1 /* 2 * linux/fs/ext4/file.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/file.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * ext4 fs regular file handling primitives 16 * 17 * 64-bit file support on 64-bit platforms by Jakub Jelinek 18 * (jj@sunsite.ms.mff.cuni.cz) 19 */ 20 21 #include <linux/time.h> 22 #include <linux/fs.h> 23 #include <linux/mount.h> 24 #include <linux/path.h> 25 #include <linux/dax.h> 26 #include <linux/quotaops.h> 27 #include <linux/pagevec.h> 28 #include <linux/uio.h> 29 #include "ext4.h" 30 #include "ext4_jbd2.h" 31 #include "xattr.h" 32 #include "acl.h" 33 34 /* 35 * Called when an inode is released. Note that this is different 36 * from ext4_file_open: open gets called at every open, but release 37 * gets called only when /all/ the files are closed. 38 */ 39 static int ext4_release_file(struct inode *inode, struct file *filp) 40 { 41 if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) { 42 ext4_alloc_da_blocks(inode); 43 ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 44 } 45 /* if we are the last writer on the inode, drop the block reservation */ 46 if ((filp->f_mode & FMODE_WRITE) && 47 (atomic_read(&inode->i_writecount) == 1) && 48 !EXT4_I(inode)->i_reserved_data_blocks) 49 { 50 down_write(&EXT4_I(inode)->i_data_sem); 51 ext4_discard_preallocations(inode); 52 up_write(&EXT4_I(inode)->i_data_sem); 53 } 54 if (is_dx(inode) && filp->private_data) 55 ext4_htree_free_dir_info(filp->private_data); 56 57 return 0; 58 } 59 60 static void ext4_unwritten_wait(struct inode *inode) 61 { 62 wait_queue_head_t *wq = ext4_ioend_wq(inode); 63 64 wait_event(*wq, (atomic_read(&EXT4_I(inode)->i_unwritten) == 0)); 65 } 66 67 /* 68 * This tests whether the IO in question is block-aligned or not. 69 * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they 70 * are converted to written only after the IO is complete. Until they are 71 * mapped, these blocks appear as holes, so dio_zero_block() will assume that 72 * it needs to zero out portions of the start and/or end block. If 2 AIO 73 * threads are at work on the same unwritten block, they must be synchronized 74 * or one thread will zero the other's data, causing corruption. 75 */ 76 static int 77 ext4_unaligned_aio(struct inode *inode, struct iov_iter *from, loff_t pos) 78 { 79 struct super_block *sb = inode->i_sb; 80 int blockmask = sb->s_blocksize - 1; 81 82 if (pos >= i_size_read(inode)) 83 return 0; 84 85 if ((pos | iov_iter_alignment(from)) & blockmask) 86 return 1; 87 88 return 0; 89 } 90 91 static ssize_t 92 ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 93 { 94 struct file *file = iocb->ki_filp; 95 struct inode *inode = file_inode(iocb->ki_filp); 96 struct blk_plug plug; 97 int o_direct = iocb->ki_flags & IOCB_DIRECT; 98 int unaligned_aio = 0; 99 int overwrite = 0; 100 ssize_t ret; 101 102 inode_lock(inode); 103 ret = generic_write_checks(iocb, from); 104 if (ret <= 0) 105 goto out; 106 107 /* 108 * Unaligned direct AIO must be serialized among each other as zeroing 109 * of partial blocks of two competing unaligned AIOs can result in data 110 * corruption. 111 */ 112 if (o_direct && ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) && 113 !is_sync_kiocb(iocb) && 114 ext4_unaligned_aio(inode, from, iocb->ki_pos)) { 115 unaligned_aio = 1; 116 ext4_unwritten_wait(inode); 117 } 118 119 /* 120 * If we have encountered a bitmap-format file, the size limit 121 * is smaller than s_maxbytes, which is for extent-mapped files. 122 */ 123 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 124 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 125 126 if (iocb->ki_pos >= sbi->s_bitmap_maxbytes) { 127 ret = -EFBIG; 128 goto out; 129 } 130 iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos); 131 } 132 133 iocb->private = &overwrite; 134 if (o_direct) { 135 size_t length = iov_iter_count(from); 136 loff_t pos = iocb->ki_pos; 137 blk_start_plug(&plug); 138 139 /* check whether we do a DIO overwrite or not */ 140 if (ext4_should_dioread_nolock(inode) && !unaligned_aio && 141 !file->f_mapping->nrpages && pos + length <= i_size_read(inode)) { 142 struct ext4_map_blocks map; 143 unsigned int blkbits = inode->i_blkbits; 144 int err, len; 145 146 map.m_lblk = pos >> blkbits; 147 map.m_len = (EXT4_BLOCK_ALIGN(pos + length, blkbits) >> blkbits) 148 - map.m_lblk; 149 len = map.m_len; 150 151 err = ext4_map_blocks(NULL, inode, &map, 0); 152 /* 153 * 'err==len' means that all of blocks has 154 * been preallocated no matter they are 155 * initialized or not. For excluding 156 * unwritten extents, we need to check 157 * m_flags. There are two conditions that 158 * indicate for initialized extents. 1) If we 159 * hit extent cache, EXT4_MAP_MAPPED flag is 160 * returned; 2) If we do a real lookup, 161 * non-flags are returned. So we should check 162 * these two conditions. 163 */ 164 if (err == len && (map.m_flags & EXT4_MAP_MAPPED)) 165 overwrite = 1; 166 } 167 } 168 169 ret = __generic_file_write_iter(iocb, from); 170 inode_unlock(inode); 171 172 if (ret > 0) { 173 ssize_t err; 174 175 err = generic_write_sync(file, iocb->ki_pos - ret, ret); 176 if (err < 0) 177 ret = err; 178 } 179 if (o_direct) 180 blk_finish_plug(&plug); 181 182 return ret; 183 184 out: 185 inode_unlock(inode); 186 return ret; 187 } 188 189 #ifdef CONFIG_FS_DAX 190 static int ext4_dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 191 { 192 int result; 193 handle_t *handle = NULL; 194 struct inode *inode = file_inode(vma->vm_file); 195 struct super_block *sb = inode->i_sb; 196 bool write = vmf->flags & FAULT_FLAG_WRITE; 197 198 if (write) { 199 sb_start_pagefault(sb); 200 file_update_time(vma->vm_file); 201 down_read(&EXT4_I(inode)->i_mmap_sem); 202 handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE, 203 EXT4_DATA_TRANS_BLOCKS(sb)); 204 } else 205 down_read(&EXT4_I(inode)->i_mmap_sem); 206 207 if (IS_ERR(handle)) 208 result = VM_FAULT_SIGBUS; 209 else 210 result = __dax_fault(vma, vmf, ext4_dax_mmap_get_block, NULL); 211 212 if (write) { 213 if (!IS_ERR(handle)) 214 ext4_journal_stop(handle); 215 up_read(&EXT4_I(inode)->i_mmap_sem); 216 sb_end_pagefault(sb); 217 } else 218 up_read(&EXT4_I(inode)->i_mmap_sem); 219 220 return result; 221 } 222 223 static int ext4_dax_pmd_fault(struct vm_area_struct *vma, unsigned long addr, 224 pmd_t *pmd, unsigned int flags) 225 { 226 int result; 227 handle_t *handle = NULL; 228 struct inode *inode = file_inode(vma->vm_file); 229 struct super_block *sb = inode->i_sb; 230 bool write = flags & FAULT_FLAG_WRITE; 231 232 if (write) { 233 sb_start_pagefault(sb); 234 file_update_time(vma->vm_file); 235 down_read(&EXT4_I(inode)->i_mmap_sem); 236 handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE, 237 ext4_chunk_trans_blocks(inode, 238 PMD_SIZE / PAGE_SIZE)); 239 } else 240 down_read(&EXT4_I(inode)->i_mmap_sem); 241 242 if (IS_ERR(handle)) 243 result = VM_FAULT_SIGBUS; 244 else 245 result = __dax_pmd_fault(vma, addr, pmd, flags, 246 ext4_dax_mmap_get_block, NULL); 247 248 if (write) { 249 if (!IS_ERR(handle)) 250 ext4_journal_stop(handle); 251 up_read(&EXT4_I(inode)->i_mmap_sem); 252 sb_end_pagefault(sb); 253 } else 254 up_read(&EXT4_I(inode)->i_mmap_sem); 255 256 return result; 257 } 258 259 /* 260 * Handle write fault for VM_MIXEDMAP mappings. Similarly to ext4_dax_fault() 261 * handler we check for races agaist truncate. Note that since we cycle through 262 * i_mmap_sem, we are sure that also any hole punching that began before we 263 * were called is finished by now and so if it included part of the file we 264 * are working on, our pte will get unmapped and the check for pte_same() in 265 * wp_pfn_shared() fails. Thus fault gets retried and things work out as 266 * desired. 267 */ 268 static int ext4_dax_pfn_mkwrite(struct vm_area_struct *vma, 269 struct vm_fault *vmf) 270 { 271 struct inode *inode = file_inode(vma->vm_file); 272 struct super_block *sb = inode->i_sb; 273 loff_t size; 274 int ret; 275 276 sb_start_pagefault(sb); 277 file_update_time(vma->vm_file); 278 down_read(&EXT4_I(inode)->i_mmap_sem); 279 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT; 280 if (vmf->pgoff >= size) 281 ret = VM_FAULT_SIGBUS; 282 else 283 ret = dax_pfn_mkwrite(vma, vmf); 284 up_read(&EXT4_I(inode)->i_mmap_sem); 285 sb_end_pagefault(sb); 286 287 return ret; 288 } 289 290 static const struct vm_operations_struct ext4_dax_vm_ops = { 291 .fault = ext4_dax_fault, 292 .pmd_fault = ext4_dax_pmd_fault, 293 .page_mkwrite = ext4_dax_fault, 294 .pfn_mkwrite = ext4_dax_pfn_mkwrite, 295 }; 296 #else 297 #define ext4_dax_vm_ops ext4_file_vm_ops 298 #endif 299 300 static const struct vm_operations_struct ext4_file_vm_ops = { 301 .fault = ext4_filemap_fault, 302 .map_pages = filemap_map_pages, 303 .page_mkwrite = ext4_page_mkwrite, 304 }; 305 306 static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma) 307 { 308 struct inode *inode = file->f_mapping->host; 309 310 if (ext4_encrypted_inode(inode)) { 311 int err = ext4_get_encryption_info(inode); 312 if (err) 313 return 0; 314 if (ext4_encryption_info(inode) == NULL) 315 return -ENOKEY; 316 } 317 file_accessed(file); 318 if (IS_DAX(file_inode(file))) { 319 vma->vm_ops = &ext4_dax_vm_ops; 320 vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE; 321 } else { 322 vma->vm_ops = &ext4_file_vm_ops; 323 } 324 return 0; 325 } 326 327 static int ext4_file_open(struct inode * inode, struct file * filp) 328 { 329 struct super_block *sb = inode->i_sb; 330 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 331 struct vfsmount *mnt = filp->f_path.mnt; 332 struct inode *dir = filp->f_path.dentry->d_parent->d_inode; 333 struct path path; 334 char buf[64], *cp; 335 int ret; 336 337 if (unlikely(!(sbi->s_mount_flags & EXT4_MF_MNTDIR_SAMPLED) && 338 !(sb->s_flags & MS_RDONLY))) { 339 sbi->s_mount_flags |= EXT4_MF_MNTDIR_SAMPLED; 340 /* 341 * Sample where the filesystem has been mounted and 342 * store it in the superblock for sysadmin convenience 343 * when trying to sort through large numbers of block 344 * devices or filesystem images. 345 */ 346 memset(buf, 0, sizeof(buf)); 347 path.mnt = mnt; 348 path.dentry = mnt->mnt_root; 349 cp = d_path(&path, buf, sizeof(buf)); 350 if (!IS_ERR(cp)) { 351 handle_t *handle; 352 int err; 353 354 handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1); 355 if (IS_ERR(handle)) 356 return PTR_ERR(handle); 357 BUFFER_TRACE(sbi->s_sbh, "get_write_access"); 358 err = ext4_journal_get_write_access(handle, sbi->s_sbh); 359 if (err) { 360 ext4_journal_stop(handle); 361 return err; 362 } 363 strlcpy(sbi->s_es->s_last_mounted, cp, 364 sizeof(sbi->s_es->s_last_mounted)); 365 ext4_handle_dirty_super(handle, sb); 366 ext4_journal_stop(handle); 367 } 368 } 369 if (ext4_encrypted_inode(inode)) { 370 ret = ext4_get_encryption_info(inode); 371 if (ret) 372 return -EACCES; 373 if (ext4_encryption_info(inode) == NULL) 374 return -ENOKEY; 375 } 376 if (ext4_encrypted_inode(dir) && 377 !ext4_is_child_context_consistent_with_parent(dir, inode)) { 378 ext4_warning(inode->i_sb, 379 "Inconsistent encryption contexts: %lu/%lu\n", 380 (unsigned long) dir->i_ino, 381 (unsigned long) inode->i_ino); 382 return -EPERM; 383 } 384 /* 385 * Set up the jbd2_inode if we are opening the inode for 386 * writing and the journal is present 387 */ 388 if (filp->f_mode & FMODE_WRITE) { 389 ret = ext4_inode_attach_jinode(inode); 390 if (ret < 0) 391 return ret; 392 } 393 return dquot_file_open(inode, filp); 394 } 395 396 /* 397 * Here we use ext4_map_blocks() to get a block mapping for a extent-based 398 * file rather than ext4_ext_walk_space() because we can introduce 399 * SEEK_DATA/SEEK_HOLE for block-mapped and extent-mapped file at the same 400 * function. When extent status tree has been fully implemented, it will 401 * track all extent status for a file and we can directly use it to 402 * retrieve the offset for SEEK_DATA/SEEK_HOLE. 403 */ 404 405 /* 406 * When we retrieve the offset for SEEK_DATA/SEEK_HOLE, we would need to 407 * lookup page cache to check whether or not there has some data between 408 * [startoff, endoff] because, if this range contains an unwritten extent, 409 * we determine this extent as a data or a hole according to whether the 410 * page cache has data or not. 411 */ 412 static int ext4_find_unwritten_pgoff(struct inode *inode, 413 int whence, 414 ext4_lblk_t end_blk, 415 loff_t *offset) 416 { 417 struct pagevec pvec; 418 unsigned int blkbits; 419 pgoff_t index; 420 pgoff_t end; 421 loff_t endoff; 422 loff_t startoff; 423 loff_t lastoff; 424 int found = 0; 425 426 blkbits = inode->i_sb->s_blocksize_bits; 427 startoff = *offset; 428 lastoff = startoff; 429 endoff = (loff_t)end_blk << blkbits; 430 431 index = startoff >> PAGE_CACHE_SHIFT; 432 end = endoff >> PAGE_CACHE_SHIFT; 433 434 pagevec_init(&pvec, 0); 435 do { 436 int i, num; 437 unsigned long nr_pages; 438 439 num = min_t(pgoff_t, end - index, PAGEVEC_SIZE); 440 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index, 441 (pgoff_t)num); 442 if (nr_pages == 0) { 443 if (whence == SEEK_DATA) 444 break; 445 446 BUG_ON(whence != SEEK_HOLE); 447 /* 448 * If this is the first time to go into the loop and 449 * offset is not beyond the end offset, it will be a 450 * hole at this offset 451 */ 452 if (lastoff == startoff || lastoff < endoff) 453 found = 1; 454 break; 455 } 456 457 /* 458 * If this is the first time to go into the loop and 459 * offset is smaller than the first page offset, it will be a 460 * hole at this offset. 461 */ 462 if (lastoff == startoff && whence == SEEK_HOLE && 463 lastoff < page_offset(pvec.pages[0])) { 464 found = 1; 465 break; 466 } 467 468 for (i = 0; i < nr_pages; i++) { 469 struct page *page = pvec.pages[i]; 470 struct buffer_head *bh, *head; 471 472 /* 473 * If the current offset is not beyond the end of given 474 * range, it will be a hole. 475 */ 476 if (lastoff < endoff && whence == SEEK_HOLE && 477 page->index > end) { 478 found = 1; 479 *offset = lastoff; 480 goto out; 481 } 482 483 lock_page(page); 484 485 if (unlikely(page->mapping != inode->i_mapping)) { 486 unlock_page(page); 487 continue; 488 } 489 490 if (!page_has_buffers(page)) { 491 unlock_page(page); 492 continue; 493 } 494 495 if (page_has_buffers(page)) { 496 lastoff = page_offset(page); 497 bh = head = page_buffers(page); 498 do { 499 if (buffer_uptodate(bh) || 500 buffer_unwritten(bh)) { 501 if (whence == SEEK_DATA) 502 found = 1; 503 } else { 504 if (whence == SEEK_HOLE) 505 found = 1; 506 } 507 if (found) { 508 *offset = max_t(loff_t, 509 startoff, lastoff); 510 unlock_page(page); 511 goto out; 512 } 513 lastoff += bh->b_size; 514 bh = bh->b_this_page; 515 } while (bh != head); 516 } 517 518 lastoff = page_offset(page) + PAGE_SIZE; 519 unlock_page(page); 520 } 521 522 /* 523 * The no. of pages is less than our desired, that would be a 524 * hole in there. 525 */ 526 if (nr_pages < num && whence == SEEK_HOLE) { 527 found = 1; 528 *offset = lastoff; 529 break; 530 } 531 532 index = pvec.pages[i - 1]->index + 1; 533 pagevec_release(&pvec); 534 } while (index <= end); 535 536 out: 537 pagevec_release(&pvec); 538 return found; 539 } 540 541 /* 542 * ext4_seek_data() retrieves the offset for SEEK_DATA. 543 */ 544 static loff_t ext4_seek_data(struct file *file, loff_t offset, loff_t maxsize) 545 { 546 struct inode *inode = file->f_mapping->host; 547 struct extent_status es; 548 ext4_lblk_t start, last, end; 549 loff_t dataoff, isize; 550 int blkbits; 551 int ret; 552 553 inode_lock(inode); 554 555 isize = i_size_read(inode); 556 if (offset >= isize) { 557 inode_unlock(inode); 558 return -ENXIO; 559 } 560 561 blkbits = inode->i_sb->s_blocksize_bits; 562 start = offset >> blkbits; 563 last = start; 564 end = isize >> blkbits; 565 dataoff = offset; 566 567 do { 568 ret = ext4_get_next_extent(inode, last, end - last + 1, &es); 569 if (ret <= 0) { 570 /* No extent found -> no data */ 571 if (ret == 0) 572 ret = -ENXIO; 573 inode_unlock(inode); 574 return ret; 575 } 576 577 last = es.es_lblk; 578 if (last != start) 579 dataoff = (loff_t)last << blkbits; 580 if (!ext4_es_is_unwritten(&es)) 581 break; 582 583 /* 584 * If there is a unwritten extent at this offset, 585 * it will be as a data or a hole according to page 586 * cache that has data or not. 587 */ 588 if (ext4_find_unwritten_pgoff(inode, SEEK_DATA, 589 es.es_lblk + es.es_len, &dataoff)) 590 break; 591 last += es.es_len; 592 dataoff = (loff_t)last << blkbits; 593 cond_resched(); 594 } while (last <= end); 595 596 inode_unlock(inode); 597 598 if (dataoff > isize) 599 return -ENXIO; 600 601 return vfs_setpos(file, dataoff, maxsize); 602 } 603 604 /* 605 * ext4_seek_hole() retrieves the offset for SEEK_HOLE. 606 */ 607 static loff_t ext4_seek_hole(struct file *file, loff_t offset, loff_t maxsize) 608 { 609 struct inode *inode = file->f_mapping->host; 610 struct extent_status es; 611 ext4_lblk_t start, last, end; 612 loff_t holeoff, isize; 613 int blkbits; 614 int ret; 615 616 inode_lock(inode); 617 618 isize = i_size_read(inode); 619 if (offset >= isize) { 620 inode_unlock(inode); 621 return -ENXIO; 622 } 623 624 blkbits = inode->i_sb->s_blocksize_bits; 625 start = offset >> blkbits; 626 last = start; 627 end = isize >> blkbits; 628 holeoff = offset; 629 630 do { 631 ret = ext4_get_next_extent(inode, last, end - last + 1, &es); 632 if (ret < 0) { 633 inode_unlock(inode); 634 return ret; 635 } 636 /* Found a hole? */ 637 if (ret == 0 || es.es_lblk > last) { 638 if (last != start) 639 holeoff = (loff_t)last << blkbits; 640 break; 641 } 642 /* 643 * If there is a unwritten extent at this offset, 644 * it will be as a data or a hole according to page 645 * cache that has data or not. 646 */ 647 if (ext4_es_is_unwritten(&es) && 648 ext4_find_unwritten_pgoff(inode, SEEK_HOLE, 649 last + es.es_len, &holeoff)) 650 break; 651 652 last += es.es_len; 653 holeoff = (loff_t)last << blkbits; 654 cond_resched(); 655 } while (last <= end); 656 657 inode_unlock(inode); 658 659 if (holeoff > isize) 660 holeoff = isize; 661 662 return vfs_setpos(file, holeoff, maxsize); 663 } 664 665 /* 666 * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values 667 * by calling generic_file_llseek_size() with the appropriate maxbytes 668 * value for each. 669 */ 670 loff_t ext4_llseek(struct file *file, loff_t offset, int whence) 671 { 672 struct inode *inode = file->f_mapping->host; 673 loff_t maxbytes; 674 675 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 676 maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes; 677 else 678 maxbytes = inode->i_sb->s_maxbytes; 679 680 switch (whence) { 681 case SEEK_SET: 682 case SEEK_CUR: 683 case SEEK_END: 684 return generic_file_llseek_size(file, offset, whence, 685 maxbytes, i_size_read(inode)); 686 case SEEK_DATA: 687 return ext4_seek_data(file, offset, maxbytes); 688 case SEEK_HOLE: 689 return ext4_seek_hole(file, offset, maxbytes); 690 } 691 692 return -EINVAL; 693 } 694 695 const struct file_operations ext4_file_operations = { 696 .llseek = ext4_llseek, 697 .read_iter = generic_file_read_iter, 698 .write_iter = ext4_file_write_iter, 699 .unlocked_ioctl = ext4_ioctl, 700 #ifdef CONFIG_COMPAT 701 .compat_ioctl = ext4_compat_ioctl, 702 #endif 703 .mmap = ext4_file_mmap, 704 .open = ext4_file_open, 705 .release = ext4_release_file, 706 .fsync = ext4_sync_file, 707 .splice_read = generic_file_splice_read, 708 .splice_write = iter_file_splice_write, 709 .fallocate = ext4_fallocate, 710 }; 711 712 const struct inode_operations ext4_file_inode_operations = { 713 .setattr = ext4_setattr, 714 .getattr = ext4_getattr, 715 .setxattr = generic_setxattr, 716 .getxattr = generic_getxattr, 717 .listxattr = ext4_listxattr, 718 .removexattr = generic_removexattr, 719 .get_acl = ext4_get_acl, 720 .set_acl = ext4_set_acl, 721 .fiemap = ext4_fiemap, 722 }; 723 724