1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/file.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/file.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * ext4 fs regular file handling primitives 17 * 18 * 64-bit file support on 64-bit platforms by Jakub Jelinek 19 * (jj@sunsite.ms.mff.cuni.cz) 20 */ 21 22 #include <linux/time.h> 23 #include <linux/fs.h> 24 #include <linux/iomap.h> 25 #include <linux/mount.h> 26 #include <linux/path.h> 27 #include <linux/dax.h> 28 #include <linux/quotaops.h> 29 #include <linux/pagevec.h> 30 #include <linux/uio.h> 31 #include <linux/mman.h> 32 #include "ext4.h" 33 #include "ext4_jbd2.h" 34 #include "xattr.h" 35 #include "acl.h" 36 37 #ifdef CONFIG_FS_DAX 38 static ssize_t ext4_dax_read_iter(struct kiocb *iocb, struct iov_iter *to) 39 { 40 struct inode *inode = file_inode(iocb->ki_filp); 41 ssize_t ret; 42 43 if (!inode_trylock_shared(inode)) { 44 if (iocb->ki_flags & IOCB_NOWAIT) 45 return -EAGAIN; 46 inode_lock_shared(inode); 47 } 48 /* 49 * Recheck under inode lock - at this point we are sure it cannot 50 * change anymore 51 */ 52 if (!IS_DAX(inode)) { 53 inode_unlock_shared(inode); 54 /* Fallback to buffered IO in case we cannot support DAX */ 55 return generic_file_read_iter(iocb, to); 56 } 57 ret = dax_iomap_rw(iocb, to, &ext4_iomap_ops); 58 inode_unlock_shared(inode); 59 60 file_accessed(iocb->ki_filp); 61 return ret; 62 } 63 #endif 64 65 static ssize_t ext4_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 66 { 67 if (unlikely(ext4_forced_shutdown(EXT4_SB(file_inode(iocb->ki_filp)->i_sb)))) 68 return -EIO; 69 70 if (!iov_iter_count(to)) 71 return 0; /* skip atime */ 72 73 #ifdef CONFIG_FS_DAX 74 if (IS_DAX(file_inode(iocb->ki_filp))) 75 return ext4_dax_read_iter(iocb, to); 76 #endif 77 return generic_file_read_iter(iocb, to); 78 } 79 80 /* 81 * Called when an inode is released. Note that this is different 82 * from ext4_file_open: open gets called at every open, but release 83 * gets called only when /all/ the files are closed. 84 */ 85 static int ext4_release_file(struct inode *inode, struct file *filp) 86 { 87 if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) { 88 ext4_alloc_da_blocks(inode); 89 ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 90 } 91 /* if we are the last writer on the inode, drop the block reservation */ 92 if ((filp->f_mode & FMODE_WRITE) && 93 (atomic_read(&inode->i_writecount) == 1) && 94 !EXT4_I(inode)->i_reserved_data_blocks) 95 { 96 down_write(&EXT4_I(inode)->i_data_sem); 97 ext4_discard_preallocations(inode); 98 up_write(&EXT4_I(inode)->i_data_sem); 99 } 100 if (is_dx(inode) && filp->private_data) 101 ext4_htree_free_dir_info(filp->private_data); 102 103 return 0; 104 } 105 106 static void ext4_unwritten_wait(struct inode *inode) 107 { 108 wait_queue_head_t *wq = ext4_ioend_wq(inode); 109 110 wait_event(*wq, (atomic_read(&EXT4_I(inode)->i_unwritten) == 0)); 111 } 112 113 /* 114 * This tests whether the IO in question is block-aligned or not. 115 * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they 116 * are converted to written only after the IO is complete. Until they are 117 * mapped, these blocks appear as holes, so dio_zero_block() will assume that 118 * it needs to zero out portions of the start and/or end block. If 2 AIO 119 * threads are at work on the same unwritten block, they must be synchronized 120 * or one thread will zero the other's data, causing corruption. 121 */ 122 static int 123 ext4_unaligned_aio(struct inode *inode, struct iov_iter *from, loff_t pos) 124 { 125 struct super_block *sb = inode->i_sb; 126 int blockmask = sb->s_blocksize - 1; 127 128 if (pos >= ALIGN(i_size_read(inode), sb->s_blocksize)) 129 return 0; 130 131 if ((pos | iov_iter_alignment(from)) & blockmask) 132 return 1; 133 134 return 0; 135 } 136 137 /* Is IO overwriting allocated and initialized blocks? */ 138 static bool ext4_overwrite_io(struct inode *inode, loff_t pos, loff_t len) 139 { 140 struct ext4_map_blocks map; 141 unsigned int blkbits = inode->i_blkbits; 142 int err, blklen; 143 144 if (pos + len > i_size_read(inode)) 145 return false; 146 147 map.m_lblk = pos >> blkbits; 148 map.m_len = EXT4_MAX_BLOCKS(len, pos, blkbits); 149 blklen = map.m_len; 150 151 err = ext4_map_blocks(NULL, inode, &map, 0); 152 /* 153 * 'err==len' means that all of the blocks have been preallocated, 154 * regardless of whether they have been initialized or not. To exclude 155 * unwritten extents, we need to check m_flags. 156 */ 157 return err == blklen && (map.m_flags & EXT4_MAP_MAPPED); 158 } 159 160 static ssize_t ext4_write_checks(struct kiocb *iocb, struct iov_iter *from) 161 { 162 struct inode *inode = file_inode(iocb->ki_filp); 163 ssize_t ret; 164 165 ret = generic_write_checks(iocb, from); 166 if (ret <= 0) 167 return ret; 168 169 if (unlikely(IS_IMMUTABLE(inode))) 170 return -EPERM; 171 172 /* 173 * If we have encountered a bitmap-format file, the size limit 174 * is smaller than s_maxbytes, which is for extent-mapped files. 175 */ 176 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 177 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 178 179 if (iocb->ki_pos >= sbi->s_bitmap_maxbytes) 180 return -EFBIG; 181 iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos); 182 } 183 return iov_iter_count(from); 184 } 185 186 #ifdef CONFIG_FS_DAX 187 static ssize_t 188 ext4_dax_write_iter(struct kiocb *iocb, struct iov_iter *from) 189 { 190 struct inode *inode = file_inode(iocb->ki_filp); 191 ssize_t ret; 192 193 if (!inode_trylock(inode)) { 194 if (iocb->ki_flags & IOCB_NOWAIT) 195 return -EAGAIN; 196 inode_lock(inode); 197 } 198 ret = ext4_write_checks(iocb, from); 199 if (ret <= 0) 200 goto out; 201 ret = file_remove_privs(iocb->ki_filp); 202 if (ret) 203 goto out; 204 ret = file_update_time(iocb->ki_filp); 205 if (ret) 206 goto out; 207 208 ret = dax_iomap_rw(iocb, from, &ext4_iomap_ops); 209 out: 210 inode_unlock(inode); 211 if (ret > 0) 212 ret = generic_write_sync(iocb, ret); 213 return ret; 214 } 215 #endif 216 217 static ssize_t 218 ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 219 { 220 struct inode *inode = file_inode(iocb->ki_filp); 221 int o_direct = iocb->ki_flags & IOCB_DIRECT; 222 int unaligned_aio = 0; 223 int overwrite = 0; 224 ssize_t ret; 225 226 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 227 return -EIO; 228 229 #ifdef CONFIG_FS_DAX 230 if (IS_DAX(inode)) 231 return ext4_dax_write_iter(iocb, from); 232 #endif 233 if (!o_direct && (iocb->ki_flags & IOCB_NOWAIT)) 234 return -EOPNOTSUPP; 235 236 if (!inode_trylock(inode)) { 237 if (iocb->ki_flags & IOCB_NOWAIT) 238 return -EAGAIN; 239 inode_lock(inode); 240 } 241 242 ret = ext4_write_checks(iocb, from); 243 if (ret <= 0) 244 goto out; 245 246 /* 247 * Unaligned direct AIO must be serialized among each other as zeroing 248 * of partial blocks of two competing unaligned AIOs can result in data 249 * corruption. 250 */ 251 if (o_direct && ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) && 252 !is_sync_kiocb(iocb) && 253 ext4_unaligned_aio(inode, from, iocb->ki_pos)) { 254 unaligned_aio = 1; 255 ext4_unwritten_wait(inode); 256 } 257 258 iocb->private = &overwrite; 259 /* Check whether we do a DIO overwrite or not */ 260 if (o_direct && !unaligned_aio) { 261 if (ext4_overwrite_io(inode, iocb->ki_pos, iov_iter_count(from))) { 262 if (ext4_should_dioread_nolock(inode)) 263 overwrite = 1; 264 } else if (iocb->ki_flags & IOCB_NOWAIT) { 265 ret = -EAGAIN; 266 goto out; 267 } 268 } 269 270 ret = __generic_file_write_iter(iocb, from); 271 /* 272 * Unaligned direct AIO must be the only IO in flight. Otherwise 273 * overlapping aligned IO after unaligned might result in data 274 * corruption. 275 */ 276 if (ret == -EIOCBQUEUED && unaligned_aio) 277 ext4_unwritten_wait(inode); 278 inode_unlock(inode); 279 280 if (ret > 0) 281 ret = generic_write_sync(iocb, ret); 282 283 return ret; 284 285 out: 286 inode_unlock(inode); 287 return ret; 288 } 289 290 #ifdef CONFIG_FS_DAX 291 static vm_fault_t ext4_dax_huge_fault(struct vm_fault *vmf, 292 enum page_entry_size pe_size) 293 { 294 int error = 0; 295 vm_fault_t result; 296 int retries = 0; 297 handle_t *handle = NULL; 298 struct inode *inode = file_inode(vmf->vma->vm_file); 299 struct super_block *sb = inode->i_sb; 300 301 /* 302 * We have to distinguish real writes from writes which will result in a 303 * COW page; COW writes should *not* poke the journal (the file will not 304 * be changed). Doing so would cause unintended failures when mounted 305 * read-only. 306 * 307 * We check for VM_SHARED rather than vmf->cow_page since the latter is 308 * unset for pe_size != PE_SIZE_PTE (i.e. only in do_cow_fault); for 309 * other sizes, dax_iomap_fault will handle splitting / fallback so that 310 * we eventually come back with a COW page. 311 */ 312 bool write = (vmf->flags & FAULT_FLAG_WRITE) && 313 (vmf->vma->vm_flags & VM_SHARED); 314 pfn_t pfn; 315 316 if (write) { 317 sb_start_pagefault(sb); 318 file_update_time(vmf->vma->vm_file); 319 down_read(&EXT4_I(inode)->i_mmap_sem); 320 retry: 321 handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE, 322 EXT4_DATA_TRANS_BLOCKS(sb)); 323 if (IS_ERR(handle)) { 324 up_read(&EXT4_I(inode)->i_mmap_sem); 325 sb_end_pagefault(sb); 326 return VM_FAULT_SIGBUS; 327 } 328 } else { 329 down_read(&EXT4_I(inode)->i_mmap_sem); 330 } 331 result = dax_iomap_fault(vmf, pe_size, &pfn, &error, &ext4_iomap_ops); 332 if (write) { 333 ext4_journal_stop(handle); 334 335 if ((result & VM_FAULT_ERROR) && error == -ENOSPC && 336 ext4_should_retry_alloc(sb, &retries)) 337 goto retry; 338 /* Handling synchronous page fault? */ 339 if (result & VM_FAULT_NEEDDSYNC) 340 result = dax_finish_sync_fault(vmf, pe_size, pfn); 341 up_read(&EXT4_I(inode)->i_mmap_sem); 342 sb_end_pagefault(sb); 343 } else { 344 up_read(&EXT4_I(inode)->i_mmap_sem); 345 } 346 347 return result; 348 } 349 350 static vm_fault_t ext4_dax_fault(struct vm_fault *vmf) 351 { 352 return ext4_dax_huge_fault(vmf, PE_SIZE_PTE); 353 } 354 355 static const struct vm_operations_struct ext4_dax_vm_ops = { 356 .fault = ext4_dax_fault, 357 .huge_fault = ext4_dax_huge_fault, 358 .page_mkwrite = ext4_dax_fault, 359 .pfn_mkwrite = ext4_dax_fault, 360 }; 361 #else 362 #define ext4_dax_vm_ops ext4_file_vm_ops 363 #endif 364 365 static const struct vm_operations_struct ext4_file_vm_ops = { 366 .fault = ext4_filemap_fault, 367 .map_pages = filemap_map_pages, 368 .page_mkwrite = ext4_page_mkwrite, 369 }; 370 371 static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma) 372 { 373 struct inode *inode = file->f_mapping->host; 374 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 375 struct dax_device *dax_dev = sbi->s_daxdev; 376 377 if (unlikely(ext4_forced_shutdown(sbi))) 378 return -EIO; 379 380 /* 381 * We don't support synchronous mappings for non-DAX files and 382 * for DAX files if underneath dax_device is not synchronous. 383 */ 384 if (!daxdev_mapping_supported(vma, dax_dev)) 385 return -EOPNOTSUPP; 386 387 file_accessed(file); 388 if (IS_DAX(file_inode(file))) { 389 vma->vm_ops = &ext4_dax_vm_ops; 390 vma->vm_flags |= VM_HUGEPAGE; 391 } else { 392 vma->vm_ops = &ext4_file_vm_ops; 393 } 394 return 0; 395 } 396 397 static int ext4_sample_last_mounted(struct super_block *sb, 398 struct vfsmount *mnt) 399 { 400 struct ext4_sb_info *sbi = EXT4_SB(sb); 401 struct path path; 402 char buf[64], *cp; 403 handle_t *handle; 404 int err; 405 406 if (likely(sbi->s_mount_flags & EXT4_MF_MNTDIR_SAMPLED)) 407 return 0; 408 409 if (sb_rdonly(sb) || !sb_start_intwrite_trylock(sb)) 410 return 0; 411 412 sbi->s_mount_flags |= EXT4_MF_MNTDIR_SAMPLED; 413 /* 414 * Sample where the filesystem has been mounted and 415 * store it in the superblock for sysadmin convenience 416 * when trying to sort through large numbers of block 417 * devices or filesystem images. 418 */ 419 memset(buf, 0, sizeof(buf)); 420 path.mnt = mnt; 421 path.dentry = mnt->mnt_root; 422 cp = d_path(&path, buf, sizeof(buf)); 423 err = 0; 424 if (IS_ERR(cp)) 425 goto out; 426 427 handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1); 428 err = PTR_ERR(handle); 429 if (IS_ERR(handle)) 430 goto out; 431 BUFFER_TRACE(sbi->s_sbh, "get_write_access"); 432 err = ext4_journal_get_write_access(handle, sbi->s_sbh); 433 if (err) 434 goto out_journal; 435 strlcpy(sbi->s_es->s_last_mounted, cp, 436 sizeof(sbi->s_es->s_last_mounted)); 437 ext4_handle_dirty_super(handle, sb); 438 out_journal: 439 ext4_journal_stop(handle); 440 out: 441 sb_end_intwrite(sb); 442 return err; 443 } 444 445 static int ext4_file_open(struct inode * inode, struct file * filp) 446 { 447 int ret; 448 449 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 450 return -EIO; 451 452 ret = ext4_sample_last_mounted(inode->i_sb, filp->f_path.mnt); 453 if (ret) 454 return ret; 455 456 ret = fscrypt_file_open(inode, filp); 457 if (ret) 458 return ret; 459 460 ret = fsverity_file_open(inode, filp); 461 if (ret) 462 return ret; 463 464 /* 465 * Set up the jbd2_inode if we are opening the inode for 466 * writing and the journal is present 467 */ 468 if (filp->f_mode & FMODE_WRITE) { 469 ret = ext4_inode_attach_jinode(inode); 470 if (ret < 0) 471 return ret; 472 } 473 474 filp->f_mode |= FMODE_NOWAIT; 475 return dquot_file_open(inode, filp); 476 } 477 478 /* 479 * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values 480 * by calling generic_file_llseek_size() with the appropriate maxbytes 481 * value for each. 482 */ 483 loff_t ext4_llseek(struct file *file, loff_t offset, int whence) 484 { 485 struct inode *inode = file->f_mapping->host; 486 loff_t maxbytes; 487 488 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 489 maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes; 490 else 491 maxbytes = inode->i_sb->s_maxbytes; 492 493 switch (whence) { 494 default: 495 return generic_file_llseek_size(file, offset, whence, 496 maxbytes, i_size_read(inode)); 497 case SEEK_HOLE: 498 inode_lock_shared(inode); 499 offset = iomap_seek_hole(inode, offset, &ext4_iomap_ops); 500 inode_unlock_shared(inode); 501 break; 502 case SEEK_DATA: 503 inode_lock_shared(inode); 504 offset = iomap_seek_data(inode, offset, &ext4_iomap_ops); 505 inode_unlock_shared(inode); 506 break; 507 } 508 509 if (offset < 0) 510 return offset; 511 return vfs_setpos(file, offset, maxbytes); 512 } 513 514 const struct file_operations ext4_file_operations = { 515 .llseek = ext4_llseek, 516 .read_iter = ext4_file_read_iter, 517 .write_iter = ext4_file_write_iter, 518 .unlocked_ioctl = ext4_ioctl, 519 #ifdef CONFIG_COMPAT 520 .compat_ioctl = ext4_compat_ioctl, 521 #endif 522 .mmap = ext4_file_mmap, 523 .mmap_supported_flags = MAP_SYNC, 524 .open = ext4_file_open, 525 .release = ext4_release_file, 526 .fsync = ext4_sync_file, 527 .get_unmapped_area = thp_get_unmapped_area, 528 .splice_read = generic_file_splice_read, 529 .splice_write = iter_file_splice_write, 530 .fallocate = ext4_fallocate, 531 }; 532 533 const struct inode_operations ext4_file_inode_operations = { 534 .setattr = ext4_setattr, 535 .getattr = ext4_file_getattr, 536 .listxattr = ext4_listxattr, 537 .get_acl = ext4_get_acl, 538 .set_acl = ext4_set_acl, 539 .fiemap = ext4_fiemap, 540 }; 541 542