xref: /openbmc/linux/fs/ext4/file.c (revision 5fa1f7680f2728d62561db6d4a9282c4d21f2324)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/file.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/file.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  ext4 fs regular file handling primitives
17  *
18  *  64-bit file support on 64-bit platforms by Jakub Jelinek
19  *	(jj@sunsite.ms.mff.cuni.cz)
20  */
21 
22 #include <linux/time.h>
23 #include <linux/fs.h>
24 #include <linux/iomap.h>
25 #include <linux/mount.h>
26 #include <linux/path.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/pagevec.h>
30 #include <linux/uio.h>
31 #include <linux/mman.h>
32 #include <linux/backing-dev.h>
33 #include "ext4.h"
34 #include "ext4_jbd2.h"
35 #include "xattr.h"
36 #include "acl.h"
37 #include "truncate.h"
38 
39 static bool ext4_dio_supported(struct inode *inode)
40 {
41 	if (IS_ENABLED(CONFIG_FS_ENCRYPTION) && IS_ENCRYPTED(inode))
42 		return false;
43 	if (fsverity_active(inode))
44 		return false;
45 	if (ext4_should_journal_data(inode))
46 		return false;
47 	if (ext4_has_inline_data(inode))
48 		return false;
49 	return true;
50 }
51 
52 static ssize_t ext4_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
53 {
54 	ssize_t ret;
55 	struct inode *inode = file_inode(iocb->ki_filp);
56 
57 	if (iocb->ki_flags & IOCB_NOWAIT) {
58 		if (!inode_trylock_shared(inode))
59 			return -EAGAIN;
60 	} else {
61 		inode_lock_shared(inode);
62 	}
63 
64 	if (!ext4_dio_supported(inode)) {
65 		inode_unlock_shared(inode);
66 		/*
67 		 * Fallback to buffered I/O if the operation being performed on
68 		 * the inode is not supported by direct I/O. The IOCB_DIRECT
69 		 * flag needs to be cleared here in order to ensure that the
70 		 * direct I/O path within generic_file_read_iter() is not
71 		 * taken.
72 		 */
73 		iocb->ki_flags &= ~IOCB_DIRECT;
74 		return generic_file_read_iter(iocb, to);
75 	}
76 
77 	ret = iomap_dio_rw(iocb, to, &ext4_iomap_ops, NULL,
78 			   is_sync_kiocb(iocb));
79 	inode_unlock_shared(inode);
80 
81 	file_accessed(iocb->ki_filp);
82 	return ret;
83 }
84 
85 #ifdef CONFIG_FS_DAX
86 static ssize_t ext4_dax_read_iter(struct kiocb *iocb, struct iov_iter *to)
87 {
88 	struct inode *inode = file_inode(iocb->ki_filp);
89 	ssize_t ret;
90 
91 	if (iocb->ki_flags & IOCB_NOWAIT) {
92 		if (!inode_trylock_shared(inode))
93 			return -EAGAIN;
94 	} else {
95 		inode_lock_shared(inode);
96 	}
97 	/*
98 	 * Recheck under inode lock - at this point we are sure it cannot
99 	 * change anymore
100 	 */
101 	if (!IS_DAX(inode)) {
102 		inode_unlock_shared(inode);
103 		/* Fallback to buffered IO in case we cannot support DAX */
104 		return generic_file_read_iter(iocb, to);
105 	}
106 	ret = dax_iomap_rw(iocb, to, &ext4_iomap_ops);
107 	inode_unlock_shared(inode);
108 
109 	file_accessed(iocb->ki_filp);
110 	return ret;
111 }
112 #endif
113 
114 static ssize_t ext4_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
115 {
116 	struct inode *inode = file_inode(iocb->ki_filp);
117 
118 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
119 		return -EIO;
120 
121 	if (!iov_iter_count(to))
122 		return 0; /* skip atime */
123 
124 #ifdef CONFIG_FS_DAX
125 	if (IS_DAX(inode))
126 		return ext4_dax_read_iter(iocb, to);
127 #endif
128 	if (iocb->ki_flags & IOCB_DIRECT)
129 		return ext4_dio_read_iter(iocb, to);
130 
131 	return generic_file_read_iter(iocb, to);
132 }
133 
134 /*
135  * Called when an inode is released. Note that this is different
136  * from ext4_file_open: open gets called at every open, but release
137  * gets called only when /all/ the files are closed.
138  */
139 static int ext4_release_file(struct inode *inode, struct file *filp)
140 {
141 	if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) {
142 		ext4_alloc_da_blocks(inode);
143 		ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
144 	}
145 	/* if we are the last writer on the inode, drop the block reservation */
146 	if ((filp->f_mode & FMODE_WRITE) &&
147 			(atomic_read(&inode->i_writecount) == 1) &&
148 		        !EXT4_I(inode)->i_reserved_data_blocks)
149 	{
150 		down_write(&EXT4_I(inode)->i_data_sem);
151 		ext4_discard_preallocations(inode);
152 		up_write(&EXT4_I(inode)->i_data_sem);
153 	}
154 	if (is_dx(inode) && filp->private_data)
155 		ext4_htree_free_dir_info(filp->private_data);
156 
157 	return 0;
158 }
159 
160 /*
161  * This tests whether the IO in question is block-aligned or not.
162  * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
163  * are converted to written only after the IO is complete.  Until they are
164  * mapped, these blocks appear as holes, so dio_zero_block() will assume that
165  * it needs to zero out portions of the start and/or end block.  If 2 AIO
166  * threads are at work on the same unwritten block, they must be synchronized
167  * or one thread will zero the other's data, causing corruption.
168  */
169 static bool
170 ext4_unaligned_io(struct inode *inode, struct iov_iter *from, loff_t pos)
171 {
172 	struct super_block *sb = inode->i_sb;
173 	unsigned long blockmask = sb->s_blocksize - 1;
174 
175 	if ((pos | iov_iter_alignment(from)) & blockmask)
176 		return true;
177 
178 	return false;
179 }
180 
181 static bool
182 ext4_extending_io(struct inode *inode, loff_t offset, size_t len)
183 {
184 	if (offset + len > i_size_read(inode) ||
185 	    offset + len > EXT4_I(inode)->i_disksize)
186 		return true;
187 	return false;
188 }
189 
190 /* Is IO overwriting allocated and initialized blocks? */
191 static bool ext4_overwrite_io(struct inode *inode, loff_t pos, loff_t len)
192 {
193 	struct ext4_map_blocks map;
194 	unsigned int blkbits = inode->i_blkbits;
195 	int err, blklen;
196 
197 	if (pos + len > i_size_read(inode))
198 		return false;
199 
200 	map.m_lblk = pos >> blkbits;
201 	map.m_len = EXT4_MAX_BLOCKS(len, pos, blkbits);
202 	blklen = map.m_len;
203 
204 	err = ext4_map_blocks(NULL, inode, &map, 0);
205 	/*
206 	 * 'err==len' means that all of the blocks have been preallocated,
207 	 * regardless of whether they have been initialized or not. To exclude
208 	 * unwritten extents, we need to check m_flags.
209 	 */
210 	return err == blklen && (map.m_flags & EXT4_MAP_MAPPED);
211 }
212 
213 static ssize_t ext4_generic_write_checks(struct kiocb *iocb,
214 					 struct iov_iter *from)
215 {
216 	struct inode *inode = file_inode(iocb->ki_filp);
217 	ssize_t ret;
218 
219 	if (unlikely(IS_IMMUTABLE(inode)))
220 		return -EPERM;
221 
222 	ret = generic_write_checks(iocb, from);
223 	if (ret <= 0)
224 		return ret;
225 
226 	/*
227 	 * If we have encountered a bitmap-format file, the size limit
228 	 * is smaller than s_maxbytes, which is for extent-mapped files.
229 	 */
230 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
231 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
232 
233 		if (iocb->ki_pos >= sbi->s_bitmap_maxbytes)
234 			return -EFBIG;
235 		iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos);
236 	}
237 
238 	return iov_iter_count(from);
239 }
240 
241 static ssize_t ext4_write_checks(struct kiocb *iocb, struct iov_iter *from)
242 {
243 	ssize_t ret, count;
244 
245 	count = ext4_generic_write_checks(iocb, from);
246 	if (count <= 0)
247 		return count;
248 
249 	ret = file_modified(iocb->ki_filp);
250 	if (ret)
251 		return ret;
252 	return count;
253 }
254 
255 static ssize_t ext4_buffered_write_iter(struct kiocb *iocb,
256 					struct iov_iter *from)
257 {
258 	ssize_t ret;
259 	struct inode *inode = file_inode(iocb->ki_filp);
260 
261 	if (iocb->ki_flags & IOCB_NOWAIT)
262 		return -EOPNOTSUPP;
263 
264 	inode_lock(inode);
265 	ret = ext4_write_checks(iocb, from);
266 	if (ret <= 0)
267 		goto out;
268 
269 	current->backing_dev_info = inode_to_bdi(inode);
270 	ret = generic_perform_write(iocb->ki_filp, from, iocb->ki_pos);
271 	current->backing_dev_info = NULL;
272 
273 out:
274 	inode_unlock(inode);
275 	if (likely(ret > 0)) {
276 		iocb->ki_pos += ret;
277 		ret = generic_write_sync(iocb, ret);
278 	}
279 
280 	return ret;
281 }
282 
283 static ssize_t ext4_handle_inode_extension(struct inode *inode, loff_t offset,
284 					   ssize_t written, size_t count)
285 {
286 	handle_t *handle;
287 	bool truncate = false;
288 	u8 blkbits = inode->i_blkbits;
289 	ext4_lblk_t written_blk, end_blk;
290 	int ret;
291 
292 	/*
293 	 * Note that EXT4_I(inode)->i_disksize can get extended up to
294 	 * inode->i_size while the I/O was running due to writeback of delalloc
295 	 * blocks. But, the code in ext4_iomap_alloc() is careful to use
296 	 * zeroed/unwritten extents if this is possible; thus we won't leave
297 	 * uninitialized blocks in a file even if we didn't succeed in writing
298 	 * as much as we intended.
299 	 */
300 	WARN_ON_ONCE(i_size_read(inode) < EXT4_I(inode)->i_disksize);
301 	if (offset + count <= EXT4_I(inode)->i_disksize) {
302 		/*
303 		 * We need to ensure that the inode is removed from the orphan
304 		 * list if it has been added prematurely, due to writeback of
305 		 * delalloc blocks.
306 		 */
307 		if (!list_empty(&EXT4_I(inode)->i_orphan) && inode->i_nlink) {
308 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
309 
310 			if (IS_ERR(handle)) {
311 				ext4_orphan_del(NULL, inode);
312 				return PTR_ERR(handle);
313 			}
314 
315 			ext4_orphan_del(handle, inode);
316 			ext4_journal_stop(handle);
317 		}
318 
319 		return written;
320 	}
321 
322 	if (written < 0)
323 		goto truncate;
324 
325 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
326 	if (IS_ERR(handle)) {
327 		written = PTR_ERR(handle);
328 		goto truncate;
329 	}
330 
331 	if (ext4_update_inode_size(inode, offset + written)) {
332 		ret = ext4_mark_inode_dirty(handle, inode);
333 		if (unlikely(ret)) {
334 			written = ret;
335 			ext4_journal_stop(handle);
336 			goto truncate;
337 		}
338 	}
339 
340 	/*
341 	 * We may need to truncate allocated but not written blocks beyond EOF.
342 	 */
343 	written_blk = ALIGN(offset + written, 1 << blkbits);
344 	end_blk = ALIGN(offset + count, 1 << blkbits);
345 	if (written_blk < end_blk && ext4_can_truncate(inode))
346 		truncate = true;
347 
348 	/*
349 	 * Remove the inode from the orphan list if it has been extended and
350 	 * everything went OK.
351 	 */
352 	if (!truncate && inode->i_nlink)
353 		ext4_orphan_del(handle, inode);
354 	ext4_journal_stop(handle);
355 
356 	if (truncate) {
357 truncate:
358 		ext4_truncate_failed_write(inode);
359 		/*
360 		 * If the truncate operation failed early, then the inode may
361 		 * still be on the orphan list. In that case, we need to try
362 		 * remove the inode from the in-memory linked list.
363 		 */
364 		if (inode->i_nlink)
365 			ext4_orphan_del(NULL, inode);
366 	}
367 
368 	return written;
369 }
370 
371 static int ext4_dio_write_end_io(struct kiocb *iocb, ssize_t size,
372 				 int error, unsigned int flags)
373 {
374 	loff_t offset = iocb->ki_pos;
375 	struct inode *inode = file_inode(iocb->ki_filp);
376 
377 	if (error)
378 		return error;
379 
380 	if (size && flags & IOMAP_DIO_UNWRITTEN)
381 		return ext4_convert_unwritten_extents(NULL, inode,
382 						      offset, size);
383 
384 	return 0;
385 }
386 
387 static const struct iomap_dio_ops ext4_dio_write_ops = {
388 	.end_io = ext4_dio_write_end_io,
389 };
390 
391 /*
392  * The intention here is to start with shared lock acquired then see if any
393  * condition requires an exclusive inode lock. If yes, then we restart the
394  * whole operation by releasing the shared lock and acquiring exclusive lock.
395  *
396  * - For unaligned_io we never take shared lock as it may cause data corruption
397  *   when two unaligned IO tries to modify the same block e.g. while zeroing.
398  *
399  * - For extending writes case we don't take the shared lock, since it requires
400  *   updating inode i_disksize and/or orphan handling with exclusive lock.
401  *
402  * - shared locking will only be true mostly with overwrites. Otherwise we will
403  *   switch to exclusive i_rwsem lock.
404  */
405 static ssize_t ext4_dio_write_checks(struct kiocb *iocb, struct iov_iter *from,
406 				     bool *ilock_shared, bool *extend)
407 {
408 	struct file *file = iocb->ki_filp;
409 	struct inode *inode = file_inode(file);
410 	loff_t offset;
411 	size_t count;
412 	ssize_t ret;
413 
414 restart:
415 	ret = ext4_generic_write_checks(iocb, from);
416 	if (ret <= 0)
417 		goto out;
418 
419 	offset = iocb->ki_pos;
420 	count = ret;
421 	if (ext4_extending_io(inode, offset, count))
422 		*extend = true;
423 	/*
424 	 * Determine whether the IO operation will overwrite allocated
425 	 * and initialized blocks.
426 	 * We need exclusive i_rwsem for changing security info
427 	 * in file_modified().
428 	 */
429 	if (*ilock_shared && (!IS_NOSEC(inode) || *extend ||
430 	     !ext4_overwrite_io(inode, offset, count))) {
431 		inode_unlock_shared(inode);
432 		*ilock_shared = false;
433 		inode_lock(inode);
434 		goto restart;
435 	}
436 
437 	ret = file_modified(file);
438 	if (ret < 0)
439 		goto out;
440 
441 	return count;
442 out:
443 	if (*ilock_shared)
444 		inode_unlock_shared(inode);
445 	else
446 		inode_unlock(inode);
447 	return ret;
448 }
449 
450 static ssize_t ext4_dio_write_iter(struct kiocb *iocb, struct iov_iter *from)
451 {
452 	ssize_t ret;
453 	handle_t *handle;
454 	struct inode *inode = file_inode(iocb->ki_filp);
455 	loff_t offset = iocb->ki_pos;
456 	size_t count = iov_iter_count(from);
457 	const struct iomap_ops *iomap_ops = &ext4_iomap_ops;
458 	bool extend = false, unaligned_io = false;
459 	bool ilock_shared = true;
460 
461 	/*
462 	 * We initially start with shared inode lock unless it is
463 	 * unaligned IO which needs exclusive lock anyways.
464 	 */
465 	if (ext4_unaligned_io(inode, from, offset)) {
466 		unaligned_io = true;
467 		ilock_shared = false;
468 	}
469 	/*
470 	 * Quick check here without any i_rwsem lock to see if it is extending
471 	 * IO. A more reliable check is done in ext4_dio_write_checks() with
472 	 * proper locking in place.
473 	 */
474 	if (offset + count > i_size_read(inode))
475 		ilock_shared = false;
476 
477 	if (iocb->ki_flags & IOCB_NOWAIT) {
478 		if (ilock_shared) {
479 			if (!inode_trylock_shared(inode))
480 				return -EAGAIN;
481 		} else {
482 			if (!inode_trylock(inode))
483 				return -EAGAIN;
484 		}
485 	} else {
486 		if (ilock_shared)
487 			inode_lock_shared(inode);
488 		else
489 			inode_lock(inode);
490 	}
491 
492 	/* Fallback to buffered I/O if the inode does not support direct I/O. */
493 	if (!ext4_dio_supported(inode)) {
494 		if (ilock_shared)
495 			inode_unlock_shared(inode);
496 		else
497 			inode_unlock(inode);
498 		return ext4_buffered_write_iter(iocb, from);
499 	}
500 
501 	ret = ext4_dio_write_checks(iocb, from, &ilock_shared, &extend);
502 	if (ret <= 0)
503 		return ret;
504 
505 	/* if we're going to block and IOCB_NOWAIT is set, return -EAGAIN */
506 	if ((iocb->ki_flags & IOCB_NOWAIT) && (unaligned_io || extend)) {
507 		ret = -EAGAIN;
508 		goto out;
509 	}
510 
511 	offset = iocb->ki_pos;
512 	count = ret;
513 
514 	/*
515 	 * Unaligned direct IO must be serialized among each other as zeroing
516 	 * of partial blocks of two competing unaligned IOs can result in data
517 	 * corruption.
518 	 *
519 	 * So we make sure we don't allow any unaligned IO in flight.
520 	 * For IOs where we need not wait (like unaligned non-AIO DIO),
521 	 * below inode_dio_wait() may anyway become a no-op, since we start
522 	 * with exclusive lock.
523 	 */
524 	if (unaligned_io)
525 		inode_dio_wait(inode);
526 
527 	if (extend) {
528 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
529 		if (IS_ERR(handle)) {
530 			ret = PTR_ERR(handle);
531 			goto out;
532 		}
533 
534 		ret = ext4_orphan_add(handle, inode);
535 		if (ret) {
536 			ext4_journal_stop(handle);
537 			goto out;
538 		}
539 
540 		ext4_journal_stop(handle);
541 	}
542 
543 	if (ilock_shared)
544 		iomap_ops = &ext4_iomap_overwrite_ops;
545 	ret = iomap_dio_rw(iocb, from, iomap_ops, &ext4_dio_write_ops,
546 			   is_sync_kiocb(iocb) || unaligned_io || extend);
547 	if (ret == -ENOTBLK)
548 		ret = 0;
549 
550 	if (extend)
551 		ret = ext4_handle_inode_extension(inode, offset, ret, count);
552 
553 out:
554 	if (ilock_shared)
555 		inode_unlock_shared(inode);
556 	else
557 		inode_unlock(inode);
558 
559 	if (ret >= 0 && iov_iter_count(from)) {
560 		ssize_t err;
561 		loff_t endbyte;
562 
563 		offset = iocb->ki_pos;
564 		err = ext4_buffered_write_iter(iocb, from);
565 		if (err < 0)
566 			return err;
567 
568 		/*
569 		 * We need to ensure that the pages within the page cache for
570 		 * the range covered by this I/O are written to disk and
571 		 * invalidated. This is in attempt to preserve the expected
572 		 * direct I/O semantics in the case we fallback to buffered I/O
573 		 * to complete off the I/O request.
574 		 */
575 		ret += err;
576 		endbyte = offset + err - 1;
577 		err = filemap_write_and_wait_range(iocb->ki_filp->f_mapping,
578 						   offset, endbyte);
579 		if (!err)
580 			invalidate_mapping_pages(iocb->ki_filp->f_mapping,
581 						 offset >> PAGE_SHIFT,
582 						 endbyte >> PAGE_SHIFT);
583 	}
584 
585 	return ret;
586 }
587 
588 #ifdef CONFIG_FS_DAX
589 static ssize_t
590 ext4_dax_write_iter(struct kiocb *iocb, struct iov_iter *from)
591 {
592 	ssize_t ret;
593 	size_t count;
594 	loff_t offset;
595 	handle_t *handle;
596 	bool extend = false;
597 	struct inode *inode = file_inode(iocb->ki_filp);
598 
599 	if (iocb->ki_flags & IOCB_NOWAIT) {
600 		if (!inode_trylock(inode))
601 			return -EAGAIN;
602 	} else {
603 		inode_lock(inode);
604 	}
605 
606 	ret = ext4_write_checks(iocb, from);
607 	if (ret <= 0)
608 		goto out;
609 
610 	offset = iocb->ki_pos;
611 	count = iov_iter_count(from);
612 
613 	if (offset + count > EXT4_I(inode)->i_disksize) {
614 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
615 		if (IS_ERR(handle)) {
616 			ret = PTR_ERR(handle);
617 			goto out;
618 		}
619 
620 		ret = ext4_orphan_add(handle, inode);
621 		if (ret) {
622 			ext4_journal_stop(handle);
623 			goto out;
624 		}
625 
626 		extend = true;
627 		ext4_journal_stop(handle);
628 	}
629 
630 	ret = dax_iomap_rw(iocb, from, &ext4_iomap_ops);
631 
632 	if (extend)
633 		ret = ext4_handle_inode_extension(inode, offset, ret, count);
634 out:
635 	inode_unlock(inode);
636 	if (ret > 0)
637 		ret = generic_write_sync(iocb, ret);
638 	return ret;
639 }
640 #endif
641 
642 static ssize_t
643 ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
644 {
645 	struct inode *inode = file_inode(iocb->ki_filp);
646 
647 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
648 		return -EIO;
649 
650 #ifdef CONFIG_FS_DAX
651 	if (IS_DAX(inode))
652 		return ext4_dax_write_iter(iocb, from);
653 #endif
654 	if (iocb->ki_flags & IOCB_DIRECT)
655 		return ext4_dio_write_iter(iocb, from);
656 
657 	return ext4_buffered_write_iter(iocb, from);
658 }
659 
660 #ifdef CONFIG_FS_DAX
661 static vm_fault_t ext4_dax_huge_fault(struct vm_fault *vmf,
662 		enum page_entry_size pe_size)
663 {
664 	int error = 0;
665 	vm_fault_t result;
666 	int retries = 0;
667 	handle_t *handle = NULL;
668 	struct inode *inode = file_inode(vmf->vma->vm_file);
669 	struct super_block *sb = inode->i_sb;
670 
671 	/*
672 	 * We have to distinguish real writes from writes which will result in a
673 	 * COW page; COW writes should *not* poke the journal (the file will not
674 	 * be changed). Doing so would cause unintended failures when mounted
675 	 * read-only.
676 	 *
677 	 * We check for VM_SHARED rather than vmf->cow_page since the latter is
678 	 * unset for pe_size != PE_SIZE_PTE (i.e. only in do_cow_fault); for
679 	 * other sizes, dax_iomap_fault will handle splitting / fallback so that
680 	 * we eventually come back with a COW page.
681 	 */
682 	bool write = (vmf->flags & FAULT_FLAG_WRITE) &&
683 		(vmf->vma->vm_flags & VM_SHARED);
684 	pfn_t pfn;
685 
686 	if (write) {
687 		sb_start_pagefault(sb);
688 		file_update_time(vmf->vma->vm_file);
689 		down_read(&EXT4_I(inode)->i_mmap_sem);
690 retry:
691 		handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE,
692 					       EXT4_DATA_TRANS_BLOCKS(sb));
693 		if (IS_ERR(handle)) {
694 			up_read(&EXT4_I(inode)->i_mmap_sem);
695 			sb_end_pagefault(sb);
696 			return VM_FAULT_SIGBUS;
697 		}
698 	} else {
699 		down_read(&EXT4_I(inode)->i_mmap_sem);
700 	}
701 	result = dax_iomap_fault(vmf, pe_size, &pfn, &error, &ext4_iomap_ops);
702 	if (write) {
703 		ext4_journal_stop(handle);
704 
705 		if ((result & VM_FAULT_ERROR) && error == -ENOSPC &&
706 		    ext4_should_retry_alloc(sb, &retries))
707 			goto retry;
708 		/* Handling synchronous page fault? */
709 		if (result & VM_FAULT_NEEDDSYNC)
710 			result = dax_finish_sync_fault(vmf, pe_size, pfn);
711 		up_read(&EXT4_I(inode)->i_mmap_sem);
712 		sb_end_pagefault(sb);
713 	} else {
714 		up_read(&EXT4_I(inode)->i_mmap_sem);
715 	}
716 
717 	return result;
718 }
719 
720 static vm_fault_t ext4_dax_fault(struct vm_fault *vmf)
721 {
722 	return ext4_dax_huge_fault(vmf, PE_SIZE_PTE);
723 }
724 
725 static const struct vm_operations_struct ext4_dax_vm_ops = {
726 	.fault		= ext4_dax_fault,
727 	.huge_fault	= ext4_dax_huge_fault,
728 	.page_mkwrite	= ext4_dax_fault,
729 	.pfn_mkwrite	= ext4_dax_fault,
730 };
731 #else
732 #define ext4_dax_vm_ops	ext4_file_vm_ops
733 #endif
734 
735 static const struct vm_operations_struct ext4_file_vm_ops = {
736 	.fault		= ext4_filemap_fault,
737 	.map_pages	= filemap_map_pages,
738 	.page_mkwrite   = ext4_page_mkwrite,
739 };
740 
741 static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
742 {
743 	struct inode *inode = file->f_mapping->host;
744 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
745 	struct dax_device *dax_dev = sbi->s_daxdev;
746 
747 	if (unlikely(ext4_forced_shutdown(sbi)))
748 		return -EIO;
749 
750 	/*
751 	 * We don't support synchronous mappings for non-DAX files and
752 	 * for DAX files if underneath dax_device is not synchronous.
753 	 */
754 	if (!daxdev_mapping_supported(vma, dax_dev))
755 		return -EOPNOTSUPP;
756 
757 	file_accessed(file);
758 	if (IS_DAX(file_inode(file))) {
759 		vma->vm_ops = &ext4_dax_vm_ops;
760 		vma->vm_flags |= VM_HUGEPAGE;
761 	} else {
762 		vma->vm_ops = &ext4_file_vm_ops;
763 	}
764 	return 0;
765 }
766 
767 static int ext4_sample_last_mounted(struct super_block *sb,
768 				    struct vfsmount *mnt)
769 {
770 	struct ext4_sb_info *sbi = EXT4_SB(sb);
771 	struct path path;
772 	char buf[64], *cp;
773 	handle_t *handle;
774 	int err;
775 
776 	if (likely(sbi->s_mount_flags & EXT4_MF_MNTDIR_SAMPLED))
777 		return 0;
778 
779 	if (sb_rdonly(sb) || !sb_start_intwrite_trylock(sb))
780 		return 0;
781 
782 	sbi->s_mount_flags |= EXT4_MF_MNTDIR_SAMPLED;
783 	/*
784 	 * Sample where the filesystem has been mounted and
785 	 * store it in the superblock for sysadmin convenience
786 	 * when trying to sort through large numbers of block
787 	 * devices or filesystem images.
788 	 */
789 	memset(buf, 0, sizeof(buf));
790 	path.mnt = mnt;
791 	path.dentry = mnt->mnt_root;
792 	cp = d_path(&path, buf, sizeof(buf));
793 	err = 0;
794 	if (IS_ERR(cp))
795 		goto out;
796 
797 	handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
798 	err = PTR_ERR(handle);
799 	if (IS_ERR(handle))
800 		goto out;
801 	BUFFER_TRACE(sbi->s_sbh, "get_write_access");
802 	err = ext4_journal_get_write_access(handle, sbi->s_sbh);
803 	if (err)
804 		goto out_journal;
805 	strlcpy(sbi->s_es->s_last_mounted, cp,
806 		sizeof(sbi->s_es->s_last_mounted));
807 	ext4_handle_dirty_super(handle, sb);
808 out_journal:
809 	ext4_journal_stop(handle);
810 out:
811 	sb_end_intwrite(sb);
812 	return err;
813 }
814 
815 static int ext4_file_open(struct inode * inode, struct file * filp)
816 {
817 	int ret;
818 
819 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
820 		return -EIO;
821 
822 	ret = ext4_sample_last_mounted(inode->i_sb, filp->f_path.mnt);
823 	if (ret)
824 		return ret;
825 
826 	ret = fscrypt_file_open(inode, filp);
827 	if (ret)
828 		return ret;
829 
830 	ret = fsverity_file_open(inode, filp);
831 	if (ret)
832 		return ret;
833 
834 	/*
835 	 * Set up the jbd2_inode if we are opening the inode for
836 	 * writing and the journal is present
837 	 */
838 	if (filp->f_mode & FMODE_WRITE) {
839 		ret = ext4_inode_attach_jinode(inode);
840 		if (ret < 0)
841 			return ret;
842 	}
843 
844 	filp->f_mode |= FMODE_NOWAIT;
845 	return dquot_file_open(inode, filp);
846 }
847 
848 /*
849  * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
850  * by calling generic_file_llseek_size() with the appropriate maxbytes
851  * value for each.
852  */
853 loff_t ext4_llseek(struct file *file, loff_t offset, int whence)
854 {
855 	struct inode *inode = file->f_mapping->host;
856 	loff_t maxbytes;
857 
858 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
859 		maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes;
860 	else
861 		maxbytes = inode->i_sb->s_maxbytes;
862 
863 	switch (whence) {
864 	default:
865 		return generic_file_llseek_size(file, offset, whence,
866 						maxbytes, i_size_read(inode));
867 	case SEEK_HOLE:
868 		inode_lock_shared(inode);
869 		offset = iomap_seek_hole(inode, offset,
870 					 &ext4_iomap_report_ops);
871 		inode_unlock_shared(inode);
872 		break;
873 	case SEEK_DATA:
874 		inode_lock_shared(inode);
875 		offset = iomap_seek_data(inode, offset,
876 					 &ext4_iomap_report_ops);
877 		inode_unlock_shared(inode);
878 		break;
879 	}
880 
881 	if (offset < 0)
882 		return offset;
883 	return vfs_setpos(file, offset, maxbytes);
884 }
885 
886 const struct file_operations ext4_file_operations = {
887 	.llseek		= ext4_llseek,
888 	.read_iter	= ext4_file_read_iter,
889 	.write_iter	= ext4_file_write_iter,
890 	.iopoll		= iomap_dio_iopoll,
891 	.unlocked_ioctl = ext4_ioctl,
892 #ifdef CONFIG_COMPAT
893 	.compat_ioctl	= ext4_compat_ioctl,
894 #endif
895 	.mmap		= ext4_file_mmap,
896 	.mmap_supported_flags = MAP_SYNC,
897 	.open		= ext4_file_open,
898 	.release	= ext4_release_file,
899 	.fsync		= ext4_sync_file,
900 	.get_unmapped_area = thp_get_unmapped_area,
901 	.splice_read	= generic_file_splice_read,
902 	.splice_write	= iter_file_splice_write,
903 	.fallocate	= ext4_fallocate,
904 };
905 
906 const struct inode_operations ext4_file_inode_operations = {
907 	.setattr	= ext4_setattr,
908 	.getattr	= ext4_file_getattr,
909 	.listxattr	= ext4_listxattr,
910 	.get_acl	= ext4_get_acl,
911 	.set_acl	= ext4_set_acl,
912 	.fiemap		= ext4_fiemap,
913 };
914 
915