xref: /openbmc/linux/fs/ext4/file.c (revision c33c7948)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/file.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/file.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  ext4 fs regular file handling primitives
17  *
18  *  64-bit file support on 64-bit platforms by Jakub Jelinek
19  *	(jj@sunsite.ms.mff.cuni.cz)
20  */
21 
22 #include <linux/time.h>
23 #include <linux/fs.h>
24 #include <linux/iomap.h>
25 #include <linux/mount.h>
26 #include <linux/path.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/pagevec.h>
30 #include <linux/uio.h>
31 #include <linux/mman.h>
32 #include <linux/backing-dev.h>
33 #include "ext4.h"
34 #include "ext4_jbd2.h"
35 #include "xattr.h"
36 #include "acl.h"
37 #include "truncate.h"
38 
39 /*
40  * Returns %true if the given DIO request should be attempted with DIO, or
41  * %false if it should fall back to buffered I/O.
42  *
43  * DIO isn't well specified; when it's unsupported (either due to the request
44  * being misaligned, or due to the file not supporting DIO at all), filesystems
45  * either fall back to buffered I/O or return EINVAL.  For files that don't use
46  * any special features like encryption or verity, ext4 has traditionally
47  * returned EINVAL for misaligned DIO.  iomap_dio_rw() uses this convention too.
48  * In this case, we should attempt the DIO, *not* fall back to buffered I/O.
49  *
50  * In contrast, in cases where DIO is unsupported due to ext4 features, ext4
51  * traditionally falls back to buffered I/O.
52  *
53  * This function implements the traditional ext4 behavior in all these cases.
54  */
55 static bool ext4_should_use_dio(struct kiocb *iocb, struct iov_iter *iter)
56 {
57 	struct inode *inode = file_inode(iocb->ki_filp);
58 	u32 dio_align = ext4_dio_alignment(inode);
59 
60 	if (dio_align == 0)
61 		return false;
62 
63 	if (dio_align == 1)
64 		return true;
65 
66 	return IS_ALIGNED(iocb->ki_pos | iov_iter_alignment(iter), dio_align);
67 }
68 
69 static ssize_t ext4_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
70 {
71 	ssize_t ret;
72 	struct inode *inode = file_inode(iocb->ki_filp);
73 
74 	if (iocb->ki_flags & IOCB_NOWAIT) {
75 		if (!inode_trylock_shared(inode))
76 			return -EAGAIN;
77 	} else {
78 		inode_lock_shared(inode);
79 	}
80 
81 	if (!ext4_should_use_dio(iocb, to)) {
82 		inode_unlock_shared(inode);
83 		/*
84 		 * Fallback to buffered I/O if the operation being performed on
85 		 * the inode is not supported by direct I/O. The IOCB_DIRECT
86 		 * flag needs to be cleared here in order to ensure that the
87 		 * direct I/O path within generic_file_read_iter() is not
88 		 * taken.
89 		 */
90 		iocb->ki_flags &= ~IOCB_DIRECT;
91 		return generic_file_read_iter(iocb, to);
92 	}
93 
94 	ret = iomap_dio_rw(iocb, to, &ext4_iomap_ops, NULL, 0, NULL, 0);
95 	inode_unlock_shared(inode);
96 
97 	file_accessed(iocb->ki_filp);
98 	return ret;
99 }
100 
101 #ifdef CONFIG_FS_DAX
102 static ssize_t ext4_dax_read_iter(struct kiocb *iocb, struct iov_iter *to)
103 {
104 	struct inode *inode = file_inode(iocb->ki_filp);
105 	ssize_t ret;
106 
107 	if (iocb->ki_flags & IOCB_NOWAIT) {
108 		if (!inode_trylock_shared(inode))
109 			return -EAGAIN;
110 	} else {
111 		inode_lock_shared(inode);
112 	}
113 	/*
114 	 * Recheck under inode lock - at this point we are sure it cannot
115 	 * change anymore
116 	 */
117 	if (!IS_DAX(inode)) {
118 		inode_unlock_shared(inode);
119 		/* Fallback to buffered IO in case we cannot support DAX */
120 		return generic_file_read_iter(iocb, to);
121 	}
122 	ret = dax_iomap_rw(iocb, to, &ext4_iomap_ops);
123 	inode_unlock_shared(inode);
124 
125 	file_accessed(iocb->ki_filp);
126 	return ret;
127 }
128 #endif
129 
130 static ssize_t ext4_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
131 {
132 	struct inode *inode = file_inode(iocb->ki_filp);
133 
134 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
135 		return -EIO;
136 
137 	if (!iov_iter_count(to))
138 		return 0; /* skip atime */
139 
140 #ifdef CONFIG_FS_DAX
141 	if (IS_DAX(inode))
142 		return ext4_dax_read_iter(iocb, to);
143 #endif
144 	if (iocb->ki_flags & IOCB_DIRECT)
145 		return ext4_dio_read_iter(iocb, to);
146 
147 	return generic_file_read_iter(iocb, to);
148 }
149 
150 /*
151  * Called when an inode is released. Note that this is different
152  * from ext4_file_open: open gets called at every open, but release
153  * gets called only when /all/ the files are closed.
154  */
155 static int ext4_release_file(struct inode *inode, struct file *filp)
156 {
157 	if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) {
158 		ext4_alloc_da_blocks(inode);
159 		ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
160 	}
161 	/* if we are the last writer on the inode, drop the block reservation */
162 	if ((filp->f_mode & FMODE_WRITE) &&
163 			(atomic_read(&inode->i_writecount) == 1) &&
164 			!EXT4_I(inode)->i_reserved_data_blocks) {
165 		down_write(&EXT4_I(inode)->i_data_sem);
166 		ext4_discard_preallocations(inode, 0);
167 		up_write(&EXT4_I(inode)->i_data_sem);
168 	}
169 	if (is_dx(inode) && filp->private_data)
170 		ext4_htree_free_dir_info(filp->private_data);
171 
172 	return 0;
173 }
174 
175 /*
176  * This tests whether the IO in question is block-aligned or not.
177  * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
178  * are converted to written only after the IO is complete.  Until they are
179  * mapped, these blocks appear as holes, so dio_zero_block() will assume that
180  * it needs to zero out portions of the start and/or end block.  If 2 AIO
181  * threads are at work on the same unwritten block, they must be synchronized
182  * or one thread will zero the other's data, causing corruption.
183  */
184 static bool
185 ext4_unaligned_io(struct inode *inode, struct iov_iter *from, loff_t pos)
186 {
187 	struct super_block *sb = inode->i_sb;
188 	unsigned long blockmask = sb->s_blocksize - 1;
189 
190 	if ((pos | iov_iter_alignment(from)) & blockmask)
191 		return true;
192 
193 	return false;
194 }
195 
196 static bool
197 ext4_extending_io(struct inode *inode, loff_t offset, size_t len)
198 {
199 	if (offset + len > i_size_read(inode) ||
200 	    offset + len > EXT4_I(inode)->i_disksize)
201 		return true;
202 	return false;
203 }
204 
205 /* Is IO overwriting allocated or initialized blocks? */
206 static bool ext4_overwrite_io(struct inode *inode,
207 			      loff_t pos, loff_t len, bool *unwritten)
208 {
209 	struct ext4_map_blocks map;
210 	unsigned int blkbits = inode->i_blkbits;
211 	int err, blklen;
212 
213 	if (pos + len > i_size_read(inode))
214 		return false;
215 
216 	map.m_lblk = pos >> blkbits;
217 	map.m_len = EXT4_MAX_BLOCKS(len, pos, blkbits);
218 	blklen = map.m_len;
219 
220 	err = ext4_map_blocks(NULL, inode, &map, 0);
221 	if (err != blklen)
222 		return false;
223 	/*
224 	 * 'err==len' means that all of the blocks have been preallocated,
225 	 * regardless of whether they have been initialized or not. We need to
226 	 * check m_flags to distinguish the unwritten extents.
227 	 */
228 	*unwritten = !(map.m_flags & EXT4_MAP_MAPPED);
229 	return true;
230 }
231 
232 static ssize_t ext4_generic_write_checks(struct kiocb *iocb,
233 					 struct iov_iter *from)
234 {
235 	struct inode *inode = file_inode(iocb->ki_filp);
236 	ssize_t ret;
237 
238 	if (unlikely(IS_IMMUTABLE(inode)))
239 		return -EPERM;
240 
241 	ret = generic_write_checks(iocb, from);
242 	if (ret <= 0)
243 		return ret;
244 
245 	/*
246 	 * If we have encountered a bitmap-format file, the size limit
247 	 * is smaller than s_maxbytes, which is for extent-mapped files.
248 	 */
249 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
250 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
251 
252 		if (iocb->ki_pos >= sbi->s_bitmap_maxbytes)
253 			return -EFBIG;
254 		iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos);
255 	}
256 
257 	return iov_iter_count(from);
258 }
259 
260 static ssize_t ext4_write_checks(struct kiocb *iocb, struct iov_iter *from)
261 {
262 	ssize_t ret, count;
263 
264 	count = ext4_generic_write_checks(iocb, from);
265 	if (count <= 0)
266 		return count;
267 
268 	ret = file_modified(iocb->ki_filp);
269 	if (ret)
270 		return ret;
271 	return count;
272 }
273 
274 static ssize_t ext4_buffered_write_iter(struct kiocb *iocb,
275 					struct iov_iter *from)
276 {
277 	ssize_t ret;
278 	struct inode *inode = file_inode(iocb->ki_filp);
279 
280 	if (iocb->ki_flags & IOCB_NOWAIT)
281 		return -EOPNOTSUPP;
282 
283 	inode_lock(inode);
284 	ret = ext4_write_checks(iocb, from);
285 	if (ret <= 0)
286 		goto out;
287 
288 	ret = generic_perform_write(iocb, from);
289 
290 out:
291 	inode_unlock(inode);
292 	if (unlikely(ret <= 0))
293 		return ret;
294 	return generic_write_sync(iocb, ret);
295 }
296 
297 static ssize_t ext4_handle_inode_extension(struct inode *inode, loff_t offset,
298 					   ssize_t written, size_t count)
299 {
300 	handle_t *handle;
301 	bool truncate = false;
302 	u8 blkbits = inode->i_blkbits;
303 	ext4_lblk_t written_blk, end_blk;
304 	int ret;
305 
306 	/*
307 	 * Note that EXT4_I(inode)->i_disksize can get extended up to
308 	 * inode->i_size while the I/O was running due to writeback of delalloc
309 	 * blocks. But, the code in ext4_iomap_alloc() is careful to use
310 	 * zeroed/unwritten extents if this is possible; thus we won't leave
311 	 * uninitialized blocks in a file even if we didn't succeed in writing
312 	 * as much as we intended.
313 	 */
314 	WARN_ON_ONCE(i_size_read(inode) < EXT4_I(inode)->i_disksize);
315 	if (offset + count <= EXT4_I(inode)->i_disksize) {
316 		/*
317 		 * We need to ensure that the inode is removed from the orphan
318 		 * list if it has been added prematurely, due to writeback of
319 		 * delalloc blocks.
320 		 */
321 		if (!list_empty(&EXT4_I(inode)->i_orphan) && inode->i_nlink) {
322 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
323 
324 			if (IS_ERR(handle)) {
325 				ext4_orphan_del(NULL, inode);
326 				return PTR_ERR(handle);
327 			}
328 
329 			ext4_orphan_del(handle, inode);
330 			ext4_journal_stop(handle);
331 		}
332 
333 		return written;
334 	}
335 
336 	if (written < 0)
337 		goto truncate;
338 
339 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
340 	if (IS_ERR(handle)) {
341 		written = PTR_ERR(handle);
342 		goto truncate;
343 	}
344 
345 	if (ext4_update_inode_size(inode, offset + written)) {
346 		ret = ext4_mark_inode_dirty(handle, inode);
347 		if (unlikely(ret)) {
348 			written = ret;
349 			ext4_journal_stop(handle);
350 			goto truncate;
351 		}
352 	}
353 
354 	/*
355 	 * We may need to truncate allocated but not written blocks beyond EOF.
356 	 */
357 	written_blk = ALIGN(offset + written, 1 << blkbits);
358 	end_blk = ALIGN(offset + count, 1 << blkbits);
359 	if (written_blk < end_blk && ext4_can_truncate(inode))
360 		truncate = true;
361 
362 	/*
363 	 * Remove the inode from the orphan list if it has been extended and
364 	 * everything went OK.
365 	 */
366 	if (!truncate && inode->i_nlink)
367 		ext4_orphan_del(handle, inode);
368 	ext4_journal_stop(handle);
369 
370 	if (truncate) {
371 truncate:
372 		ext4_truncate_failed_write(inode);
373 		/*
374 		 * If the truncate operation failed early, then the inode may
375 		 * still be on the orphan list. In that case, we need to try
376 		 * remove the inode from the in-memory linked list.
377 		 */
378 		if (inode->i_nlink)
379 			ext4_orphan_del(NULL, inode);
380 	}
381 
382 	return written;
383 }
384 
385 static int ext4_dio_write_end_io(struct kiocb *iocb, ssize_t size,
386 				 int error, unsigned int flags)
387 {
388 	loff_t pos = iocb->ki_pos;
389 	struct inode *inode = file_inode(iocb->ki_filp);
390 
391 	if (error)
392 		return error;
393 
394 	if (size && flags & IOMAP_DIO_UNWRITTEN) {
395 		error = ext4_convert_unwritten_extents(NULL, inode, pos, size);
396 		if (error < 0)
397 			return error;
398 	}
399 	/*
400 	 * If we are extending the file, we have to update i_size here before
401 	 * page cache gets invalidated in iomap_dio_rw(). Otherwise racing
402 	 * buffered reads could zero out too much from page cache pages. Update
403 	 * of on-disk size will happen later in ext4_dio_write_iter() where
404 	 * we have enough information to also perform orphan list handling etc.
405 	 * Note that we perform all extending writes synchronously under
406 	 * i_rwsem held exclusively so i_size update is safe here in that case.
407 	 * If the write was not extending, we cannot see pos > i_size here
408 	 * because operations reducing i_size like truncate wait for all
409 	 * outstanding DIO before updating i_size.
410 	 */
411 	pos += size;
412 	if (pos > i_size_read(inode))
413 		i_size_write(inode, pos);
414 
415 	return 0;
416 }
417 
418 static const struct iomap_dio_ops ext4_dio_write_ops = {
419 	.end_io = ext4_dio_write_end_io,
420 };
421 
422 /*
423  * The intention here is to start with shared lock acquired then see if any
424  * condition requires an exclusive inode lock. If yes, then we restart the
425  * whole operation by releasing the shared lock and acquiring exclusive lock.
426  *
427  * - For unaligned_io we never take shared lock as it may cause data corruption
428  *   when two unaligned IO tries to modify the same block e.g. while zeroing.
429  *
430  * - For extending writes case we don't take the shared lock, since it requires
431  *   updating inode i_disksize and/or orphan handling with exclusive lock.
432  *
433  * - shared locking will only be true mostly with overwrites, including
434  *   initialized blocks and unwritten blocks. For overwrite unwritten blocks
435  *   we protect splitting extents by i_data_sem in ext4_inode_info, so we can
436  *   also release exclusive i_rwsem lock.
437  *
438  * - Otherwise we will switch to exclusive i_rwsem lock.
439  */
440 static ssize_t ext4_dio_write_checks(struct kiocb *iocb, struct iov_iter *from,
441 				     bool *ilock_shared, bool *extend,
442 				     bool *unwritten)
443 {
444 	struct file *file = iocb->ki_filp;
445 	struct inode *inode = file_inode(file);
446 	loff_t offset;
447 	size_t count;
448 	ssize_t ret;
449 
450 restart:
451 	ret = ext4_generic_write_checks(iocb, from);
452 	if (ret <= 0)
453 		goto out;
454 
455 	offset = iocb->ki_pos;
456 	count = ret;
457 	if (ext4_extending_io(inode, offset, count))
458 		*extend = true;
459 	/*
460 	 * Determine whether the IO operation will overwrite allocated
461 	 * and initialized blocks.
462 	 * We need exclusive i_rwsem for changing security info
463 	 * in file_modified().
464 	 */
465 	if (*ilock_shared && (!IS_NOSEC(inode) || *extend ||
466 	     !ext4_overwrite_io(inode, offset, count, unwritten))) {
467 		if (iocb->ki_flags & IOCB_NOWAIT) {
468 			ret = -EAGAIN;
469 			goto out;
470 		}
471 		inode_unlock_shared(inode);
472 		*ilock_shared = false;
473 		inode_lock(inode);
474 		goto restart;
475 	}
476 
477 	ret = file_modified(file);
478 	if (ret < 0)
479 		goto out;
480 
481 	return count;
482 out:
483 	if (*ilock_shared)
484 		inode_unlock_shared(inode);
485 	else
486 		inode_unlock(inode);
487 	return ret;
488 }
489 
490 static ssize_t ext4_dio_write_iter(struct kiocb *iocb, struct iov_iter *from)
491 {
492 	ssize_t ret;
493 	handle_t *handle;
494 	struct inode *inode = file_inode(iocb->ki_filp);
495 	loff_t offset = iocb->ki_pos;
496 	size_t count = iov_iter_count(from);
497 	const struct iomap_ops *iomap_ops = &ext4_iomap_ops;
498 	bool extend = false, unaligned_io = false, unwritten = false;
499 	bool ilock_shared = true;
500 
501 	/*
502 	 * We initially start with shared inode lock unless it is
503 	 * unaligned IO which needs exclusive lock anyways.
504 	 */
505 	if (ext4_unaligned_io(inode, from, offset)) {
506 		unaligned_io = true;
507 		ilock_shared = false;
508 	}
509 	/*
510 	 * Quick check here without any i_rwsem lock to see if it is extending
511 	 * IO. A more reliable check is done in ext4_dio_write_checks() with
512 	 * proper locking in place.
513 	 */
514 	if (offset + count > i_size_read(inode))
515 		ilock_shared = false;
516 
517 	if (iocb->ki_flags & IOCB_NOWAIT) {
518 		if (ilock_shared) {
519 			if (!inode_trylock_shared(inode))
520 				return -EAGAIN;
521 		} else {
522 			if (!inode_trylock(inode))
523 				return -EAGAIN;
524 		}
525 	} else {
526 		if (ilock_shared)
527 			inode_lock_shared(inode);
528 		else
529 			inode_lock(inode);
530 	}
531 
532 	/* Fallback to buffered I/O if the inode does not support direct I/O. */
533 	if (!ext4_should_use_dio(iocb, from)) {
534 		if (ilock_shared)
535 			inode_unlock_shared(inode);
536 		else
537 			inode_unlock(inode);
538 		return ext4_buffered_write_iter(iocb, from);
539 	}
540 
541 	ret = ext4_dio_write_checks(iocb, from,
542 				    &ilock_shared, &extend, &unwritten);
543 	if (ret <= 0)
544 		return ret;
545 
546 	/* if we're going to block and IOCB_NOWAIT is set, return -EAGAIN */
547 	if ((iocb->ki_flags & IOCB_NOWAIT) && (unaligned_io || extend)) {
548 		ret = -EAGAIN;
549 		goto out;
550 	}
551 	/*
552 	 * Make sure inline data cannot be created anymore since we are going
553 	 * to allocate blocks for DIO. We know the inode does not have any
554 	 * inline data now because ext4_dio_supported() checked for that.
555 	 */
556 	ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
557 
558 	offset = iocb->ki_pos;
559 	count = ret;
560 
561 	/*
562 	 * Unaligned direct IO must be serialized among each other as zeroing
563 	 * of partial blocks of two competing unaligned IOs can result in data
564 	 * corruption.
565 	 *
566 	 * So we make sure we don't allow any unaligned IO in flight.
567 	 * For IOs where we need not wait (like unaligned non-AIO DIO),
568 	 * below inode_dio_wait() may anyway become a no-op, since we start
569 	 * with exclusive lock.
570 	 */
571 	if (unaligned_io)
572 		inode_dio_wait(inode);
573 
574 	if (extend) {
575 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
576 		if (IS_ERR(handle)) {
577 			ret = PTR_ERR(handle);
578 			goto out;
579 		}
580 
581 		ret = ext4_orphan_add(handle, inode);
582 		if (ret) {
583 			ext4_journal_stop(handle);
584 			goto out;
585 		}
586 
587 		ext4_journal_stop(handle);
588 	}
589 
590 	if (ilock_shared && !unwritten)
591 		iomap_ops = &ext4_iomap_overwrite_ops;
592 	ret = iomap_dio_rw(iocb, from, iomap_ops, &ext4_dio_write_ops,
593 			   (unaligned_io || extend) ? IOMAP_DIO_FORCE_WAIT : 0,
594 			   NULL, 0);
595 	if (ret == -ENOTBLK)
596 		ret = 0;
597 
598 	if (extend)
599 		ret = ext4_handle_inode_extension(inode, offset, ret, count);
600 
601 out:
602 	if (ilock_shared)
603 		inode_unlock_shared(inode);
604 	else
605 		inode_unlock(inode);
606 
607 	if (ret >= 0 && iov_iter_count(from)) {
608 		ssize_t err;
609 		loff_t endbyte;
610 
611 		offset = iocb->ki_pos;
612 		err = ext4_buffered_write_iter(iocb, from);
613 		if (err < 0)
614 			return err;
615 
616 		/*
617 		 * We need to ensure that the pages within the page cache for
618 		 * the range covered by this I/O are written to disk and
619 		 * invalidated. This is in attempt to preserve the expected
620 		 * direct I/O semantics in the case we fallback to buffered I/O
621 		 * to complete off the I/O request.
622 		 */
623 		ret += err;
624 		endbyte = offset + err - 1;
625 		err = filemap_write_and_wait_range(iocb->ki_filp->f_mapping,
626 						   offset, endbyte);
627 		if (!err)
628 			invalidate_mapping_pages(iocb->ki_filp->f_mapping,
629 						 offset >> PAGE_SHIFT,
630 						 endbyte >> PAGE_SHIFT);
631 	}
632 
633 	return ret;
634 }
635 
636 #ifdef CONFIG_FS_DAX
637 static ssize_t
638 ext4_dax_write_iter(struct kiocb *iocb, struct iov_iter *from)
639 {
640 	ssize_t ret;
641 	size_t count;
642 	loff_t offset;
643 	handle_t *handle;
644 	bool extend = false;
645 	struct inode *inode = file_inode(iocb->ki_filp);
646 
647 	if (iocb->ki_flags & IOCB_NOWAIT) {
648 		if (!inode_trylock(inode))
649 			return -EAGAIN;
650 	} else {
651 		inode_lock(inode);
652 	}
653 
654 	ret = ext4_write_checks(iocb, from);
655 	if (ret <= 0)
656 		goto out;
657 
658 	offset = iocb->ki_pos;
659 	count = iov_iter_count(from);
660 
661 	if (offset + count > EXT4_I(inode)->i_disksize) {
662 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
663 		if (IS_ERR(handle)) {
664 			ret = PTR_ERR(handle);
665 			goto out;
666 		}
667 
668 		ret = ext4_orphan_add(handle, inode);
669 		if (ret) {
670 			ext4_journal_stop(handle);
671 			goto out;
672 		}
673 
674 		extend = true;
675 		ext4_journal_stop(handle);
676 	}
677 
678 	ret = dax_iomap_rw(iocb, from, &ext4_iomap_ops);
679 
680 	if (extend)
681 		ret = ext4_handle_inode_extension(inode, offset, ret, count);
682 out:
683 	inode_unlock(inode);
684 	if (ret > 0)
685 		ret = generic_write_sync(iocb, ret);
686 	return ret;
687 }
688 #endif
689 
690 static ssize_t
691 ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
692 {
693 	struct inode *inode = file_inode(iocb->ki_filp);
694 
695 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
696 		return -EIO;
697 
698 #ifdef CONFIG_FS_DAX
699 	if (IS_DAX(inode))
700 		return ext4_dax_write_iter(iocb, from);
701 #endif
702 	if (iocb->ki_flags & IOCB_DIRECT)
703 		return ext4_dio_write_iter(iocb, from);
704 	else
705 		return ext4_buffered_write_iter(iocb, from);
706 }
707 
708 #ifdef CONFIG_FS_DAX
709 static vm_fault_t ext4_dax_huge_fault(struct vm_fault *vmf,
710 		enum page_entry_size pe_size)
711 {
712 	int error = 0;
713 	vm_fault_t result;
714 	int retries = 0;
715 	handle_t *handle = NULL;
716 	struct inode *inode = file_inode(vmf->vma->vm_file);
717 	struct super_block *sb = inode->i_sb;
718 
719 	/*
720 	 * We have to distinguish real writes from writes which will result in a
721 	 * COW page; COW writes should *not* poke the journal (the file will not
722 	 * be changed). Doing so would cause unintended failures when mounted
723 	 * read-only.
724 	 *
725 	 * We check for VM_SHARED rather than vmf->cow_page since the latter is
726 	 * unset for pe_size != PE_SIZE_PTE (i.e. only in do_cow_fault); for
727 	 * other sizes, dax_iomap_fault will handle splitting / fallback so that
728 	 * we eventually come back with a COW page.
729 	 */
730 	bool write = (vmf->flags & FAULT_FLAG_WRITE) &&
731 		(vmf->vma->vm_flags & VM_SHARED);
732 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
733 	pfn_t pfn;
734 
735 	if (write) {
736 		sb_start_pagefault(sb);
737 		file_update_time(vmf->vma->vm_file);
738 		filemap_invalidate_lock_shared(mapping);
739 retry:
740 		handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE,
741 					       EXT4_DATA_TRANS_BLOCKS(sb));
742 		if (IS_ERR(handle)) {
743 			filemap_invalidate_unlock_shared(mapping);
744 			sb_end_pagefault(sb);
745 			return VM_FAULT_SIGBUS;
746 		}
747 	} else {
748 		filemap_invalidate_lock_shared(mapping);
749 	}
750 	result = dax_iomap_fault(vmf, pe_size, &pfn, &error, &ext4_iomap_ops);
751 	if (write) {
752 		ext4_journal_stop(handle);
753 
754 		if ((result & VM_FAULT_ERROR) && error == -ENOSPC &&
755 		    ext4_should_retry_alloc(sb, &retries))
756 			goto retry;
757 		/* Handling synchronous page fault? */
758 		if (result & VM_FAULT_NEEDDSYNC)
759 			result = dax_finish_sync_fault(vmf, pe_size, pfn);
760 		filemap_invalidate_unlock_shared(mapping);
761 		sb_end_pagefault(sb);
762 	} else {
763 		filemap_invalidate_unlock_shared(mapping);
764 	}
765 
766 	return result;
767 }
768 
769 static vm_fault_t ext4_dax_fault(struct vm_fault *vmf)
770 {
771 	return ext4_dax_huge_fault(vmf, PE_SIZE_PTE);
772 }
773 
774 static const struct vm_operations_struct ext4_dax_vm_ops = {
775 	.fault		= ext4_dax_fault,
776 	.huge_fault	= ext4_dax_huge_fault,
777 	.page_mkwrite	= ext4_dax_fault,
778 	.pfn_mkwrite	= ext4_dax_fault,
779 };
780 #else
781 #define ext4_dax_vm_ops	ext4_file_vm_ops
782 #endif
783 
784 static const struct vm_operations_struct ext4_file_vm_ops = {
785 	.fault		= filemap_fault,
786 	.map_pages	= filemap_map_pages,
787 	.page_mkwrite   = ext4_page_mkwrite,
788 };
789 
790 static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
791 {
792 	struct inode *inode = file->f_mapping->host;
793 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
794 	struct dax_device *dax_dev = sbi->s_daxdev;
795 
796 	if (unlikely(ext4_forced_shutdown(sbi)))
797 		return -EIO;
798 
799 	/*
800 	 * We don't support synchronous mappings for non-DAX files and
801 	 * for DAX files if underneath dax_device is not synchronous.
802 	 */
803 	if (!daxdev_mapping_supported(vma, dax_dev))
804 		return -EOPNOTSUPP;
805 
806 	file_accessed(file);
807 	if (IS_DAX(file_inode(file))) {
808 		vma->vm_ops = &ext4_dax_vm_ops;
809 		vm_flags_set(vma, VM_HUGEPAGE);
810 	} else {
811 		vma->vm_ops = &ext4_file_vm_ops;
812 	}
813 	return 0;
814 }
815 
816 static int ext4_sample_last_mounted(struct super_block *sb,
817 				    struct vfsmount *mnt)
818 {
819 	struct ext4_sb_info *sbi = EXT4_SB(sb);
820 	struct path path;
821 	char buf[64], *cp;
822 	handle_t *handle;
823 	int err;
824 
825 	if (likely(ext4_test_mount_flag(sb, EXT4_MF_MNTDIR_SAMPLED)))
826 		return 0;
827 
828 	if (sb_rdonly(sb) || !sb_start_intwrite_trylock(sb))
829 		return 0;
830 
831 	ext4_set_mount_flag(sb, EXT4_MF_MNTDIR_SAMPLED);
832 	/*
833 	 * Sample where the filesystem has been mounted and
834 	 * store it in the superblock for sysadmin convenience
835 	 * when trying to sort through large numbers of block
836 	 * devices or filesystem images.
837 	 */
838 	memset(buf, 0, sizeof(buf));
839 	path.mnt = mnt;
840 	path.dentry = mnt->mnt_root;
841 	cp = d_path(&path, buf, sizeof(buf));
842 	err = 0;
843 	if (IS_ERR(cp))
844 		goto out;
845 
846 	handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
847 	err = PTR_ERR(handle);
848 	if (IS_ERR(handle))
849 		goto out;
850 	BUFFER_TRACE(sbi->s_sbh, "get_write_access");
851 	err = ext4_journal_get_write_access(handle, sb, sbi->s_sbh,
852 					    EXT4_JTR_NONE);
853 	if (err)
854 		goto out_journal;
855 	lock_buffer(sbi->s_sbh);
856 	strncpy(sbi->s_es->s_last_mounted, cp,
857 		sizeof(sbi->s_es->s_last_mounted));
858 	ext4_superblock_csum_set(sb);
859 	unlock_buffer(sbi->s_sbh);
860 	ext4_handle_dirty_metadata(handle, NULL, sbi->s_sbh);
861 out_journal:
862 	ext4_journal_stop(handle);
863 out:
864 	sb_end_intwrite(sb);
865 	return err;
866 }
867 
868 static int ext4_file_open(struct inode *inode, struct file *filp)
869 {
870 	int ret;
871 
872 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
873 		return -EIO;
874 
875 	ret = ext4_sample_last_mounted(inode->i_sb, filp->f_path.mnt);
876 	if (ret)
877 		return ret;
878 
879 	ret = fscrypt_file_open(inode, filp);
880 	if (ret)
881 		return ret;
882 
883 	ret = fsverity_file_open(inode, filp);
884 	if (ret)
885 		return ret;
886 
887 	/*
888 	 * Set up the jbd2_inode if we are opening the inode for
889 	 * writing and the journal is present
890 	 */
891 	if (filp->f_mode & FMODE_WRITE) {
892 		ret = ext4_inode_attach_jinode(inode);
893 		if (ret < 0)
894 			return ret;
895 	}
896 
897 	filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC |
898 			FMODE_DIO_PARALLEL_WRITE;
899 	return dquot_file_open(inode, filp);
900 }
901 
902 /*
903  * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
904  * by calling generic_file_llseek_size() with the appropriate maxbytes
905  * value for each.
906  */
907 loff_t ext4_llseek(struct file *file, loff_t offset, int whence)
908 {
909 	struct inode *inode = file->f_mapping->host;
910 	loff_t maxbytes;
911 
912 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
913 		maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes;
914 	else
915 		maxbytes = inode->i_sb->s_maxbytes;
916 
917 	switch (whence) {
918 	default:
919 		return generic_file_llseek_size(file, offset, whence,
920 						maxbytes, i_size_read(inode));
921 	case SEEK_HOLE:
922 		inode_lock_shared(inode);
923 		offset = iomap_seek_hole(inode, offset,
924 					 &ext4_iomap_report_ops);
925 		inode_unlock_shared(inode);
926 		break;
927 	case SEEK_DATA:
928 		inode_lock_shared(inode);
929 		offset = iomap_seek_data(inode, offset,
930 					 &ext4_iomap_report_ops);
931 		inode_unlock_shared(inode);
932 		break;
933 	}
934 
935 	if (offset < 0)
936 		return offset;
937 	return vfs_setpos(file, offset, maxbytes);
938 }
939 
940 const struct file_operations ext4_file_operations = {
941 	.llseek		= ext4_llseek,
942 	.read_iter	= ext4_file_read_iter,
943 	.write_iter	= ext4_file_write_iter,
944 	.iopoll		= iocb_bio_iopoll,
945 	.unlocked_ioctl = ext4_ioctl,
946 #ifdef CONFIG_COMPAT
947 	.compat_ioctl	= ext4_compat_ioctl,
948 #endif
949 	.mmap		= ext4_file_mmap,
950 	.mmap_supported_flags = MAP_SYNC,
951 	.open		= ext4_file_open,
952 	.release	= ext4_release_file,
953 	.fsync		= ext4_sync_file,
954 	.get_unmapped_area = thp_get_unmapped_area,
955 	.splice_read	= generic_file_splice_read,
956 	.splice_write	= iter_file_splice_write,
957 	.fallocate	= ext4_fallocate,
958 };
959 
960 const struct inode_operations ext4_file_inode_operations = {
961 	.setattr	= ext4_setattr,
962 	.getattr	= ext4_file_getattr,
963 	.listxattr	= ext4_listxattr,
964 	.get_inode_acl	= ext4_get_acl,
965 	.set_acl	= ext4_set_acl,
966 	.fiemap		= ext4_fiemap,
967 	.fileattr_get	= ext4_fileattr_get,
968 	.fileattr_set	= ext4_fileattr_set,
969 };
970 
971