1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/file.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/file.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * ext4 fs regular file handling primitives 17 * 18 * 64-bit file support on 64-bit platforms by Jakub Jelinek 19 * (jj@sunsite.ms.mff.cuni.cz) 20 */ 21 22 #include <linux/time.h> 23 #include <linux/fs.h> 24 #include <linux/iomap.h> 25 #include <linux/mount.h> 26 #include <linux/path.h> 27 #include <linux/dax.h> 28 #include <linux/quotaops.h> 29 #include <linux/pagevec.h> 30 #include <linux/uio.h> 31 #include <linux/mman.h> 32 #include <linux/backing-dev.h> 33 #include "ext4.h" 34 #include "ext4_jbd2.h" 35 #include "xattr.h" 36 #include "acl.h" 37 #include "truncate.h" 38 39 static bool ext4_dio_supported(struct inode *inode) 40 { 41 if (IS_ENABLED(CONFIG_FS_ENCRYPTION) && IS_ENCRYPTED(inode)) 42 return false; 43 if (fsverity_active(inode)) 44 return false; 45 if (ext4_should_journal_data(inode)) 46 return false; 47 if (ext4_has_inline_data(inode)) 48 return false; 49 return true; 50 } 51 52 static ssize_t ext4_dio_read_iter(struct kiocb *iocb, struct iov_iter *to) 53 { 54 ssize_t ret; 55 struct inode *inode = file_inode(iocb->ki_filp); 56 57 if (iocb->ki_flags & IOCB_NOWAIT) { 58 if (!inode_trylock_shared(inode)) 59 return -EAGAIN; 60 } else { 61 inode_lock_shared(inode); 62 } 63 64 if (!ext4_dio_supported(inode)) { 65 inode_unlock_shared(inode); 66 /* 67 * Fallback to buffered I/O if the operation being performed on 68 * the inode is not supported by direct I/O. The IOCB_DIRECT 69 * flag needs to be cleared here in order to ensure that the 70 * direct I/O path within generic_file_read_iter() is not 71 * taken. 72 */ 73 iocb->ki_flags &= ~IOCB_DIRECT; 74 return generic_file_read_iter(iocb, to); 75 } 76 77 ret = iomap_dio_rw(iocb, to, &ext4_iomap_ops, NULL, 78 is_sync_kiocb(iocb)); 79 inode_unlock_shared(inode); 80 81 file_accessed(iocb->ki_filp); 82 return ret; 83 } 84 85 #ifdef CONFIG_FS_DAX 86 static ssize_t ext4_dax_read_iter(struct kiocb *iocb, struct iov_iter *to) 87 { 88 struct inode *inode = file_inode(iocb->ki_filp); 89 ssize_t ret; 90 91 if (iocb->ki_flags & IOCB_NOWAIT) { 92 if (!inode_trylock_shared(inode)) 93 return -EAGAIN; 94 } else { 95 inode_lock_shared(inode); 96 } 97 /* 98 * Recheck under inode lock - at this point we are sure it cannot 99 * change anymore 100 */ 101 if (!IS_DAX(inode)) { 102 inode_unlock_shared(inode); 103 /* Fallback to buffered IO in case we cannot support DAX */ 104 return generic_file_read_iter(iocb, to); 105 } 106 ret = dax_iomap_rw(iocb, to, &ext4_iomap_ops); 107 inode_unlock_shared(inode); 108 109 file_accessed(iocb->ki_filp); 110 return ret; 111 } 112 #endif 113 114 static ssize_t ext4_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 115 { 116 struct inode *inode = file_inode(iocb->ki_filp); 117 118 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 119 return -EIO; 120 121 if (!iov_iter_count(to)) 122 return 0; /* skip atime */ 123 124 #ifdef CONFIG_FS_DAX 125 if (IS_DAX(inode)) 126 return ext4_dax_read_iter(iocb, to); 127 #endif 128 if (iocb->ki_flags & IOCB_DIRECT) 129 return ext4_dio_read_iter(iocb, to); 130 131 return generic_file_read_iter(iocb, to); 132 } 133 134 /* 135 * Called when an inode is released. Note that this is different 136 * from ext4_file_open: open gets called at every open, but release 137 * gets called only when /all/ the files are closed. 138 */ 139 static int ext4_release_file(struct inode *inode, struct file *filp) 140 { 141 if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) { 142 ext4_alloc_da_blocks(inode); 143 ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 144 } 145 /* if we are the last writer on the inode, drop the block reservation */ 146 if ((filp->f_mode & FMODE_WRITE) && 147 (atomic_read(&inode->i_writecount) == 1) && 148 !EXT4_I(inode)->i_reserved_data_blocks) 149 { 150 down_write(&EXT4_I(inode)->i_data_sem); 151 ext4_discard_preallocations(inode); 152 up_write(&EXT4_I(inode)->i_data_sem); 153 } 154 if (is_dx(inode) && filp->private_data) 155 ext4_htree_free_dir_info(filp->private_data); 156 157 return 0; 158 } 159 160 /* 161 * This tests whether the IO in question is block-aligned or not. 162 * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they 163 * are converted to written only after the IO is complete. Until they are 164 * mapped, these blocks appear as holes, so dio_zero_block() will assume that 165 * it needs to zero out portions of the start and/or end block. If 2 AIO 166 * threads are at work on the same unwritten block, they must be synchronized 167 * or one thread will zero the other's data, causing corruption. 168 */ 169 static bool 170 ext4_unaligned_io(struct inode *inode, struct iov_iter *from, loff_t pos) 171 { 172 struct super_block *sb = inode->i_sb; 173 unsigned long blockmask = sb->s_blocksize - 1; 174 175 if ((pos | iov_iter_alignment(from)) & blockmask) 176 return true; 177 178 return false; 179 } 180 181 static bool 182 ext4_extending_io(struct inode *inode, loff_t offset, size_t len) 183 { 184 if (offset + len > i_size_read(inode) || 185 offset + len > EXT4_I(inode)->i_disksize) 186 return true; 187 return false; 188 } 189 190 /* Is IO overwriting allocated and initialized blocks? */ 191 static bool ext4_overwrite_io(struct inode *inode, loff_t pos, loff_t len) 192 { 193 struct ext4_map_blocks map; 194 unsigned int blkbits = inode->i_blkbits; 195 int err, blklen; 196 197 if (pos + len > i_size_read(inode)) 198 return false; 199 200 map.m_lblk = pos >> blkbits; 201 map.m_len = EXT4_MAX_BLOCKS(len, pos, blkbits); 202 blklen = map.m_len; 203 204 err = ext4_map_blocks(NULL, inode, &map, 0); 205 /* 206 * 'err==len' means that all of the blocks have been preallocated, 207 * regardless of whether they have been initialized or not. To exclude 208 * unwritten extents, we need to check m_flags. 209 */ 210 return err == blklen && (map.m_flags & EXT4_MAP_MAPPED); 211 } 212 213 static ssize_t ext4_generic_write_checks(struct kiocb *iocb, 214 struct iov_iter *from) 215 { 216 struct inode *inode = file_inode(iocb->ki_filp); 217 ssize_t ret; 218 219 if (unlikely(IS_IMMUTABLE(inode))) 220 return -EPERM; 221 222 ret = generic_write_checks(iocb, from); 223 if (ret <= 0) 224 return ret; 225 226 /* 227 * If we have encountered a bitmap-format file, the size limit 228 * is smaller than s_maxbytes, which is for extent-mapped files. 229 */ 230 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 231 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 232 233 if (iocb->ki_pos >= sbi->s_bitmap_maxbytes) 234 return -EFBIG; 235 iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos); 236 } 237 238 return iov_iter_count(from); 239 } 240 241 static ssize_t ext4_write_checks(struct kiocb *iocb, struct iov_iter *from) 242 { 243 ssize_t ret, count; 244 245 count = ext4_generic_write_checks(iocb, from); 246 if (count <= 0) 247 return count; 248 249 ret = file_modified(iocb->ki_filp); 250 if (ret) 251 return ret; 252 return count; 253 } 254 255 static ssize_t ext4_buffered_write_iter(struct kiocb *iocb, 256 struct iov_iter *from) 257 { 258 ssize_t ret; 259 struct inode *inode = file_inode(iocb->ki_filp); 260 261 if (iocb->ki_flags & IOCB_NOWAIT) 262 return -EOPNOTSUPP; 263 264 inode_lock(inode); 265 ret = ext4_write_checks(iocb, from); 266 if (ret <= 0) 267 goto out; 268 269 current->backing_dev_info = inode_to_bdi(inode); 270 ret = generic_perform_write(iocb->ki_filp, from, iocb->ki_pos); 271 current->backing_dev_info = NULL; 272 273 out: 274 inode_unlock(inode); 275 if (likely(ret > 0)) { 276 iocb->ki_pos += ret; 277 ret = generic_write_sync(iocb, ret); 278 } 279 280 return ret; 281 } 282 283 static ssize_t ext4_handle_inode_extension(struct inode *inode, loff_t offset, 284 ssize_t written, size_t count) 285 { 286 handle_t *handle; 287 bool truncate = false; 288 u8 blkbits = inode->i_blkbits; 289 ext4_lblk_t written_blk, end_blk; 290 int ret; 291 292 /* 293 * Note that EXT4_I(inode)->i_disksize can get extended up to 294 * inode->i_size while the I/O was running due to writeback of delalloc 295 * blocks. But, the code in ext4_iomap_alloc() is careful to use 296 * zeroed/unwritten extents if this is possible; thus we won't leave 297 * uninitialized blocks in a file even if we didn't succeed in writing 298 * as much as we intended. 299 */ 300 WARN_ON_ONCE(i_size_read(inode) < EXT4_I(inode)->i_disksize); 301 if (offset + count <= EXT4_I(inode)->i_disksize) { 302 /* 303 * We need to ensure that the inode is removed from the orphan 304 * list if it has been added prematurely, due to writeback of 305 * delalloc blocks. 306 */ 307 if (!list_empty(&EXT4_I(inode)->i_orphan) && inode->i_nlink) { 308 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 309 310 if (IS_ERR(handle)) { 311 ext4_orphan_del(NULL, inode); 312 return PTR_ERR(handle); 313 } 314 315 ext4_orphan_del(handle, inode); 316 ext4_journal_stop(handle); 317 } 318 319 return written; 320 } 321 322 if (written < 0) 323 goto truncate; 324 325 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 326 if (IS_ERR(handle)) { 327 written = PTR_ERR(handle); 328 goto truncate; 329 } 330 331 if (ext4_update_inode_size(inode, offset + written)) { 332 ret = ext4_mark_inode_dirty(handle, inode); 333 if (unlikely(ret)) { 334 written = ret; 335 ext4_journal_stop(handle); 336 goto truncate; 337 } 338 } 339 340 /* 341 * We may need to truncate allocated but not written blocks beyond EOF. 342 */ 343 written_blk = ALIGN(offset + written, 1 << blkbits); 344 end_blk = ALIGN(offset + count, 1 << blkbits); 345 if (written_blk < end_blk && ext4_can_truncate(inode)) 346 truncate = true; 347 348 /* 349 * Remove the inode from the orphan list if it has been extended and 350 * everything went OK. 351 */ 352 if (!truncate && inode->i_nlink) 353 ext4_orphan_del(handle, inode); 354 ext4_journal_stop(handle); 355 356 if (truncate) { 357 truncate: 358 ext4_truncate_failed_write(inode); 359 /* 360 * If the truncate operation failed early, then the inode may 361 * still be on the orphan list. In that case, we need to try 362 * remove the inode from the in-memory linked list. 363 */ 364 if (inode->i_nlink) 365 ext4_orphan_del(NULL, inode); 366 } 367 368 return written; 369 } 370 371 static int ext4_dio_write_end_io(struct kiocb *iocb, ssize_t size, 372 int error, unsigned int flags) 373 { 374 loff_t offset = iocb->ki_pos; 375 struct inode *inode = file_inode(iocb->ki_filp); 376 377 if (error) 378 return error; 379 380 if (size && flags & IOMAP_DIO_UNWRITTEN) 381 return ext4_convert_unwritten_extents(NULL, inode, 382 offset, size); 383 384 return 0; 385 } 386 387 static const struct iomap_dio_ops ext4_dio_write_ops = { 388 .end_io = ext4_dio_write_end_io, 389 }; 390 391 /* 392 * The intention here is to start with shared lock acquired then see if any 393 * condition requires an exclusive inode lock. If yes, then we restart the 394 * whole operation by releasing the shared lock and acquiring exclusive lock. 395 * 396 * - For unaligned_io we never take shared lock as it may cause data corruption 397 * when two unaligned IO tries to modify the same block e.g. while zeroing. 398 * 399 * - For extending writes case we don't take the shared lock, since it requires 400 * updating inode i_disksize and/or orphan handling with exclusive lock. 401 * 402 * - shared locking will only be true mostly with overwrites. Otherwise we will 403 * switch to exclusive i_rwsem lock. 404 */ 405 static ssize_t ext4_dio_write_checks(struct kiocb *iocb, struct iov_iter *from, 406 bool *ilock_shared, bool *extend) 407 { 408 struct file *file = iocb->ki_filp; 409 struct inode *inode = file_inode(file); 410 loff_t offset; 411 size_t count; 412 ssize_t ret; 413 414 restart: 415 ret = ext4_generic_write_checks(iocb, from); 416 if (ret <= 0) 417 goto out; 418 419 offset = iocb->ki_pos; 420 count = ret; 421 if (ext4_extending_io(inode, offset, count)) 422 *extend = true; 423 /* 424 * Determine whether the IO operation will overwrite allocated 425 * and initialized blocks. 426 * We need exclusive i_rwsem for changing security info 427 * in file_modified(). 428 */ 429 if (*ilock_shared && (!IS_NOSEC(inode) || *extend || 430 !ext4_overwrite_io(inode, offset, count))) { 431 inode_unlock_shared(inode); 432 *ilock_shared = false; 433 inode_lock(inode); 434 goto restart; 435 } 436 437 ret = file_modified(file); 438 if (ret < 0) 439 goto out; 440 441 return count; 442 out: 443 if (*ilock_shared) 444 inode_unlock_shared(inode); 445 else 446 inode_unlock(inode); 447 return ret; 448 } 449 450 static ssize_t ext4_dio_write_iter(struct kiocb *iocb, struct iov_iter *from) 451 { 452 ssize_t ret; 453 handle_t *handle; 454 struct inode *inode = file_inode(iocb->ki_filp); 455 loff_t offset = iocb->ki_pos; 456 size_t count = iov_iter_count(from); 457 const struct iomap_ops *iomap_ops = &ext4_iomap_ops; 458 bool extend = false, unaligned_io = false; 459 bool ilock_shared = true; 460 461 /* 462 * We initially start with shared inode lock unless it is 463 * unaligned IO which needs exclusive lock anyways. 464 */ 465 if (ext4_unaligned_io(inode, from, offset)) { 466 unaligned_io = true; 467 ilock_shared = false; 468 } 469 /* 470 * Quick check here without any i_rwsem lock to see if it is extending 471 * IO. A more reliable check is done in ext4_dio_write_checks() with 472 * proper locking in place. 473 */ 474 if (offset + count > i_size_read(inode)) 475 ilock_shared = false; 476 477 if (iocb->ki_flags & IOCB_NOWAIT) { 478 if (ilock_shared) { 479 if (!inode_trylock_shared(inode)) 480 return -EAGAIN; 481 } else { 482 if (!inode_trylock(inode)) 483 return -EAGAIN; 484 } 485 } else { 486 if (ilock_shared) 487 inode_lock_shared(inode); 488 else 489 inode_lock(inode); 490 } 491 492 /* Fallback to buffered I/O if the inode does not support direct I/O. */ 493 if (!ext4_dio_supported(inode)) { 494 if (ilock_shared) 495 inode_unlock_shared(inode); 496 else 497 inode_unlock(inode); 498 return ext4_buffered_write_iter(iocb, from); 499 } 500 501 ret = ext4_dio_write_checks(iocb, from, &ilock_shared, &extend); 502 if (ret <= 0) 503 return ret; 504 505 /* if we're going to block and IOCB_NOWAIT is set, return -EAGAIN */ 506 if ((iocb->ki_flags & IOCB_NOWAIT) && (unaligned_io || extend)) { 507 ret = -EAGAIN; 508 goto out; 509 } 510 511 offset = iocb->ki_pos; 512 count = ret; 513 514 /* 515 * Unaligned direct IO must be serialized among each other as zeroing 516 * of partial blocks of two competing unaligned IOs can result in data 517 * corruption. 518 * 519 * So we make sure we don't allow any unaligned IO in flight. 520 * For IOs where we need not wait (like unaligned non-AIO DIO), 521 * below inode_dio_wait() may anyway become a no-op, since we start 522 * with exclusive lock. 523 */ 524 if (unaligned_io) 525 inode_dio_wait(inode); 526 527 if (extend) { 528 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 529 if (IS_ERR(handle)) { 530 ret = PTR_ERR(handle); 531 goto out; 532 } 533 534 ret = ext4_orphan_add(handle, inode); 535 if (ret) { 536 ext4_journal_stop(handle); 537 goto out; 538 } 539 540 ext4_journal_stop(handle); 541 } 542 543 if (ilock_shared) 544 iomap_ops = &ext4_iomap_overwrite_ops; 545 ret = iomap_dio_rw(iocb, from, iomap_ops, &ext4_dio_write_ops, 546 is_sync_kiocb(iocb) || unaligned_io || extend); 547 if (ret == -ENOTBLK) 548 ret = 0; 549 550 if (extend) 551 ret = ext4_handle_inode_extension(inode, offset, ret, count); 552 553 out: 554 if (ilock_shared) 555 inode_unlock_shared(inode); 556 else 557 inode_unlock(inode); 558 559 if (ret >= 0 && iov_iter_count(from)) { 560 ssize_t err; 561 loff_t endbyte; 562 563 offset = iocb->ki_pos; 564 err = ext4_buffered_write_iter(iocb, from); 565 if (err < 0) 566 return err; 567 568 /* 569 * We need to ensure that the pages within the page cache for 570 * the range covered by this I/O are written to disk and 571 * invalidated. This is in attempt to preserve the expected 572 * direct I/O semantics in the case we fallback to buffered I/O 573 * to complete off the I/O request. 574 */ 575 ret += err; 576 endbyte = offset + err - 1; 577 err = filemap_write_and_wait_range(iocb->ki_filp->f_mapping, 578 offset, endbyte); 579 if (!err) 580 invalidate_mapping_pages(iocb->ki_filp->f_mapping, 581 offset >> PAGE_SHIFT, 582 endbyte >> PAGE_SHIFT); 583 } 584 585 return ret; 586 } 587 588 #ifdef CONFIG_FS_DAX 589 static ssize_t 590 ext4_dax_write_iter(struct kiocb *iocb, struct iov_iter *from) 591 { 592 ssize_t ret; 593 size_t count; 594 loff_t offset; 595 handle_t *handle; 596 bool extend = false; 597 struct inode *inode = file_inode(iocb->ki_filp); 598 599 if (iocb->ki_flags & IOCB_NOWAIT) { 600 if (!inode_trylock(inode)) 601 return -EAGAIN; 602 } else { 603 inode_lock(inode); 604 } 605 606 ret = ext4_write_checks(iocb, from); 607 if (ret <= 0) 608 goto out; 609 610 offset = iocb->ki_pos; 611 count = iov_iter_count(from); 612 613 if (offset + count > EXT4_I(inode)->i_disksize) { 614 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 615 if (IS_ERR(handle)) { 616 ret = PTR_ERR(handle); 617 goto out; 618 } 619 620 ret = ext4_orphan_add(handle, inode); 621 if (ret) { 622 ext4_journal_stop(handle); 623 goto out; 624 } 625 626 extend = true; 627 ext4_journal_stop(handle); 628 } 629 630 ret = dax_iomap_rw(iocb, from, &ext4_iomap_ops); 631 632 if (extend) 633 ret = ext4_handle_inode_extension(inode, offset, ret, count); 634 out: 635 inode_unlock(inode); 636 if (ret > 0) 637 ret = generic_write_sync(iocb, ret); 638 return ret; 639 } 640 #endif 641 642 static ssize_t 643 ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 644 { 645 struct inode *inode = file_inode(iocb->ki_filp); 646 647 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 648 return -EIO; 649 650 #ifdef CONFIG_FS_DAX 651 if (IS_DAX(inode)) 652 return ext4_dax_write_iter(iocb, from); 653 #endif 654 if (iocb->ki_flags & IOCB_DIRECT) 655 return ext4_dio_write_iter(iocb, from); 656 657 return ext4_buffered_write_iter(iocb, from); 658 } 659 660 #ifdef CONFIG_FS_DAX 661 static vm_fault_t ext4_dax_huge_fault(struct vm_fault *vmf, 662 enum page_entry_size pe_size) 663 { 664 int error = 0; 665 vm_fault_t result; 666 int retries = 0; 667 handle_t *handle = NULL; 668 struct inode *inode = file_inode(vmf->vma->vm_file); 669 struct super_block *sb = inode->i_sb; 670 671 /* 672 * We have to distinguish real writes from writes which will result in a 673 * COW page; COW writes should *not* poke the journal (the file will not 674 * be changed). Doing so would cause unintended failures when mounted 675 * read-only. 676 * 677 * We check for VM_SHARED rather than vmf->cow_page since the latter is 678 * unset for pe_size != PE_SIZE_PTE (i.e. only in do_cow_fault); for 679 * other sizes, dax_iomap_fault will handle splitting / fallback so that 680 * we eventually come back with a COW page. 681 */ 682 bool write = (vmf->flags & FAULT_FLAG_WRITE) && 683 (vmf->vma->vm_flags & VM_SHARED); 684 pfn_t pfn; 685 686 if (write) { 687 sb_start_pagefault(sb); 688 file_update_time(vmf->vma->vm_file); 689 down_read(&EXT4_I(inode)->i_mmap_sem); 690 retry: 691 handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE, 692 EXT4_DATA_TRANS_BLOCKS(sb)); 693 if (IS_ERR(handle)) { 694 up_read(&EXT4_I(inode)->i_mmap_sem); 695 sb_end_pagefault(sb); 696 return VM_FAULT_SIGBUS; 697 } 698 } else { 699 down_read(&EXT4_I(inode)->i_mmap_sem); 700 } 701 result = dax_iomap_fault(vmf, pe_size, &pfn, &error, &ext4_iomap_ops); 702 if (write) { 703 ext4_journal_stop(handle); 704 705 if ((result & VM_FAULT_ERROR) && error == -ENOSPC && 706 ext4_should_retry_alloc(sb, &retries)) 707 goto retry; 708 /* Handling synchronous page fault? */ 709 if (result & VM_FAULT_NEEDDSYNC) 710 result = dax_finish_sync_fault(vmf, pe_size, pfn); 711 up_read(&EXT4_I(inode)->i_mmap_sem); 712 sb_end_pagefault(sb); 713 } else { 714 up_read(&EXT4_I(inode)->i_mmap_sem); 715 } 716 717 return result; 718 } 719 720 static vm_fault_t ext4_dax_fault(struct vm_fault *vmf) 721 { 722 return ext4_dax_huge_fault(vmf, PE_SIZE_PTE); 723 } 724 725 static const struct vm_operations_struct ext4_dax_vm_ops = { 726 .fault = ext4_dax_fault, 727 .huge_fault = ext4_dax_huge_fault, 728 .page_mkwrite = ext4_dax_fault, 729 .pfn_mkwrite = ext4_dax_fault, 730 }; 731 #else 732 #define ext4_dax_vm_ops ext4_file_vm_ops 733 #endif 734 735 static const struct vm_operations_struct ext4_file_vm_ops = { 736 .fault = ext4_filemap_fault, 737 .map_pages = filemap_map_pages, 738 .page_mkwrite = ext4_page_mkwrite, 739 }; 740 741 static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma) 742 { 743 struct inode *inode = file->f_mapping->host; 744 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 745 struct dax_device *dax_dev = sbi->s_daxdev; 746 747 if (unlikely(ext4_forced_shutdown(sbi))) 748 return -EIO; 749 750 /* 751 * We don't support synchronous mappings for non-DAX files and 752 * for DAX files if underneath dax_device is not synchronous. 753 */ 754 if (!daxdev_mapping_supported(vma, dax_dev)) 755 return -EOPNOTSUPP; 756 757 file_accessed(file); 758 if (IS_DAX(file_inode(file))) { 759 vma->vm_ops = &ext4_dax_vm_ops; 760 vma->vm_flags |= VM_HUGEPAGE; 761 } else { 762 vma->vm_ops = &ext4_file_vm_ops; 763 } 764 return 0; 765 } 766 767 static int ext4_sample_last_mounted(struct super_block *sb, 768 struct vfsmount *mnt) 769 { 770 struct ext4_sb_info *sbi = EXT4_SB(sb); 771 struct path path; 772 char buf[64], *cp; 773 handle_t *handle; 774 int err; 775 776 if (likely(sbi->s_mount_flags & EXT4_MF_MNTDIR_SAMPLED)) 777 return 0; 778 779 if (sb_rdonly(sb) || !sb_start_intwrite_trylock(sb)) 780 return 0; 781 782 sbi->s_mount_flags |= EXT4_MF_MNTDIR_SAMPLED; 783 /* 784 * Sample where the filesystem has been mounted and 785 * store it in the superblock for sysadmin convenience 786 * when trying to sort through large numbers of block 787 * devices or filesystem images. 788 */ 789 memset(buf, 0, sizeof(buf)); 790 path.mnt = mnt; 791 path.dentry = mnt->mnt_root; 792 cp = d_path(&path, buf, sizeof(buf)); 793 err = 0; 794 if (IS_ERR(cp)) 795 goto out; 796 797 handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1); 798 err = PTR_ERR(handle); 799 if (IS_ERR(handle)) 800 goto out; 801 BUFFER_TRACE(sbi->s_sbh, "get_write_access"); 802 err = ext4_journal_get_write_access(handle, sbi->s_sbh); 803 if (err) 804 goto out_journal; 805 strlcpy(sbi->s_es->s_last_mounted, cp, 806 sizeof(sbi->s_es->s_last_mounted)); 807 ext4_handle_dirty_super(handle, sb); 808 out_journal: 809 ext4_journal_stop(handle); 810 out: 811 sb_end_intwrite(sb); 812 return err; 813 } 814 815 static int ext4_file_open(struct inode * inode, struct file * filp) 816 { 817 int ret; 818 819 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 820 return -EIO; 821 822 ret = ext4_sample_last_mounted(inode->i_sb, filp->f_path.mnt); 823 if (ret) 824 return ret; 825 826 ret = fscrypt_file_open(inode, filp); 827 if (ret) 828 return ret; 829 830 ret = fsverity_file_open(inode, filp); 831 if (ret) 832 return ret; 833 834 /* 835 * Set up the jbd2_inode if we are opening the inode for 836 * writing and the journal is present 837 */ 838 if (filp->f_mode & FMODE_WRITE) { 839 ret = ext4_inode_attach_jinode(inode); 840 if (ret < 0) 841 return ret; 842 } 843 844 filp->f_mode |= FMODE_NOWAIT; 845 return dquot_file_open(inode, filp); 846 } 847 848 /* 849 * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values 850 * by calling generic_file_llseek_size() with the appropriate maxbytes 851 * value for each. 852 */ 853 loff_t ext4_llseek(struct file *file, loff_t offset, int whence) 854 { 855 struct inode *inode = file->f_mapping->host; 856 loff_t maxbytes; 857 858 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 859 maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes; 860 else 861 maxbytes = inode->i_sb->s_maxbytes; 862 863 switch (whence) { 864 default: 865 return generic_file_llseek_size(file, offset, whence, 866 maxbytes, i_size_read(inode)); 867 case SEEK_HOLE: 868 inode_lock_shared(inode); 869 offset = iomap_seek_hole(inode, offset, 870 &ext4_iomap_report_ops); 871 inode_unlock_shared(inode); 872 break; 873 case SEEK_DATA: 874 inode_lock_shared(inode); 875 offset = iomap_seek_data(inode, offset, 876 &ext4_iomap_report_ops); 877 inode_unlock_shared(inode); 878 break; 879 } 880 881 if (offset < 0) 882 return offset; 883 return vfs_setpos(file, offset, maxbytes); 884 } 885 886 const struct file_operations ext4_file_operations = { 887 .llseek = ext4_llseek, 888 .read_iter = ext4_file_read_iter, 889 .write_iter = ext4_file_write_iter, 890 .iopoll = iomap_dio_iopoll, 891 .unlocked_ioctl = ext4_ioctl, 892 #ifdef CONFIG_COMPAT 893 .compat_ioctl = ext4_compat_ioctl, 894 #endif 895 .mmap = ext4_file_mmap, 896 .mmap_supported_flags = MAP_SYNC, 897 .open = ext4_file_open, 898 .release = ext4_release_file, 899 .fsync = ext4_sync_file, 900 .get_unmapped_area = thp_get_unmapped_area, 901 .splice_read = generic_file_splice_read, 902 .splice_write = iter_file_splice_write, 903 .fallocate = ext4_fallocate, 904 }; 905 906 const struct inode_operations ext4_file_inode_operations = { 907 .setattr = ext4_setattr, 908 .getattr = ext4_file_getattr, 909 .listxattr = ext4_listxattr, 910 .get_acl = ext4_get_acl, 911 .set_acl = ext4_set_acl, 912 .fiemap = ext4_fiemap, 913 }; 914 915