xref: /openbmc/linux/fs/ext4/file.c (revision 6391503b)
1 /*
2  *  linux/fs/ext4/file.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/file.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  ext4 fs regular file handling primitives
16  *
17  *  64-bit file support on 64-bit platforms by Jakub Jelinek
18  *	(jj@sunsite.ms.mff.cuni.cz)
19  */
20 
21 #include <linux/time.h>
22 #include <linux/fs.h>
23 #include <linux/mount.h>
24 #include <linux/path.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/pagevec.h>
28 #include <linux/uio.h>
29 #include "ext4.h"
30 #include "ext4_jbd2.h"
31 #include "xattr.h"
32 #include "acl.h"
33 
34 /*
35  * Called when an inode is released. Note that this is different
36  * from ext4_file_open: open gets called at every open, but release
37  * gets called only when /all/ the files are closed.
38  */
39 static int ext4_release_file(struct inode *inode, struct file *filp)
40 {
41 	if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) {
42 		ext4_alloc_da_blocks(inode);
43 		ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
44 	}
45 	/* if we are the last writer on the inode, drop the block reservation */
46 	if ((filp->f_mode & FMODE_WRITE) &&
47 			(atomic_read(&inode->i_writecount) == 1) &&
48 		        !EXT4_I(inode)->i_reserved_data_blocks)
49 	{
50 		down_write(&EXT4_I(inode)->i_data_sem);
51 		ext4_discard_preallocations(inode);
52 		up_write(&EXT4_I(inode)->i_data_sem);
53 	}
54 	if (is_dx(inode) && filp->private_data)
55 		ext4_htree_free_dir_info(filp->private_data);
56 
57 	return 0;
58 }
59 
60 static void ext4_unwritten_wait(struct inode *inode)
61 {
62 	wait_queue_head_t *wq = ext4_ioend_wq(inode);
63 
64 	wait_event(*wq, (atomic_read(&EXT4_I(inode)->i_unwritten) == 0));
65 }
66 
67 /*
68  * This tests whether the IO in question is block-aligned or not.
69  * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
70  * are converted to written only after the IO is complete.  Until they are
71  * mapped, these blocks appear as holes, so dio_zero_block() will assume that
72  * it needs to zero out portions of the start and/or end block.  If 2 AIO
73  * threads are at work on the same unwritten block, they must be synchronized
74  * or one thread will zero the other's data, causing corruption.
75  */
76 static int
77 ext4_unaligned_aio(struct inode *inode, struct iov_iter *from, loff_t pos)
78 {
79 	struct super_block *sb = inode->i_sb;
80 	int blockmask = sb->s_blocksize - 1;
81 
82 	if (pos >= i_size_read(inode))
83 		return 0;
84 
85 	if ((pos | iov_iter_alignment(from)) & blockmask)
86 		return 1;
87 
88 	return 0;
89 }
90 
91 static ssize_t
92 ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
93 {
94 	struct file *file = iocb->ki_filp;
95 	struct inode *inode = file_inode(iocb->ki_filp);
96 	struct mutex *aio_mutex = NULL;
97 	struct blk_plug plug;
98 	int o_direct = iocb->ki_flags & IOCB_DIRECT;
99 	int overwrite = 0;
100 	ssize_t ret;
101 
102 	/*
103 	 * Unaligned direct AIO must be serialized; see comment above
104 	 * In the case of O_APPEND, assume that we must always serialize
105 	 */
106 	if (o_direct &&
107 	    ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) &&
108 	    !is_sync_kiocb(iocb) &&
109 	    (iocb->ki_flags & IOCB_APPEND ||
110 	     ext4_unaligned_aio(inode, from, iocb->ki_pos))) {
111 		aio_mutex = ext4_aio_mutex(inode);
112 		mutex_lock(aio_mutex);
113 		ext4_unwritten_wait(inode);
114 	}
115 
116 	inode_lock(inode);
117 	ret = generic_write_checks(iocb, from);
118 	if (ret <= 0)
119 		goto out;
120 
121 	/*
122 	 * If we have encountered a bitmap-format file, the size limit
123 	 * is smaller than s_maxbytes, which is for extent-mapped files.
124 	 */
125 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
126 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
127 
128 		if (iocb->ki_pos >= sbi->s_bitmap_maxbytes) {
129 			ret = -EFBIG;
130 			goto out;
131 		}
132 		iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos);
133 	}
134 
135 	iocb->private = &overwrite;
136 	if (o_direct) {
137 		size_t length = iov_iter_count(from);
138 		loff_t pos = iocb->ki_pos;
139 		blk_start_plug(&plug);
140 
141 		/* check whether we do a DIO overwrite or not */
142 		if (ext4_should_dioread_nolock(inode) && !aio_mutex &&
143 		    !file->f_mapping->nrpages && pos + length <= i_size_read(inode)) {
144 			struct ext4_map_blocks map;
145 			unsigned int blkbits = inode->i_blkbits;
146 			int err, len;
147 
148 			map.m_lblk = pos >> blkbits;
149 			map.m_len = (EXT4_BLOCK_ALIGN(pos + length, blkbits) >> blkbits)
150 				- map.m_lblk;
151 			len = map.m_len;
152 
153 			err = ext4_map_blocks(NULL, inode, &map, 0);
154 			/*
155 			 * 'err==len' means that all of blocks has
156 			 * been preallocated no matter they are
157 			 * initialized or not.  For excluding
158 			 * unwritten extents, we need to check
159 			 * m_flags.  There are two conditions that
160 			 * indicate for initialized extents.  1) If we
161 			 * hit extent cache, EXT4_MAP_MAPPED flag is
162 			 * returned; 2) If we do a real lookup,
163 			 * non-flags are returned.  So we should check
164 			 * these two conditions.
165 			 */
166 			if (err == len && (map.m_flags & EXT4_MAP_MAPPED))
167 				overwrite = 1;
168 		}
169 	}
170 
171 	ret = __generic_file_write_iter(iocb, from);
172 	inode_unlock(inode);
173 
174 	if (ret > 0) {
175 		ssize_t err;
176 
177 		err = generic_write_sync(file, iocb->ki_pos - ret, ret);
178 		if (err < 0)
179 			ret = err;
180 	}
181 	if (o_direct)
182 		blk_finish_plug(&plug);
183 
184 	if (aio_mutex)
185 		mutex_unlock(aio_mutex);
186 	return ret;
187 
188 out:
189 	inode_unlock(inode);
190 	if (aio_mutex)
191 		mutex_unlock(aio_mutex);
192 	return ret;
193 }
194 
195 #ifdef CONFIG_FS_DAX
196 static int ext4_dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
197 {
198 	int result;
199 	handle_t *handle = NULL;
200 	struct inode *inode = file_inode(vma->vm_file);
201 	struct super_block *sb = inode->i_sb;
202 	bool write = vmf->flags & FAULT_FLAG_WRITE;
203 
204 	if (write) {
205 		sb_start_pagefault(sb);
206 		file_update_time(vma->vm_file);
207 		down_read(&EXT4_I(inode)->i_mmap_sem);
208 		handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE,
209 						EXT4_DATA_TRANS_BLOCKS(sb));
210 	} else
211 		down_read(&EXT4_I(inode)->i_mmap_sem);
212 
213 	if (IS_ERR(handle))
214 		result = VM_FAULT_SIGBUS;
215 	else
216 		result = __dax_fault(vma, vmf, ext4_dax_mmap_get_block, NULL);
217 
218 	if (write) {
219 		if (!IS_ERR(handle))
220 			ext4_journal_stop(handle);
221 		up_read(&EXT4_I(inode)->i_mmap_sem);
222 		sb_end_pagefault(sb);
223 	} else
224 		up_read(&EXT4_I(inode)->i_mmap_sem);
225 
226 	return result;
227 }
228 
229 static int ext4_dax_pmd_fault(struct vm_area_struct *vma, unsigned long addr,
230 						pmd_t *pmd, unsigned int flags)
231 {
232 	int result;
233 	handle_t *handle = NULL;
234 	struct inode *inode = file_inode(vma->vm_file);
235 	struct super_block *sb = inode->i_sb;
236 	bool write = flags & FAULT_FLAG_WRITE;
237 
238 	if (write) {
239 		sb_start_pagefault(sb);
240 		file_update_time(vma->vm_file);
241 		down_read(&EXT4_I(inode)->i_mmap_sem);
242 		handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE,
243 				ext4_chunk_trans_blocks(inode,
244 							PMD_SIZE / PAGE_SIZE));
245 	} else
246 		down_read(&EXT4_I(inode)->i_mmap_sem);
247 
248 	if (IS_ERR(handle))
249 		result = VM_FAULT_SIGBUS;
250 	else
251 		result = __dax_pmd_fault(vma, addr, pmd, flags,
252 				ext4_dax_mmap_get_block, NULL);
253 
254 	if (write) {
255 		if (!IS_ERR(handle))
256 			ext4_journal_stop(handle);
257 		up_read(&EXT4_I(inode)->i_mmap_sem);
258 		sb_end_pagefault(sb);
259 	} else
260 		up_read(&EXT4_I(inode)->i_mmap_sem);
261 
262 	return result;
263 }
264 
265 static int ext4_dax_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
266 {
267 	int err;
268 	struct inode *inode = file_inode(vma->vm_file);
269 
270 	sb_start_pagefault(inode->i_sb);
271 	file_update_time(vma->vm_file);
272 	down_read(&EXT4_I(inode)->i_mmap_sem);
273 	err = __dax_mkwrite(vma, vmf, ext4_dax_mmap_get_block, NULL);
274 	up_read(&EXT4_I(inode)->i_mmap_sem);
275 	sb_end_pagefault(inode->i_sb);
276 
277 	return err;
278 }
279 
280 /*
281  * Handle write fault for VM_MIXEDMAP mappings. Similarly to ext4_dax_mkwrite()
282  * handler we check for races agaist truncate. Note that since we cycle through
283  * i_mmap_sem, we are sure that also any hole punching that began before we
284  * were called is finished by now and so if it included part of the file we
285  * are working on, our pte will get unmapped and the check for pte_same() in
286  * wp_pfn_shared() fails. Thus fault gets retried and things work out as
287  * desired.
288  */
289 static int ext4_dax_pfn_mkwrite(struct vm_area_struct *vma,
290 				struct vm_fault *vmf)
291 {
292 	struct inode *inode = file_inode(vma->vm_file);
293 	struct super_block *sb = inode->i_sb;
294 	loff_t size;
295 	int ret;
296 
297 	sb_start_pagefault(sb);
298 	file_update_time(vma->vm_file);
299 	down_read(&EXT4_I(inode)->i_mmap_sem);
300 	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
301 	if (vmf->pgoff >= size)
302 		ret = VM_FAULT_SIGBUS;
303 	else
304 		ret = dax_pfn_mkwrite(vma, vmf);
305 	up_read(&EXT4_I(inode)->i_mmap_sem);
306 	sb_end_pagefault(sb);
307 
308 	return ret;
309 }
310 
311 static const struct vm_operations_struct ext4_dax_vm_ops = {
312 	.fault		= ext4_dax_fault,
313 	.pmd_fault	= ext4_dax_pmd_fault,
314 	.page_mkwrite	= ext4_dax_mkwrite,
315 	.pfn_mkwrite	= ext4_dax_pfn_mkwrite,
316 };
317 #else
318 #define ext4_dax_vm_ops	ext4_file_vm_ops
319 #endif
320 
321 static const struct vm_operations_struct ext4_file_vm_ops = {
322 	.fault		= ext4_filemap_fault,
323 	.map_pages	= filemap_map_pages,
324 	.page_mkwrite   = ext4_page_mkwrite,
325 };
326 
327 static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
328 {
329 	struct inode *inode = file->f_mapping->host;
330 
331 	if (ext4_encrypted_inode(inode)) {
332 		int err = ext4_get_encryption_info(inode);
333 		if (err)
334 			return 0;
335 		if (ext4_encryption_info(inode) == NULL)
336 			return -ENOKEY;
337 	}
338 	file_accessed(file);
339 	if (IS_DAX(file_inode(file))) {
340 		vma->vm_ops = &ext4_dax_vm_ops;
341 		vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
342 	} else {
343 		vma->vm_ops = &ext4_file_vm_ops;
344 	}
345 	return 0;
346 }
347 
348 static int ext4_file_open(struct inode * inode, struct file * filp)
349 {
350 	struct super_block *sb = inode->i_sb;
351 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
352 	struct vfsmount *mnt = filp->f_path.mnt;
353 	struct path path;
354 	char buf[64], *cp;
355 	int ret;
356 
357 	if (unlikely(!(sbi->s_mount_flags & EXT4_MF_MNTDIR_SAMPLED) &&
358 		     !(sb->s_flags & MS_RDONLY))) {
359 		sbi->s_mount_flags |= EXT4_MF_MNTDIR_SAMPLED;
360 		/*
361 		 * Sample where the filesystem has been mounted and
362 		 * store it in the superblock for sysadmin convenience
363 		 * when trying to sort through large numbers of block
364 		 * devices or filesystem images.
365 		 */
366 		memset(buf, 0, sizeof(buf));
367 		path.mnt = mnt;
368 		path.dentry = mnt->mnt_root;
369 		cp = d_path(&path, buf, sizeof(buf));
370 		if (!IS_ERR(cp)) {
371 			handle_t *handle;
372 			int err;
373 
374 			handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
375 			if (IS_ERR(handle))
376 				return PTR_ERR(handle);
377 			BUFFER_TRACE(sbi->s_sbh, "get_write_access");
378 			err = ext4_journal_get_write_access(handle, sbi->s_sbh);
379 			if (err) {
380 				ext4_journal_stop(handle);
381 				return err;
382 			}
383 			strlcpy(sbi->s_es->s_last_mounted, cp,
384 				sizeof(sbi->s_es->s_last_mounted));
385 			ext4_handle_dirty_super(handle, sb);
386 			ext4_journal_stop(handle);
387 		}
388 	}
389 	if (ext4_encrypted_inode(inode)) {
390 		ret = ext4_get_encryption_info(inode);
391 		if (ret)
392 			return -EACCES;
393 		if (ext4_encryption_info(inode) == NULL)
394 			return -ENOKEY;
395 	}
396 	/*
397 	 * Set up the jbd2_inode if we are opening the inode for
398 	 * writing and the journal is present
399 	 */
400 	if (filp->f_mode & FMODE_WRITE) {
401 		ret = ext4_inode_attach_jinode(inode);
402 		if (ret < 0)
403 			return ret;
404 	}
405 	return dquot_file_open(inode, filp);
406 }
407 
408 /*
409  * Here we use ext4_map_blocks() to get a block mapping for a extent-based
410  * file rather than ext4_ext_walk_space() because we can introduce
411  * SEEK_DATA/SEEK_HOLE for block-mapped and extent-mapped file at the same
412  * function.  When extent status tree has been fully implemented, it will
413  * track all extent status for a file and we can directly use it to
414  * retrieve the offset for SEEK_DATA/SEEK_HOLE.
415  */
416 
417 /*
418  * When we retrieve the offset for SEEK_DATA/SEEK_HOLE, we would need to
419  * lookup page cache to check whether or not there has some data between
420  * [startoff, endoff] because, if this range contains an unwritten extent,
421  * we determine this extent as a data or a hole according to whether the
422  * page cache has data or not.
423  */
424 static int ext4_find_unwritten_pgoff(struct inode *inode,
425 				     int whence,
426 				     struct ext4_map_blocks *map,
427 				     loff_t *offset)
428 {
429 	struct pagevec pvec;
430 	unsigned int blkbits;
431 	pgoff_t index;
432 	pgoff_t end;
433 	loff_t endoff;
434 	loff_t startoff;
435 	loff_t lastoff;
436 	int found = 0;
437 
438 	blkbits = inode->i_sb->s_blocksize_bits;
439 	startoff = *offset;
440 	lastoff = startoff;
441 	endoff = (loff_t)(map->m_lblk + map->m_len) << blkbits;
442 
443 	index = startoff >> PAGE_CACHE_SHIFT;
444 	end = endoff >> PAGE_CACHE_SHIFT;
445 
446 	pagevec_init(&pvec, 0);
447 	do {
448 		int i, num;
449 		unsigned long nr_pages;
450 
451 		num = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
452 		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
453 					  (pgoff_t)num);
454 		if (nr_pages == 0) {
455 			if (whence == SEEK_DATA)
456 				break;
457 
458 			BUG_ON(whence != SEEK_HOLE);
459 			/*
460 			 * If this is the first time to go into the loop and
461 			 * offset is not beyond the end offset, it will be a
462 			 * hole at this offset
463 			 */
464 			if (lastoff == startoff || lastoff < endoff)
465 				found = 1;
466 			break;
467 		}
468 
469 		/*
470 		 * If this is the first time to go into the loop and
471 		 * offset is smaller than the first page offset, it will be a
472 		 * hole at this offset.
473 		 */
474 		if (lastoff == startoff && whence == SEEK_HOLE &&
475 		    lastoff < page_offset(pvec.pages[0])) {
476 			found = 1;
477 			break;
478 		}
479 
480 		for (i = 0; i < nr_pages; i++) {
481 			struct page *page = pvec.pages[i];
482 			struct buffer_head *bh, *head;
483 
484 			/*
485 			 * If the current offset is not beyond the end of given
486 			 * range, it will be a hole.
487 			 */
488 			if (lastoff < endoff && whence == SEEK_HOLE &&
489 			    page->index > end) {
490 				found = 1;
491 				*offset = lastoff;
492 				goto out;
493 			}
494 
495 			lock_page(page);
496 
497 			if (unlikely(page->mapping != inode->i_mapping)) {
498 				unlock_page(page);
499 				continue;
500 			}
501 
502 			if (!page_has_buffers(page)) {
503 				unlock_page(page);
504 				continue;
505 			}
506 
507 			if (page_has_buffers(page)) {
508 				lastoff = page_offset(page);
509 				bh = head = page_buffers(page);
510 				do {
511 					if (buffer_uptodate(bh) ||
512 					    buffer_unwritten(bh)) {
513 						if (whence == SEEK_DATA)
514 							found = 1;
515 					} else {
516 						if (whence == SEEK_HOLE)
517 							found = 1;
518 					}
519 					if (found) {
520 						*offset = max_t(loff_t,
521 							startoff, lastoff);
522 						unlock_page(page);
523 						goto out;
524 					}
525 					lastoff += bh->b_size;
526 					bh = bh->b_this_page;
527 				} while (bh != head);
528 			}
529 
530 			lastoff = page_offset(page) + PAGE_SIZE;
531 			unlock_page(page);
532 		}
533 
534 		/*
535 		 * The no. of pages is less than our desired, that would be a
536 		 * hole in there.
537 		 */
538 		if (nr_pages < num && whence == SEEK_HOLE) {
539 			found = 1;
540 			*offset = lastoff;
541 			break;
542 		}
543 
544 		index = pvec.pages[i - 1]->index + 1;
545 		pagevec_release(&pvec);
546 	} while (index <= end);
547 
548 out:
549 	pagevec_release(&pvec);
550 	return found;
551 }
552 
553 /*
554  * ext4_seek_data() retrieves the offset for SEEK_DATA.
555  */
556 static loff_t ext4_seek_data(struct file *file, loff_t offset, loff_t maxsize)
557 {
558 	struct inode *inode = file->f_mapping->host;
559 	struct ext4_map_blocks map;
560 	struct extent_status es;
561 	ext4_lblk_t start, last, end;
562 	loff_t dataoff, isize;
563 	int blkbits;
564 	int ret = 0;
565 
566 	inode_lock(inode);
567 
568 	isize = i_size_read(inode);
569 	if (offset >= isize) {
570 		inode_unlock(inode);
571 		return -ENXIO;
572 	}
573 
574 	blkbits = inode->i_sb->s_blocksize_bits;
575 	start = offset >> blkbits;
576 	last = start;
577 	end = isize >> blkbits;
578 	dataoff = offset;
579 
580 	do {
581 		map.m_lblk = last;
582 		map.m_len = end - last + 1;
583 		ret = ext4_map_blocks(NULL, inode, &map, 0);
584 		if (ret > 0 && !(map.m_flags & EXT4_MAP_UNWRITTEN)) {
585 			if (last != start)
586 				dataoff = (loff_t)last << blkbits;
587 			break;
588 		}
589 
590 		/*
591 		 * If there is a delay extent at this offset,
592 		 * it will be as a data.
593 		 */
594 		ext4_es_find_delayed_extent_range(inode, last, last, &es);
595 		if (es.es_len != 0 && in_range(last, es.es_lblk, es.es_len)) {
596 			if (last != start)
597 				dataoff = (loff_t)last << blkbits;
598 			break;
599 		}
600 
601 		/*
602 		 * If there is a unwritten extent at this offset,
603 		 * it will be as a data or a hole according to page
604 		 * cache that has data or not.
605 		 */
606 		if (map.m_flags & EXT4_MAP_UNWRITTEN) {
607 			int unwritten;
608 			unwritten = ext4_find_unwritten_pgoff(inode, SEEK_DATA,
609 							      &map, &dataoff);
610 			if (unwritten)
611 				break;
612 		}
613 
614 		last++;
615 		dataoff = (loff_t)last << blkbits;
616 	} while (last <= end);
617 
618 	inode_unlock(inode);
619 
620 	if (dataoff > isize)
621 		return -ENXIO;
622 
623 	return vfs_setpos(file, dataoff, maxsize);
624 }
625 
626 /*
627  * ext4_seek_hole() retrieves the offset for SEEK_HOLE.
628  */
629 static loff_t ext4_seek_hole(struct file *file, loff_t offset, loff_t maxsize)
630 {
631 	struct inode *inode = file->f_mapping->host;
632 	struct ext4_map_blocks map;
633 	struct extent_status es;
634 	ext4_lblk_t start, last, end;
635 	loff_t holeoff, isize;
636 	int blkbits;
637 	int ret = 0;
638 
639 	inode_lock(inode);
640 
641 	isize = i_size_read(inode);
642 	if (offset >= isize) {
643 		inode_unlock(inode);
644 		return -ENXIO;
645 	}
646 
647 	blkbits = inode->i_sb->s_blocksize_bits;
648 	start = offset >> blkbits;
649 	last = start;
650 	end = isize >> blkbits;
651 	holeoff = offset;
652 
653 	do {
654 		map.m_lblk = last;
655 		map.m_len = end - last + 1;
656 		ret = ext4_map_blocks(NULL, inode, &map, 0);
657 		if (ret > 0 && !(map.m_flags & EXT4_MAP_UNWRITTEN)) {
658 			last += ret;
659 			holeoff = (loff_t)last << blkbits;
660 			continue;
661 		}
662 
663 		/*
664 		 * If there is a delay extent at this offset,
665 		 * we will skip this extent.
666 		 */
667 		ext4_es_find_delayed_extent_range(inode, last, last, &es);
668 		if (es.es_len != 0 && in_range(last, es.es_lblk, es.es_len)) {
669 			last = es.es_lblk + es.es_len;
670 			holeoff = (loff_t)last << blkbits;
671 			continue;
672 		}
673 
674 		/*
675 		 * If there is a unwritten extent at this offset,
676 		 * it will be as a data or a hole according to page
677 		 * cache that has data or not.
678 		 */
679 		if (map.m_flags & EXT4_MAP_UNWRITTEN) {
680 			int unwritten;
681 			unwritten = ext4_find_unwritten_pgoff(inode, SEEK_HOLE,
682 							      &map, &holeoff);
683 			if (!unwritten) {
684 				last += ret;
685 				holeoff = (loff_t)last << blkbits;
686 				continue;
687 			}
688 		}
689 
690 		/* find a hole */
691 		break;
692 	} while (last <= end);
693 
694 	inode_unlock(inode);
695 
696 	if (holeoff > isize)
697 		holeoff = isize;
698 
699 	return vfs_setpos(file, holeoff, maxsize);
700 }
701 
702 /*
703  * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
704  * by calling generic_file_llseek_size() with the appropriate maxbytes
705  * value for each.
706  */
707 loff_t ext4_llseek(struct file *file, loff_t offset, int whence)
708 {
709 	struct inode *inode = file->f_mapping->host;
710 	loff_t maxbytes;
711 
712 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
713 		maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes;
714 	else
715 		maxbytes = inode->i_sb->s_maxbytes;
716 
717 	switch (whence) {
718 	case SEEK_SET:
719 	case SEEK_CUR:
720 	case SEEK_END:
721 		return generic_file_llseek_size(file, offset, whence,
722 						maxbytes, i_size_read(inode));
723 	case SEEK_DATA:
724 		return ext4_seek_data(file, offset, maxbytes);
725 	case SEEK_HOLE:
726 		return ext4_seek_hole(file, offset, maxbytes);
727 	}
728 
729 	return -EINVAL;
730 }
731 
732 const struct file_operations ext4_file_operations = {
733 	.llseek		= ext4_llseek,
734 	.read_iter	= generic_file_read_iter,
735 	.write_iter	= ext4_file_write_iter,
736 	.unlocked_ioctl = ext4_ioctl,
737 #ifdef CONFIG_COMPAT
738 	.compat_ioctl	= ext4_compat_ioctl,
739 #endif
740 	.mmap		= ext4_file_mmap,
741 	.open		= ext4_file_open,
742 	.release	= ext4_release_file,
743 	.fsync		= ext4_sync_file,
744 	.splice_read	= generic_file_splice_read,
745 	.splice_write	= iter_file_splice_write,
746 	.fallocate	= ext4_fallocate,
747 };
748 
749 const struct inode_operations ext4_file_inode_operations = {
750 	.setattr	= ext4_setattr,
751 	.getattr	= ext4_getattr,
752 	.setxattr	= generic_setxattr,
753 	.getxattr	= generic_getxattr,
754 	.listxattr	= ext4_listxattr,
755 	.removexattr	= generic_removexattr,
756 	.get_acl	= ext4_get_acl,
757 	.set_acl	= ext4_set_acl,
758 	.fiemap		= ext4_fiemap,
759 };
760 
761