1 /* 2 * linux/fs/ext4/file.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/file.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * ext4 fs regular file handling primitives 16 * 17 * 64-bit file support on 64-bit platforms by Jakub Jelinek 18 * (jj@sunsite.ms.mff.cuni.cz) 19 */ 20 21 #include <linux/time.h> 22 #include <linux/fs.h> 23 #include <linux/mount.h> 24 #include <linux/path.h> 25 #include <linux/dax.h> 26 #include <linux/quotaops.h> 27 #include <linux/pagevec.h> 28 #include <linux/uio.h> 29 #include "ext4.h" 30 #include "ext4_jbd2.h" 31 #include "xattr.h" 32 #include "acl.h" 33 34 /* 35 * Called when an inode is released. Note that this is different 36 * from ext4_file_open: open gets called at every open, but release 37 * gets called only when /all/ the files are closed. 38 */ 39 static int ext4_release_file(struct inode *inode, struct file *filp) 40 { 41 if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) { 42 ext4_alloc_da_blocks(inode); 43 ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 44 } 45 /* if we are the last writer on the inode, drop the block reservation */ 46 if ((filp->f_mode & FMODE_WRITE) && 47 (atomic_read(&inode->i_writecount) == 1) && 48 !EXT4_I(inode)->i_reserved_data_blocks) 49 { 50 down_write(&EXT4_I(inode)->i_data_sem); 51 ext4_discard_preallocations(inode); 52 up_write(&EXT4_I(inode)->i_data_sem); 53 } 54 if (is_dx(inode) && filp->private_data) 55 ext4_htree_free_dir_info(filp->private_data); 56 57 return 0; 58 } 59 60 static void ext4_unwritten_wait(struct inode *inode) 61 { 62 wait_queue_head_t *wq = ext4_ioend_wq(inode); 63 64 wait_event(*wq, (atomic_read(&EXT4_I(inode)->i_unwritten) == 0)); 65 } 66 67 /* 68 * This tests whether the IO in question is block-aligned or not. 69 * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they 70 * are converted to written only after the IO is complete. Until they are 71 * mapped, these blocks appear as holes, so dio_zero_block() will assume that 72 * it needs to zero out portions of the start and/or end block. If 2 AIO 73 * threads are at work on the same unwritten block, they must be synchronized 74 * or one thread will zero the other's data, causing corruption. 75 */ 76 static int 77 ext4_unaligned_aio(struct inode *inode, struct iov_iter *from, loff_t pos) 78 { 79 struct super_block *sb = inode->i_sb; 80 int blockmask = sb->s_blocksize - 1; 81 82 if (pos >= i_size_read(inode)) 83 return 0; 84 85 if ((pos | iov_iter_alignment(from)) & blockmask) 86 return 1; 87 88 return 0; 89 } 90 91 static ssize_t 92 ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 93 { 94 struct file *file = iocb->ki_filp; 95 struct inode *inode = file_inode(iocb->ki_filp); 96 struct blk_plug plug; 97 int o_direct = iocb->ki_flags & IOCB_DIRECT; 98 int unaligned_aio = 0; 99 int overwrite = 0; 100 ssize_t ret; 101 102 inode_lock(inode); 103 ret = generic_write_checks(iocb, from); 104 if (ret <= 0) 105 goto out; 106 107 /* 108 * Unaligned direct AIO must be serialized among each other as zeroing 109 * of partial blocks of two competing unaligned AIOs can result in data 110 * corruption. 111 */ 112 if (o_direct && ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) && 113 !is_sync_kiocb(iocb) && 114 ext4_unaligned_aio(inode, from, iocb->ki_pos)) { 115 unaligned_aio = 1; 116 ext4_unwritten_wait(inode); 117 } 118 119 /* 120 * If we have encountered a bitmap-format file, the size limit 121 * is smaller than s_maxbytes, which is for extent-mapped files. 122 */ 123 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 124 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 125 126 if (iocb->ki_pos >= sbi->s_bitmap_maxbytes) { 127 ret = -EFBIG; 128 goto out; 129 } 130 iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos); 131 } 132 133 iocb->private = &overwrite; 134 if (o_direct) { 135 size_t length = iov_iter_count(from); 136 loff_t pos = iocb->ki_pos; 137 blk_start_plug(&plug); 138 139 /* check whether we do a DIO overwrite or not */ 140 if (ext4_should_dioread_nolock(inode) && !unaligned_aio && 141 !file->f_mapping->nrpages && pos + length <= i_size_read(inode)) { 142 struct ext4_map_blocks map; 143 unsigned int blkbits = inode->i_blkbits; 144 int err, len; 145 146 map.m_lblk = pos >> blkbits; 147 map.m_len = (EXT4_BLOCK_ALIGN(pos + length, blkbits) >> blkbits) 148 - map.m_lblk; 149 len = map.m_len; 150 151 err = ext4_map_blocks(NULL, inode, &map, 0); 152 /* 153 * 'err==len' means that all of blocks has 154 * been preallocated no matter they are 155 * initialized or not. For excluding 156 * unwritten extents, we need to check 157 * m_flags. There are two conditions that 158 * indicate for initialized extents. 1) If we 159 * hit extent cache, EXT4_MAP_MAPPED flag is 160 * returned; 2) If we do a real lookup, 161 * non-flags are returned. So we should check 162 * these two conditions. 163 */ 164 if (err == len && (map.m_flags & EXT4_MAP_MAPPED)) 165 overwrite = 1; 166 } 167 } 168 169 ret = __generic_file_write_iter(iocb, from); 170 inode_unlock(inode); 171 172 if (ret > 0) 173 ret = generic_write_sync(iocb, ret); 174 if (o_direct) 175 blk_finish_plug(&plug); 176 177 return ret; 178 179 out: 180 inode_unlock(inode); 181 return ret; 182 } 183 184 #ifdef CONFIG_FS_DAX 185 static int ext4_dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 186 { 187 int result; 188 handle_t *handle = NULL; 189 struct inode *inode = file_inode(vma->vm_file); 190 struct super_block *sb = inode->i_sb; 191 bool write = vmf->flags & FAULT_FLAG_WRITE; 192 193 if (write) { 194 sb_start_pagefault(sb); 195 file_update_time(vma->vm_file); 196 down_read(&EXT4_I(inode)->i_mmap_sem); 197 handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE, 198 EXT4_DATA_TRANS_BLOCKS(sb)); 199 } else 200 down_read(&EXT4_I(inode)->i_mmap_sem); 201 202 if (IS_ERR(handle)) 203 result = VM_FAULT_SIGBUS; 204 else 205 result = dax_fault(vma, vmf, ext4_dax_get_block); 206 207 if (write) { 208 if (!IS_ERR(handle)) 209 ext4_journal_stop(handle); 210 up_read(&EXT4_I(inode)->i_mmap_sem); 211 sb_end_pagefault(sb); 212 } else 213 up_read(&EXT4_I(inode)->i_mmap_sem); 214 215 return result; 216 } 217 218 static int ext4_dax_pmd_fault(struct vm_area_struct *vma, unsigned long addr, 219 pmd_t *pmd, unsigned int flags) 220 { 221 int result; 222 handle_t *handle = NULL; 223 struct inode *inode = file_inode(vma->vm_file); 224 struct super_block *sb = inode->i_sb; 225 bool write = flags & FAULT_FLAG_WRITE; 226 227 if (write) { 228 sb_start_pagefault(sb); 229 file_update_time(vma->vm_file); 230 down_read(&EXT4_I(inode)->i_mmap_sem); 231 handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE, 232 ext4_chunk_trans_blocks(inode, 233 PMD_SIZE / PAGE_SIZE)); 234 } else 235 down_read(&EXT4_I(inode)->i_mmap_sem); 236 237 if (IS_ERR(handle)) 238 result = VM_FAULT_SIGBUS; 239 else 240 result = dax_pmd_fault(vma, addr, pmd, flags, 241 ext4_dax_get_block); 242 243 if (write) { 244 if (!IS_ERR(handle)) 245 ext4_journal_stop(handle); 246 up_read(&EXT4_I(inode)->i_mmap_sem); 247 sb_end_pagefault(sb); 248 } else 249 up_read(&EXT4_I(inode)->i_mmap_sem); 250 251 return result; 252 } 253 254 /* 255 * Handle write fault for VM_MIXEDMAP mappings. Similarly to ext4_dax_fault() 256 * handler we check for races agaist truncate. Note that since we cycle through 257 * i_mmap_sem, we are sure that also any hole punching that began before we 258 * were called is finished by now and so if it included part of the file we 259 * are working on, our pte will get unmapped and the check for pte_same() in 260 * wp_pfn_shared() fails. Thus fault gets retried and things work out as 261 * desired. 262 */ 263 static int ext4_dax_pfn_mkwrite(struct vm_area_struct *vma, 264 struct vm_fault *vmf) 265 { 266 struct inode *inode = file_inode(vma->vm_file); 267 struct super_block *sb = inode->i_sb; 268 loff_t size; 269 int ret; 270 271 sb_start_pagefault(sb); 272 file_update_time(vma->vm_file); 273 down_read(&EXT4_I(inode)->i_mmap_sem); 274 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT; 275 if (vmf->pgoff >= size) 276 ret = VM_FAULT_SIGBUS; 277 else 278 ret = dax_pfn_mkwrite(vma, vmf); 279 up_read(&EXT4_I(inode)->i_mmap_sem); 280 sb_end_pagefault(sb); 281 282 return ret; 283 } 284 285 static const struct vm_operations_struct ext4_dax_vm_ops = { 286 .fault = ext4_dax_fault, 287 .pmd_fault = ext4_dax_pmd_fault, 288 .page_mkwrite = ext4_dax_fault, 289 .pfn_mkwrite = ext4_dax_pfn_mkwrite, 290 }; 291 #else 292 #define ext4_dax_vm_ops ext4_file_vm_ops 293 #endif 294 295 static const struct vm_operations_struct ext4_file_vm_ops = { 296 .fault = ext4_filemap_fault, 297 .map_pages = filemap_map_pages, 298 .page_mkwrite = ext4_page_mkwrite, 299 }; 300 301 static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma) 302 { 303 struct inode *inode = file->f_mapping->host; 304 305 if (ext4_encrypted_inode(inode)) { 306 int err = fscrypt_get_encryption_info(inode); 307 if (err) 308 return 0; 309 if (!fscrypt_has_encryption_key(inode)) 310 return -ENOKEY; 311 } 312 file_accessed(file); 313 if (IS_DAX(file_inode(file))) { 314 vma->vm_ops = &ext4_dax_vm_ops; 315 vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE; 316 } else { 317 vma->vm_ops = &ext4_file_vm_ops; 318 } 319 return 0; 320 } 321 322 static int ext4_file_open(struct inode * inode, struct file * filp) 323 { 324 struct super_block *sb = inode->i_sb; 325 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 326 struct vfsmount *mnt = filp->f_path.mnt; 327 struct dentry *dir; 328 struct path path; 329 char buf[64], *cp; 330 int ret; 331 332 if (unlikely(!(sbi->s_mount_flags & EXT4_MF_MNTDIR_SAMPLED) && 333 !(sb->s_flags & MS_RDONLY))) { 334 sbi->s_mount_flags |= EXT4_MF_MNTDIR_SAMPLED; 335 /* 336 * Sample where the filesystem has been mounted and 337 * store it in the superblock for sysadmin convenience 338 * when trying to sort through large numbers of block 339 * devices or filesystem images. 340 */ 341 memset(buf, 0, sizeof(buf)); 342 path.mnt = mnt; 343 path.dentry = mnt->mnt_root; 344 cp = d_path(&path, buf, sizeof(buf)); 345 if (!IS_ERR(cp)) { 346 handle_t *handle; 347 int err; 348 349 handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1); 350 if (IS_ERR(handle)) 351 return PTR_ERR(handle); 352 BUFFER_TRACE(sbi->s_sbh, "get_write_access"); 353 err = ext4_journal_get_write_access(handle, sbi->s_sbh); 354 if (err) { 355 ext4_journal_stop(handle); 356 return err; 357 } 358 strlcpy(sbi->s_es->s_last_mounted, cp, 359 sizeof(sbi->s_es->s_last_mounted)); 360 ext4_handle_dirty_super(handle, sb); 361 ext4_journal_stop(handle); 362 } 363 } 364 if (ext4_encrypted_inode(inode)) { 365 ret = fscrypt_get_encryption_info(inode); 366 if (ret) 367 return -EACCES; 368 if (!fscrypt_has_encryption_key(inode)) 369 return -ENOKEY; 370 } 371 372 dir = dget_parent(file_dentry(filp)); 373 if (ext4_encrypted_inode(d_inode(dir)) && 374 !fscrypt_has_permitted_context(d_inode(dir), inode)) { 375 ext4_warning(inode->i_sb, 376 "Inconsistent encryption contexts: %lu/%lu", 377 (unsigned long) d_inode(dir)->i_ino, 378 (unsigned long) inode->i_ino); 379 dput(dir); 380 return -EPERM; 381 } 382 dput(dir); 383 /* 384 * Set up the jbd2_inode if we are opening the inode for 385 * writing and the journal is present 386 */ 387 if (filp->f_mode & FMODE_WRITE) { 388 ret = ext4_inode_attach_jinode(inode); 389 if (ret < 0) 390 return ret; 391 } 392 return dquot_file_open(inode, filp); 393 } 394 395 /* 396 * Here we use ext4_map_blocks() to get a block mapping for a extent-based 397 * file rather than ext4_ext_walk_space() because we can introduce 398 * SEEK_DATA/SEEK_HOLE for block-mapped and extent-mapped file at the same 399 * function. When extent status tree has been fully implemented, it will 400 * track all extent status for a file and we can directly use it to 401 * retrieve the offset for SEEK_DATA/SEEK_HOLE. 402 */ 403 404 /* 405 * When we retrieve the offset for SEEK_DATA/SEEK_HOLE, we would need to 406 * lookup page cache to check whether or not there has some data between 407 * [startoff, endoff] because, if this range contains an unwritten extent, 408 * we determine this extent as a data or a hole according to whether the 409 * page cache has data or not. 410 */ 411 static int ext4_find_unwritten_pgoff(struct inode *inode, 412 int whence, 413 ext4_lblk_t end_blk, 414 loff_t *offset) 415 { 416 struct pagevec pvec; 417 unsigned int blkbits; 418 pgoff_t index; 419 pgoff_t end; 420 loff_t endoff; 421 loff_t startoff; 422 loff_t lastoff; 423 int found = 0; 424 425 blkbits = inode->i_sb->s_blocksize_bits; 426 startoff = *offset; 427 lastoff = startoff; 428 endoff = (loff_t)end_blk << blkbits; 429 430 index = startoff >> PAGE_SHIFT; 431 end = endoff >> PAGE_SHIFT; 432 433 pagevec_init(&pvec, 0); 434 do { 435 int i, num; 436 unsigned long nr_pages; 437 438 num = min_t(pgoff_t, end - index, PAGEVEC_SIZE); 439 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index, 440 (pgoff_t)num); 441 if (nr_pages == 0) { 442 if (whence == SEEK_DATA) 443 break; 444 445 BUG_ON(whence != SEEK_HOLE); 446 /* 447 * If this is the first time to go into the loop and 448 * offset is not beyond the end offset, it will be a 449 * hole at this offset 450 */ 451 if (lastoff == startoff || lastoff < endoff) 452 found = 1; 453 break; 454 } 455 456 /* 457 * If this is the first time to go into the loop and 458 * offset is smaller than the first page offset, it will be a 459 * hole at this offset. 460 */ 461 if (lastoff == startoff && whence == SEEK_HOLE && 462 lastoff < page_offset(pvec.pages[0])) { 463 found = 1; 464 break; 465 } 466 467 for (i = 0; i < nr_pages; i++) { 468 struct page *page = pvec.pages[i]; 469 struct buffer_head *bh, *head; 470 471 /* 472 * If the current offset is not beyond the end of given 473 * range, it will be a hole. 474 */ 475 if (lastoff < endoff && whence == SEEK_HOLE && 476 page->index > end) { 477 found = 1; 478 *offset = lastoff; 479 goto out; 480 } 481 482 lock_page(page); 483 484 if (unlikely(page->mapping != inode->i_mapping)) { 485 unlock_page(page); 486 continue; 487 } 488 489 if (!page_has_buffers(page)) { 490 unlock_page(page); 491 continue; 492 } 493 494 if (page_has_buffers(page)) { 495 lastoff = page_offset(page); 496 bh = head = page_buffers(page); 497 do { 498 if (buffer_uptodate(bh) || 499 buffer_unwritten(bh)) { 500 if (whence == SEEK_DATA) 501 found = 1; 502 } else { 503 if (whence == SEEK_HOLE) 504 found = 1; 505 } 506 if (found) { 507 *offset = max_t(loff_t, 508 startoff, lastoff); 509 unlock_page(page); 510 goto out; 511 } 512 lastoff += bh->b_size; 513 bh = bh->b_this_page; 514 } while (bh != head); 515 } 516 517 lastoff = page_offset(page) + PAGE_SIZE; 518 unlock_page(page); 519 } 520 521 /* 522 * The no. of pages is less than our desired, that would be a 523 * hole in there. 524 */ 525 if (nr_pages < num && whence == SEEK_HOLE) { 526 found = 1; 527 *offset = lastoff; 528 break; 529 } 530 531 index = pvec.pages[i - 1]->index + 1; 532 pagevec_release(&pvec); 533 } while (index <= end); 534 535 out: 536 pagevec_release(&pvec); 537 return found; 538 } 539 540 /* 541 * ext4_seek_data() retrieves the offset for SEEK_DATA. 542 */ 543 static loff_t ext4_seek_data(struct file *file, loff_t offset, loff_t maxsize) 544 { 545 struct inode *inode = file->f_mapping->host; 546 struct extent_status es; 547 ext4_lblk_t start, last, end; 548 loff_t dataoff, isize; 549 int blkbits; 550 int ret; 551 552 inode_lock(inode); 553 554 isize = i_size_read(inode); 555 if (offset >= isize) { 556 inode_unlock(inode); 557 return -ENXIO; 558 } 559 560 blkbits = inode->i_sb->s_blocksize_bits; 561 start = offset >> blkbits; 562 last = start; 563 end = isize >> blkbits; 564 dataoff = offset; 565 566 do { 567 ret = ext4_get_next_extent(inode, last, end - last + 1, &es); 568 if (ret <= 0) { 569 /* No extent found -> no data */ 570 if (ret == 0) 571 ret = -ENXIO; 572 inode_unlock(inode); 573 return ret; 574 } 575 576 last = es.es_lblk; 577 if (last != start) 578 dataoff = (loff_t)last << blkbits; 579 if (!ext4_es_is_unwritten(&es)) 580 break; 581 582 /* 583 * If there is a unwritten extent at this offset, 584 * it will be as a data or a hole according to page 585 * cache that has data or not. 586 */ 587 if (ext4_find_unwritten_pgoff(inode, SEEK_DATA, 588 es.es_lblk + es.es_len, &dataoff)) 589 break; 590 last += es.es_len; 591 dataoff = (loff_t)last << blkbits; 592 cond_resched(); 593 } while (last <= end); 594 595 inode_unlock(inode); 596 597 if (dataoff > isize) 598 return -ENXIO; 599 600 return vfs_setpos(file, dataoff, maxsize); 601 } 602 603 /* 604 * ext4_seek_hole() retrieves the offset for SEEK_HOLE. 605 */ 606 static loff_t ext4_seek_hole(struct file *file, loff_t offset, loff_t maxsize) 607 { 608 struct inode *inode = file->f_mapping->host; 609 struct extent_status es; 610 ext4_lblk_t start, last, end; 611 loff_t holeoff, isize; 612 int blkbits; 613 int ret; 614 615 inode_lock(inode); 616 617 isize = i_size_read(inode); 618 if (offset >= isize) { 619 inode_unlock(inode); 620 return -ENXIO; 621 } 622 623 blkbits = inode->i_sb->s_blocksize_bits; 624 start = offset >> blkbits; 625 last = start; 626 end = isize >> blkbits; 627 holeoff = offset; 628 629 do { 630 ret = ext4_get_next_extent(inode, last, end - last + 1, &es); 631 if (ret < 0) { 632 inode_unlock(inode); 633 return ret; 634 } 635 /* Found a hole? */ 636 if (ret == 0 || es.es_lblk > last) { 637 if (last != start) 638 holeoff = (loff_t)last << blkbits; 639 break; 640 } 641 /* 642 * If there is a unwritten extent at this offset, 643 * it will be as a data or a hole according to page 644 * cache that has data or not. 645 */ 646 if (ext4_es_is_unwritten(&es) && 647 ext4_find_unwritten_pgoff(inode, SEEK_HOLE, 648 last + es.es_len, &holeoff)) 649 break; 650 651 last += es.es_len; 652 holeoff = (loff_t)last << blkbits; 653 cond_resched(); 654 } while (last <= end); 655 656 inode_unlock(inode); 657 658 if (holeoff > isize) 659 holeoff = isize; 660 661 return vfs_setpos(file, holeoff, maxsize); 662 } 663 664 /* 665 * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values 666 * by calling generic_file_llseek_size() with the appropriate maxbytes 667 * value for each. 668 */ 669 loff_t ext4_llseek(struct file *file, loff_t offset, int whence) 670 { 671 struct inode *inode = file->f_mapping->host; 672 loff_t maxbytes; 673 674 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 675 maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes; 676 else 677 maxbytes = inode->i_sb->s_maxbytes; 678 679 switch (whence) { 680 case SEEK_SET: 681 case SEEK_CUR: 682 case SEEK_END: 683 return generic_file_llseek_size(file, offset, whence, 684 maxbytes, i_size_read(inode)); 685 case SEEK_DATA: 686 return ext4_seek_data(file, offset, maxbytes); 687 case SEEK_HOLE: 688 return ext4_seek_hole(file, offset, maxbytes); 689 } 690 691 return -EINVAL; 692 } 693 694 const struct file_operations ext4_file_operations = { 695 .llseek = ext4_llseek, 696 .read_iter = generic_file_read_iter, 697 .write_iter = ext4_file_write_iter, 698 .unlocked_ioctl = ext4_ioctl, 699 #ifdef CONFIG_COMPAT 700 .compat_ioctl = ext4_compat_ioctl, 701 #endif 702 .mmap = ext4_file_mmap, 703 .open = ext4_file_open, 704 .release = ext4_release_file, 705 .fsync = ext4_sync_file, 706 .splice_read = generic_file_splice_read, 707 .splice_write = iter_file_splice_write, 708 .fallocate = ext4_fallocate, 709 }; 710 711 const struct inode_operations ext4_file_inode_operations = { 712 .setattr = ext4_setattr, 713 .getattr = ext4_getattr, 714 .setxattr = generic_setxattr, 715 .getxattr = generic_getxattr, 716 .listxattr = ext4_listxattr, 717 .removexattr = generic_removexattr, 718 .get_acl = ext4_get_acl, 719 .set_acl = ext4_set_acl, 720 .fiemap = ext4_fiemap, 721 }; 722 723