1 /* 2 * linux/fs/ext4/file.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/file.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * ext4 fs regular file handling primitives 16 * 17 * 64-bit file support on 64-bit platforms by Jakub Jelinek 18 * (jj@sunsite.ms.mff.cuni.cz) 19 */ 20 21 #include <linux/time.h> 22 #include <linux/fs.h> 23 #include <linux/jbd2.h> 24 #include <linux/mount.h> 25 #include <linux/path.h> 26 #include <linux/aio.h> 27 #include <linux/quotaops.h> 28 #include <linux/pagevec.h> 29 #include "ext4.h" 30 #include "ext4_jbd2.h" 31 #include "xattr.h" 32 #include "acl.h" 33 34 /* 35 * Called when an inode is released. Note that this is different 36 * from ext4_file_open: open gets called at every open, but release 37 * gets called only when /all/ the files are closed. 38 */ 39 static int ext4_release_file(struct inode *inode, struct file *filp) 40 { 41 if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) { 42 ext4_alloc_da_blocks(inode); 43 ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 44 } 45 /* if we are the last writer on the inode, drop the block reservation */ 46 if ((filp->f_mode & FMODE_WRITE) && 47 (atomic_read(&inode->i_writecount) == 1) && 48 !EXT4_I(inode)->i_reserved_data_blocks) 49 { 50 down_write(&EXT4_I(inode)->i_data_sem); 51 ext4_discard_preallocations(inode); 52 up_write(&EXT4_I(inode)->i_data_sem); 53 } 54 if (is_dx(inode) && filp->private_data) 55 ext4_htree_free_dir_info(filp->private_data); 56 57 return 0; 58 } 59 60 void ext4_unwritten_wait(struct inode *inode) 61 { 62 wait_queue_head_t *wq = ext4_ioend_wq(inode); 63 64 wait_event(*wq, (atomic_read(&EXT4_I(inode)->i_unwritten) == 0)); 65 } 66 67 /* 68 * This tests whether the IO in question is block-aligned or not. 69 * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they 70 * are converted to written only after the IO is complete. Until they are 71 * mapped, these blocks appear as holes, so dio_zero_block() will assume that 72 * it needs to zero out portions of the start and/or end block. If 2 AIO 73 * threads are at work on the same unwritten block, they must be synchronized 74 * or one thread will zero the other's data, causing corruption. 75 */ 76 static int 77 ext4_unaligned_aio(struct inode *inode, const struct iovec *iov, 78 unsigned long nr_segs, loff_t pos) 79 { 80 struct super_block *sb = inode->i_sb; 81 int blockmask = sb->s_blocksize - 1; 82 size_t count = iov_length(iov, nr_segs); 83 loff_t final_size = pos + count; 84 85 if (pos >= inode->i_size) 86 return 0; 87 88 if ((pos & blockmask) || (final_size & blockmask)) 89 return 1; 90 91 return 0; 92 } 93 94 static ssize_t 95 ext4_file_dio_write(struct kiocb *iocb, const struct iovec *iov, 96 unsigned long nr_segs, loff_t pos) 97 { 98 struct file *file = iocb->ki_filp; 99 struct inode *inode = file->f_mapping->host; 100 struct blk_plug plug; 101 int unaligned_aio = 0; 102 ssize_t ret; 103 int overwrite = 0; 104 size_t length = iov_length(iov, nr_segs); 105 106 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) && 107 !is_sync_kiocb(iocb)) 108 unaligned_aio = ext4_unaligned_aio(inode, iov, nr_segs, pos); 109 110 /* Unaligned direct AIO must be serialized; see comment above */ 111 if (unaligned_aio) { 112 mutex_lock(ext4_aio_mutex(inode)); 113 ext4_unwritten_wait(inode); 114 } 115 116 BUG_ON(iocb->ki_pos != pos); 117 118 mutex_lock(&inode->i_mutex); 119 blk_start_plug(&plug); 120 121 iocb->private = &overwrite; 122 123 /* check whether we do a DIO overwrite or not */ 124 if (ext4_should_dioread_nolock(inode) && !unaligned_aio && 125 !file->f_mapping->nrpages && pos + length <= i_size_read(inode)) { 126 struct ext4_map_blocks map; 127 unsigned int blkbits = inode->i_blkbits; 128 int err, len; 129 130 map.m_lblk = pos >> blkbits; 131 map.m_len = (EXT4_BLOCK_ALIGN(pos + length, blkbits) >> blkbits) 132 - map.m_lblk; 133 len = map.m_len; 134 135 err = ext4_map_blocks(NULL, inode, &map, 0); 136 /* 137 * 'err==len' means that all of blocks has been preallocated no 138 * matter they are initialized or not. For excluding 139 * uninitialized extents, we need to check m_flags. There are 140 * two conditions that indicate for initialized extents. 141 * 1) If we hit extent cache, EXT4_MAP_MAPPED flag is returned; 142 * 2) If we do a real lookup, non-flags are returned. 143 * So we should check these two conditions. 144 */ 145 if (err == len && (map.m_flags & EXT4_MAP_MAPPED)) 146 overwrite = 1; 147 } 148 149 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos); 150 mutex_unlock(&inode->i_mutex); 151 152 if (ret > 0 || ret == -EIOCBQUEUED) { 153 ssize_t err; 154 155 err = generic_write_sync(file, pos, ret); 156 if (err < 0 && ret > 0) 157 ret = err; 158 } 159 blk_finish_plug(&plug); 160 161 if (unaligned_aio) 162 mutex_unlock(ext4_aio_mutex(inode)); 163 164 return ret; 165 } 166 167 static ssize_t 168 ext4_file_write(struct kiocb *iocb, const struct iovec *iov, 169 unsigned long nr_segs, loff_t pos) 170 { 171 struct inode *inode = file_inode(iocb->ki_filp); 172 ssize_t ret; 173 174 /* 175 * If we have encountered a bitmap-format file, the size limit 176 * is smaller than s_maxbytes, which is for extent-mapped files. 177 */ 178 179 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 180 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 181 size_t length = iov_length(iov, nr_segs); 182 183 if ((pos > sbi->s_bitmap_maxbytes || 184 (pos == sbi->s_bitmap_maxbytes && length > 0))) 185 return -EFBIG; 186 187 if (pos + length > sbi->s_bitmap_maxbytes) { 188 nr_segs = iov_shorten((struct iovec *)iov, nr_segs, 189 sbi->s_bitmap_maxbytes - pos); 190 } 191 } 192 193 if (unlikely(iocb->ki_filp->f_flags & O_DIRECT)) 194 ret = ext4_file_dio_write(iocb, iov, nr_segs, pos); 195 else 196 ret = generic_file_aio_write(iocb, iov, nr_segs, pos); 197 198 return ret; 199 } 200 201 static const struct vm_operations_struct ext4_file_vm_ops = { 202 .fault = filemap_fault, 203 .page_mkwrite = ext4_page_mkwrite, 204 .remap_pages = generic_file_remap_pages, 205 }; 206 207 static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma) 208 { 209 struct address_space *mapping = file->f_mapping; 210 211 if (!mapping->a_ops->readpage) 212 return -ENOEXEC; 213 file_accessed(file); 214 vma->vm_ops = &ext4_file_vm_ops; 215 return 0; 216 } 217 218 static int ext4_file_open(struct inode * inode, struct file * filp) 219 { 220 struct super_block *sb = inode->i_sb; 221 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 222 struct ext4_inode_info *ei = EXT4_I(inode); 223 struct vfsmount *mnt = filp->f_path.mnt; 224 struct path path; 225 char buf[64], *cp; 226 227 if (unlikely(!(sbi->s_mount_flags & EXT4_MF_MNTDIR_SAMPLED) && 228 !(sb->s_flags & MS_RDONLY))) { 229 sbi->s_mount_flags |= EXT4_MF_MNTDIR_SAMPLED; 230 /* 231 * Sample where the filesystem has been mounted and 232 * store it in the superblock for sysadmin convenience 233 * when trying to sort through large numbers of block 234 * devices or filesystem images. 235 */ 236 memset(buf, 0, sizeof(buf)); 237 path.mnt = mnt; 238 path.dentry = mnt->mnt_root; 239 cp = d_path(&path, buf, sizeof(buf)); 240 if (!IS_ERR(cp)) { 241 handle_t *handle; 242 int err; 243 244 handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1); 245 if (IS_ERR(handle)) 246 return PTR_ERR(handle); 247 err = ext4_journal_get_write_access(handle, sbi->s_sbh); 248 if (err) { 249 ext4_journal_stop(handle); 250 return err; 251 } 252 strlcpy(sbi->s_es->s_last_mounted, cp, 253 sizeof(sbi->s_es->s_last_mounted)); 254 ext4_handle_dirty_super(handle, sb); 255 ext4_journal_stop(handle); 256 } 257 } 258 /* 259 * Set up the jbd2_inode if we are opening the inode for 260 * writing and the journal is present 261 */ 262 if (sbi->s_journal && !ei->jinode && (filp->f_mode & FMODE_WRITE)) { 263 struct jbd2_inode *jinode = jbd2_alloc_inode(GFP_KERNEL); 264 265 spin_lock(&inode->i_lock); 266 if (!ei->jinode) { 267 if (!jinode) { 268 spin_unlock(&inode->i_lock); 269 return -ENOMEM; 270 } 271 ei->jinode = jinode; 272 jbd2_journal_init_jbd_inode(ei->jinode, inode); 273 jinode = NULL; 274 } 275 spin_unlock(&inode->i_lock); 276 if (unlikely(jinode != NULL)) 277 jbd2_free_inode(jinode); 278 } 279 return dquot_file_open(inode, filp); 280 } 281 282 /* 283 * Here we use ext4_map_blocks() to get a block mapping for a extent-based 284 * file rather than ext4_ext_walk_space() because we can introduce 285 * SEEK_DATA/SEEK_HOLE for block-mapped and extent-mapped file at the same 286 * function. When extent status tree has been fully implemented, it will 287 * track all extent status for a file and we can directly use it to 288 * retrieve the offset for SEEK_DATA/SEEK_HOLE. 289 */ 290 291 /* 292 * When we retrieve the offset for SEEK_DATA/SEEK_HOLE, we would need to 293 * lookup page cache to check whether or not there has some data between 294 * [startoff, endoff] because, if this range contains an unwritten extent, 295 * we determine this extent as a data or a hole according to whether the 296 * page cache has data or not. 297 */ 298 static int ext4_find_unwritten_pgoff(struct inode *inode, 299 int whence, 300 struct ext4_map_blocks *map, 301 loff_t *offset) 302 { 303 struct pagevec pvec; 304 unsigned int blkbits; 305 pgoff_t index; 306 pgoff_t end; 307 loff_t endoff; 308 loff_t startoff; 309 loff_t lastoff; 310 int found = 0; 311 312 blkbits = inode->i_sb->s_blocksize_bits; 313 startoff = *offset; 314 lastoff = startoff; 315 endoff = (loff_t)(map->m_lblk + map->m_len) << blkbits; 316 317 index = startoff >> PAGE_CACHE_SHIFT; 318 end = endoff >> PAGE_CACHE_SHIFT; 319 320 pagevec_init(&pvec, 0); 321 do { 322 int i, num; 323 unsigned long nr_pages; 324 325 num = min_t(pgoff_t, end - index, PAGEVEC_SIZE); 326 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index, 327 (pgoff_t)num); 328 if (nr_pages == 0) { 329 if (whence == SEEK_DATA) 330 break; 331 332 BUG_ON(whence != SEEK_HOLE); 333 /* 334 * If this is the first time to go into the loop and 335 * offset is not beyond the end offset, it will be a 336 * hole at this offset 337 */ 338 if (lastoff == startoff || lastoff < endoff) 339 found = 1; 340 break; 341 } 342 343 /* 344 * If this is the first time to go into the loop and 345 * offset is smaller than the first page offset, it will be a 346 * hole at this offset. 347 */ 348 if (lastoff == startoff && whence == SEEK_HOLE && 349 lastoff < page_offset(pvec.pages[0])) { 350 found = 1; 351 break; 352 } 353 354 for (i = 0; i < nr_pages; i++) { 355 struct page *page = pvec.pages[i]; 356 struct buffer_head *bh, *head; 357 358 /* 359 * If the current offset is not beyond the end of given 360 * range, it will be a hole. 361 */ 362 if (lastoff < endoff && whence == SEEK_HOLE && 363 page->index > end) { 364 found = 1; 365 *offset = lastoff; 366 goto out; 367 } 368 369 lock_page(page); 370 371 if (unlikely(page->mapping != inode->i_mapping)) { 372 unlock_page(page); 373 continue; 374 } 375 376 if (!page_has_buffers(page)) { 377 unlock_page(page); 378 continue; 379 } 380 381 if (page_has_buffers(page)) { 382 lastoff = page_offset(page); 383 bh = head = page_buffers(page); 384 do { 385 if (buffer_uptodate(bh) || 386 buffer_unwritten(bh)) { 387 if (whence == SEEK_DATA) 388 found = 1; 389 } else { 390 if (whence == SEEK_HOLE) 391 found = 1; 392 } 393 if (found) { 394 *offset = max_t(loff_t, 395 startoff, lastoff); 396 unlock_page(page); 397 goto out; 398 } 399 lastoff += bh->b_size; 400 bh = bh->b_this_page; 401 } while (bh != head); 402 } 403 404 lastoff = page_offset(page) + PAGE_SIZE; 405 unlock_page(page); 406 } 407 408 /* 409 * The no. of pages is less than our desired, that would be a 410 * hole in there. 411 */ 412 if (nr_pages < num && whence == SEEK_HOLE) { 413 found = 1; 414 *offset = lastoff; 415 break; 416 } 417 418 index = pvec.pages[i - 1]->index + 1; 419 pagevec_release(&pvec); 420 } while (index <= end); 421 422 out: 423 pagevec_release(&pvec); 424 return found; 425 } 426 427 /* 428 * ext4_seek_data() retrieves the offset for SEEK_DATA. 429 */ 430 static loff_t ext4_seek_data(struct file *file, loff_t offset, loff_t maxsize) 431 { 432 struct inode *inode = file->f_mapping->host; 433 struct ext4_map_blocks map; 434 struct extent_status es; 435 ext4_lblk_t start, last, end; 436 loff_t dataoff, isize; 437 int blkbits; 438 int ret = 0; 439 440 mutex_lock(&inode->i_mutex); 441 442 isize = i_size_read(inode); 443 if (offset >= isize) { 444 mutex_unlock(&inode->i_mutex); 445 return -ENXIO; 446 } 447 448 blkbits = inode->i_sb->s_blocksize_bits; 449 start = offset >> blkbits; 450 last = start; 451 end = isize >> blkbits; 452 dataoff = offset; 453 454 do { 455 map.m_lblk = last; 456 map.m_len = end - last + 1; 457 ret = ext4_map_blocks(NULL, inode, &map, 0); 458 if (ret > 0 && !(map.m_flags & EXT4_MAP_UNWRITTEN)) { 459 if (last != start) 460 dataoff = (loff_t)last << blkbits; 461 break; 462 } 463 464 /* 465 * If there is a delay extent at this offset, 466 * it will be as a data. 467 */ 468 ext4_es_find_delayed_extent_range(inode, last, last, &es); 469 if (es.es_len != 0 && in_range(last, es.es_lblk, es.es_len)) { 470 if (last != start) 471 dataoff = (loff_t)last << blkbits; 472 break; 473 } 474 475 /* 476 * If there is a unwritten extent at this offset, 477 * it will be as a data or a hole according to page 478 * cache that has data or not. 479 */ 480 if (map.m_flags & EXT4_MAP_UNWRITTEN) { 481 int unwritten; 482 unwritten = ext4_find_unwritten_pgoff(inode, SEEK_DATA, 483 &map, &dataoff); 484 if (unwritten) 485 break; 486 } 487 488 last++; 489 dataoff = (loff_t)last << blkbits; 490 } while (last <= end); 491 492 mutex_unlock(&inode->i_mutex); 493 494 if (dataoff > isize) 495 return -ENXIO; 496 497 return vfs_setpos(file, dataoff, maxsize); 498 } 499 500 /* 501 * ext4_seek_hole() retrieves the offset for SEEK_HOLE. 502 */ 503 static loff_t ext4_seek_hole(struct file *file, loff_t offset, loff_t maxsize) 504 { 505 struct inode *inode = file->f_mapping->host; 506 struct ext4_map_blocks map; 507 struct extent_status es; 508 ext4_lblk_t start, last, end; 509 loff_t holeoff, isize; 510 int blkbits; 511 int ret = 0; 512 513 mutex_lock(&inode->i_mutex); 514 515 isize = i_size_read(inode); 516 if (offset >= isize) { 517 mutex_unlock(&inode->i_mutex); 518 return -ENXIO; 519 } 520 521 blkbits = inode->i_sb->s_blocksize_bits; 522 start = offset >> blkbits; 523 last = start; 524 end = isize >> blkbits; 525 holeoff = offset; 526 527 do { 528 map.m_lblk = last; 529 map.m_len = end - last + 1; 530 ret = ext4_map_blocks(NULL, inode, &map, 0); 531 if (ret > 0 && !(map.m_flags & EXT4_MAP_UNWRITTEN)) { 532 last += ret; 533 holeoff = (loff_t)last << blkbits; 534 continue; 535 } 536 537 /* 538 * If there is a delay extent at this offset, 539 * we will skip this extent. 540 */ 541 ext4_es_find_delayed_extent_range(inode, last, last, &es); 542 if (es.es_len != 0 && in_range(last, es.es_lblk, es.es_len)) { 543 last = es.es_lblk + es.es_len; 544 holeoff = (loff_t)last << blkbits; 545 continue; 546 } 547 548 /* 549 * If there is a unwritten extent at this offset, 550 * it will be as a data or a hole according to page 551 * cache that has data or not. 552 */ 553 if (map.m_flags & EXT4_MAP_UNWRITTEN) { 554 int unwritten; 555 unwritten = ext4_find_unwritten_pgoff(inode, SEEK_HOLE, 556 &map, &holeoff); 557 if (!unwritten) { 558 last += ret; 559 holeoff = (loff_t)last << blkbits; 560 continue; 561 } 562 } 563 564 /* find a hole */ 565 break; 566 } while (last <= end); 567 568 mutex_unlock(&inode->i_mutex); 569 570 if (holeoff > isize) 571 holeoff = isize; 572 573 return vfs_setpos(file, holeoff, maxsize); 574 } 575 576 /* 577 * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values 578 * by calling generic_file_llseek_size() with the appropriate maxbytes 579 * value for each. 580 */ 581 loff_t ext4_llseek(struct file *file, loff_t offset, int whence) 582 { 583 struct inode *inode = file->f_mapping->host; 584 loff_t maxbytes; 585 586 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 587 maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes; 588 else 589 maxbytes = inode->i_sb->s_maxbytes; 590 591 switch (whence) { 592 case SEEK_SET: 593 case SEEK_CUR: 594 case SEEK_END: 595 return generic_file_llseek_size(file, offset, whence, 596 maxbytes, i_size_read(inode)); 597 case SEEK_DATA: 598 return ext4_seek_data(file, offset, maxbytes); 599 case SEEK_HOLE: 600 return ext4_seek_hole(file, offset, maxbytes); 601 } 602 603 return -EINVAL; 604 } 605 606 const struct file_operations ext4_file_operations = { 607 .llseek = ext4_llseek, 608 .read = do_sync_read, 609 .write = do_sync_write, 610 .aio_read = generic_file_aio_read, 611 .aio_write = ext4_file_write, 612 .unlocked_ioctl = ext4_ioctl, 613 #ifdef CONFIG_COMPAT 614 .compat_ioctl = ext4_compat_ioctl, 615 #endif 616 .mmap = ext4_file_mmap, 617 .open = ext4_file_open, 618 .release = ext4_release_file, 619 .fsync = ext4_sync_file, 620 .splice_read = generic_file_splice_read, 621 .splice_write = generic_file_splice_write, 622 .fallocate = ext4_fallocate, 623 }; 624 625 const struct inode_operations ext4_file_inode_operations = { 626 .setattr = ext4_setattr, 627 .getattr = ext4_getattr, 628 .setxattr = generic_setxattr, 629 .getxattr = generic_getxattr, 630 .listxattr = ext4_listxattr, 631 .removexattr = generic_removexattr, 632 .get_acl = ext4_get_acl, 633 .fiemap = ext4_fiemap, 634 }; 635 636