1 /* 2 * linux/fs/ext4/file.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/file.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * ext4 fs regular file handling primitives 16 * 17 * 64-bit file support on 64-bit platforms by Jakub Jelinek 18 * (jj@sunsite.ms.mff.cuni.cz) 19 */ 20 21 #include <linux/time.h> 22 #include <linux/fs.h> 23 #include <linux/jbd2.h> 24 #include <linux/mount.h> 25 #include <linux/path.h> 26 #include <linux/aio.h> 27 #include <linux/quotaops.h> 28 #include <linux/pagevec.h> 29 #include "ext4.h" 30 #include "ext4_jbd2.h" 31 #include "xattr.h" 32 #include "acl.h" 33 34 /* 35 * Called when an inode is released. Note that this is different 36 * from ext4_file_open: open gets called at every open, but release 37 * gets called only when /all/ the files are closed. 38 */ 39 static int ext4_release_file(struct inode *inode, struct file *filp) 40 { 41 if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) { 42 ext4_alloc_da_blocks(inode); 43 ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 44 } 45 /* if we are the last writer on the inode, drop the block reservation */ 46 if ((filp->f_mode & FMODE_WRITE) && 47 (atomic_read(&inode->i_writecount) == 1) && 48 !EXT4_I(inode)->i_reserved_data_blocks) 49 { 50 down_write(&EXT4_I(inode)->i_data_sem); 51 ext4_discard_preallocations(inode); 52 up_write(&EXT4_I(inode)->i_data_sem); 53 } 54 if (is_dx(inode) && filp->private_data) 55 ext4_htree_free_dir_info(filp->private_data); 56 57 return 0; 58 } 59 60 void ext4_unwritten_wait(struct inode *inode) 61 { 62 wait_queue_head_t *wq = ext4_ioend_wq(inode); 63 64 wait_event(*wq, (atomic_read(&EXT4_I(inode)->i_unwritten) == 0)); 65 } 66 67 /* 68 * This tests whether the IO in question is block-aligned or not. 69 * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they 70 * are converted to written only after the IO is complete. Until they are 71 * mapped, these blocks appear as holes, so dio_zero_block() will assume that 72 * it needs to zero out portions of the start and/or end block. If 2 AIO 73 * threads are at work on the same unwritten block, they must be synchronized 74 * or one thread will zero the other's data, causing corruption. 75 */ 76 static int 77 ext4_unaligned_aio(struct inode *inode, const struct iovec *iov, 78 unsigned long nr_segs, loff_t pos) 79 { 80 struct super_block *sb = inode->i_sb; 81 int blockmask = sb->s_blocksize - 1; 82 size_t count = iov_length(iov, nr_segs); 83 loff_t final_size = pos + count; 84 85 if (pos >= inode->i_size) 86 return 0; 87 88 if ((pos & blockmask) || (final_size & blockmask)) 89 return 1; 90 91 return 0; 92 } 93 94 static ssize_t 95 ext4_file_dio_write(struct kiocb *iocb, const struct iovec *iov, 96 unsigned long nr_segs, loff_t pos) 97 { 98 struct file *file = iocb->ki_filp; 99 struct inode *inode = file->f_mapping->host; 100 struct blk_plug plug; 101 int unaligned_aio = 0; 102 ssize_t ret; 103 int overwrite = 0; 104 size_t length = iov_length(iov, nr_segs); 105 106 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) && 107 !is_sync_kiocb(iocb)) 108 unaligned_aio = ext4_unaligned_aio(inode, iov, nr_segs, pos); 109 110 /* Unaligned direct AIO must be serialized; see comment above */ 111 if (unaligned_aio) { 112 mutex_lock(ext4_aio_mutex(inode)); 113 ext4_unwritten_wait(inode); 114 } 115 116 BUG_ON(iocb->ki_pos != pos); 117 118 mutex_lock(&inode->i_mutex); 119 blk_start_plug(&plug); 120 121 iocb->private = &overwrite; 122 123 /* check whether we do a DIO overwrite or not */ 124 if (ext4_should_dioread_nolock(inode) && !unaligned_aio && 125 !file->f_mapping->nrpages && pos + length <= i_size_read(inode)) { 126 struct ext4_map_blocks map; 127 unsigned int blkbits = inode->i_blkbits; 128 int err, len; 129 130 map.m_lblk = pos >> blkbits; 131 map.m_len = (EXT4_BLOCK_ALIGN(pos + length, blkbits) >> blkbits) 132 - map.m_lblk; 133 len = map.m_len; 134 135 err = ext4_map_blocks(NULL, inode, &map, 0); 136 /* 137 * 'err==len' means that all of blocks has been preallocated no 138 * matter they are initialized or not. For excluding 139 * uninitialized extents, we need to check m_flags. There are 140 * two conditions that indicate for initialized extents. 141 * 1) If we hit extent cache, EXT4_MAP_MAPPED flag is returned; 142 * 2) If we do a real lookup, non-flags are returned. 143 * So we should check these two conditions. 144 */ 145 if (err == len && (map.m_flags & EXT4_MAP_MAPPED)) 146 overwrite = 1; 147 } 148 149 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos); 150 mutex_unlock(&inode->i_mutex); 151 152 if (ret > 0 || ret == -EIOCBQUEUED) { 153 ssize_t err; 154 155 err = generic_write_sync(file, pos, ret); 156 if (err < 0 && ret > 0) 157 ret = err; 158 } 159 blk_finish_plug(&plug); 160 161 if (unaligned_aio) 162 mutex_unlock(ext4_aio_mutex(inode)); 163 164 return ret; 165 } 166 167 static ssize_t 168 ext4_file_write(struct kiocb *iocb, const struct iovec *iov, 169 unsigned long nr_segs, loff_t pos) 170 { 171 struct inode *inode = file_inode(iocb->ki_filp); 172 ssize_t ret; 173 174 /* 175 * If we have encountered a bitmap-format file, the size limit 176 * is smaller than s_maxbytes, which is for extent-mapped files. 177 */ 178 179 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 180 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 181 size_t length = iov_length(iov, nr_segs); 182 183 if ((pos > sbi->s_bitmap_maxbytes || 184 (pos == sbi->s_bitmap_maxbytes && length > 0))) 185 return -EFBIG; 186 187 if (pos + length > sbi->s_bitmap_maxbytes) { 188 nr_segs = iov_shorten((struct iovec *)iov, nr_segs, 189 sbi->s_bitmap_maxbytes - pos); 190 } 191 } 192 193 if (unlikely(iocb->ki_filp->f_flags & O_DIRECT)) 194 ret = ext4_file_dio_write(iocb, iov, nr_segs, pos); 195 else 196 ret = generic_file_aio_write(iocb, iov, nr_segs, pos); 197 198 return ret; 199 } 200 201 static const struct vm_operations_struct ext4_file_vm_ops = { 202 .fault = filemap_fault, 203 .page_mkwrite = ext4_page_mkwrite, 204 .remap_pages = generic_file_remap_pages, 205 }; 206 207 static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma) 208 { 209 struct address_space *mapping = file->f_mapping; 210 211 if (!mapping->a_ops->readpage) 212 return -ENOEXEC; 213 file_accessed(file); 214 vma->vm_ops = &ext4_file_vm_ops; 215 return 0; 216 } 217 218 static int ext4_file_open(struct inode * inode, struct file * filp) 219 { 220 struct super_block *sb = inode->i_sb; 221 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 222 struct vfsmount *mnt = filp->f_path.mnt; 223 struct path path; 224 char buf[64], *cp; 225 226 if (unlikely(!(sbi->s_mount_flags & EXT4_MF_MNTDIR_SAMPLED) && 227 !(sb->s_flags & MS_RDONLY))) { 228 sbi->s_mount_flags |= EXT4_MF_MNTDIR_SAMPLED; 229 /* 230 * Sample where the filesystem has been mounted and 231 * store it in the superblock for sysadmin convenience 232 * when trying to sort through large numbers of block 233 * devices or filesystem images. 234 */ 235 memset(buf, 0, sizeof(buf)); 236 path.mnt = mnt; 237 path.dentry = mnt->mnt_root; 238 cp = d_path(&path, buf, sizeof(buf)); 239 if (!IS_ERR(cp)) { 240 handle_t *handle; 241 int err; 242 243 handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1); 244 if (IS_ERR(handle)) 245 return PTR_ERR(handle); 246 err = ext4_journal_get_write_access(handle, sbi->s_sbh); 247 if (err) { 248 ext4_journal_stop(handle); 249 return err; 250 } 251 strlcpy(sbi->s_es->s_last_mounted, cp, 252 sizeof(sbi->s_es->s_last_mounted)); 253 ext4_handle_dirty_super(handle, sb); 254 ext4_journal_stop(handle); 255 } 256 } 257 /* 258 * Set up the jbd2_inode if we are opening the inode for 259 * writing and the journal is present 260 */ 261 if (filp->f_mode & FMODE_WRITE) { 262 int ret = ext4_inode_attach_jinode(inode); 263 if (ret < 0) 264 return ret; 265 } 266 return dquot_file_open(inode, filp); 267 } 268 269 /* 270 * Here we use ext4_map_blocks() to get a block mapping for a extent-based 271 * file rather than ext4_ext_walk_space() because we can introduce 272 * SEEK_DATA/SEEK_HOLE for block-mapped and extent-mapped file at the same 273 * function. When extent status tree has been fully implemented, it will 274 * track all extent status for a file and we can directly use it to 275 * retrieve the offset for SEEK_DATA/SEEK_HOLE. 276 */ 277 278 /* 279 * When we retrieve the offset for SEEK_DATA/SEEK_HOLE, we would need to 280 * lookup page cache to check whether or not there has some data between 281 * [startoff, endoff] because, if this range contains an unwritten extent, 282 * we determine this extent as a data or a hole according to whether the 283 * page cache has data or not. 284 */ 285 static int ext4_find_unwritten_pgoff(struct inode *inode, 286 int whence, 287 struct ext4_map_blocks *map, 288 loff_t *offset) 289 { 290 struct pagevec pvec; 291 unsigned int blkbits; 292 pgoff_t index; 293 pgoff_t end; 294 loff_t endoff; 295 loff_t startoff; 296 loff_t lastoff; 297 int found = 0; 298 299 blkbits = inode->i_sb->s_blocksize_bits; 300 startoff = *offset; 301 lastoff = startoff; 302 endoff = (loff_t)(map->m_lblk + map->m_len) << blkbits; 303 304 index = startoff >> PAGE_CACHE_SHIFT; 305 end = endoff >> PAGE_CACHE_SHIFT; 306 307 pagevec_init(&pvec, 0); 308 do { 309 int i, num; 310 unsigned long nr_pages; 311 312 num = min_t(pgoff_t, end - index, PAGEVEC_SIZE); 313 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index, 314 (pgoff_t)num); 315 if (nr_pages == 0) { 316 if (whence == SEEK_DATA) 317 break; 318 319 BUG_ON(whence != SEEK_HOLE); 320 /* 321 * If this is the first time to go into the loop and 322 * offset is not beyond the end offset, it will be a 323 * hole at this offset 324 */ 325 if (lastoff == startoff || lastoff < endoff) 326 found = 1; 327 break; 328 } 329 330 /* 331 * If this is the first time to go into the loop and 332 * offset is smaller than the first page offset, it will be a 333 * hole at this offset. 334 */ 335 if (lastoff == startoff && whence == SEEK_HOLE && 336 lastoff < page_offset(pvec.pages[0])) { 337 found = 1; 338 break; 339 } 340 341 for (i = 0; i < nr_pages; i++) { 342 struct page *page = pvec.pages[i]; 343 struct buffer_head *bh, *head; 344 345 /* 346 * If the current offset is not beyond the end of given 347 * range, it will be a hole. 348 */ 349 if (lastoff < endoff && whence == SEEK_HOLE && 350 page->index > end) { 351 found = 1; 352 *offset = lastoff; 353 goto out; 354 } 355 356 lock_page(page); 357 358 if (unlikely(page->mapping != inode->i_mapping)) { 359 unlock_page(page); 360 continue; 361 } 362 363 if (!page_has_buffers(page)) { 364 unlock_page(page); 365 continue; 366 } 367 368 if (page_has_buffers(page)) { 369 lastoff = page_offset(page); 370 bh = head = page_buffers(page); 371 do { 372 if (buffer_uptodate(bh) || 373 buffer_unwritten(bh)) { 374 if (whence == SEEK_DATA) 375 found = 1; 376 } else { 377 if (whence == SEEK_HOLE) 378 found = 1; 379 } 380 if (found) { 381 *offset = max_t(loff_t, 382 startoff, lastoff); 383 unlock_page(page); 384 goto out; 385 } 386 lastoff += bh->b_size; 387 bh = bh->b_this_page; 388 } while (bh != head); 389 } 390 391 lastoff = page_offset(page) + PAGE_SIZE; 392 unlock_page(page); 393 } 394 395 /* 396 * The no. of pages is less than our desired, that would be a 397 * hole in there. 398 */ 399 if (nr_pages < num && whence == SEEK_HOLE) { 400 found = 1; 401 *offset = lastoff; 402 break; 403 } 404 405 index = pvec.pages[i - 1]->index + 1; 406 pagevec_release(&pvec); 407 } while (index <= end); 408 409 out: 410 pagevec_release(&pvec); 411 return found; 412 } 413 414 /* 415 * ext4_seek_data() retrieves the offset for SEEK_DATA. 416 */ 417 static loff_t ext4_seek_data(struct file *file, loff_t offset, loff_t maxsize) 418 { 419 struct inode *inode = file->f_mapping->host; 420 struct ext4_map_blocks map; 421 struct extent_status es; 422 ext4_lblk_t start, last, end; 423 loff_t dataoff, isize; 424 int blkbits; 425 int ret = 0; 426 427 mutex_lock(&inode->i_mutex); 428 429 isize = i_size_read(inode); 430 if (offset >= isize) { 431 mutex_unlock(&inode->i_mutex); 432 return -ENXIO; 433 } 434 435 blkbits = inode->i_sb->s_blocksize_bits; 436 start = offset >> blkbits; 437 last = start; 438 end = isize >> blkbits; 439 dataoff = offset; 440 441 do { 442 map.m_lblk = last; 443 map.m_len = end - last + 1; 444 ret = ext4_map_blocks(NULL, inode, &map, 0); 445 if (ret > 0 && !(map.m_flags & EXT4_MAP_UNWRITTEN)) { 446 if (last != start) 447 dataoff = (loff_t)last << blkbits; 448 break; 449 } 450 451 /* 452 * If there is a delay extent at this offset, 453 * it will be as a data. 454 */ 455 ext4_es_find_delayed_extent_range(inode, last, last, &es); 456 if (es.es_len != 0 && in_range(last, es.es_lblk, es.es_len)) { 457 if (last != start) 458 dataoff = (loff_t)last << blkbits; 459 break; 460 } 461 462 /* 463 * If there is a unwritten extent at this offset, 464 * it will be as a data or a hole according to page 465 * cache that has data or not. 466 */ 467 if (map.m_flags & EXT4_MAP_UNWRITTEN) { 468 int unwritten; 469 unwritten = ext4_find_unwritten_pgoff(inode, SEEK_DATA, 470 &map, &dataoff); 471 if (unwritten) 472 break; 473 } 474 475 last++; 476 dataoff = (loff_t)last << blkbits; 477 } while (last <= end); 478 479 mutex_unlock(&inode->i_mutex); 480 481 if (dataoff > isize) 482 return -ENXIO; 483 484 return vfs_setpos(file, dataoff, maxsize); 485 } 486 487 /* 488 * ext4_seek_hole() retrieves the offset for SEEK_HOLE. 489 */ 490 static loff_t ext4_seek_hole(struct file *file, loff_t offset, loff_t maxsize) 491 { 492 struct inode *inode = file->f_mapping->host; 493 struct ext4_map_blocks map; 494 struct extent_status es; 495 ext4_lblk_t start, last, end; 496 loff_t holeoff, isize; 497 int blkbits; 498 int ret = 0; 499 500 mutex_lock(&inode->i_mutex); 501 502 isize = i_size_read(inode); 503 if (offset >= isize) { 504 mutex_unlock(&inode->i_mutex); 505 return -ENXIO; 506 } 507 508 blkbits = inode->i_sb->s_blocksize_bits; 509 start = offset >> blkbits; 510 last = start; 511 end = isize >> blkbits; 512 holeoff = offset; 513 514 do { 515 map.m_lblk = last; 516 map.m_len = end - last + 1; 517 ret = ext4_map_blocks(NULL, inode, &map, 0); 518 if (ret > 0 && !(map.m_flags & EXT4_MAP_UNWRITTEN)) { 519 last += ret; 520 holeoff = (loff_t)last << blkbits; 521 continue; 522 } 523 524 /* 525 * If there is a delay extent at this offset, 526 * we will skip this extent. 527 */ 528 ext4_es_find_delayed_extent_range(inode, last, last, &es); 529 if (es.es_len != 0 && in_range(last, es.es_lblk, es.es_len)) { 530 last = es.es_lblk + es.es_len; 531 holeoff = (loff_t)last << blkbits; 532 continue; 533 } 534 535 /* 536 * If there is a unwritten extent at this offset, 537 * it will be as a data or a hole according to page 538 * cache that has data or not. 539 */ 540 if (map.m_flags & EXT4_MAP_UNWRITTEN) { 541 int unwritten; 542 unwritten = ext4_find_unwritten_pgoff(inode, SEEK_HOLE, 543 &map, &holeoff); 544 if (!unwritten) { 545 last += ret; 546 holeoff = (loff_t)last << blkbits; 547 continue; 548 } 549 } 550 551 /* find a hole */ 552 break; 553 } while (last <= end); 554 555 mutex_unlock(&inode->i_mutex); 556 557 if (holeoff > isize) 558 holeoff = isize; 559 560 return vfs_setpos(file, holeoff, maxsize); 561 } 562 563 /* 564 * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values 565 * by calling generic_file_llseek_size() with the appropriate maxbytes 566 * value for each. 567 */ 568 loff_t ext4_llseek(struct file *file, loff_t offset, int whence) 569 { 570 struct inode *inode = file->f_mapping->host; 571 loff_t maxbytes; 572 573 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 574 maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes; 575 else 576 maxbytes = inode->i_sb->s_maxbytes; 577 578 switch (whence) { 579 case SEEK_SET: 580 case SEEK_CUR: 581 case SEEK_END: 582 return generic_file_llseek_size(file, offset, whence, 583 maxbytes, i_size_read(inode)); 584 case SEEK_DATA: 585 return ext4_seek_data(file, offset, maxbytes); 586 case SEEK_HOLE: 587 return ext4_seek_hole(file, offset, maxbytes); 588 } 589 590 return -EINVAL; 591 } 592 593 const struct file_operations ext4_file_operations = { 594 .llseek = ext4_llseek, 595 .read = do_sync_read, 596 .write = do_sync_write, 597 .aio_read = generic_file_aio_read, 598 .aio_write = ext4_file_write, 599 .unlocked_ioctl = ext4_ioctl, 600 #ifdef CONFIG_COMPAT 601 .compat_ioctl = ext4_compat_ioctl, 602 #endif 603 .mmap = ext4_file_mmap, 604 .open = ext4_file_open, 605 .release = ext4_release_file, 606 .fsync = ext4_sync_file, 607 .splice_read = generic_file_splice_read, 608 .splice_write = generic_file_splice_write, 609 .fallocate = ext4_fallocate, 610 }; 611 612 const struct inode_operations ext4_file_inode_operations = { 613 .setattr = ext4_setattr, 614 .getattr = ext4_getattr, 615 .setxattr = generic_setxattr, 616 .getxattr = generic_getxattr, 617 .listxattr = ext4_listxattr, 618 .removexattr = generic_removexattr, 619 .get_acl = ext4_get_acl, 620 .fiemap = ext4_fiemap, 621 }; 622 623