } 417 418 static const struct iomap_dio_ops ext4_dio_write_ops = { 419 .end_io = ext4_dio_write_end_io, 420 }; 421 422 /* 423 * The intention here is to start with shared lock acquired then see if any 424 * condition requires an exclusive inode lock. If yes, then we restart the 425 * whole operation by releasing the shared lock and acquiring exclusive lock. 426 * 427 * - For unaligned_io we never take shared lock as it may cause data corruption 428 * when two unaligned IO tries to modify the same block e.g. while zeroing. 429 * 430 * - For extending writes case we don't take the shared lock, since it requires 431 * updating inode i_disksize and/or orphan handling with exclusive lock. 432 * 433 * - shared locking will only be true mostly with overwrites, including 434 * initialized blocks and unwritten blocks. For overwrite unwritten blocks 435 * we protect splitting extents by i_data_sem in ext4_inode_info, so we can 436 * also release exclusive i_rwsem lock. 437 * 438 * - Otherwise we will switch to exclusive i_rwsem lock. 439 */ 440 static ssize_t ext4_dio_write_checks(struct kiocb *iocb, struct iov_iter *from, 441 bool *ilock_shared, bool *extend, 442 bool *unwritten) 443 { 444 struct file *file = iocb->ki_filp; 445 struct inode *inode = file_inode(file); 446 loff_t offset; 447 size_t count; 448 ssize_t ret; 449 450 restart: 451 ret = ext4_generic_write_checks(iocb, from); 452 if (ret <= 0) 453 goto out; 454 455 offset = iocb->ki_pos; 456 count = ret; 457 if (ext4_extending_io(inode, offset, count)) 458 *extend = true; 459 /* 460 * Determine whether the IO operation will overwrite allocated 461 * and initialized blocks. 462 * We need exclusive i_rwsem for changing security info 463 * in file_modified(). 464 */ 465 if (*ilock_shared && (!IS_NOSEC(inode) || *extend || 466 !ext4_overwrite_io(inode, offset, count, unwritten))) { 467 if (iocb->ki_flags & IOCB_NOWAIT) { 468 ret = -EAGAIN; 469 goto out; 470 } 471 inode_unlock_shared(inode); 472 *ilock_shared = false; 473 inode_lock(inode); 474 goto restart; 475 } 476 477 ret = file_modified(file); 478 if (ret < 0) 479 goto out; 480 481 return count; 482 out: 483 if (*ilock_shared) 484 inode_unlock_shared(inode); 485 else 486 inode_unlock(inode); 487 return ret; 488 } 489 490 static ssize_t ext4_dio_write_iter(struct kiocb *iocb, struct iov_iter *from) 491 { 492 ssize_t ret; 493 handle_t *handle; 494 struct inode *inode = file_inode(iocb->ki_filp); 495 loff_t offset = iocb->ki_pos; 496 size_t count = iov_iter_count(from); 497 const struct iomap_ops *iomap_ops = &ext4_iomap_ops; 498 bool extend = false, unaligned_io = false, unwritten = false; 499 bool ilock_shared = true; 500 501 /* 502 * We initially start with shared inode lock unless it is 503 * unaligned IO which needs exclusive lock anyways. 504 */ 505 if (ext4_unaligned_io(inode, from, offset)) { 506 unaligned_io = true; 507 ilock_shared = false; 508 } 509 /* 510 * Quick check here without any i_rwsem lock to see if it is extending 511 * IO. A more reliable check is done in ext4_dio_write_checks() with 512 * proper locking in place. 513 */ 514 if (offset + count > i_size_read(inode)) 515 ilock_shared = false; 516 517 if (iocb->ki_flags & IOCB_NOWAIT) { 518 if (ilock_shared) { 519 if (!inode_trylock_shared(inode)) 520 return -EAGAIN; 521 } else { 522 if (!inode_trylock(inode)) 523 return -EAGAIN; 524 } 525 } else { 526 if (ilock_shared) 527 inode_lock_shared(inode); 528 else 529 inode_lock(inode); 530 } 531 532 /* Fallback to buffered I/O if the inode does not support direct I/O. */ 533 if (!ext4_should_use_dio(iocb, from)) { 534 if (ilock_shared) 535 inode_unlock_shared(inode); 536 else 537 inode_unlock(inode); 538 return ext4_buffered_write_iter(iocb, from); 539 } 540 541 ret = ext4_dio_write_checks(iocb, from, 542 &ilock_shared, &extend, &unwritten); 543 if (ret <= 0) 544 return ret; 545 546 /* if we're going to block and IOCB_NOWAIT is set, return -EAGAIN */ 547 if ((iocb->ki_flags & IOCB_NOWAIT) && (unaligned_io || extend)) { 548 ret = -EAGAIN; 549 goto out; 550 } 551 /* 552 * Make sure inline data cannot be created anymore since we are going 553 * to allocate blocks for DIO. We know the inode does not have any 554 * inline data now because ext4_dio_supported() checked for that. 555 */ 556 ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); 557 558 offset = iocb->ki_pos; 559 count = ret; 560 561 /* 562 * Unaligned direct IO must be serialized among each other as zeroing 563 * of partial blocks of two competing unaligned IOs can result in data 564 * corruption. 565 * 566 * So we make sure we don't allow any unaligned IO in flight. 567 * For IOs where we need not wait (like unaligned non-AIO DIO), 568 * below inode_dio_wait() may anyway become a no-op, since we start 569 * with exclusive lock. 570 */ 571 if (unaligned_io) 572 inode_dio_wait(inode); 573 574 if (extend) { 575 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 576 if (IS_ERR(handle)) { 577 ret = PTR_ERR(handle); 578 goto out; 579 } 580 581 ret = ext4_orphan_add(handle, inode); 582 if (ret) { 583 ext4_journal_stop(handle); 584 goto out; 585 } 586 587 ext4_journal_stop(handle); 588 } 589 590 if (ilock_shared && !unwritten) 591 iomap_ops = &ext4_iomap_overwrite_ops; 592 ret = iomap_dio_rw(iocb, from, iomap_ops, &ext4_dio_write_ops, 593 (unaligned_io || extend) ? IOMAP_DIO_FORCE_WAIT : 0, 594 NULL, 0); 595 if (ret == -ENOTBLK) 596 ret = 0; 597 598 if (extend) 599 ret = ext4_handle_inode_extension(inode, offset, ret, count); 600 601 out: 602 if (ilock_shared) 603 inode_unlock_shared(inode); 604 else 605 inode_unlock(inode); 606 607 if (ret >= 0 && iov_iter_count(from)) { 608 ssize_t err; 609 loff_t endbyte; 610 611 offset = iocb->ki_pos; 612 err = ext4_buffered_write_iter(iocb, from); 613 if (err < 0) 614 return err; 615 616 /* 617 * We need to ensure that the pages within the page cache for 618 * the range covered by this I/O are written to disk and 619 * invalidated. This is in attempt to preserve the expected 620 * direct I/O semantics in the case we fallback to buffered I/O 621 * to complete off the I/O request. 622 */ 623 ret += err; 624 endbyte = offset + err - 1; 625 err = filemap_write_and_wait_range(iocb->ki_filp->f_mapping, 626 offset, endbyte); 627 if (!err) 628 invalidate_mapping_pages(iocb->ki_filp->f_mapping, 629 offset >> PAGE_SHIFT, 630 endbyte >> PAGE_SHIFT); 631 } 632 633 return ret; 634 } 635 636 #ifdef CONFIG_FS_DAX 637 static ssize_t 638 ext4_dax_write_iter(struct kiocb *iocb, struct iov_iter *from) 639 { 640 ssize_t ret; 641 size_t count; 642 loff_t offset; 643 handle_t *handle; 644 bool extend = false; 645 struct inode *inode = file_inode(iocb->ki_filp); 646 647 if (iocb->ki_flags & IOCB_NOWAIT) { 648 if (!inode_trylock(inode)) 649 return -EAGAIN; 650 } else { 651 inode_lock(inode); 652 } 653 654 ret = ext4_write_checks(iocb, from); 655 if (ret <= 0) 656 goto out; 657 658 offset = iocb->ki_pos; 659 count = iov_iter_count(from); 660 661 if (offset + count > EXT4_I(inode)->i_disksize) { 662 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 663 if (IS_ERR(handle)) { 664 ret = PTR_ERR(handle); 665 goto out; 666 } 667 668 ret = ext4_orphan_add(handle, inode); 669 if (ret) { 670 ext4_journal_stop(handle); 671 goto out; 672 } 673 674 extend = true; 675 ext4_journal_stop(handle); 676 } 677 678 ret = dax_iomap_rw(iocb, from, &ext4_iomap_ops); 679 680 if (extend) 681 ret = ext4_handle_inode_extension(inode, offset, ret, count); 682 out: 683 inode_unlock(inode); 684 if (ret > 0) 685 ret = generic_write_sync(iocb, ret); 686 return ret; 687 } 688 #endif 689 690 static ssize_t 691 ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 692 { 693 struct inode *inode = file_inode(iocb->ki_filp); 694 695 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 696 return -EIO; 697 698 #ifdef CONFIG_FS_DAX 699 if (IS_DAX(inode)) 700 return ext4_dax_write_iter(iocb, from); 701 #endif 702 if (iocb->ki_flags & IOCB_DIRECT) 703 return ext4_dio_write_iter(iocb, from); 704 else 705 return ext4_buffered_write_iter(iocb, from); 706 } 707 708 #ifdef CONFIG_FS_DAX 709 static vm_fault_t ext4_dax_huge_fault(struct vm_fault *vmf, 710 enum page_entry_size pe_size) 711 { 712 int error = 0; 713 vm_fault_t result; 714 int retries = 0; 715 handle_t *handle = NULL; 716 struct inode *inode = file_inode(vmf->vma->vm_file); 717 struct super_block *sb = inode->i_sb; 718 719 /* 720 * We have to distinguish real writes from writes which will result in a 721 * COW page; COW writes should *not* poke the journal (the file will not 722 * be changed). Doing so would cause unintended failures when mounted 723 * read-only. 724 * 725 * We check for VM_SHARED rather than vmf->cow_page since the latter is 726 * unset for pe_size != PE_SIZE_PTE (i.e. only in do_cow_fault); for 727 * other sizes, dax_iomap_fault will handle splitting / fallback so that 728 * we eventually come back with a COW page. 729 */ 730 bool write = (vmf->flags & FAULT_FLAG_WRITE) && 731 (vmf->vma->vm_flags & VM_SHARED); 732 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 733 pfn_t pfn; 734 735 if (write) { 736 sb_start_pagefault(sb); 737 file_update_time(vmf->vma->vm_file); 738 filemap_invalidate_lock_shared(mapping); 739 retry: 740 handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE, 741 EXT4_DATA_TRANS_BLOCKS(sb)); 742 if (IS_ERR(handle)) { 743 filemap_invalidate_unlock_shared(mapping); 744 sb_end_pagefault(sb); 745 return VM_FAULT_SIGBUS; 746 } 747 } else { 748 filemap_invalidate_lock_shared(mapping); 749 } 750 result = dax_iomap_fault(vmf, pe_size, &pfn, &error, &ext4_iomap_ops); 751 if (write) { 752 ext4_journal_stop(handle); 753 754 if ((result & VM_FAULT_ERROR) && error == -ENOSPC && 755 ext4_should_retry_alloc(sb, &retries)) 756 goto retry; 757 /* Handling synchronous page fault? */ 758 if (result & VM_FAULT_NEEDDSYNC) 759 result = dax_finish_sync_fault(vmf, pe_size, pfn); 760 filemap_invalidate_unlock_shared(mapping); 761 sb_end_pagefault(sb); 762 } else { 763 filemap_invalidate_unlock_shared(mapping); 764 } 765 766 return result; 767 } 768 769 static vm_fault_t ext4_dax_fault(struct vm_fault *vmf) 770 { 771 return ext4_dax_huge_fault(vmf, PE_SIZE_PTE); 772 } 773 774 static const struct vm_operations_struct ext4_dax_vm_ops = { 775 .fault = ext4_dax_fault, 776 .huge_fault = ext4_dax_huge_fault, 777 .page_mkwrite = ext4_dax_fault, 778 .pfn_mkwrite = ext4_dax_fault, 779 }; 780 #else 781 #define ext4_dax_vm_ops ext4_file_vm_ops 782 #endif 783 784 static const struct vm_operations_struct ext4_file_vm_ops = { 785 .fault = filemap_fault, 786 .map_pages = filemap_map_pages, 787 .page_mkwrite = ext4_page_mkwrite, 788 }; 789 790 static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma) 791 { 792 struct inode *inode = file->f_mapping->host; 793 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 794 struct dax_device *dax_dev = sbi->s_daxdev; 795 796 if (unlikely(ext4_forced_shutdown(sbi))) 797 return -EIO; 798 799 /* 800 * We don't support synchronous mappings for non-DAX files and 801 * for DAX files if underneath dax_device is not synchronous. 802 */ 803 if (!daxdev_mapping_supported(vma, dax_dev)) 804 return -EOPNOTSUPP; 805 806 file_accessed(file); 807 if (IS_DAX(file_inode(file))) { 808 vma->vm_ops = &ext4_dax_vm_ops; 809 vm_flags_set(vma, VM_HUGEPAGE); 810 } else { 811 vma->vm_ops = &ext4_file_vm_ops; 812 } 813 return 0; 814 } 815 816 static int ext4_sample_last_mounted(struct super_block *sb, 817 struct vfsmount *mnt) 818 { 819 struct ext4_sb_info *sbi = EXT4_SB(sb); 820 struct path path; 821 char buf[64], *cp; 822 handle_t *handle; 823 int err; 824 825 if (likely(ext4_test_mount_flag(sb, EXT4_MF_MNTDIR_SAMPLED))) 826 return 0; 827 828 if (sb_rdonly(sb) || !sb_start_intwrite_trylock(sb)) 829 return 0; 830 831 ext4_set_mount_flag(sb, EXT4_MF_MNTDIR_SAMPLED); 832 /* 833 * Sample where the filesystem has been mounted and 834 * store it in the superblock for sysadmin convenience 835 * when trying to sort through large numbers of block 836 * devices or filesystem images. 837 */ 838 memset(buf, 0, sizeof(buf)); 839 path.mnt = mnt; 840 path.dentry = mnt->mnt_root; 841 cp = d_path(&path, buf, sizeof(buf)); 842 err = 0; 843 if (IS_ERR(cp)) 844 goto out; 845 846 handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1); 847 err = PTR_ERR(handle); 848 if (IS_ERR(handle)) 849 goto out; 850 BUFFER_TRACE(sbi->s_sbh, "get_write_access"); 851 err = ext4_journal_get_write_access(handle, sb, sbi->s_sbh, 852 EXT4_JTR_NONE); 853 if (err) 854 goto out_journal; 855 lock_buffer(sbi->s_sbh); 856 strncpy(sbi->s_es->s_last_mounted, cp, 857 sizeof(sbi->s_es->s_last_mounted)); 858 ext4_superblock_csum_set(sb); 859 unlock_buffer(sbi->s_sbh); 860 ext4_handle_dirty_metadata(handle, NULL, sbi->s_sbh); 861 out_journal: 862 ext4_journal_stop(handle); 863 out: 864 sb_end_intwrite(sb); 865 return err; 866 } 867 868 static int ext4_file_open(struct inode *inode, struct file *filp) 869 { 870 int ret; 871 872 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 873 return -EIO; 874 875 ret = ext4_sample_last_mounted(inode->i_sb, filp->f_path.mnt); 876 if (ret) 877 return ret; 878 879 ret = fscrypt_file_open(inode, filp); 880 if (ret) 881 return ret; 882 883 ret = fsverity_file_open(inode, filp); 884 if (ret) 885 return ret; 886 887 /* 888 * Set up the jbd2_inode if we are opening the inode for 889 * writing and the journal is present 890 */ 891 if (filp->f_mode & FMODE_WRITE) { 892 ret = ext4_inode_attach_jinode(inode); 893 if (ret < 0) 894 return ret; 895 } 896 897 filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC | 898 FMODE_DIO_PARALLEL_WRITE; 899 return dquot_file_open(inode, filp); 900 } 901 902 /* 903 * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values 904 * by calling generic_file_llseek_size() with the appropriate maxbytes 905 * value for each. 906 */ 907 loff_t ext4_llseek(struct file *file, loff_t offset, int whence) 908 { 909 struct inode *inode = file->f_mapping->host; 910 loff_t maxbytes; 911 912 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 913 maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes; 914 else 915 maxbytes = inode->i_sb->s_maxbytes; 916 917 switch (whence) { 918 default: 919 return generic_file_llseek_size(file, offset, whence, 920 maxbytes, i_size_read(inode)); 921 case SEEK_HOLE: 922 inode_lock_shared(inode); 923 offset = iomap_seek_hole(inode, offset, 924 &ext4_iomap_report_ops); 925 inode_unlock_shared(inode); 926 break; 927 case SEEK_DATA: 928 inode_lock_shared(inode); 929 offset = iomap_seek_data(inode, offset, 930 &ext4_iomap_report_ops); 931 inode_unlock_shared(inode); 932 break; 933 } 934 935 if (offset < 0) 936 return offset; 937 return vfs_setpos(file, offset, maxbytes); 938 } 939 940 const struct file_operations ext4_file_operations = { 941 .llseek = ext4_llseek, 942 .read_iter = ext4_file_read_iter, 943 .write_iter = ext4_file_write_iter, 944 .iopoll = iocb_bio_iopoll, 945 .unlocked_ioctl = ext4_ioctl, 946 #ifdef CONFIG_COMPAT 947 .compat_ioctl = ext4_compat_ioctl, 948 #endif 949 .mmap = ext4_file_mmap, 950 .mmap_supported_flags = MAP_SYNC, 951 .open = ext4_file_open, 952 .release = ext4_release_file, 953 .fsync = ext4_sync_file, 954 .get_unmapped_area = thp_get_unmapped_area, 955 .splice_read = generic_file_splice_read, 956 .splice_write = iter_file_splice_write, 957 .fallocate = ext4_fallocate, 958 }; 959 960 const struct inode_operations ext4_file_inode_operations = { 961 .setattr = ext4_setattr, 962 .getattr = ext4_file_getattr, 963 .listxattr = ext4_listxattr, 964 .get_inode_acl = ext4_get_acl, 965 .set_acl = ext4_set_acl, 966 .fiemap = ext4_fiemap, 967 .fileattr_get = ext4_fileattr_get, 968 .fileattr_set = ext4_fileattr_set, 969 }; 970 971