xref: /openbmc/linux/fs/ext4/file.c (revision bc5aa3a0)
1 /*
2  *  linux/fs/ext4/file.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/file.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  ext4 fs regular file handling primitives
16  *
17  *  64-bit file support on 64-bit platforms by Jakub Jelinek
18  *	(jj@sunsite.ms.mff.cuni.cz)
19  */
20 
21 #include <linux/time.h>
22 #include <linux/fs.h>
23 #include <linux/mount.h>
24 #include <linux/path.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/pagevec.h>
28 #include <linux/uio.h>
29 #include "ext4.h"
30 #include "ext4_jbd2.h"
31 #include "xattr.h"
32 #include "acl.h"
33 
34 /*
35  * Called when an inode is released. Note that this is different
36  * from ext4_file_open: open gets called at every open, but release
37  * gets called only when /all/ the files are closed.
38  */
39 static int ext4_release_file(struct inode *inode, struct file *filp)
40 {
41 	if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) {
42 		ext4_alloc_da_blocks(inode);
43 		ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
44 	}
45 	/* if we are the last writer on the inode, drop the block reservation */
46 	if ((filp->f_mode & FMODE_WRITE) &&
47 			(atomic_read(&inode->i_writecount) == 1) &&
48 		        !EXT4_I(inode)->i_reserved_data_blocks)
49 	{
50 		down_write(&EXT4_I(inode)->i_data_sem);
51 		ext4_discard_preallocations(inode);
52 		up_write(&EXT4_I(inode)->i_data_sem);
53 	}
54 	if (is_dx(inode) && filp->private_data)
55 		ext4_htree_free_dir_info(filp->private_data);
56 
57 	return 0;
58 }
59 
60 static void ext4_unwritten_wait(struct inode *inode)
61 {
62 	wait_queue_head_t *wq = ext4_ioend_wq(inode);
63 
64 	wait_event(*wq, (atomic_read(&EXT4_I(inode)->i_unwritten) == 0));
65 }
66 
67 /*
68  * This tests whether the IO in question is block-aligned or not.
69  * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
70  * are converted to written only after the IO is complete.  Until they are
71  * mapped, these blocks appear as holes, so dio_zero_block() will assume that
72  * it needs to zero out portions of the start and/or end block.  If 2 AIO
73  * threads are at work on the same unwritten block, they must be synchronized
74  * or one thread will zero the other's data, causing corruption.
75  */
76 static int
77 ext4_unaligned_aio(struct inode *inode, struct iov_iter *from, loff_t pos)
78 {
79 	struct super_block *sb = inode->i_sb;
80 	int blockmask = sb->s_blocksize - 1;
81 
82 	if (pos >= i_size_read(inode))
83 		return 0;
84 
85 	if ((pos | iov_iter_alignment(from)) & blockmask)
86 		return 1;
87 
88 	return 0;
89 }
90 
91 static ssize_t
92 ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
93 {
94 	struct file *file = iocb->ki_filp;
95 	struct inode *inode = file_inode(iocb->ki_filp);
96 	struct blk_plug plug;
97 	int o_direct = iocb->ki_flags & IOCB_DIRECT;
98 	int unaligned_aio = 0;
99 	int overwrite = 0;
100 	ssize_t ret;
101 
102 	inode_lock(inode);
103 	ret = generic_write_checks(iocb, from);
104 	if (ret <= 0)
105 		goto out;
106 
107 	/*
108 	 * Unaligned direct AIO must be serialized among each other as zeroing
109 	 * of partial blocks of two competing unaligned AIOs can result in data
110 	 * corruption.
111 	 */
112 	if (o_direct && ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) &&
113 	    !is_sync_kiocb(iocb) &&
114 	    ext4_unaligned_aio(inode, from, iocb->ki_pos)) {
115 		unaligned_aio = 1;
116 		ext4_unwritten_wait(inode);
117 	}
118 
119 	/*
120 	 * If we have encountered a bitmap-format file, the size limit
121 	 * is smaller than s_maxbytes, which is for extent-mapped files.
122 	 */
123 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
124 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
125 
126 		if (iocb->ki_pos >= sbi->s_bitmap_maxbytes) {
127 			ret = -EFBIG;
128 			goto out;
129 		}
130 		iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos);
131 	}
132 
133 	iocb->private = &overwrite;
134 	if (o_direct) {
135 		size_t length = iov_iter_count(from);
136 		loff_t pos = iocb->ki_pos;
137 		blk_start_plug(&plug);
138 
139 		/* check whether we do a DIO overwrite or not */
140 		if (ext4_should_dioread_nolock(inode) && !unaligned_aio &&
141 		    !file->f_mapping->nrpages && pos + length <= i_size_read(inode)) {
142 			struct ext4_map_blocks map;
143 			unsigned int blkbits = inode->i_blkbits;
144 			int err, len;
145 
146 			map.m_lblk = pos >> blkbits;
147 			map.m_len = (EXT4_BLOCK_ALIGN(pos + length, blkbits) >> blkbits)
148 				- map.m_lblk;
149 			len = map.m_len;
150 
151 			err = ext4_map_blocks(NULL, inode, &map, 0);
152 			/*
153 			 * 'err==len' means that all of blocks has
154 			 * been preallocated no matter they are
155 			 * initialized or not.  For excluding
156 			 * unwritten extents, we need to check
157 			 * m_flags.  There are two conditions that
158 			 * indicate for initialized extents.  1) If we
159 			 * hit extent cache, EXT4_MAP_MAPPED flag is
160 			 * returned; 2) If we do a real lookup,
161 			 * non-flags are returned.  So we should check
162 			 * these two conditions.
163 			 */
164 			if (err == len && (map.m_flags & EXT4_MAP_MAPPED))
165 				overwrite = 1;
166 		}
167 	}
168 
169 	ret = __generic_file_write_iter(iocb, from);
170 	inode_unlock(inode);
171 
172 	if (ret > 0)
173 		ret = generic_write_sync(iocb, ret);
174 	if (o_direct)
175 		blk_finish_plug(&plug);
176 
177 	return ret;
178 
179 out:
180 	inode_unlock(inode);
181 	return ret;
182 }
183 
184 #ifdef CONFIG_FS_DAX
185 static int ext4_dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
186 {
187 	int result;
188 	handle_t *handle = NULL;
189 	struct inode *inode = file_inode(vma->vm_file);
190 	struct super_block *sb = inode->i_sb;
191 	bool write = vmf->flags & FAULT_FLAG_WRITE;
192 
193 	if (write) {
194 		sb_start_pagefault(sb);
195 		file_update_time(vma->vm_file);
196 		down_read(&EXT4_I(inode)->i_mmap_sem);
197 		handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE,
198 						EXT4_DATA_TRANS_BLOCKS(sb));
199 	} else
200 		down_read(&EXT4_I(inode)->i_mmap_sem);
201 
202 	if (IS_ERR(handle))
203 		result = VM_FAULT_SIGBUS;
204 	else
205 		result = dax_fault(vma, vmf, ext4_dax_get_block);
206 
207 	if (write) {
208 		if (!IS_ERR(handle))
209 			ext4_journal_stop(handle);
210 		up_read(&EXT4_I(inode)->i_mmap_sem);
211 		sb_end_pagefault(sb);
212 	} else
213 		up_read(&EXT4_I(inode)->i_mmap_sem);
214 
215 	return result;
216 }
217 
218 static int ext4_dax_pmd_fault(struct vm_area_struct *vma, unsigned long addr,
219 						pmd_t *pmd, unsigned int flags)
220 {
221 	int result;
222 	handle_t *handle = NULL;
223 	struct inode *inode = file_inode(vma->vm_file);
224 	struct super_block *sb = inode->i_sb;
225 	bool write = flags & FAULT_FLAG_WRITE;
226 
227 	if (write) {
228 		sb_start_pagefault(sb);
229 		file_update_time(vma->vm_file);
230 		down_read(&EXT4_I(inode)->i_mmap_sem);
231 		handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE,
232 				ext4_chunk_trans_blocks(inode,
233 							PMD_SIZE / PAGE_SIZE));
234 	} else
235 		down_read(&EXT4_I(inode)->i_mmap_sem);
236 
237 	if (IS_ERR(handle))
238 		result = VM_FAULT_SIGBUS;
239 	else
240 		result = dax_pmd_fault(vma, addr, pmd, flags,
241 					 ext4_dax_get_block);
242 
243 	if (write) {
244 		if (!IS_ERR(handle))
245 			ext4_journal_stop(handle);
246 		up_read(&EXT4_I(inode)->i_mmap_sem);
247 		sb_end_pagefault(sb);
248 	} else
249 		up_read(&EXT4_I(inode)->i_mmap_sem);
250 
251 	return result;
252 }
253 
254 /*
255  * Handle write fault for VM_MIXEDMAP mappings. Similarly to ext4_dax_fault()
256  * handler we check for races agaist truncate. Note that since we cycle through
257  * i_mmap_sem, we are sure that also any hole punching that began before we
258  * were called is finished by now and so if it included part of the file we
259  * are working on, our pte will get unmapped and the check for pte_same() in
260  * wp_pfn_shared() fails. Thus fault gets retried and things work out as
261  * desired.
262  */
263 static int ext4_dax_pfn_mkwrite(struct vm_area_struct *vma,
264 				struct vm_fault *vmf)
265 {
266 	struct inode *inode = file_inode(vma->vm_file);
267 	struct super_block *sb = inode->i_sb;
268 	loff_t size;
269 	int ret;
270 
271 	sb_start_pagefault(sb);
272 	file_update_time(vma->vm_file);
273 	down_read(&EXT4_I(inode)->i_mmap_sem);
274 	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
275 	if (vmf->pgoff >= size)
276 		ret = VM_FAULT_SIGBUS;
277 	else
278 		ret = dax_pfn_mkwrite(vma, vmf);
279 	up_read(&EXT4_I(inode)->i_mmap_sem);
280 	sb_end_pagefault(sb);
281 
282 	return ret;
283 }
284 
285 static const struct vm_operations_struct ext4_dax_vm_ops = {
286 	.fault		= ext4_dax_fault,
287 	.pmd_fault	= ext4_dax_pmd_fault,
288 	.page_mkwrite	= ext4_dax_fault,
289 	.pfn_mkwrite	= ext4_dax_pfn_mkwrite,
290 };
291 #else
292 #define ext4_dax_vm_ops	ext4_file_vm_ops
293 #endif
294 
295 static const struct vm_operations_struct ext4_file_vm_ops = {
296 	.fault		= ext4_filemap_fault,
297 	.map_pages	= filemap_map_pages,
298 	.page_mkwrite   = ext4_page_mkwrite,
299 };
300 
301 static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
302 {
303 	struct inode *inode = file->f_mapping->host;
304 
305 	if (ext4_encrypted_inode(inode)) {
306 		int err = fscrypt_get_encryption_info(inode);
307 		if (err)
308 			return 0;
309 		if (!fscrypt_has_encryption_key(inode))
310 			return -ENOKEY;
311 	}
312 	file_accessed(file);
313 	if (IS_DAX(file_inode(file))) {
314 		vma->vm_ops = &ext4_dax_vm_ops;
315 		vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
316 	} else {
317 		vma->vm_ops = &ext4_file_vm_ops;
318 	}
319 	return 0;
320 }
321 
322 static int ext4_file_open(struct inode * inode, struct file * filp)
323 {
324 	struct super_block *sb = inode->i_sb;
325 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
326 	struct vfsmount *mnt = filp->f_path.mnt;
327 	struct dentry *dir;
328 	struct path path;
329 	char buf[64], *cp;
330 	int ret;
331 
332 	if (unlikely(!(sbi->s_mount_flags & EXT4_MF_MNTDIR_SAMPLED) &&
333 		     !(sb->s_flags & MS_RDONLY))) {
334 		sbi->s_mount_flags |= EXT4_MF_MNTDIR_SAMPLED;
335 		/*
336 		 * Sample where the filesystem has been mounted and
337 		 * store it in the superblock for sysadmin convenience
338 		 * when trying to sort through large numbers of block
339 		 * devices or filesystem images.
340 		 */
341 		memset(buf, 0, sizeof(buf));
342 		path.mnt = mnt;
343 		path.dentry = mnt->mnt_root;
344 		cp = d_path(&path, buf, sizeof(buf));
345 		if (!IS_ERR(cp)) {
346 			handle_t *handle;
347 			int err;
348 
349 			handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
350 			if (IS_ERR(handle))
351 				return PTR_ERR(handle);
352 			BUFFER_TRACE(sbi->s_sbh, "get_write_access");
353 			err = ext4_journal_get_write_access(handle, sbi->s_sbh);
354 			if (err) {
355 				ext4_journal_stop(handle);
356 				return err;
357 			}
358 			strlcpy(sbi->s_es->s_last_mounted, cp,
359 				sizeof(sbi->s_es->s_last_mounted));
360 			ext4_handle_dirty_super(handle, sb);
361 			ext4_journal_stop(handle);
362 		}
363 	}
364 	if (ext4_encrypted_inode(inode)) {
365 		ret = fscrypt_get_encryption_info(inode);
366 		if (ret)
367 			return -EACCES;
368 		if (!fscrypt_has_encryption_key(inode))
369 			return -ENOKEY;
370 	}
371 
372 	dir = dget_parent(file_dentry(filp));
373 	if (ext4_encrypted_inode(d_inode(dir)) &&
374 			!fscrypt_has_permitted_context(d_inode(dir), inode)) {
375 		ext4_warning(inode->i_sb,
376 			     "Inconsistent encryption contexts: %lu/%lu",
377 			     (unsigned long) d_inode(dir)->i_ino,
378 			     (unsigned long) inode->i_ino);
379 		dput(dir);
380 		return -EPERM;
381 	}
382 	dput(dir);
383 	/*
384 	 * Set up the jbd2_inode if we are opening the inode for
385 	 * writing and the journal is present
386 	 */
387 	if (filp->f_mode & FMODE_WRITE) {
388 		ret = ext4_inode_attach_jinode(inode);
389 		if (ret < 0)
390 			return ret;
391 	}
392 	return dquot_file_open(inode, filp);
393 }
394 
395 /*
396  * Here we use ext4_map_blocks() to get a block mapping for a extent-based
397  * file rather than ext4_ext_walk_space() because we can introduce
398  * SEEK_DATA/SEEK_HOLE for block-mapped and extent-mapped file at the same
399  * function.  When extent status tree has been fully implemented, it will
400  * track all extent status for a file and we can directly use it to
401  * retrieve the offset for SEEK_DATA/SEEK_HOLE.
402  */
403 
404 /*
405  * When we retrieve the offset for SEEK_DATA/SEEK_HOLE, we would need to
406  * lookup page cache to check whether or not there has some data between
407  * [startoff, endoff] because, if this range contains an unwritten extent,
408  * we determine this extent as a data or a hole according to whether the
409  * page cache has data or not.
410  */
411 static int ext4_find_unwritten_pgoff(struct inode *inode,
412 				     int whence,
413 				     ext4_lblk_t end_blk,
414 				     loff_t *offset)
415 {
416 	struct pagevec pvec;
417 	unsigned int blkbits;
418 	pgoff_t index;
419 	pgoff_t end;
420 	loff_t endoff;
421 	loff_t startoff;
422 	loff_t lastoff;
423 	int found = 0;
424 
425 	blkbits = inode->i_sb->s_blocksize_bits;
426 	startoff = *offset;
427 	lastoff = startoff;
428 	endoff = (loff_t)end_blk << blkbits;
429 
430 	index = startoff >> PAGE_SHIFT;
431 	end = endoff >> PAGE_SHIFT;
432 
433 	pagevec_init(&pvec, 0);
434 	do {
435 		int i, num;
436 		unsigned long nr_pages;
437 
438 		num = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
439 		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
440 					  (pgoff_t)num);
441 		if (nr_pages == 0) {
442 			if (whence == SEEK_DATA)
443 				break;
444 
445 			BUG_ON(whence != SEEK_HOLE);
446 			/*
447 			 * If this is the first time to go into the loop and
448 			 * offset is not beyond the end offset, it will be a
449 			 * hole at this offset
450 			 */
451 			if (lastoff == startoff || lastoff < endoff)
452 				found = 1;
453 			break;
454 		}
455 
456 		/*
457 		 * If this is the first time to go into the loop and
458 		 * offset is smaller than the first page offset, it will be a
459 		 * hole at this offset.
460 		 */
461 		if (lastoff == startoff && whence == SEEK_HOLE &&
462 		    lastoff < page_offset(pvec.pages[0])) {
463 			found = 1;
464 			break;
465 		}
466 
467 		for (i = 0; i < nr_pages; i++) {
468 			struct page *page = pvec.pages[i];
469 			struct buffer_head *bh, *head;
470 
471 			/*
472 			 * If the current offset is not beyond the end of given
473 			 * range, it will be a hole.
474 			 */
475 			if (lastoff < endoff && whence == SEEK_HOLE &&
476 			    page->index > end) {
477 				found = 1;
478 				*offset = lastoff;
479 				goto out;
480 			}
481 
482 			lock_page(page);
483 
484 			if (unlikely(page->mapping != inode->i_mapping)) {
485 				unlock_page(page);
486 				continue;
487 			}
488 
489 			if (!page_has_buffers(page)) {
490 				unlock_page(page);
491 				continue;
492 			}
493 
494 			if (page_has_buffers(page)) {
495 				lastoff = page_offset(page);
496 				bh = head = page_buffers(page);
497 				do {
498 					if (buffer_uptodate(bh) ||
499 					    buffer_unwritten(bh)) {
500 						if (whence == SEEK_DATA)
501 							found = 1;
502 					} else {
503 						if (whence == SEEK_HOLE)
504 							found = 1;
505 					}
506 					if (found) {
507 						*offset = max_t(loff_t,
508 							startoff, lastoff);
509 						unlock_page(page);
510 						goto out;
511 					}
512 					lastoff += bh->b_size;
513 					bh = bh->b_this_page;
514 				} while (bh != head);
515 			}
516 
517 			lastoff = page_offset(page) + PAGE_SIZE;
518 			unlock_page(page);
519 		}
520 
521 		/*
522 		 * The no. of pages is less than our desired, that would be a
523 		 * hole in there.
524 		 */
525 		if (nr_pages < num && whence == SEEK_HOLE) {
526 			found = 1;
527 			*offset = lastoff;
528 			break;
529 		}
530 
531 		index = pvec.pages[i - 1]->index + 1;
532 		pagevec_release(&pvec);
533 	} while (index <= end);
534 
535 out:
536 	pagevec_release(&pvec);
537 	return found;
538 }
539 
540 /*
541  * ext4_seek_data() retrieves the offset for SEEK_DATA.
542  */
543 static loff_t ext4_seek_data(struct file *file, loff_t offset, loff_t maxsize)
544 {
545 	struct inode *inode = file->f_mapping->host;
546 	struct extent_status es;
547 	ext4_lblk_t start, last, end;
548 	loff_t dataoff, isize;
549 	int blkbits;
550 	int ret;
551 
552 	inode_lock(inode);
553 
554 	isize = i_size_read(inode);
555 	if (offset >= isize) {
556 		inode_unlock(inode);
557 		return -ENXIO;
558 	}
559 
560 	blkbits = inode->i_sb->s_blocksize_bits;
561 	start = offset >> blkbits;
562 	last = start;
563 	end = isize >> blkbits;
564 	dataoff = offset;
565 
566 	do {
567 		ret = ext4_get_next_extent(inode, last, end - last + 1, &es);
568 		if (ret <= 0) {
569 			/* No extent found -> no data */
570 			if (ret == 0)
571 				ret = -ENXIO;
572 			inode_unlock(inode);
573 			return ret;
574 		}
575 
576 		last = es.es_lblk;
577 		if (last != start)
578 			dataoff = (loff_t)last << blkbits;
579 		if (!ext4_es_is_unwritten(&es))
580 			break;
581 
582 		/*
583 		 * If there is a unwritten extent at this offset,
584 		 * it will be as a data or a hole according to page
585 		 * cache that has data or not.
586 		 */
587 		if (ext4_find_unwritten_pgoff(inode, SEEK_DATA,
588 					      es.es_lblk + es.es_len, &dataoff))
589 			break;
590 		last += es.es_len;
591 		dataoff = (loff_t)last << blkbits;
592 		cond_resched();
593 	} while (last <= end);
594 
595 	inode_unlock(inode);
596 
597 	if (dataoff > isize)
598 		return -ENXIO;
599 
600 	return vfs_setpos(file, dataoff, maxsize);
601 }
602 
603 /*
604  * ext4_seek_hole() retrieves the offset for SEEK_HOLE.
605  */
606 static loff_t ext4_seek_hole(struct file *file, loff_t offset, loff_t maxsize)
607 {
608 	struct inode *inode = file->f_mapping->host;
609 	struct extent_status es;
610 	ext4_lblk_t start, last, end;
611 	loff_t holeoff, isize;
612 	int blkbits;
613 	int ret;
614 
615 	inode_lock(inode);
616 
617 	isize = i_size_read(inode);
618 	if (offset >= isize) {
619 		inode_unlock(inode);
620 		return -ENXIO;
621 	}
622 
623 	blkbits = inode->i_sb->s_blocksize_bits;
624 	start = offset >> blkbits;
625 	last = start;
626 	end = isize >> blkbits;
627 	holeoff = offset;
628 
629 	do {
630 		ret = ext4_get_next_extent(inode, last, end - last + 1, &es);
631 		if (ret < 0) {
632 			inode_unlock(inode);
633 			return ret;
634 		}
635 		/* Found a hole? */
636 		if (ret == 0 || es.es_lblk > last) {
637 			if (last != start)
638 				holeoff = (loff_t)last << blkbits;
639 			break;
640 		}
641 		/*
642 		 * If there is a unwritten extent at this offset,
643 		 * it will be as a data or a hole according to page
644 		 * cache that has data or not.
645 		 */
646 		if (ext4_es_is_unwritten(&es) &&
647 		    ext4_find_unwritten_pgoff(inode, SEEK_HOLE,
648 					      last + es.es_len, &holeoff))
649 			break;
650 
651 		last += es.es_len;
652 		holeoff = (loff_t)last << blkbits;
653 		cond_resched();
654 	} while (last <= end);
655 
656 	inode_unlock(inode);
657 
658 	if (holeoff > isize)
659 		holeoff = isize;
660 
661 	return vfs_setpos(file, holeoff, maxsize);
662 }
663 
664 /*
665  * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
666  * by calling generic_file_llseek_size() with the appropriate maxbytes
667  * value for each.
668  */
669 loff_t ext4_llseek(struct file *file, loff_t offset, int whence)
670 {
671 	struct inode *inode = file->f_mapping->host;
672 	loff_t maxbytes;
673 
674 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
675 		maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes;
676 	else
677 		maxbytes = inode->i_sb->s_maxbytes;
678 
679 	switch (whence) {
680 	case SEEK_SET:
681 	case SEEK_CUR:
682 	case SEEK_END:
683 		return generic_file_llseek_size(file, offset, whence,
684 						maxbytes, i_size_read(inode));
685 	case SEEK_DATA:
686 		return ext4_seek_data(file, offset, maxbytes);
687 	case SEEK_HOLE:
688 		return ext4_seek_hole(file, offset, maxbytes);
689 	}
690 
691 	return -EINVAL;
692 }
693 
694 const struct file_operations ext4_file_operations = {
695 	.llseek		= ext4_llseek,
696 	.read_iter	= generic_file_read_iter,
697 	.write_iter	= ext4_file_write_iter,
698 	.unlocked_ioctl = ext4_ioctl,
699 #ifdef CONFIG_COMPAT
700 	.compat_ioctl	= ext4_compat_ioctl,
701 #endif
702 	.mmap		= ext4_file_mmap,
703 	.open		= ext4_file_open,
704 	.release	= ext4_release_file,
705 	.fsync		= ext4_sync_file,
706 	.splice_read	= generic_file_splice_read,
707 	.splice_write	= iter_file_splice_write,
708 	.fallocate	= ext4_fallocate,
709 };
710 
711 const struct inode_operations ext4_file_inode_operations = {
712 	.setattr	= ext4_setattr,
713 	.getattr	= ext4_getattr,
714 	.setxattr	= generic_setxattr,
715 	.getxattr	= generic_getxattr,
716 	.listxattr	= ext4_listxattr,
717 	.removexattr	= generic_removexattr,
718 	.get_acl	= ext4_get_acl,
719 	.set_acl	= ext4_set_acl,
720 	.fiemap		= ext4_fiemap,
721 };
722 
723