1 /* 2 * linux/fs/ext4/file.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/file.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * ext4 fs regular file handling primitives 16 * 17 * 64-bit file support on 64-bit platforms by Jakub Jelinek 18 * (jj@sunsite.ms.mff.cuni.cz) 19 */ 20 21 #include <linux/time.h> 22 #include <linux/fs.h> 23 #include <linux/mount.h> 24 #include <linux/path.h> 25 #include <linux/dax.h> 26 #include <linux/quotaops.h> 27 #include <linux/pagevec.h> 28 #include <linux/uio.h> 29 #include "ext4.h" 30 #include "ext4_jbd2.h" 31 #include "xattr.h" 32 #include "acl.h" 33 34 /* 35 * Called when an inode is released. Note that this is different 36 * from ext4_file_open: open gets called at every open, but release 37 * gets called only when /all/ the files are closed. 38 */ 39 static int ext4_release_file(struct inode *inode, struct file *filp) 40 { 41 if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) { 42 ext4_alloc_da_blocks(inode); 43 ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 44 } 45 /* if we are the last writer on the inode, drop the block reservation */ 46 if ((filp->f_mode & FMODE_WRITE) && 47 (atomic_read(&inode->i_writecount) == 1) && 48 !EXT4_I(inode)->i_reserved_data_blocks) 49 { 50 down_write(&EXT4_I(inode)->i_data_sem); 51 ext4_discard_preallocations(inode); 52 up_write(&EXT4_I(inode)->i_data_sem); 53 } 54 if (is_dx(inode) && filp->private_data) 55 ext4_htree_free_dir_info(filp->private_data); 56 57 return 0; 58 } 59 60 static void ext4_unwritten_wait(struct inode *inode) 61 { 62 wait_queue_head_t *wq = ext4_ioend_wq(inode); 63 64 wait_event(*wq, (atomic_read(&EXT4_I(inode)->i_unwritten) == 0)); 65 } 66 67 /* 68 * This tests whether the IO in question is block-aligned or not. 69 * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they 70 * are converted to written only after the IO is complete. Until they are 71 * mapped, these blocks appear as holes, so dio_zero_block() will assume that 72 * it needs to zero out portions of the start and/or end block. If 2 AIO 73 * threads are at work on the same unwritten block, they must be synchronized 74 * or one thread will zero the other's data, causing corruption. 75 */ 76 static int 77 ext4_unaligned_aio(struct inode *inode, struct iov_iter *from, loff_t pos) 78 { 79 struct super_block *sb = inode->i_sb; 80 int blockmask = sb->s_blocksize - 1; 81 82 if (pos >= i_size_read(inode)) 83 return 0; 84 85 if ((pos | iov_iter_alignment(from)) & blockmask) 86 return 1; 87 88 return 0; 89 } 90 91 static ssize_t 92 ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 93 { 94 struct file *file = iocb->ki_filp; 95 struct inode *inode = file_inode(iocb->ki_filp); 96 struct mutex *aio_mutex = NULL; 97 struct blk_plug plug; 98 int o_direct = iocb->ki_flags & IOCB_DIRECT; 99 int overwrite = 0; 100 ssize_t ret; 101 102 /* 103 * Unaligned direct AIO must be serialized; see comment above 104 * In the case of O_APPEND, assume that we must always serialize 105 */ 106 if (o_direct && 107 ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) && 108 !is_sync_kiocb(iocb) && 109 (iocb->ki_flags & IOCB_APPEND || 110 ext4_unaligned_aio(inode, from, iocb->ki_pos))) { 111 aio_mutex = ext4_aio_mutex(inode); 112 mutex_lock(aio_mutex); 113 ext4_unwritten_wait(inode); 114 } 115 116 inode_lock(inode); 117 ret = generic_write_checks(iocb, from); 118 if (ret <= 0) 119 goto out; 120 121 /* 122 * If we have encountered a bitmap-format file, the size limit 123 * is smaller than s_maxbytes, which is for extent-mapped files. 124 */ 125 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 126 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 127 128 if (iocb->ki_pos >= sbi->s_bitmap_maxbytes) { 129 ret = -EFBIG; 130 goto out; 131 } 132 iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos); 133 } 134 135 iocb->private = &overwrite; 136 if (o_direct) { 137 size_t length = iov_iter_count(from); 138 loff_t pos = iocb->ki_pos; 139 blk_start_plug(&plug); 140 141 /* check whether we do a DIO overwrite or not */ 142 if (ext4_should_dioread_nolock(inode) && !aio_mutex && 143 !file->f_mapping->nrpages && pos + length <= i_size_read(inode)) { 144 struct ext4_map_blocks map; 145 unsigned int blkbits = inode->i_blkbits; 146 int err, len; 147 148 map.m_lblk = pos >> blkbits; 149 map.m_len = (EXT4_BLOCK_ALIGN(pos + length, blkbits) >> blkbits) 150 - map.m_lblk; 151 len = map.m_len; 152 153 err = ext4_map_blocks(NULL, inode, &map, 0); 154 /* 155 * 'err==len' means that all of blocks has 156 * been preallocated no matter they are 157 * initialized or not. For excluding 158 * unwritten extents, we need to check 159 * m_flags. There are two conditions that 160 * indicate for initialized extents. 1) If we 161 * hit extent cache, EXT4_MAP_MAPPED flag is 162 * returned; 2) If we do a real lookup, 163 * non-flags are returned. So we should check 164 * these two conditions. 165 */ 166 if (err == len && (map.m_flags & EXT4_MAP_MAPPED)) 167 overwrite = 1; 168 } 169 } 170 171 ret = __generic_file_write_iter(iocb, from); 172 inode_unlock(inode); 173 174 if (ret > 0) { 175 ssize_t err; 176 177 err = generic_write_sync(file, iocb->ki_pos - ret, ret); 178 if (err < 0) 179 ret = err; 180 } 181 if (o_direct) 182 blk_finish_plug(&plug); 183 184 if (aio_mutex) 185 mutex_unlock(aio_mutex); 186 return ret; 187 188 out: 189 inode_unlock(inode); 190 if (aio_mutex) 191 mutex_unlock(aio_mutex); 192 return ret; 193 } 194 195 #ifdef CONFIG_FS_DAX 196 static int ext4_dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 197 { 198 int result; 199 handle_t *handle = NULL; 200 struct inode *inode = file_inode(vma->vm_file); 201 struct super_block *sb = inode->i_sb; 202 bool write = vmf->flags & FAULT_FLAG_WRITE; 203 204 if (write) { 205 sb_start_pagefault(sb); 206 file_update_time(vma->vm_file); 207 down_read(&EXT4_I(inode)->i_mmap_sem); 208 handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE, 209 EXT4_DATA_TRANS_BLOCKS(sb)); 210 } else 211 down_read(&EXT4_I(inode)->i_mmap_sem); 212 213 if (IS_ERR(handle)) 214 result = VM_FAULT_SIGBUS; 215 else 216 result = __dax_fault(vma, vmf, ext4_dax_mmap_get_block, NULL); 217 218 if (write) { 219 if (!IS_ERR(handle)) 220 ext4_journal_stop(handle); 221 up_read(&EXT4_I(inode)->i_mmap_sem); 222 sb_end_pagefault(sb); 223 } else 224 up_read(&EXT4_I(inode)->i_mmap_sem); 225 226 return result; 227 } 228 229 static int ext4_dax_pmd_fault(struct vm_area_struct *vma, unsigned long addr, 230 pmd_t *pmd, unsigned int flags) 231 { 232 int result; 233 handle_t *handle = NULL; 234 struct inode *inode = file_inode(vma->vm_file); 235 struct super_block *sb = inode->i_sb; 236 bool write = flags & FAULT_FLAG_WRITE; 237 238 if (write) { 239 sb_start_pagefault(sb); 240 file_update_time(vma->vm_file); 241 down_read(&EXT4_I(inode)->i_mmap_sem); 242 handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE, 243 ext4_chunk_trans_blocks(inode, 244 PMD_SIZE / PAGE_SIZE)); 245 } else 246 down_read(&EXT4_I(inode)->i_mmap_sem); 247 248 if (IS_ERR(handle)) 249 result = VM_FAULT_SIGBUS; 250 else 251 result = __dax_pmd_fault(vma, addr, pmd, flags, 252 ext4_dax_mmap_get_block, NULL); 253 254 if (write) { 255 if (!IS_ERR(handle)) 256 ext4_journal_stop(handle); 257 up_read(&EXT4_I(inode)->i_mmap_sem); 258 sb_end_pagefault(sb); 259 } else 260 up_read(&EXT4_I(inode)->i_mmap_sem); 261 262 return result; 263 } 264 265 static int ext4_dax_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 266 { 267 int err; 268 struct inode *inode = file_inode(vma->vm_file); 269 270 sb_start_pagefault(inode->i_sb); 271 file_update_time(vma->vm_file); 272 down_read(&EXT4_I(inode)->i_mmap_sem); 273 err = __dax_mkwrite(vma, vmf, ext4_dax_mmap_get_block, NULL); 274 up_read(&EXT4_I(inode)->i_mmap_sem); 275 sb_end_pagefault(inode->i_sb); 276 277 return err; 278 } 279 280 /* 281 * Handle write fault for VM_MIXEDMAP mappings. Similarly to ext4_dax_mkwrite() 282 * handler we check for races agaist truncate. Note that since we cycle through 283 * i_mmap_sem, we are sure that also any hole punching that began before we 284 * were called is finished by now and so if it included part of the file we 285 * are working on, our pte will get unmapped and the check for pte_same() in 286 * wp_pfn_shared() fails. Thus fault gets retried and things work out as 287 * desired. 288 */ 289 static int ext4_dax_pfn_mkwrite(struct vm_area_struct *vma, 290 struct vm_fault *vmf) 291 { 292 struct inode *inode = file_inode(vma->vm_file); 293 struct super_block *sb = inode->i_sb; 294 loff_t size; 295 int ret; 296 297 sb_start_pagefault(sb); 298 file_update_time(vma->vm_file); 299 down_read(&EXT4_I(inode)->i_mmap_sem); 300 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT; 301 if (vmf->pgoff >= size) 302 ret = VM_FAULT_SIGBUS; 303 else 304 ret = dax_pfn_mkwrite(vma, vmf); 305 up_read(&EXT4_I(inode)->i_mmap_sem); 306 sb_end_pagefault(sb); 307 308 return ret; 309 } 310 311 static const struct vm_operations_struct ext4_dax_vm_ops = { 312 .fault = ext4_dax_fault, 313 .pmd_fault = ext4_dax_pmd_fault, 314 .page_mkwrite = ext4_dax_mkwrite, 315 .pfn_mkwrite = ext4_dax_pfn_mkwrite, 316 }; 317 #else 318 #define ext4_dax_vm_ops ext4_file_vm_ops 319 #endif 320 321 static const struct vm_operations_struct ext4_file_vm_ops = { 322 .fault = ext4_filemap_fault, 323 .map_pages = filemap_map_pages, 324 .page_mkwrite = ext4_page_mkwrite, 325 }; 326 327 static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma) 328 { 329 struct inode *inode = file->f_mapping->host; 330 331 if (ext4_encrypted_inode(inode)) { 332 int err = ext4_get_encryption_info(inode); 333 if (err) 334 return 0; 335 if (ext4_encryption_info(inode) == NULL) 336 return -ENOKEY; 337 } 338 file_accessed(file); 339 if (IS_DAX(file_inode(file))) { 340 vma->vm_ops = &ext4_dax_vm_ops; 341 vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE; 342 } else { 343 vma->vm_ops = &ext4_file_vm_ops; 344 } 345 return 0; 346 } 347 348 static int ext4_file_open(struct inode * inode, struct file * filp) 349 { 350 struct super_block *sb = inode->i_sb; 351 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 352 struct vfsmount *mnt = filp->f_path.mnt; 353 struct inode *dir = filp->f_path.dentry->d_parent->d_inode; 354 struct path path; 355 char buf[64], *cp; 356 int ret; 357 358 if (unlikely(!(sbi->s_mount_flags & EXT4_MF_MNTDIR_SAMPLED) && 359 !(sb->s_flags & MS_RDONLY))) { 360 sbi->s_mount_flags |= EXT4_MF_MNTDIR_SAMPLED; 361 /* 362 * Sample where the filesystem has been mounted and 363 * store it in the superblock for sysadmin convenience 364 * when trying to sort through large numbers of block 365 * devices or filesystem images. 366 */ 367 memset(buf, 0, sizeof(buf)); 368 path.mnt = mnt; 369 path.dentry = mnt->mnt_root; 370 cp = d_path(&path, buf, sizeof(buf)); 371 if (!IS_ERR(cp)) { 372 handle_t *handle; 373 int err; 374 375 handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1); 376 if (IS_ERR(handle)) 377 return PTR_ERR(handle); 378 BUFFER_TRACE(sbi->s_sbh, "get_write_access"); 379 err = ext4_journal_get_write_access(handle, sbi->s_sbh); 380 if (err) { 381 ext4_journal_stop(handle); 382 return err; 383 } 384 strlcpy(sbi->s_es->s_last_mounted, cp, 385 sizeof(sbi->s_es->s_last_mounted)); 386 ext4_handle_dirty_super(handle, sb); 387 ext4_journal_stop(handle); 388 } 389 } 390 if (ext4_encrypted_inode(inode)) { 391 ret = ext4_get_encryption_info(inode); 392 if (ret) 393 return -EACCES; 394 if (ext4_encryption_info(inode) == NULL) 395 return -ENOKEY; 396 } 397 if (ext4_encrypted_inode(dir) && 398 !ext4_is_child_context_consistent_with_parent(dir, inode)) { 399 ext4_warning(inode->i_sb, 400 "Inconsistent encryption contexts: %lu/%lu\n", 401 (unsigned long) dir->i_ino, 402 (unsigned long) inode->i_ino); 403 return -EPERM; 404 } 405 /* 406 * Set up the jbd2_inode if we are opening the inode for 407 * writing and the journal is present 408 */ 409 if (filp->f_mode & FMODE_WRITE) { 410 ret = ext4_inode_attach_jinode(inode); 411 if (ret < 0) 412 return ret; 413 } 414 return dquot_file_open(inode, filp); 415 } 416 417 /* 418 * Here we use ext4_map_blocks() to get a block mapping for a extent-based 419 * file rather than ext4_ext_walk_space() because we can introduce 420 * SEEK_DATA/SEEK_HOLE for block-mapped and extent-mapped file at the same 421 * function. When extent status tree has been fully implemented, it will 422 * track all extent status for a file and we can directly use it to 423 * retrieve the offset for SEEK_DATA/SEEK_HOLE. 424 */ 425 426 /* 427 * When we retrieve the offset for SEEK_DATA/SEEK_HOLE, we would need to 428 * lookup page cache to check whether or not there has some data between 429 * [startoff, endoff] because, if this range contains an unwritten extent, 430 * we determine this extent as a data or a hole according to whether the 431 * page cache has data or not. 432 */ 433 static int ext4_find_unwritten_pgoff(struct inode *inode, 434 int whence, 435 struct ext4_map_blocks *map, 436 loff_t *offset) 437 { 438 struct pagevec pvec; 439 unsigned int blkbits; 440 pgoff_t index; 441 pgoff_t end; 442 loff_t endoff; 443 loff_t startoff; 444 loff_t lastoff; 445 int found = 0; 446 447 blkbits = inode->i_sb->s_blocksize_bits; 448 startoff = *offset; 449 lastoff = startoff; 450 endoff = (loff_t)(map->m_lblk + map->m_len) << blkbits; 451 452 index = startoff >> PAGE_CACHE_SHIFT; 453 end = endoff >> PAGE_CACHE_SHIFT; 454 455 pagevec_init(&pvec, 0); 456 do { 457 int i, num; 458 unsigned long nr_pages; 459 460 num = min_t(pgoff_t, end - index, PAGEVEC_SIZE); 461 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index, 462 (pgoff_t)num); 463 if (nr_pages == 0) { 464 if (whence == SEEK_DATA) 465 break; 466 467 BUG_ON(whence != SEEK_HOLE); 468 /* 469 * If this is the first time to go into the loop and 470 * offset is not beyond the end offset, it will be a 471 * hole at this offset 472 */ 473 if (lastoff == startoff || lastoff < endoff) 474 found = 1; 475 break; 476 } 477 478 /* 479 * If this is the first time to go into the loop and 480 * offset is smaller than the first page offset, it will be a 481 * hole at this offset. 482 */ 483 if (lastoff == startoff && whence == SEEK_HOLE && 484 lastoff < page_offset(pvec.pages[0])) { 485 found = 1; 486 break; 487 } 488 489 for (i = 0; i < nr_pages; i++) { 490 struct page *page = pvec.pages[i]; 491 struct buffer_head *bh, *head; 492 493 /* 494 * If the current offset is not beyond the end of given 495 * range, it will be a hole. 496 */ 497 if (lastoff < endoff && whence == SEEK_HOLE && 498 page->index > end) { 499 found = 1; 500 *offset = lastoff; 501 goto out; 502 } 503 504 lock_page(page); 505 506 if (unlikely(page->mapping != inode->i_mapping)) { 507 unlock_page(page); 508 continue; 509 } 510 511 if (!page_has_buffers(page)) { 512 unlock_page(page); 513 continue; 514 } 515 516 if (page_has_buffers(page)) { 517 lastoff = page_offset(page); 518 bh = head = page_buffers(page); 519 do { 520 if (buffer_uptodate(bh) || 521 buffer_unwritten(bh)) { 522 if (whence == SEEK_DATA) 523 found = 1; 524 } else { 525 if (whence == SEEK_HOLE) 526 found = 1; 527 } 528 if (found) { 529 *offset = max_t(loff_t, 530 startoff, lastoff); 531 unlock_page(page); 532 goto out; 533 } 534 lastoff += bh->b_size; 535 bh = bh->b_this_page; 536 } while (bh != head); 537 } 538 539 lastoff = page_offset(page) + PAGE_SIZE; 540 unlock_page(page); 541 } 542 543 /* 544 * The no. of pages is less than our desired, that would be a 545 * hole in there. 546 */ 547 if (nr_pages < num && whence == SEEK_HOLE) { 548 found = 1; 549 *offset = lastoff; 550 break; 551 } 552 553 index = pvec.pages[i - 1]->index + 1; 554 pagevec_release(&pvec); 555 } while (index <= end); 556 557 out: 558 pagevec_release(&pvec); 559 return found; 560 } 561 562 /* 563 * ext4_seek_data() retrieves the offset for SEEK_DATA. 564 */ 565 static loff_t ext4_seek_data(struct file *file, loff_t offset, loff_t maxsize) 566 { 567 struct inode *inode = file->f_mapping->host; 568 struct ext4_map_blocks map; 569 struct extent_status es; 570 ext4_lblk_t start, last, end; 571 loff_t dataoff, isize; 572 int blkbits; 573 int ret = 0; 574 575 inode_lock(inode); 576 577 isize = i_size_read(inode); 578 if (offset >= isize) { 579 inode_unlock(inode); 580 return -ENXIO; 581 } 582 583 blkbits = inode->i_sb->s_blocksize_bits; 584 start = offset >> blkbits; 585 last = start; 586 end = isize >> blkbits; 587 dataoff = offset; 588 589 do { 590 map.m_lblk = last; 591 map.m_len = end - last + 1; 592 ret = ext4_map_blocks(NULL, inode, &map, 0); 593 if (ret > 0 && !(map.m_flags & EXT4_MAP_UNWRITTEN)) { 594 if (last != start) 595 dataoff = (loff_t)last << blkbits; 596 break; 597 } 598 599 /* 600 * If there is a delay extent at this offset, 601 * it will be as a data. 602 */ 603 ext4_es_find_delayed_extent_range(inode, last, last, &es); 604 if (es.es_len != 0 && in_range(last, es.es_lblk, es.es_len)) { 605 if (last != start) 606 dataoff = (loff_t)last << blkbits; 607 break; 608 } 609 610 /* 611 * If there is a unwritten extent at this offset, 612 * it will be as a data or a hole according to page 613 * cache that has data or not. 614 */ 615 if (map.m_flags & EXT4_MAP_UNWRITTEN) { 616 int unwritten; 617 unwritten = ext4_find_unwritten_pgoff(inode, SEEK_DATA, 618 &map, &dataoff); 619 if (unwritten) 620 break; 621 } 622 623 last++; 624 dataoff = (loff_t)last << blkbits; 625 } while (last <= end); 626 627 inode_unlock(inode); 628 629 if (dataoff > isize) 630 return -ENXIO; 631 632 return vfs_setpos(file, dataoff, maxsize); 633 } 634 635 /* 636 * ext4_seek_hole() retrieves the offset for SEEK_HOLE. 637 */ 638 static loff_t ext4_seek_hole(struct file *file, loff_t offset, loff_t maxsize) 639 { 640 struct inode *inode = file->f_mapping->host; 641 struct ext4_map_blocks map; 642 struct extent_status es; 643 ext4_lblk_t start, last, end; 644 loff_t holeoff, isize; 645 int blkbits; 646 int ret = 0; 647 648 inode_lock(inode); 649 650 isize = i_size_read(inode); 651 if (offset >= isize) { 652 inode_unlock(inode); 653 return -ENXIO; 654 } 655 656 blkbits = inode->i_sb->s_blocksize_bits; 657 start = offset >> blkbits; 658 last = start; 659 end = isize >> blkbits; 660 holeoff = offset; 661 662 do { 663 map.m_lblk = last; 664 map.m_len = end - last + 1; 665 ret = ext4_map_blocks(NULL, inode, &map, 0); 666 if (ret > 0 && !(map.m_flags & EXT4_MAP_UNWRITTEN)) { 667 last += ret; 668 holeoff = (loff_t)last << blkbits; 669 continue; 670 } 671 672 /* 673 * If there is a delay extent at this offset, 674 * we will skip this extent. 675 */ 676 ext4_es_find_delayed_extent_range(inode, last, last, &es); 677 if (es.es_len != 0 && in_range(last, es.es_lblk, es.es_len)) { 678 last = es.es_lblk + es.es_len; 679 holeoff = (loff_t)last << blkbits; 680 continue; 681 } 682 683 /* 684 * If there is a unwritten extent at this offset, 685 * it will be as a data or a hole according to page 686 * cache that has data or not. 687 */ 688 if (map.m_flags & EXT4_MAP_UNWRITTEN) { 689 int unwritten; 690 unwritten = ext4_find_unwritten_pgoff(inode, SEEK_HOLE, 691 &map, &holeoff); 692 if (!unwritten) { 693 last += ret; 694 holeoff = (loff_t)last << blkbits; 695 continue; 696 } 697 } 698 699 /* find a hole */ 700 break; 701 } while (last <= end); 702 703 inode_unlock(inode); 704 705 if (holeoff > isize) 706 holeoff = isize; 707 708 return vfs_setpos(file, holeoff, maxsize); 709 } 710 711 /* 712 * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values 713 * by calling generic_file_llseek_size() with the appropriate maxbytes 714 * value for each. 715 */ 716 loff_t ext4_llseek(struct file *file, loff_t offset, int whence) 717 { 718 struct inode *inode = file->f_mapping->host; 719 loff_t maxbytes; 720 721 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 722 maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes; 723 else 724 maxbytes = inode->i_sb->s_maxbytes; 725 726 switch (whence) { 727 case SEEK_SET: 728 case SEEK_CUR: 729 case SEEK_END: 730 return generic_file_llseek_size(file, offset, whence, 731 maxbytes, i_size_read(inode)); 732 case SEEK_DATA: 733 return ext4_seek_data(file, offset, maxbytes); 734 case SEEK_HOLE: 735 return ext4_seek_hole(file, offset, maxbytes); 736 } 737 738 return -EINVAL; 739 } 740 741 const struct file_operations ext4_file_operations = { 742 .llseek = ext4_llseek, 743 .read_iter = generic_file_read_iter, 744 .write_iter = ext4_file_write_iter, 745 .unlocked_ioctl = ext4_ioctl, 746 #ifdef CONFIG_COMPAT 747 .compat_ioctl = ext4_compat_ioctl, 748 #endif 749 .mmap = ext4_file_mmap, 750 .open = ext4_file_open, 751 .release = ext4_release_file, 752 .fsync = ext4_sync_file, 753 .splice_read = generic_file_splice_read, 754 .splice_write = iter_file_splice_write, 755 .fallocate = ext4_fallocate, 756 }; 757 758 const struct inode_operations ext4_file_inode_operations = { 759 .setattr = ext4_setattr, 760 .getattr = ext4_getattr, 761 .setxattr = generic_setxattr, 762 .getxattr = generic_getxattr, 763 .listxattr = ext4_listxattr, 764 .removexattr = generic_removexattr, 765 .get_acl = ext4_get_acl, 766 .set_acl = ext4_set_acl, 767 .fiemap = ext4_fiemap, 768 }; 769 770