xref: /openbmc/linux/fs/ext4/file.c (revision 6aeadf78)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/file.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/file.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  ext4 fs regular file handling primitives
17  *
18  *  64-bit file support on 64-bit platforms by Jakub Jelinek
19  *	(jj@sunsite.ms.mff.cuni.cz)
20  */
21 
22 #include <linux/time.h>
23 #include <linux/fs.h>
24 #include <linux/iomap.h>
25 #include <linux/mount.h>
26 #include <linux/path.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/pagevec.h>
30 #include <linux/uio.h>
31 #include <linux/mman.h>
32 #include <linux/backing-dev.h>
33 #include "ext4.h"
34 #include "ext4_jbd2.h"
35 #include "xattr.h"
36 #include "acl.h"
37 #include "truncate.h"
38 
39 /*
40  * Returns %true if the given DIO request should be attempted with DIO, or
41  * %false if it should fall back to buffered I/O.
42  *
43  * DIO isn't well specified; when it's unsupported (either due to the request
44  * being misaligned, or due to the file not supporting DIO at all), filesystems
45  * either fall back to buffered I/O or return EINVAL.  For files that don't use
46  * any special features like encryption or verity, ext4 has traditionally
47  * returned EINVAL for misaligned DIO.  iomap_dio_rw() uses this convention too.
48  * In this case, we should attempt the DIO, *not* fall back to buffered I/O.
49  *
50  * In contrast, in cases where DIO is unsupported due to ext4 features, ext4
51  * traditionally falls back to buffered I/O.
52  *
53  * This function implements the traditional ext4 behavior in all these cases.
54  */
55 static bool ext4_should_use_dio(struct kiocb *iocb, struct iov_iter *iter)
56 {
57 	struct inode *inode = file_inode(iocb->ki_filp);
58 	u32 dio_align = ext4_dio_alignment(inode);
59 
60 	if (dio_align == 0)
61 		return false;
62 
63 	if (dio_align == 1)
64 		return true;
65 
66 	return IS_ALIGNED(iocb->ki_pos | iov_iter_alignment(iter), dio_align);
67 }
68 
69 static ssize_t ext4_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
70 {
71 	ssize_t ret;
72 	struct inode *inode = file_inode(iocb->ki_filp);
73 
74 	if (iocb->ki_flags & IOCB_NOWAIT) {
75 		if (!inode_trylock_shared(inode))
76 			return -EAGAIN;
77 	} else {
78 		inode_lock_shared(inode);
79 	}
80 
81 	if (!ext4_should_use_dio(iocb, to)) {
82 		inode_unlock_shared(inode);
83 		/*
84 		 * Fallback to buffered I/O if the operation being performed on
85 		 * the inode is not supported by direct I/O. The IOCB_DIRECT
86 		 * flag needs to be cleared here in order to ensure that the
87 		 * direct I/O path within generic_file_read_iter() is not
88 		 * taken.
89 		 */
90 		iocb->ki_flags &= ~IOCB_DIRECT;
91 		return generic_file_read_iter(iocb, to);
92 	}
93 
94 	ret = iomap_dio_rw(iocb, to, &ext4_iomap_ops, NULL, 0, NULL, 0);
95 	inode_unlock_shared(inode);
96 
97 	file_accessed(iocb->ki_filp);
98 	return ret;
99 }
100 
101 #ifdef CONFIG_FS_DAX
102 static ssize_t ext4_dax_read_iter(struct kiocb *iocb, struct iov_iter *to)
103 {
104 	struct inode *inode = file_inode(iocb->ki_filp);
105 	ssize_t ret;
106 
107 	if (iocb->ki_flags & IOCB_NOWAIT) {
108 		if (!inode_trylock_shared(inode))
109 			return -EAGAIN;
110 	} else {
111 		inode_lock_shared(inode);
112 	}
113 	/*
114 	 * Recheck under inode lock - at this point we are sure it cannot
115 	 * change anymore
116 	 */
117 	if (!IS_DAX(inode)) {
118 		inode_unlock_shared(inode);
119 		/* Fallback to buffered IO in case we cannot support DAX */
120 		return generic_file_read_iter(iocb, to);
121 	}
122 	ret = dax_iomap_rw(iocb, to, &ext4_iomap_ops);
123 	inode_unlock_shared(inode);
124 
125 	file_accessed(iocb->ki_filp);
126 	return ret;
127 }
128 #endif
129 
130 static ssize_t ext4_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
131 {
132 	struct inode *inode = file_inode(iocb->ki_filp);
133 
134 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
135 		return -EIO;
136 
137 	if (!iov_iter_count(to))
138 		return 0; /* skip atime */
139 
140 #ifdef CONFIG_FS_DAX
141 	if (IS_DAX(inode))
142 		return ext4_dax_read_iter(iocb, to);
143 #endif
144 	if (iocb->ki_flags & IOCB_DIRECT)
145 		return ext4_dio_read_iter(iocb, to);
146 
147 	return generic_file_read_iter(iocb, to);
148 }
149 
150 static ssize_t ext4_file_splice_read(struct file *in, loff_t *ppos,
151 				     struct pipe_inode_info *pipe,
152 				     size_t len, unsigned int flags)
153 {
154 	struct inode *inode = file_inode(in);
155 
156 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
157 		return -EIO;
158 	return filemap_splice_read(in, ppos, pipe, len, flags);
159 }
160 
161 /*
162  * Called when an inode is released. Note that this is different
163  * from ext4_file_open: open gets called at every open, but release
164  * gets called only when /all/ the files are closed.
165  */
166 static int ext4_release_file(struct inode *inode, struct file *filp)
167 {
168 	if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) {
169 		ext4_alloc_da_blocks(inode);
170 		ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
171 	}
172 	/* if we are the last writer on the inode, drop the block reservation */
173 	if ((filp->f_mode & FMODE_WRITE) &&
174 			(atomic_read(&inode->i_writecount) == 1) &&
175 			!EXT4_I(inode)->i_reserved_data_blocks) {
176 		down_write(&EXT4_I(inode)->i_data_sem);
177 		ext4_discard_preallocations(inode, 0);
178 		up_write(&EXT4_I(inode)->i_data_sem);
179 	}
180 	if (is_dx(inode) && filp->private_data)
181 		ext4_htree_free_dir_info(filp->private_data);
182 
183 	return 0;
184 }
185 
186 /*
187  * This tests whether the IO in question is block-aligned or not.
188  * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
189  * are converted to written only after the IO is complete.  Until they are
190  * mapped, these blocks appear as holes, so dio_zero_block() will assume that
191  * it needs to zero out portions of the start and/or end block.  If 2 AIO
192  * threads are at work on the same unwritten block, they must be synchronized
193  * or one thread will zero the other's data, causing corruption.
194  */
195 static bool
196 ext4_unaligned_io(struct inode *inode, struct iov_iter *from, loff_t pos)
197 {
198 	struct super_block *sb = inode->i_sb;
199 	unsigned long blockmask = sb->s_blocksize - 1;
200 
201 	if ((pos | iov_iter_alignment(from)) & blockmask)
202 		return true;
203 
204 	return false;
205 }
206 
207 static bool
208 ext4_extending_io(struct inode *inode, loff_t offset, size_t len)
209 {
210 	if (offset + len > i_size_read(inode) ||
211 	    offset + len > EXT4_I(inode)->i_disksize)
212 		return true;
213 	return false;
214 }
215 
216 /* Is IO overwriting allocated or initialized blocks? */
217 static bool ext4_overwrite_io(struct inode *inode,
218 			      loff_t pos, loff_t len, bool *unwritten)
219 {
220 	struct ext4_map_blocks map;
221 	unsigned int blkbits = inode->i_blkbits;
222 	int err, blklen;
223 
224 	if (pos + len > i_size_read(inode))
225 		return false;
226 
227 	map.m_lblk = pos >> blkbits;
228 	map.m_len = EXT4_MAX_BLOCKS(len, pos, blkbits);
229 	blklen = map.m_len;
230 
231 	err = ext4_map_blocks(NULL, inode, &map, 0);
232 	if (err != blklen)
233 		return false;
234 	/*
235 	 * 'err==len' means that all of the blocks have been preallocated,
236 	 * regardless of whether they have been initialized or not. We need to
237 	 * check m_flags to distinguish the unwritten extents.
238 	 */
239 	*unwritten = !(map.m_flags & EXT4_MAP_MAPPED);
240 	return true;
241 }
242 
243 static ssize_t ext4_generic_write_checks(struct kiocb *iocb,
244 					 struct iov_iter *from)
245 {
246 	struct inode *inode = file_inode(iocb->ki_filp);
247 	ssize_t ret;
248 
249 	if (unlikely(IS_IMMUTABLE(inode)))
250 		return -EPERM;
251 
252 	ret = generic_write_checks(iocb, from);
253 	if (ret <= 0)
254 		return ret;
255 
256 	/*
257 	 * If we have encountered a bitmap-format file, the size limit
258 	 * is smaller than s_maxbytes, which is for extent-mapped files.
259 	 */
260 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
261 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
262 
263 		if (iocb->ki_pos >= sbi->s_bitmap_maxbytes)
264 			return -EFBIG;
265 		iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos);
266 	}
267 
268 	return iov_iter_count(from);
269 }
270 
271 static ssize_t ext4_write_checks(struct kiocb *iocb, struct iov_iter *from)
272 {
273 	ssize_t ret, count;
274 
275 	count = ext4_generic_write_checks(iocb, from);
276 	if (count <= 0)
277 		return count;
278 
279 	ret = file_modified(iocb->ki_filp);
280 	if (ret)
281 		return ret;
282 	return count;
283 }
284 
285 static ssize_t ext4_buffered_write_iter(struct kiocb *iocb,
286 					struct iov_iter *from)
287 {
288 	ssize_t ret;
289 	struct inode *inode = file_inode(iocb->ki_filp);
290 
291 	if (iocb->ki_flags & IOCB_NOWAIT)
292 		return -EOPNOTSUPP;
293 
294 	inode_lock(inode);
295 	ret = ext4_write_checks(iocb, from);
296 	if (ret <= 0)
297 		goto out;
298 
299 	current->backing_dev_info = inode_to_bdi(inode);
300 	ret = generic_perform_write(iocb, from);
301 	current->backing_dev_info = NULL;
302 
303 out:
304 	inode_unlock(inode);
305 	if (likely(ret > 0)) {
306 		iocb->ki_pos += ret;
307 		ret = generic_write_sync(iocb, ret);
308 	}
309 
310 	return ret;
311 }
312 
313 static ssize_t ext4_handle_inode_extension(struct inode *inode, loff_t offset,
314 					   ssize_t written, size_t count)
315 {
316 	handle_t *handle;
317 	bool truncate = false;
318 	u8 blkbits = inode->i_blkbits;
319 	ext4_lblk_t written_blk, end_blk;
320 	int ret;
321 
322 	/*
323 	 * Note that EXT4_I(inode)->i_disksize can get extended up to
324 	 * inode->i_size while the I/O was running due to writeback of delalloc
325 	 * blocks. But, the code in ext4_iomap_alloc() is careful to use
326 	 * zeroed/unwritten extents if this is possible; thus we won't leave
327 	 * uninitialized blocks in a file even if we didn't succeed in writing
328 	 * as much as we intended.
329 	 */
330 	WARN_ON_ONCE(i_size_read(inode) < EXT4_I(inode)->i_disksize);
331 	if (offset + count <= EXT4_I(inode)->i_disksize) {
332 		/*
333 		 * We need to ensure that the inode is removed from the orphan
334 		 * list if it has been added prematurely, due to writeback of
335 		 * delalloc blocks.
336 		 */
337 		if (!list_empty(&EXT4_I(inode)->i_orphan) && inode->i_nlink) {
338 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
339 
340 			if (IS_ERR(handle)) {
341 				ext4_orphan_del(NULL, inode);
342 				return PTR_ERR(handle);
343 			}
344 
345 			ext4_orphan_del(handle, inode);
346 			ext4_journal_stop(handle);
347 		}
348 
349 		return written;
350 	}
351 
352 	if (written < 0)
353 		goto truncate;
354 
355 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
356 	if (IS_ERR(handle)) {
357 		written = PTR_ERR(handle);
358 		goto truncate;
359 	}
360 
361 	if (ext4_update_inode_size(inode, offset + written)) {
362 		ret = ext4_mark_inode_dirty(handle, inode);
363 		if (unlikely(ret)) {
364 			written = ret;
365 			ext4_journal_stop(handle);
366 			goto truncate;
367 		}
368 	}
369 
370 	/*
371 	 * We may need to truncate allocated but not written blocks beyond EOF.
372 	 */
373 	written_blk = ALIGN(offset + written, 1 << blkbits);
374 	end_blk = ALIGN(offset + count, 1 << blkbits);
375 	if (written_blk < end_blk && ext4_can_truncate(inode))
376 		truncate = true;
377 
378 	/*
379 	 * Remove the inode from the orphan list if it has been extended and
380 	 * everything went OK.
381 	 */
382 	if (!truncate && inode->i_nlink)
383 		ext4_orphan_del(handle, inode);
384 	ext4_journal_stop(handle);
385 
386 	if (truncate) {
387 truncate:
388 		ext4_truncate_failed_write(inode);
389 		/*
390 		 * If the truncate operation failed early, then the inode may
391 		 * still be on the orphan list. In that case, we need to try
392 		 * remove the inode from the in-memory linked list.
393 		 */
394 		if (inode->i_nlink)
395 			ext4_orphan_del(NULL, inode);
396 	}
397 
398 	return written;
399 }
400 
401 static int ext4_dio_write_end_io(struct kiocb *iocb, ssize_t size,
402 				 int error, unsigned int flags)
403 {
404 	loff_t pos = iocb->ki_pos;
405 	struct inode *inode = file_inode(iocb->ki_filp);
406 
407 	if (error)
408 		return error;
409 
410 	if (size && flags & IOMAP_DIO_UNWRITTEN) {
411 		error = ext4_convert_unwritten_extents(NULL, inode, pos, size);
412 		if (error < 0)
413 			return error;
414 	}
415 	/*
416 	 * If we are extending the file, we have to update i_size here before
417 	 * page cache gets invalidated in iomap_dio_rw(). Otherwise racing
418 	 * buffered reads could zero out too much from page cache pages. Update
419 	 * of on-disk size will happen later in ext4_dio_write_iter() where
420 	 * we have enough information to also perform orphan list handling etc.
421 	 * Note that we perform all extending writes synchronously under
422 	 * i_rwsem held exclusively so i_size update is safe here in that case.
423 	 * If the write was not extending, we cannot see pos > i_size here
424 	 * because operations reducing i_size like truncate wait for all
425 	 * outstanding DIO before updating i_size.
426 	 */
427 	pos += size;
428 	if (pos > i_size_read(inode))
429 		i_size_write(inode, pos);
430 
431 	return 0;
432 }
433 
434 static const struct iomap_dio_ops ext4_dio_write_ops = {
435 	.end_io = ext4_dio_write_end_io,
436 };
437 
438 /*
439  * The intention here is to start with shared lock acquired then see if any
440  * condition requires an exclusive inode lock. If yes, then we restart the
441  * whole operation by releasing the shared lock and acquiring exclusive lock.
442  *
443  * - For unaligned_io we never take shared lock as it may cause data corruption
444  *   when two unaligned IO tries to modify the same block e.g. while zeroing.
445  *
446  * - For extending writes case we don't take the shared lock, since it requires
447  *   updating inode i_disksize and/or orphan handling with exclusive lock.
448  *
449  * - shared locking will only be true mostly with overwrites, including
450  *   initialized blocks and unwritten blocks. For overwrite unwritten blocks
451  *   we protect splitting extents by i_data_sem in ext4_inode_info, so we can
452  *   also release exclusive i_rwsem lock.
453  *
454  * - Otherwise we will switch to exclusive i_rwsem lock.
455  */
456 static ssize_t ext4_dio_write_checks(struct kiocb *iocb, struct iov_iter *from,
457 				     bool *ilock_shared, bool *extend,
458 				     bool *unwritten)
459 {
460 	struct file *file = iocb->ki_filp;
461 	struct inode *inode = file_inode(file);
462 	loff_t offset;
463 	size_t count;
464 	ssize_t ret;
465 
466 restart:
467 	ret = ext4_generic_write_checks(iocb, from);
468 	if (ret <= 0)
469 		goto out;
470 
471 	offset = iocb->ki_pos;
472 	count = ret;
473 	if (ext4_extending_io(inode, offset, count))
474 		*extend = true;
475 	/*
476 	 * Determine whether the IO operation will overwrite allocated
477 	 * and initialized blocks.
478 	 * We need exclusive i_rwsem for changing security info
479 	 * in file_modified().
480 	 */
481 	if (*ilock_shared && (!IS_NOSEC(inode) || *extend ||
482 	     !ext4_overwrite_io(inode, offset, count, unwritten))) {
483 		if (iocb->ki_flags & IOCB_NOWAIT) {
484 			ret = -EAGAIN;
485 			goto out;
486 		}
487 		inode_unlock_shared(inode);
488 		*ilock_shared = false;
489 		inode_lock(inode);
490 		goto restart;
491 	}
492 
493 	ret = file_modified(file);
494 	if (ret < 0)
495 		goto out;
496 
497 	return count;
498 out:
499 	if (*ilock_shared)
500 		inode_unlock_shared(inode);
501 	else
502 		inode_unlock(inode);
503 	return ret;
504 }
505 
506 static ssize_t ext4_dio_write_iter(struct kiocb *iocb, struct iov_iter *from)
507 {
508 	ssize_t ret;
509 	handle_t *handle;
510 	struct inode *inode = file_inode(iocb->ki_filp);
511 	loff_t offset = iocb->ki_pos;
512 	size_t count = iov_iter_count(from);
513 	const struct iomap_ops *iomap_ops = &ext4_iomap_ops;
514 	bool extend = false, unaligned_io = false, unwritten = false;
515 	bool ilock_shared = true;
516 
517 	/*
518 	 * We initially start with shared inode lock unless it is
519 	 * unaligned IO which needs exclusive lock anyways.
520 	 */
521 	if (ext4_unaligned_io(inode, from, offset)) {
522 		unaligned_io = true;
523 		ilock_shared = false;
524 	}
525 	/*
526 	 * Quick check here without any i_rwsem lock to see if it is extending
527 	 * IO. A more reliable check is done in ext4_dio_write_checks() with
528 	 * proper locking in place.
529 	 */
530 	if (offset + count > i_size_read(inode))
531 		ilock_shared = false;
532 
533 	if (iocb->ki_flags & IOCB_NOWAIT) {
534 		if (ilock_shared) {
535 			if (!inode_trylock_shared(inode))
536 				return -EAGAIN;
537 		} else {
538 			if (!inode_trylock(inode))
539 				return -EAGAIN;
540 		}
541 	} else {
542 		if (ilock_shared)
543 			inode_lock_shared(inode);
544 		else
545 			inode_lock(inode);
546 	}
547 
548 	/* Fallback to buffered I/O if the inode does not support direct I/O. */
549 	if (!ext4_should_use_dio(iocb, from)) {
550 		if (ilock_shared)
551 			inode_unlock_shared(inode);
552 		else
553 			inode_unlock(inode);
554 		return ext4_buffered_write_iter(iocb, from);
555 	}
556 
557 	ret = ext4_dio_write_checks(iocb, from,
558 				    &ilock_shared, &extend, &unwritten);
559 	if (ret <= 0)
560 		return ret;
561 
562 	/* if we're going to block and IOCB_NOWAIT is set, return -EAGAIN */
563 	if ((iocb->ki_flags & IOCB_NOWAIT) && (unaligned_io || extend)) {
564 		ret = -EAGAIN;
565 		goto out;
566 	}
567 	/*
568 	 * Make sure inline data cannot be created anymore since we are going
569 	 * to allocate blocks for DIO. We know the inode does not have any
570 	 * inline data now because ext4_dio_supported() checked for that.
571 	 */
572 	ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
573 
574 	offset = iocb->ki_pos;
575 	count = ret;
576 
577 	/*
578 	 * Unaligned direct IO must be serialized among each other as zeroing
579 	 * of partial blocks of two competing unaligned IOs can result in data
580 	 * corruption.
581 	 *
582 	 * So we make sure we don't allow any unaligned IO in flight.
583 	 * For IOs where we need not wait (like unaligned non-AIO DIO),
584 	 * below inode_dio_wait() may anyway become a no-op, since we start
585 	 * with exclusive lock.
586 	 */
587 	if (unaligned_io)
588 		inode_dio_wait(inode);
589 
590 	if (extend) {
591 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
592 		if (IS_ERR(handle)) {
593 			ret = PTR_ERR(handle);
594 			goto out;
595 		}
596 
597 		ret = ext4_orphan_add(handle, inode);
598 		if (ret) {
599 			ext4_journal_stop(handle);
600 			goto out;
601 		}
602 
603 		ext4_journal_stop(handle);
604 	}
605 
606 	if (ilock_shared && !unwritten)
607 		iomap_ops = &ext4_iomap_overwrite_ops;
608 	ret = iomap_dio_rw(iocb, from, iomap_ops, &ext4_dio_write_ops,
609 			   (unaligned_io || extend) ? IOMAP_DIO_FORCE_WAIT : 0,
610 			   NULL, 0);
611 	if (ret == -ENOTBLK)
612 		ret = 0;
613 
614 	if (extend)
615 		ret = ext4_handle_inode_extension(inode, offset, ret, count);
616 
617 out:
618 	if (ilock_shared)
619 		inode_unlock_shared(inode);
620 	else
621 		inode_unlock(inode);
622 
623 	if (ret >= 0 && iov_iter_count(from)) {
624 		ssize_t err;
625 		loff_t endbyte;
626 
627 		offset = iocb->ki_pos;
628 		err = ext4_buffered_write_iter(iocb, from);
629 		if (err < 0)
630 			return err;
631 
632 		/*
633 		 * We need to ensure that the pages within the page cache for
634 		 * the range covered by this I/O are written to disk and
635 		 * invalidated. This is in attempt to preserve the expected
636 		 * direct I/O semantics in the case we fallback to buffered I/O
637 		 * to complete off the I/O request.
638 		 */
639 		ret += err;
640 		endbyte = offset + err - 1;
641 		err = filemap_write_and_wait_range(iocb->ki_filp->f_mapping,
642 						   offset, endbyte);
643 		if (!err)
644 			invalidate_mapping_pages(iocb->ki_filp->f_mapping,
645 						 offset >> PAGE_SHIFT,
646 						 endbyte >> PAGE_SHIFT);
647 	}
648 
649 	return ret;
650 }
651 
652 #ifdef CONFIG_FS_DAX
653 static ssize_t
654 ext4_dax_write_iter(struct kiocb *iocb, struct iov_iter *from)
655 {
656 	ssize_t ret;
657 	size_t count;
658 	loff_t offset;
659 	handle_t *handle;
660 	bool extend = false;
661 	struct inode *inode = file_inode(iocb->ki_filp);
662 
663 	if (iocb->ki_flags & IOCB_NOWAIT) {
664 		if (!inode_trylock(inode))
665 			return -EAGAIN;
666 	} else {
667 		inode_lock(inode);
668 	}
669 
670 	ret = ext4_write_checks(iocb, from);
671 	if (ret <= 0)
672 		goto out;
673 
674 	offset = iocb->ki_pos;
675 	count = iov_iter_count(from);
676 
677 	if (offset + count > EXT4_I(inode)->i_disksize) {
678 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
679 		if (IS_ERR(handle)) {
680 			ret = PTR_ERR(handle);
681 			goto out;
682 		}
683 
684 		ret = ext4_orphan_add(handle, inode);
685 		if (ret) {
686 			ext4_journal_stop(handle);
687 			goto out;
688 		}
689 
690 		extend = true;
691 		ext4_journal_stop(handle);
692 	}
693 
694 	ret = dax_iomap_rw(iocb, from, &ext4_iomap_ops);
695 
696 	if (extend)
697 		ret = ext4_handle_inode_extension(inode, offset, ret, count);
698 out:
699 	inode_unlock(inode);
700 	if (ret > 0)
701 		ret = generic_write_sync(iocb, ret);
702 	return ret;
703 }
704 #endif
705 
706 static ssize_t
707 ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
708 {
709 	struct inode *inode = file_inode(iocb->ki_filp);
710 
711 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
712 		return -EIO;
713 
714 #ifdef CONFIG_FS_DAX
715 	if (IS_DAX(inode))
716 		return ext4_dax_write_iter(iocb, from);
717 #endif
718 	if (iocb->ki_flags & IOCB_DIRECT)
719 		return ext4_dio_write_iter(iocb, from);
720 	else
721 		return ext4_buffered_write_iter(iocb, from);
722 }
723 
724 #ifdef CONFIG_FS_DAX
725 static vm_fault_t ext4_dax_huge_fault(struct vm_fault *vmf,
726 		enum page_entry_size pe_size)
727 {
728 	int error = 0;
729 	vm_fault_t result;
730 	int retries = 0;
731 	handle_t *handle = NULL;
732 	struct inode *inode = file_inode(vmf->vma->vm_file);
733 	struct super_block *sb = inode->i_sb;
734 
735 	/*
736 	 * We have to distinguish real writes from writes which will result in a
737 	 * COW page; COW writes should *not* poke the journal (the file will not
738 	 * be changed). Doing so would cause unintended failures when mounted
739 	 * read-only.
740 	 *
741 	 * We check for VM_SHARED rather than vmf->cow_page since the latter is
742 	 * unset for pe_size != PE_SIZE_PTE (i.e. only in do_cow_fault); for
743 	 * other sizes, dax_iomap_fault will handle splitting / fallback so that
744 	 * we eventually come back with a COW page.
745 	 */
746 	bool write = (vmf->flags & FAULT_FLAG_WRITE) &&
747 		(vmf->vma->vm_flags & VM_SHARED);
748 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
749 	pfn_t pfn;
750 
751 	if (write) {
752 		sb_start_pagefault(sb);
753 		file_update_time(vmf->vma->vm_file);
754 		filemap_invalidate_lock_shared(mapping);
755 retry:
756 		handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE,
757 					       EXT4_DATA_TRANS_BLOCKS(sb));
758 		if (IS_ERR(handle)) {
759 			filemap_invalidate_unlock_shared(mapping);
760 			sb_end_pagefault(sb);
761 			return VM_FAULT_SIGBUS;
762 		}
763 	} else {
764 		filemap_invalidate_lock_shared(mapping);
765 	}
766 	result = dax_iomap_fault(vmf, pe_size, &pfn, &error, &ext4_iomap_ops);
767 	if (write) {
768 		ext4_journal_stop(handle);
769 
770 		if ((result & VM_FAULT_ERROR) && error == -ENOSPC &&
771 		    ext4_should_retry_alloc(sb, &retries))
772 			goto retry;
773 		/* Handling synchronous page fault? */
774 		if (result & VM_FAULT_NEEDDSYNC)
775 			result = dax_finish_sync_fault(vmf, pe_size, pfn);
776 		filemap_invalidate_unlock_shared(mapping);
777 		sb_end_pagefault(sb);
778 	} else {
779 		filemap_invalidate_unlock_shared(mapping);
780 	}
781 
782 	return result;
783 }
784 
785 static vm_fault_t ext4_dax_fault(struct vm_fault *vmf)
786 {
787 	return ext4_dax_huge_fault(vmf, PE_SIZE_PTE);
788 }
789 
790 static const struct vm_operations_struct ext4_dax_vm_ops = {
791 	.fault		= ext4_dax_fault,
792 	.huge_fault	= ext4_dax_huge_fault,
793 	.page_mkwrite	= ext4_dax_fault,
794 	.pfn_mkwrite	= ext4_dax_fault,
795 };
796 #else
797 #define ext4_dax_vm_ops	ext4_file_vm_ops
798 #endif
799 
800 static const struct vm_operations_struct ext4_file_vm_ops = {
801 	.fault		= filemap_fault,
802 	.map_pages	= filemap_map_pages,
803 	.page_mkwrite   = ext4_page_mkwrite,
804 };
805 
806 static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
807 {
808 	struct inode *inode = file->f_mapping->host;
809 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
810 	struct dax_device *dax_dev = sbi->s_daxdev;
811 
812 	if (unlikely(ext4_forced_shutdown(sbi)))
813 		return -EIO;
814 
815 	/*
816 	 * We don't support synchronous mappings for non-DAX files and
817 	 * for DAX files if underneath dax_device is not synchronous.
818 	 */
819 	if (!daxdev_mapping_supported(vma, dax_dev))
820 		return -EOPNOTSUPP;
821 
822 	file_accessed(file);
823 	if (IS_DAX(file_inode(file))) {
824 		vma->vm_ops = &ext4_dax_vm_ops;
825 		vm_flags_set(vma, VM_HUGEPAGE);
826 	} else {
827 		vma->vm_ops = &ext4_file_vm_ops;
828 	}
829 	return 0;
830 }
831 
832 static int ext4_sample_last_mounted(struct super_block *sb,
833 				    struct vfsmount *mnt)
834 {
835 	struct ext4_sb_info *sbi = EXT4_SB(sb);
836 	struct path path;
837 	char buf[64], *cp;
838 	handle_t *handle;
839 	int err;
840 
841 	if (likely(ext4_test_mount_flag(sb, EXT4_MF_MNTDIR_SAMPLED)))
842 		return 0;
843 
844 	if (sb_rdonly(sb) || !sb_start_intwrite_trylock(sb))
845 		return 0;
846 
847 	ext4_set_mount_flag(sb, EXT4_MF_MNTDIR_SAMPLED);
848 	/*
849 	 * Sample where the filesystem has been mounted and
850 	 * store it in the superblock for sysadmin convenience
851 	 * when trying to sort through large numbers of block
852 	 * devices or filesystem images.
853 	 */
854 	memset(buf, 0, sizeof(buf));
855 	path.mnt = mnt;
856 	path.dentry = mnt->mnt_root;
857 	cp = d_path(&path, buf, sizeof(buf));
858 	err = 0;
859 	if (IS_ERR(cp))
860 		goto out;
861 
862 	handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
863 	err = PTR_ERR(handle);
864 	if (IS_ERR(handle))
865 		goto out;
866 	BUFFER_TRACE(sbi->s_sbh, "get_write_access");
867 	err = ext4_journal_get_write_access(handle, sb, sbi->s_sbh,
868 					    EXT4_JTR_NONE);
869 	if (err)
870 		goto out_journal;
871 	lock_buffer(sbi->s_sbh);
872 	strncpy(sbi->s_es->s_last_mounted, cp,
873 		sizeof(sbi->s_es->s_last_mounted));
874 	ext4_superblock_csum_set(sb);
875 	unlock_buffer(sbi->s_sbh);
876 	ext4_handle_dirty_metadata(handle, NULL, sbi->s_sbh);
877 out_journal:
878 	ext4_journal_stop(handle);
879 out:
880 	sb_end_intwrite(sb);
881 	return err;
882 }
883 
884 static int ext4_file_open(struct inode *inode, struct file *filp)
885 {
886 	int ret;
887 
888 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
889 		return -EIO;
890 
891 	ret = ext4_sample_last_mounted(inode->i_sb, filp->f_path.mnt);
892 	if (ret)
893 		return ret;
894 
895 	ret = fscrypt_file_open(inode, filp);
896 	if (ret)
897 		return ret;
898 
899 	ret = fsverity_file_open(inode, filp);
900 	if (ret)
901 		return ret;
902 
903 	/*
904 	 * Set up the jbd2_inode if we are opening the inode for
905 	 * writing and the journal is present
906 	 */
907 	if (filp->f_mode & FMODE_WRITE) {
908 		ret = ext4_inode_attach_jinode(inode);
909 		if (ret < 0)
910 			return ret;
911 	}
912 
913 	filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC |
914 			FMODE_DIO_PARALLEL_WRITE;
915 	return dquot_file_open(inode, filp);
916 }
917 
918 /*
919  * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
920  * by calling generic_file_llseek_size() with the appropriate maxbytes
921  * value for each.
922  */
923 loff_t ext4_llseek(struct file *file, loff_t offset, int whence)
924 {
925 	struct inode *inode = file->f_mapping->host;
926 	loff_t maxbytes;
927 
928 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
929 		maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes;
930 	else
931 		maxbytes = inode->i_sb->s_maxbytes;
932 
933 	switch (whence) {
934 	default:
935 		return generic_file_llseek_size(file, offset, whence,
936 						maxbytes, i_size_read(inode));
937 	case SEEK_HOLE:
938 		inode_lock_shared(inode);
939 		offset = iomap_seek_hole(inode, offset,
940 					 &ext4_iomap_report_ops);
941 		inode_unlock_shared(inode);
942 		break;
943 	case SEEK_DATA:
944 		inode_lock_shared(inode);
945 		offset = iomap_seek_data(inode, offset,
946 					 &ext4_iomap_report_ops);
947 		inode_unlock_shared(inode);
948 		break;
949 	}
950 
951 	if (offset < 0)
952 		return offset;
953 	return vfs_setpos(file, offset, maxbytes);
954 }
955 
956 const struct file_operations ext4_file_operations = {
957 	.llseek		= ext4_llseek,
958 	.read_iter	= ext4_file_read_iter,
959 	.write_iter	= ext4_file_write_iter,
960 	.iopoll		= iocb_bio_iopoll,
961 	.unlocked_ioctl = ext4_ioctl,
962 #ifdef CONFIG_COMPAT
963 	.compat_ioctl	= ext4_compat_ioctl,
964 #endif
965 	.mmap		= ext4_file_mmap,
966 	.mmap_supported_flags = MAP_SYNC,
967 	.open		= ext4_file_open,
968 	.release	= ext4_release_file,
969 	.fsync		= ext4_sync_file,
970 	.get_unmapped_area = thp_get_unmapped_area,
971 	.splice_read	= ext4_file_splice_read,
972 	.splice_write	= iter_file_splice_write,
973 	.fallocate	= ext4_fallocate,
974 };
975 
976 const struct inode_operations ext4_file_inode_operations = {
977 	.setattr	= ext4_setattr,
978 	.getattr	= ext4_file_getattr,
979 	.listxattr	= ext4_listxattr,
980 	.get_inode_acl	= ext4_get_acl,
981 	.set_acl	= ext4_set_acl,
982 	.fiemap		= ext4_fiemap,
983 	.fileattr_get	= ext4_fileattr_get,
984 	.fileattr_set	= ext4_fileattr_set,
985 };
986 
987