xref: /openbmc/linux/fs/ext4/file.c (revision 8730046c)
1 /*
2  *  linux/fs/ext4/file.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/file.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  ext4 fs regular file handling primitives
16  *
17  *  64-bit file support on 64-bit platforms by Jakub Jelinek
18  *	(jj@sunsite.ms.mff.cuni.cz)
19  */
20 
21 #include <linux/time.h>
22 #include <linux/fs.h>
23 #include <linux/mount.h>
24 #include <linux/path.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/pagevec.h>
28 #include <linux/uio.h>
29 #include "ext4.h"
30 #include "ext4_jbd2.h"
31 #include "xattr.h"
32 #include "acl.h"
33 
34 #ifdef CONFIG_FS_DAX
35 static ssize_t ext4_dax_read_iter(struct kiocb *iocb, struct iov_iter *to)
36 {
37 	struct inode *inode = file_inode(iocb->ki_filp);
38 	ssize_t ret;
39 
40 	inode_lock_shared(inode);
41 	/*
42 	 * Recheck under inode lock - at this point we are sure it cannot
43 	 * change anymore
44 	 */
45 	if (!IS_DAX(inode)) {
46 		inode_unlock_shared(inode);
47 		/* Fallback to buffered IO in case we cannot support DAX */
48 		return generic_file_read_iter(iocb, to);
49 	}
50 	ret = dax_iomap_rw(iocb, to, &ext4_iomap_ops);
51 	inode_unlock_shared(inode);
52 
53 	file_accessed(iocb->ki_filp);
54 	return ret;
55 }
56 #endif
57 
58 static ssize_t ext4_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
59 {
60 	if (!iov_iter_count(to))
61 		return 0; /* skip atime */
62 
63 #ifdef CONFIG_FS_DAX
64 	if (IS_DAX(file_inode(iocb->ki_filp)))
65 		return ext4_dax_read_iter(iocb, to);
66 #endif
67 	return generic_file_read_iter(iocb, to);
68 }
69 
70 /*
71  * Called when an inode is released. Note that this is different
72  * from ext4_file_open: open gets called at every open, but release
73  * gets called only when /all/ the files are closed.
74  */
75 static int ext4_release_file(struct inode *inode, struct file *filp)
76 {
77 	if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) {
78 		ext4_alloc_da_blocks(inode);
79 		ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
80 	}
81 	/* if we are the last writer on the inode, drop the block reservation */
82 	if ((filp->f_mode & FMODE_WRITE) &&
83 			(atomic_read(&inode->i_writecount) == 1) &&
84 		        !EXT4_I(inode)->i_reserved_data_blocks)
85 	{
86 		down_write(&EXT4_I(inode)->i_data_sem);
87 		ext4_discard_preallocations(inode);
88 		up_write(&EXT4_I(inode)->i_data_sem);
89 	}
90 	if (is_dx(inode) && filp->private_data)
91 		ext4_htree_free_dir_info(filp->private_data);
92 
93 	return 0;
94 }
95 
96 static void ext4_unwritten_wait(struct inode *inode)
97 {
98 	wait_queue_head_t *wq = ext4_ioend_wq(inode);
99 
100 	wait_event(*wq, (atomic_read(&EXT4_I(inode)->i_unwritten) == 0));
101 }
102 
103 /*
104  * This tests whether the IO in question is block-aligned or not.
105  * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
106  * are converted to written only after the IO is complete.  Until they are
107  * mapped, these blocks appear as holes, so dio_zero_block() will assume that
108  * it needs to zero out portions of the start and/or end block.  If 2 AIO
109  * threads are at work on the same unwritten block, they must be synchronized
110  * or one thread will zero the other's data, causing corruption.
111  */
112 static int
113 ext4_unaligned_aio(struct inode *inode, struct iov_iter *from, loff_t pos)
114 {
115 	struct super_block *sb = inode->i_sb;
116 	int blockmask = sb->s_blocksize - 1;
117 
118 	if (pos >= i_size_read(inode))
119 		return 0;
120 
121 	if ((pos | iov_iter_alignment(from)) & blockmask)
122 		return 1;
123 
124 	return 0;
125 }
126 
127 /* Is IO overwriting allocated and initialized blocks? */
128 static bool ext4_overwrite_io(struct inode *inode, loff_t pos, loff_t len)
129 {
130 	struct ext4_map_blocks map;
131 	unsigned int blkbits = inode->i_blkbits;
132 	int err, blklen;
133 
134 	if (pos + len > i_size_read(inode))
135 		return false;
136 
137 	map.m_lblk = pos >> blkbits;
138 	map.m_len = EXT4_MAX_BLOCKS(len, pos, blkbits);
139 	blklen = map.m_len;
140 
141 	err = ext4_map_blocks(NULL, inode, &map, 0);
142 	/*
143 	 * 'err==len' means that all of the blocks have been preallocated,
144 	 * regardless of whether they have been initialized or not. To exclude
145 	 * unwritten extents, we need to check m_flags.
146 	 */
147 	return err == blklen && (map.m_flags & EXT4_MAP_MAPPED);
148 }
149 
150 static ssize_t ext4_write_checks(struct kiocb *iocb, struct iov_iter *from)
151 {
152 	struct inode *inode = file_inode(iocb->ki_filp);
153 	ssize_t ret;
154 
155 	ret = generic_write_checks(iocb, from);
156 	if (ret <= 0)
157 		return ret;
158 	/*
159 	 * If we have encountered a bitmap-format file, the size limit
160 	 * is smaller than s_maxbytes, which is for extent-mapped files.
161 	 */
162 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
163 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
164 
165 		if (iocb->ki_pos >= sbi->s_bitmap_maxbytes)
166 			return -EFBIG;
167 		iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos);
168 	}
169 	return iov_iter_count(from);
170 }
171 
172 #ifdef CONFIG_FS_DAX
173 static ssize_t
174 ext4_dax_write_iter(struct kiocb *iocb, struct iov_iter *from)
175 {
176 	struct inode *inode = file_inode(iocb->ki_filp);
177 	ssize_t ret;
178 	bool overwrite = false;
179 
180 	inode_lock(inode);
181 	ret = ext4_write_checks(iocb, from);
182 	if (ret <= 0)
183 		goto out;
184 	ret = file_remove_privs(iocb->ki_filp);
185 	if (ret)
186 		goto out;
187 	ret = file_update_time(iocb->ki_filp);
188 	if (ret)
189 		goto out;
190 
191 	if (ext4_overwrite_io(inode, iocb->ki_pos, iov_iter_count(from))) {
192 		overwrite = true;
193 		downgrade_write(&inode->i_rwsem);
194 	}
195 	ret = dax_iomap_rw(iocb, from, &ext4_iomap_ops);
196 out:
197 	if (!overwrite)
198 		inode_unlock(inode);
199 	else
200 		inode_unlock_shared(inode);
201 	if (ret > 0)
202 		ret = generic_write_sync(iocb, ret);
203 	return ret;
204 }
205 #endif
206 
207 static ssize_t
208 ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
209 {
210 	struct inode *inode = file_inode(iocb->ki_filp);
211 	int o_direct = iocb->ki_flags & IOCB_DIRECT;
212 	int unaligned_aio = 0;
213 	int overwrite = 0;
214 	ssize_t ret;
215 
216 #ifdef CONFIG_FS_DAX
217 	if (IS_DAX(inode))
218 		return ext4_dax_write_iter(iocb, from);
219 #endif
220 
221 	inode_lock(inode);
222 	ret = ext4_write_checks(iocb, from);
223 	if (ret <= 0)
224 		goto out;
225 
226 	/*
227 	 * Unaligned direct AIO must be serialized among each other as zeroing
228 	 * of partial blocks of two competing unaligned AIOs can result in data
229 	 * corruption.
230 	 */
231 	if (o_direct && ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) &&
232 	    !is_sync_kiocb(iocb) &&
233 	    ext4_unaligned_aio(inode, from, iocb->ki_pos)) {
234 		unaligned_aio = 1;
235 		ext4_unwritten_wait(inode);
236 	}
237 
238 	iocb->private = &overwrite;
239 	/* Check whether we do a DIO overwrite or not */
240 	if (o_direct && ext4_should_dioread_nolock(inode) && !unaligned_aio &&
241 	    ext4_overwrite_io(inode, iocb->ki_pos, iov_iter_count(from)))
242 		overwrite = 1;
243 
244 	ret = __generic_file_write_iter(iocb, from);
245 	inode_unlock(inode);
246 
247 	if (ret > 0)
248 		ret = generic_write_sync(iocb, ret);
249 
250 	return ret;
251 
252 out:
253 	inode_unlock(inode);
254 	return ret;
255 }
256 
257 #ifdef CONFIG_FS_DAX
258 static int ext4_dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
259 {
260 	int result;
261 	struct inode *inode = file_inode(vma->vm_file);
262 	struct super_block *sb = inode->i_sb;
263 	bool write = vmf->flags & FAULT_FLAG_WRITE;
264 
265 	if (write) {
266 		sb_start_pagefault(sb);
267 		file_update_time(vma->vm_file);
268 	}
269 	down_read(&EXT4_I(inode)->i_mmap_sem);
270 	result = dax_iomap_fault(vma, vmf, &ext4_iomap_ops);
271 	up_read(&EXT4_I(inode)->i_mmap_sem);
272 	if (write)
273 		sb_end_pagefault(sb);
274 
275 	return result;
276 }
277 
278 static int ext4_dax_pmd_fault(struct vm_area_struct *vma, unsigned long addr,
279 						pmd_t *pmd, unsigned int flags)
280 {
281 	int result;
282 	struct inode *inode = file_inode(vma->vm_file);
283 	struct super_block *sb = inode->i_sb;
284 	bool write = flags & FAULT_FLAG_WRITE;
285 
286 	if (write) {
287 		sb_start_pagefault(sb);
288 		file_update_time(vma->vm_file);
289 	}
290 	down_read(&EXT4_I(inode)->i_mmap_sem);
291 	result = dax_iomap_pmd_fault(vma, addr, pmd, flags,
292 				     &ext4_iomap_ops);
293 	up_read(&EXT4_I(inode)->i_mmap_sem);
294 	if (write)
295 		sb_end_pagefault(sb);
296 
297 	return result;
298 }
299 
300 /*
301  * Handle write fault for VM_MIXEDMAP mappings. Similarly to ext4_dax_fault()
302  * handler we check for races agaist truncate. Note that since we cycle through
303  * i_mmap_sem, we are sure that also any hole punching that began before we
304  * were called is finished by now and so if it included part of the file we
305  * are working on, our pte will get unmapped and the check for pte_same() in
306  * wp_pfn_shared() fails. Thus fault gets retried and things work out as
307  * desired.
308  */
309 static int ext4_dax_pfn_mkwrite(struct vm_area_struct *vma,
310 				struct vm_fault *vmf)
311 {
312 	struct inode *inode = file_inode(vma->vm_file);
313 	struct super_block *sb = inode->i_sb;
314 	loff_t size;
315 	int ret;
316 
317 	sb_start_pagefault(sb);
318 	file_update_time(vma->vm_file);
319 	down_read(&EXT4_I(inode)->i_mmap_sem);
320 	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
321 	if (vmf->pgoff >= size)
322 		ret = VM_FAULT_SIGBUS;
323 	else
324 		ret = dax_pfn_mkwrite(vma, vmf);
325 	up_read(&EXT4_I(inode)->i_mmap_sem);
326 	sb_end_pagefault(sb);
327 
328 	return ret;
329 }
330 
331 static const struct vm_operations_struct ext4_dax_vm_ops = {
332 	.fault		= ext4_dax_fault,
333 	.pmd_fault	= ext4_dax_pmd_fault,
334 	.page_mkwrite	= ext4_dax_fault,
335 	.pfn_mkwrite	= ext4_dax_pfn_mkwrite,
336 };
337 #else
338 #define ext4_dax_vm_ops	ext4_file_vm_ops
339 #endif
340 
341 static const struct vm_operations_struct ext4_file_vm_ops = {
342 	.fault		= ext4_filemap_fault,
343 	.map_pages	= filemap_map_pages,
344 	.page_mkwrite   = ext4_page_mkwrite,
345 };
346 
347 static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
348 {
349 	struct inode *inode = file->f_mapping->host;
350 
351 	if (ext4_encrypted_inode(inode)) {
352 		int err = fscrypt_get_encryption_info(inode);
353 		if (err)
354 			return 0;
355 		if (!fscrypt_has_encryption_key(inode))
356 			return -ENOKEY;
357 	}
358 	file_accessed(file);
359 	if (IS_DAX(file_inode(file))) {
360 		vma->vm_ops = &ext4_dax_vm_ops;
361 		vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
362 	} else {
363 		vma->vm_ops = &ext4_file_vm_ops;
364 	}
365 	return 0;
366 }
367 
368 static int ext4_file_open(struct inode * inode, struct file * filp)
369 {
370 	struct super_block *sb = inode->i_sb;
371 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
372 	struct vfsmount *mnt = filp->f_path.mnt;
373 	struct dentry *dir;
374 	struct path path;
375 	char buf[64], *cp;
376 	int ret;
377 
378 	if (unlikely(!(sbi->s_mount_flags & EXT4_MF_MNTDIR_SAMPLED) &&
379 		     !(sb->s_flags & MS_RDONLY))) {
380 		sbi->s_mount_flags |= EXT4_MF_MNTDIR_SAMPLED;
381 		/*
382 		 * Sample where the filesystem has been mounted and
383 		 * store it in the superblock for sysadmin convenience
384 		 * when trying to sort through large numbers of block
385 		 * devices or filesystem images.
386 		 */
387 		memset(buf, 0, sizeof(buf));
388 		path.mnt = mnt;
389 		path.dentry = mnt->mnt_root;
390 		cp = d_path(&path, buf, sizeof(buf));
391 		if (!IS_ERR(cp)) {
392 			handle_t *handle;
393 			int err;
394 
395 			handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
396 			if (IS_ERR(handle))
397 				return PTR_ERR(handle);
398 			BUFFER_TRACE(sbi->s_sbh, "get_write_access");
399 			err = ext4_journal_get_write_access(handle, sbi->s_sbh);
400 			if (err) {
401 				ext4_journal_stop(handle);
402 				return err;
403 			}
404 			strlcpy(sbi->s_es->s_last_mounted, cp,
405 				sizeof(sbi->s_es->s_last_mounted));
406 			ext4_handle_dirty_super(handle, sb);
407 			ext4_journal_stop(handle);
408 		}
409 	}
410 	if (ext4_encrypted_inode(inode)) {
411 		ret = fscrypt_get_encryption_info(inode);
412 		if (ret)
413 			return -EACCES;
414 		if (!fscrypt_has_encryption_key(inode))
415 			return -ENOKEY;
416 	}
417 
418 	dir = dget_parent(file_dentry(filp));
419 	if (ext4_encrypted_inode(d_inode(dir)) &&
420 			!fscrypt_has_permitted_context(d_inode(dir), inode)) {
421 		ext4_warning(inode->i_sb,
422 			     "Inconsistent encryption contexts: %lu/%lu",
423 			     (unsigned long) d_inode(dir)->i_ino,
424 			     (unsigned long) inode->i_ino);
425 		dput(dir);
426 		return -EPERM;
427 	}
428 	dput(dir);
429 	/*
430 	 * Set up the jbd2_inode if we are opening the inode for
431 	 * writing and the journal is present
432 	 */
433 	if (filp->f_mode & FMODE_WRITE) {
434 		ret = ext4_inode_attach_jinode(inode);
435 		if (ret < 0)
436 			return ret;
437 	}
438 	return dquot_file_open(inode, filp);
439 }
440 
441 /*
442  * Here we use ext4_map_blocks() to get a block mapping for a extent-based
443  * file rather than ext4_ext_walk_space() because we can introduce
444  * SEEK_DATA/SEEK_HOLE for block-mapped and extent-mapped file at the same
445  * function.  When extent status tree has been fully implemented, it will
446  * track all extent status for a file and we can directly use it to
447  * retrieve the offset for SEEK_DATA/SEEK_HOLE.
448  */
449 
450 /*
451  * When we retrieve the offset for SEEK_DATA/SEEK_HOLE, we would need to
452  * lookup page cache to check whether or not there has some data between
453  * [startoff, endoff] because, if this range contains an unwritten extent,
454  * we determine this extent as a data or a hole according to whether the
455  * page cache has data or not.
456  */
457 static int ext4_find_unwritten_pgoff(struct inode *inode,
458 				     int whence,
459 				     ext4_lblk_t end_blk,
460 				     loff_t *offset)
461 {
462 	struct pagevec pvec;
463 	unsigned int blkbits;
464 	pgoff_t index;
465 	pgoff_t end;
466 	loff_t endoff;
467 	loff_t startoff;
468 	loff_t lastoff;
469 	int found = 0;
470 
471 	blkbits = inode->i_sb->s_blocksize_bits;
472 	startoff = *offset;
473 	lastoff = startoff;
474 	endoff = (loff_t)end_blk << blkbits;
475 
476 	index = startoff >> PAGE_SHIFT;
477 	end = endoff >> PAGE_SHIFT;
478 
479 	pagevec_init(&pvec, 0);
480 	do {
481 		int i, num;
482 		unsigned long nr_pages;
483 
484 		num = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
485 		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
486 					  (pgoff_t)num);
487 		if (nr_pages == 0) {
488 			if (whence == SEEK_DATA)
489 				break;
490 
491 			BUG_ON(whence != SEEK_HOLE);
492 			/*
493 			 * If this is the first time to go into the loop and
494 			 * offset is not beyond the end offset, it will be a
495 			 * hole at this offset
496 			 */
497 			if (lastoff == startoff || lastoff < endoff)
498 				found = 1;
499 			break;
500 		}
501 
502 		/*
503 		 * If this is the first time to go into the loop and
504 		 * offset is smaller than the first page offset, it will be a
505 		 * hole at this offset.
506 		 */
507 		if (lastoff == startoff && whence == SEEK_HOLE &&
508 		    lastoff < page_offset(pvec.pages[0])) {
509 			found = 1;
510 			break;
511 		}
512 
513 		for (i = 0; i < nr_pages; i++) {
514 			struct page *page = pvec.pages[i];
515 			struct buffer_head *bh, *head;
516 
517 			/*
518 			 * If the current offset is not beyond the end of given
519 			 * range, it will be a hole.
520 			 */
521 			if (lastoff < endoff && whence == SEEK_HOLE &&
522 			    page->index > end) {
523 				found = 1;
524 				*offset = lastoff;
525 				goto out;
526 			}
527 
528 			lock_page(page);
529 
530 			if (unlikely(page->mapping != inode->i_mapping)) {
531 				unlock_page(page);
532 				continue;
533 			}
534 
535 			if (!page_has_buffers(page)) {
536 				unlock_page(page);
537 				continue;
538 			}
539 
540 			if (page_has_buffers(page)) {
541 				lastoff = page_offset(page);
542 				bh = head = page_buffers(page);
543 				do {
544 					if (buffer_uptodate(bh) ||
545 					    buffer_unwritten(bh)) {
546 						if (whence == SEEK_DATA)
547 							found = 1;
548 					} else {
549 						if (whence == SEEK_HOLE)
550 							found = 1;
551 					}
552 					if (found) {
553 						*offset = max_t(loff_t,
554 							startoff, lastoff);
555 						unlock_page(page);
556 						goto out;
557 					}
558 					lastoff += bh->b_size;
559 					bh = bh->b_this_page;
560 				} while (bh != head);
561 			}
562 
563 			lastoff = page_offset(page) + PAGE_SIZE;
564 			unlock_page(page);
565 		}
566 
567 		/*
568 		 * The no. of pages is less than our desired, that would be a
569 		 * hole in there.
570 		 */
571 		if (nr_pages < num && whence == SEEK_HOLE) {
572 			found = 1;
573 			*offset = lastoff;
574 			break;
575 		}
576 
577 		index = pvec.pages[i - 1]->index + 1;
578 		pagevec_release(&pvec);
579 	} while (index <= end);
580 
581 out:
582 	pagevec_release(&pvec);
583 	return found;
584 }
585 
586 /*
587  * ext4_seek_data() retrieves the offset for SEEK_DATA.
588  */
589 static loff_t ext4_seek_data(struct file *file, loff_t offset, loff_t maxsize)
590 {
591 	struct inode *inode = file->f_mapping->host;
592 	struct extent_status es;
593 	ext4_lblk_t start, last, end;
594 	loff_t dataoff, isize;
595 	int blkbits;
596 	int ret;
597 
598 	inode_lock(inode);
599 
600 	isize = i_size_read(inode);
601 	if (offset >= isize) {
602 		inode_unlock(inode);
603 		return -ENXIO;
604 	}
605 
606 	blkbits = inode->i_sb->s_blocksize_bits;
607 	start = offset >> blkbits;
608 	last = start;
609 	end = isize >> blkbits;
610 	dataoff = offset;
611 
612 	do {
613 		ret = ext4_get_next_extent(inode, last, end - last + 1, &es);
614 		if (ret <= 0) {
615 			/* No extent found -> no data */
616 			if (ret == 0)
617 				ret = -ENXIO;
618 			inode_unlock(inode);
619 			return ret;
620 		}
621 
622 		last = es.es_lblk;
623 		if (last != start)
624 			dataoff = (loff_t)last << blkbits;
625 		if (!ext4_es_is_unwritten(&es))
626 			break;
627 
628 		/*
629 		 * If there is a unwritten extent at this offset,
630 		 * it will be as a data or a hole according to page
631 		 * cache that has data or not.
632 		 */
633 		if (ext4_find_unwritten_pgoff(inode, SEEK_DATA,
634 					      es.es_lblk + es.es_len, &dataoff))
635 			break;
636 		last += es.es_len;
637 		dataoff = (loff_t)last << blkbits;
638 		cond_resched();
639 	} while (last <= end);
640 
641 	inode_unlock(inode);
642 
643 	if (dataoff > isize)
644 		return -ENXIO;
645 
646 	return vfs_setpos(file, dataoff, maxsize);
647 }
648 
649 /*
650  * ext4_seek_hole() retrieves the offset for SEEK_HOLE.
651  */
652 static loff_t ext4_seek_hole(struct file *file, loff_t offset, loff_t maxsize)
653 {
654 	struct inode *inode = file->f_mapping->host;
655 	struct extent_status es;
656 	ext4_lblk_t start, last, end;
657 	loff_t holeoff, isize;
658 	int blkbits;
659 	int ret;
660 
661 	inode_lock(inode);
662 
663 	isize = i_size_read(inode);
664 	if (offset >= isize) {
665 		inode_unlock(inode);
666 		return -ENXIO;
667 	}
668 
669 	blkbits = inode->i_sb->s_blocksize_bits;
670 	start = offset >> blkbits;
671 	last = start;
672 	end = isize >> blkbits;
673 	holeoff = offset;
674 
675 	do {
676 		ret = ext4_get_next_extent(inode, last, end - last + 1, &es);
677 		if (ret < 0) {
678 			inode_unlock(inode);
679 			return ret;
680 		}
681 		/* Found a hole? */
682 		if (ret == 0 || es.es_lblk > last) {
683 			if (last != start)
684 				holeoff = (loff_t)last << blkbits;
685 			break;
686 		}
687 		/*
688 		 * If there is a unwritten extent at this offset,
689 		 * it will be as a data or a hole according to page
690 		 * cache that has data or not.
691 		 */
692 		if (ext4_es_is_unwritten(&es) &&
693 		    ext4_find_unwritten_pgoff(inode, SEEK_HOLE,
694 					      last + es.es_len, &holeoff))
695 			break;
696 
697 		last += es.es_len;
698 		holeoff = (loff_t)last << blkbits;
699 		cond_resched();
700 	} while (last <= end);
701 
702 	inode_unlock(inode);
703 
704 	if (holeoff > isize)
705 		holeoff = isize;
706 
707 	return vfs_setpos(file, holeoff, maxsize);
708 }
709 
710 /*
711  * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
712  * by calling generic_file_llseek_size() with the appropriate maxbytes
713  * value for each.
714  */
715 loff_t ext4_llseek(struct file *file, loff_t offset, int whence)
716 {
717 	struct inode *inode = file->f_mapping->host;
718 	loff_t maxbytes;
719 
720 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
721 		maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes;
722 	else
723 		maxbytes = inode->i_sb->s_maxbytes;
724 
725 	switch (whence) {
726 	case SEEK_SET:
727 	case SEEK_CUR:
728 	case SEEK_END:
729 		return generic_file_llseek_size(file, offset, whence,
730 						maxbytes, i_size_read(inode));
731 	case SEEK_DATA:
732 		return ext4_seek_data(file, offset, maxbytes);
733 	case SEEK_HOLE:
734 		return ext4_seek_hole(file, offset, maxbytes);
735 	}
736 
737 	return -EINVAL;
738 }
739 
740 const struct file_operations ext4_file_operations = {
741 	.llseek		= ext4_llseek,
742 	.read_iter	= ext4_file_read_iter,
743 	.write_iter	= ext4_file_write_iter,
744 	.unlocked_ioctl = ext4_ioctl,
745 #ifdef CONFIG_COMPAT
746 	.compat_ioctl	= ext4_compat_ioctl,
747 #endif
748 	.mmap		= ext4_file_mmap,
749 	.open		= ext4_file_open,
750 	.release	= ext4_release_file,
751 	.fsync		= ext4_sync_file,
752 	.get_unmapped_area = thp_get_unmapped_area,
753 	.splice_read	= generic_file_splice_read,
754 	.splice_write	= iter_file_splice_write,
755 	.fallocate	= ext4_fallocate,
756 };
757 
758 const struct inode_operations ext4_file_inode_operations = {
759 	.setattr	= ext4_setattr,
760 	.getattr	= ext4_getattr,
761 	.listxattr	= ext4_listxattr,
762 	.get_acl	= ext4_get_acl,
763 	.set_acl	= ext4_set_acl,
764 	.fiemap		= ext4_fiemap,
765 };
766 
767