1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/file.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/file.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * ext4 fs regular file handling primitives 17 * 18 * 64-bit file support on 64-bit platforms by Jakub Jelinek 19 * (jj@sunsite.ms.mff.cuni.cz) 20 */ 21 22 #include <linux/time.h> 23 #include <linux/fs.h> 24 #include <linux/iomap.h> 25 #include <linux/mount.h> 26 #include <linux/path.h> 27 #include <linux/dax.h> 28 #include <linux/quotaops.h> 29 #include <linux/pagevec.h> 30 #include <linux/uio.h> 31 #include <linux/mman.h> 32 #include <linux/backing-dev.h> 33 #include "ext4.h" 34 #include "ext4_jbd2.h" 35 #include "xattr.h" 36 #include "acl.h" 37 #include "truncate.h" 38 39 /* 40 * Returns %true if the given DIO request should be attempted with DIO, or 41 * %false if it should fall back to buffered I/O. 42 * 43 * DIO isn't well specified; when it's unsupported (either due to the request 44 * being misaligned, or due to the file not supporting DIO at all), filesystems 45 * either fall back to buffered I/O or return EINVAL. For files that don't use 46 * any special features like encryption or verity, ext4 has traditionally 47 * returned EINVAL for misaligned DIO. iomap_dio_rw() uses this convention too. 48 * In this case, we should attempt the DIO, *not* fall back to buffered I/O. 49 * 50 * In contrast, in cases where DIO is unsupported due to ext4 features, ext4 51 * traditionally falls back to buffered I/O. 52 * 53 * This function implements the traditional ext4 behavior in all these cases. 54 */ 55 static bool ext4_should_use_dio(struct kiocb *iocb, struct iov_iter *iter) 56 { 57 struct inode *inode = file_inode(iocb->ki_filp); 58 u32 dio_align = ext4_dio_alignment(inode); 59 60 if (dio_align == 0) 61 return false; 62 63 if (dio_align == 1) 64 return true; 65 66 return IS_ALIGNED(iocb->ki_pos | iov_iter_alignment(iter), dio_align); 67 } 68 69 static ssize_t ext4_dio_read_iter(struct kiocb *iocb, struct iov_iter *to) 70 { 71 ssize_t ret; 72 struct inode *inode = file_inode(iocb->ki_filp); 73 74 if (iocb->ki_flags & IOCB_NOWAIT) { 75 if (!inode_trylock_shared(inode)) 76 return -EAGAIN; 77 } else { 78 inode_lock_shared(inode); 79 } 80 81 if (!ext4_should_use_dio(iocb, to)) { 82 inode_unlock_shared(inode); 83 /* 84 * Fallback to buffered I/O if the operation being performed on 85 * the inode is not supported by direct I/O. The IOCB_DIRECT 86 * flag needs to be cleared here in order to ensure that the 87 * direct I/O path within generic_file_read_iter() is not 88 * taken. 89 */ 90 iocb->ki_flags &= ~IOCB_DIRECT; 91 return generic_file_read_iter(iocb, to); 92 } 93 94 ret = iomap_dio_rw(iocb, to, &ext4_iomap_ops, NULL, 0, NULL, 0); 95 inode_unlock_shared(inode); 96 97 file_accessed(iocb->ki_filp); 98 return ret; 99 } 100 101 #ifdef CONFIG_FS_DAX 102 static ssize_t ext4_dax_read_iter(struct kiocb *iocb, struct iov_iter *to) 103 { 104 struct inode *inode = file_inode(iocb->ki_filp); 105 ssize_t ret; 106 107 if (iocb->ki_flags & IOCB_NOWAIT) { 108 if (!inode_trylock_shared(inode)) 109 return -EAGAIN; 110 } else { 111 inode_lock_shared(inode); 112 } 113 /* 114 * Recheck under inode lock - at this point we are sure it cannot 115 * change anymore 116 */ 117 if (!IS_DAX(inode)) { 118 inode_unlock_shared(inode); 119 /* Fallback to buffered IO in case we cannot support DAX */ 120 return generic_file_read_iter(iocb, to); 121 } 122 ret = dax_iomap_rw(iocb, to, &ext4_iomap_ops); 123 inode_unlock_shared(inode); 124 125 file_accessed(iocb->ki_filp); 126 return ret; 127 } 128 #endif 129 130 static ssize_t ext4_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 131 { 132 struct inode *inode = file_inode(iocb->ki_filp); 133 134 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 135 return -EIO; 136 137 if (!iov_iter_count(to)) 138 return 0; /* skip atime */ 139 140 #ifdef CONFIG_FS_DAX 141 if (IS_DAX(inode)) 142 return ext4_dax_read_iter(iocb, to); 143 #endif 144 if (iocb->ki_flags & IOCB_DIRECT) 145 return ext4_dio_read_iter(iocb, to); 146 147 return generic_file_read_iter(iocb, to); 148 } 149 150 static ssize_t ext4_file_splice_read(struct file *in, loff_t *ppos, 151 struct pipe_inode_info *pipe, 152 size_t len, unsigned int flags) 153 { 154 struct inode *inode = file_inode(in); 155 156 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 157 return -EIO; 158 return filemap_splice_read(in, ppos, pipe, len, flags); 159 } 160 161 /* 162 * Called when an inode is released. Note that this is different 163 * from ext4_file_open: open gets called at every open, but release 164 * gets called only when /all/ the files are closed. 165 */ 166 static int ext4_release_file(struct inode *inode, struct file *filp) 167 { 168 if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) { 169 ext4_alloc_da_blocks(inode); 170 ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 171 } 172 /* if we are the last writer on the inode, drop the block reservation */ 173 if ((filp->f_mode & FMODE_WRITE) && 174 (atomic_read(&inode->i_writecount) == 1) && 175 !EXT4_I(inode)->i_reserved_data_blocks) { 176 down_write(&EXT4_I(inode)->i_data_sem); 177 ext4_discard_preallocations(inode, 0); 178 up_write(&EXT4_I(inode)->i_data_sem); 179 } 180 if (is_dx(inode) && filp->private_data) 181 ext4_htree_free_dir_info(filp->private_data); 182 183 return 0; 184 } 185 186 /* 187 * This tests whether the IO in question is block-aligned or not. 188 * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they 189 * are converted to written only after the IO is complete. Until they are 190 * mapped, these blocks appear as holes, so dio_zero_block() will assume that 191 * it needs to zero out portions of the start and/or end block. If 2 AIO 192 * threads are at work on the same unwritten block, they must be synchronized 193 * or one thread will zero the other's data, causing corruption. 194 */ 195 static bool 196 ext4_unaligned_io(struct inode *inode, struct iov_iter *from, loff_t pos) 197 { 198 struct super_block *sb = inode->i_sb; 199 unsigned long blockmask = sb->s_blocksize - 1; 200 201 if ((pos | iov_iter_alignment(from)) & blockmask) 202 return true; 203 204 return false; 205 } 206 207 static bool 208 ext4_extending_io(struct inode *inode, loff_t offset, size_t len) 209 { 210 if (offset + len > i_size_read(inode) || 211 offset + len > EXT4_I(inode)->i_disksize) 212 return true; 213 return false; 214 } 215 216 /* Is IO overwriting allocated or initialized blocks? */ 217 static bool ext4_overwrite_io(struct inode *inode, 218 loff_t pos, loff_t len, bool *unwritten) 219 { 220 struct ext4_map_blocks map; 221 unsigned int blkbits = inode->i_blkbits; 222 int err, blklen; 223 224 if (pos + len > i_size_read(inode)) 225 return false; 226 227 map.m_lblk = pos >> blkbits; 228 map.m_len = EXT4_MAX_BLOCKS(len, pos, blkbits); 229 blklen = map.m_len; 230 231 err = ext4_map_blocks(NULL, inode, &map, 0); 232 if (err != blklen) 233 return false; 234 /* 235 * 'err==len' means that all of the blocks have been preallocated, 236 * regardless of whether they have been initialized or not. We need to 237 * check m_flags to distinguish the unwritten extents. 238 */ 239 *unwritten = !(map.m_flags & EXT4_MAP_MAPPED); 240 return true; 241 } 242 243 static ssize_t ext4_generic_write_checks(struct kiocb *iocb, 244 struct iov_iter *from) 245 { 246 struct inode *inode = file_inode(iocb->ki_filp); 247 ssize_t ret; 248 249 if (unlikely(IS_IMMUTABLE(inode))) 250 return -EPERM; 251 252 ret = generic_write_checks(iocb, from); 253 if (ret <= 0) 254 return ret; 255 256 /* 257 * If we have encountered a bitmap-format file, the size limit 258 * is smaller than s_maxbytes, which is for extent-mapped files. 259 */ 260 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 261 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 262 263 if (iocb->ki_pos >= sbi->s_bitmap_maxbytes) 264 return -EFBIG; 265 iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos); 266 } 267 268 return iov_iter_count(from); 269 } 270 271 static ssize_t ext4_write_checks(struct kiocb *iocb, struct iov_iter *from) 272 { 273 ssize_t ret, count; 274 275 count = ext4_generic_write_checks(iocb, from); 276 if (count <= 0) 277 return count; 278 279 ret = file_modified(iocb->ki_filp); 280 if (ret) 281 return ret; 282 return count; 283 } 284 285 static ssize_t ext4_buffered_write_iter(struct kiocb *iocb, 286 struct iov_iter *from) 287 { 288 ssize_t ret; 289 struct inode *inode = file_inode(iocb->ki_filp); 290 291 if (iocb->ki_flags & IOCB_NOWAIT) 292 return -EOPNOTSUPP; 293 294 inode_lock(inode); 295 ret = ext4_write_checks(iocb, from); 296 if (ret <= 0) 297 goto out; 298 299 ret = generic_perform_write(iocb, from); 300 301 out: 302 inode_unlock(inode); 303 if (unlikely(ret <= 0)) 304 return ret; 305 return generic_write_sync(iocb, ret); 306 } 307 308 static ssize_t ext4_handle_inode_extension(struct inode *inode, loff_t offset, 309 ssize_t count) 310 { 311 handle_t *handle; 312 313 lockdep_assert_held_write(&inode->i_rwsem); 314 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 315 if (IS_ERR(handle)) 316 return PTR_ERR(handle); 317 318 if (ext4_update_inode_size(inode, offset + count)) { 319 int ret = ext4_mark_inode_dirty(handle, inode); 320 if (unlikely(ret)) { 321 ext4_journal_stop(handle); 322 return ret; 323 } 324 } 325 326 if (inode->i_nlink) 327 ext4_orphan_del(handle, inode); 328 ext4_journal_stop(handle); 329 330 return count; 331 } 332 333 /* 334 * Clean up the inode after DIO or DAX extending write has completed and the 335 * inode size has been updated using ext4_handle_inode_extension(). 336 */ 337 static void ext4_inode_extension_cleanup(struct inode *inode, ssize_t count) 338 { 339 lockdep_assert_held_write(&inode->i_rwsem); 340 if (count < 0) { 341 ext4_truncate_failed_write(inode); 342 /* 343 * If the truncate operation failed early, then the inode may 344 * still be on the orphan list. In that case, we need to try 345 * remove the inode from the in-memory linked list. 346 */ 347 if (inode->i_nlink) 348 ext4_orphan_del(NULL, inode); 349 return; 350 } 351 /* 352 * If i_disksize got extended due to writeback of delalloc blocks while 353 * the DIO was running we could fail to cleanup the orphan list in 354 * ext4_handle_inode_extension(). Do it now. 355 */ 356 if (!list_empty(&EXT4_I(inode)->i_orphan) && inode->i_nlink) { 357 handle_t *handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 358 359 if (IS_ERR(handle)) { 360 /* 361 * The write has successfully completed. Not much to 362 * do with the error here so just cleanup the orphan 363 * list and hope for the best. 364 */ 365 ext4_orphan_del(NULL, inode); 366 return; 367 } 368 ext4_orphan_del(handle, inode); 369 ext4_journal_stop(handle); 370 } 371 } 372 373 static int ext4_dio_write_end_io(struct kiocb *iocb, ssize_t size, 374 int error, unsigned int flags) 375 { 376 loff_t pos = iocb->ki_pos; 377 struct inode *inode = file_inode(iocb->ki_filp); 378 379 if (!error && size && flags & IOMAP_DIO_UNWRITTEN) 380 error = ext4_convert_unwritten_extents(NULL, inode, pos, size); 381 if (error) 382 return error; 383 /* 384 * Note that EXT4_I(inode)->i_disksize can get extended up to 385 * inode->i_size while the I/O was running due to writeback of delalloc 386 * blocks. But the code in ext4_iomap_alloc() is careful to use 387 * zeroed/unwritten extents if this is possible; thus we won't leave 388 * uninitialized blocks in a file even if we didn't succeed in writing 389 * as much as we intended. 390 */ 391 WARN_ON_ONCE(i_size_read(inode) < READ_ONCE(EXT4_I(inode)->i_disksize)); 392 if (pos + size <= READ_ONCE(EXT4_I(inode)->i_disksize)) 393 return size; 394 return ext4_handle_inode_extension(inode, pos, size); 395 } 396 397 static const struct iomap_dio_ops ext4_dio_write_ops = { 398 .end_io = ext4_dio_write_end_io, 399 }; 400 401 /* 402 * The intention here is to start with shared lock acquired then see if any 403 * condition requires an exclusive inode lock. If yes, then we restart the 404 * whole operation by releasing the shared lock and acquiring exclusive lock. 405 * 406 * - For unaligned_io we never take shared lock as it may cause data corruption 407 * when two unaligned IO tries to modify the same block e.g. while zeroing. 408 * 409 * - For extending writes case we don't take the shared lock, since it requires 410 * updating inode i_disksize and/or orphan handling with exclusive lock. 411 * 412 * - shared locking will only be true mostly with overwrites, including 413 * initialized blocks and unwritten blocks. For overwrite unwritten blocks 414 * we protect splitting extents by i_data_sem in ext4_inode_info, so we can 415 * also release exclusive i_rwsem lock. 416 * 417 * - Otherwise we will switch to exclusive i_rwsem lock. 418 */ 419 static ssize_t ext4_dio_write_checks(struct kiocb *iocb, struct iov_iter *from, 420 bool *ilock_shared, bool *extend, 421 bool *unwritten, int *dio_flags) 422 { 423 struct file *file = iocb->ki_filp; 424 struct inode *inode = file_inode(file); 425 loff_t offset; 426 size_t count; 427 ssize_t ret; 428 bool overwrite, unaligned_io; 429 430 restart: 431 ret = ext4_generic_write_checks(iocb, from); 432 if (ret <= 0) 433 goto out; 434 435 offset = iocb->ki_pos; 436 count = ret; 437 438 unaligned_io = ext4_unaligned_io(inode, from, offset); 439 *extend = ext4_extending_io(inode, offset, count); 440 overwrite = ext4_overwrite_io(inode, offset, count, unwritten); 441 442 /* 443 * Determine whether we need to upgrade to an exclusive lock. This is 444 * required to change security info in file_modified(), for extending 445 * I/O, any form of non-overwrite I/O, and unaligned I/O to unwritten 446 * extents (as partial block zeroing may be required). 447 * 448 * Note that unaligned writes are allowed under shared lock so long as 449 * they are pure overwrites. Otherwise, concurrent unaligned writes risk 450 * data corruption due to partial block zeroing in the dio layer, and so 451 * the I/O must occur exclusively. 452 */ 453 if (*ilock_shared && 454 ((!IS_NOSEC(inode) || *extend || !overwrite || 455 (unaligned_io && *unwritten)))) { 456 if (iocb->ki_flags & IOCB_NOWAIT) { 457 ret = -EAGAIN; 458 goto out; 459 } 460 inode_unlock_shared(inode); 461 *ilock_shared = false; 462 inode_lock(inode); 463 goto restart; 464 } 465 466 /* 467 * Now that locking is settled, determine dio flags and exclusivity 468 * requirements. We don't use DIO_OVERWRITE_ONLY because we enforce 469 * behavior already. The inode lock is already held exclusive if the 470 * write is non-overwrite or extending, so drain all outstanding dio and 471 * set the force wait dio flag. 472 */ 473 if (!*ilock_shared && (unaligned_io || *extend)) { 474 if (iocb->ki_flags & IOCB_NOWAIT) { 475 ret = -EAGAIN; 476 goto out; 477 } 478 if (unaligned_io && (!overwrite || *unwritten)) 479 inode_dio_wait(inode); 480 *dio_flags = IOMAP_DIO_FORCE_WAIT; 481 } 482 483 ret = file_modified(file); 484 if (ret < 0) 485 goto out; 486 487 return count; 488 out: 489 if (*ilock_shared) 490 inode_unlock_shared(inode); 491 else 492 inode_unlock(inode); 493 return ret; 494 } 495 496 static ssize_t ext4_dio_write_iter(struct kiocb *iocb, struct iov_iter *from) 497 { 498 ssize_t ret; 499 handle_t *handle; 500 struct inode *inode = file_inode(iocb->ki_filp); 501 loff_t offset = iocb->ki_pos; 502 size_t count = iov_iter_count(from); 503 const struct iomap_ops *iomap_ops = &ext4_iomap_ops; 504 bool extend = false, unwritten = false; 505 bool ilock_shared = true; 506 int dio_flags = 0; 507 508 /* 509 * Quick check here without any i_rwsem lock to see if it is extending 510 * IO. A more reliable check is done in ext4_dio_write_checks() with 511 * proper locking in place. 512 */ 513 if (offset + count > i_size_read(inode)) 514 ilock_shared = false; 515 516 if (iocb->ki_flags & IOCB_NOWAIT) { 517 if (ilock_shared) { 518 if (!inode_trylock_shared(inode)) 519 return -EAGAIN; 520 } else { 521 if (!inode_trylock(inode)) 522 return -EAGAIN; 523 } 524 } else { 525 if (ilock_shared) 526 inode_lock_shared(inode); 527 else 528 inode_lock(inode); 529 } 530 531 /* Fallback to buffered I/O if the inode does not support direct I/O. */ 532 if (!ext4_should_use_dio(iocb, from)) { 533 if (ilock_shared) 534 inode_unlock_shared(inode); 535 else 536 inode_unlock(inode); 537 return ext4_buffered_write_iter(iocb, from); 538 } 539 540 /* 541 * Prevent inline data from being created since we are going to allocate 542 * blocks for DIO. We know the inode does not currently have inline data 543 * because ext4_should_use_dio() checked for it, but we have to clear 544 * the state flag before the write checks because a lock cycle could 545 * introduce races with other writers. 546 */ 547 ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); 548 549 ret = ext4_dio_write_checks(iocb, from, &ilock_shared, &extend, 550 &unwritten, &dio_flags); 551 if (ret <= 0) 552 return ret; 553 554 offset = iocb->ki_pos; 555 count = ret; 556 557 if (extend) { 558 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 559 if (IS_ERR(handle)) { 560 ret = PTR_ERR(handle); 561 goto out; 562 } 563 564 ret = ext4_orphan_add(handle, inode); 565 if (ret) { 566 ext4_journal_stop(handle); 567 goto out; 568 } 569 570 ext4_journal_stop(handle); 571 } 572 573 if (ilock_shared && !unwritten) 574 iomap_ops = &ext4_iomap_overwrite_ops; 575 ret = iomap_dio_rw(iocb, from, iomap_ops, &ext4_dio_write_ops, 576 dio_flags, NULL, 0); 577 if (ret == -ENOTBLK) 578 ret = 0; 579 if (extend) { 580 /* 581 * We always perform extending DIO write synchronously so by 582 * now the IO is completed and ext4_handle_inode_extension() 583 * was called. Cleanup the inode in case of error or race with 584 * writeback of delalloc blocks. 585 */ 586 WARN_ON_ONCE(ret == -EIOCBQUEUED); 587 ext4_inode_extension_cleanup(inode, ret); 588 } 589 590 out: 591 if (ilock_shared) 592 inode_unlock_shared(inode); 593 else 594 inode_unlock(inode); 595 596 if (ret >= 0 && iov_iter_count(from)) { 597 ssize_t err; 598 loff_t endbyte; 599 600 offset = iocb->ki_pos; 601 err = ext4_buffered_write_iter(iocb, from); 602 if (err < 0) 603 return err; 604 605 /* 606 * We need to ensure that the pages within the page cache for 607 * the range covered by this I/O are written to disk and 608 * invalidated. This is in attempt to preserve the expected 609 * direct I/O semantics in the case we fallback to buffered I/O 610 * to complete off the I/O request. 611 */ 612 ret += err; 613 endbyte = offset + err - 1; 614 err = filemap_write_and_wait_range(iocb->ki_filp->f_mapping, 615 offset, endbyte); 616 if (!err) 617 invalidate_mapping_pages(iocb->ki_filp->f_mapping, 618 offset >> PAGE_SHIFT, 619 endbyte >> PAGE_SHIFT); 620 } 621 622 return ret; 623 } 624 625 #ifdef CONFIG_FS_DAX 626 static ssize_t 627 ext4_dax_write_iter(struct kiocb *iocb, struct iov_iter *from) 628 { 629 ssize_t ret; 630 size_t count; 631 loff_t offset; 632 handle_t *handle; 633 bool extend = false; 634 struct inode *inode = file_inode(iocb->ki_filp); 635 636 if (iocb->ki_flags & IOCB_NOWAIT) { 637 if (!inode_trylock(inode)) 638 return -EAGAIN; 639 } else { 640 inode_lock(inode); 641 } 642 643 ret = ext4_write_checks(iocb, from); 644 if (ret <= 0) 645 goto out; 646 647 offset = iocb->ki_pos; 648 count = iov_iter_count(from); 649 650 if (offset + count > EXT4_I(inode)->i_disksize) { 651 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 652 if (IS_ERR(handle)) { 653 ret = PTR_ERR(handle); 654 goto out; 655 } 656 657 ret = ext4_orphan_add(handle, inode); 658 if (ret) { 659 ext4_journal_stop(handle); 660 goto out; 661 } 662 663 extend = true; 664 ext4_journal_stop(handle); 665 } 666 667 ret = dax_iomap_rw(iocb, from, &ext4_iomap_ops); 668 669 if (extend) { 670 ret = ext4_handle_inode_extension(inode, offset, ret); 671 ext4_inode_extension_cleanup(inode, ret); 672 } 673 out: 674 inode_unlock(inode); 675 if (ret > 0) 676 ret = generic_write_sync(iocb, ret); 677 return ret; 678 } 679 #endif 680 681 static ssize_t 682 ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 683 { 684 struct inode *inode = file_inode(iocb->ki_filp); 685 686 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 687 return -EIO; 688 689 #ifdef CONFIG_FS_DAX 690 if (IS_DAX(inode)) 691 return ext4_dax_write_iter(iocb, from); 692 #endif 693 if (iocb->ki_flags & IOCB_DIRECT) 694 return ext4_dio_write_iter(iocb, from); 695 else 696 return ext4_buffered_write_iter(iocb, from); 697 } 698 699 #ifdef CONFIG_FS_DAX 700 static vm_fault_t ext4_dax_huge_fault(struct vm_fault *vmf, unsigned int order) 701 { 702 int error = 0; 703 vm_fault_t result; 704 int retries = 0; 705 handle_t *handle = NULL; 706 struct inode *inode = file_inode(vmf->vma->vm_file); 707 struct super_block *sb = inode->i_sb; 708 709 /* 710 * We have to distinguish real writes from writes which will result in a 711 * COW page; COW writes should *not* poke the journal (the file will not 712 * be changed). Doing so would cause unintended failures when mounted 713 * read-only. 714 * 715 * We check for VM_SHARED rather than vmf->cow_page since the latter is 716 * unset for order != 0 (i.e. only in do_cow_fault); for 717 * other sizes, dax_iomap_fault will handle splitting / fallback so that 718 * we eventually come back with a COW page. 719 */ 720 bool write = (vmf->flags & FAULT_FLAG_WRITE) && 721 (vmf->vma->vm_flags & VM_SHARED); 722 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 723 pfn_t pfn; 724 725 if (write) { 726 sb_start_pagefault(sb); 727 file_update_time(vmf->vma->vm_file); 728 filemap_invalidate_lock_shared(mapping); 729 retry: 730 handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE, 731 EXT4_DATA_TRANS_BLOCKS(sb)); 732 if (IS_ERR(handle)) { 733 filemap_invalidate_unlock_shared(mapping); 734 sb_end_pagefault(sb); 735 return VM_FAULT_SIGBUS; 736 } 737 } else { 738 filemap_invalidate_lock_shared(mapping); 739 } 740 result = dax_iomap_fault(vmf, order, &pfn, &error, &ext4_iomap_ops); 741 if (write) { 742 ext4_journal_stop(handle); 743 744 if ((result & VM_FAULT_ERROR) && error == -ENOSPC && 745 ext4_should_retry_alloc(sb, &retries)) 746 goto retry; 747 /* Handling synchronous page fault? */ 748 if (result & VM_FAULT_NEEDDSYNC) 749 result = dax_finish_sync_fault(vmf, order, pfn); 750 filemap_invalidate_unlock_shared(mapping); 751 sb_end_pagefault(sb); 752 } else { 753 filemap_invalidate_unlock_shared(mapping); 754 } 755 756 return result; 757 } 758 759 static vm_fault_t ext4_dax_fault(struct vm_fault *vmf) 760 { 761 return ext4_dax_huge_fault(vmf, 0); 762 } 763 764 static const struct vm_operations_struct ext4_dax_vm_ops = { 765 .fault = ext4_dax_fault, 766 .huge_fault = ext4_dax_huge_fault, 767 .page_mkwrite = ext4_dax_fault, 768 .pfn_mkwrite = ext4_dax_fault, 769 }; 770 #else 771 #define ext4_dax_vm_ops ext4_file_vm_ops 772 #endif 773 774 static const struct vm_operations_struct ext4_file_vm_ops = { 775 .fault = filemap_fault, 776 .map_pages = filemap_map_pages, 777 .page_mkwrite = ext4_page_mkwrite, 778 }; 779 780 static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma) 781 { 782 struct inode *inode = file->f_mapping->host; 783 struct dax_device *dax_dev = EXT4_SB(inode->i_sb)->s_daxdev; 784 785 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 786 return -EIO; 787 788 /* 789 * We don't support synchronous mappings for non-DAX files and 790 * for DAX files if underneath dax_device is not synchronous. 791 */ 792 if (!daxdev_mapping_supported(vma, dax_dev)) 793 return -EOPNOTSUPP; 794 795 file_accessed(file); 796 if (IS_DAX(file_inode(file))) { 797 vma->vm_ops = &ext4_dax_vm_ops; 798 vm_flags_set(vma, VM_HUGEPAGE); 799 } else { 800 vma->vm_ops = &ext4_file_vm_ops; 801 } 802 return 0; 803 } 804 805 static int ext4_sample_last_mounted(struct super_block *sb, 806 struct vfsmount *mnt) 807 { 808 struct ext4_sb_info *sbi = EXT4_SB(sb); 809 struct path path; 810 char buf[64], *cp; 811 handle_t *handle; 812 int err; 813 814 if (likely(ext4_test_mount_flag(sb, EXT4_MF_MNTDIR_SAMPLED))) 815 return 0; 816 817 if (sb_rdonly(sb) || !sb_start_intwrite_trylock(sb)) 818 return 0; 819 820 ext4_set_mount_flag(sb, EXT4_MF_MNTDIR_SAMPLED); 821 /* 822 * Sample where the filesystem has been mounted and 823 * store it in the superblock for sysadmin convenience 824 * when trying to sort through large numbers of block 825 * devices or filesystem images. 826 */ 827 memset(buf, 0, sizeof(buf)); 828 path.mnt = mnt; 829 path.dentry = mnt->mnt_root; 830 cp = d_path(&path, buf, sizeof(buf)); 831 err = 0; 832 if (IS_ERR(cp)) 833 goto out; 834 835 handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1); 836 err = PTR_ERR(handle); 837 if (IS_ERR(handle)) 838 goto out; 839 BUFFER_TRACE(sbi->s_sbh, "get_write_access"); 840 err = ext4_journal_get_write_access(handle, sb, sbi->s_sbh, 841 EXT4_JTR_NONE); 842 if (err) 843 goto out_journal; 844 lock_buffer(sbi->s_sbh); 845 strncpy(sbi->s_es->s_last_mounted, cp, 846 sizeof(sbi->s_es->s_last_mounted)); 847 ext4_superblock_csum_set(sb); 848 unlock_buffer(sbi->s_sbh); 849 ext4_handle_dirty_metadata(handle, NULL, sbi->s_sbh); 850 out_journal: 851 ext4_journal_stop(handle); 852 out: 853 sb_end_intwrite(sb); 854 return err; 855 } 856 857 static int ext4_file_open(struct inode *inode, struct file *filp) 858 { 859 int ret; 860 861 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 862 return -EIO; 863 864 ret = ext4_sample_last_mounted(inode->i_sb, filp->f_path.mnt); 865 if (ret) 866 return ret; 867 868 ret = fscrypt_file_open(inode, filp); 869 if (ret) 870 return ret; 871 872 ret = fsverity_file_open(inode, filp); 873 if (ret) 874 return ret; 875 876 /* 877 * Set up the jbd2_inode if we are opening the inode for 878 * writing and the journal is present 879 */ 880 if (filp->f_mode & FMODE_WRITE) { 881 ret = ext4_inode_attach_jinode(inode); 882 if (ret < 0) 883 return ret; 884 } 885 886 filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC | 887 FMODE_DIO_PARALLEL_WRITE; 888 return dquot_file_open(inode, filp); 889 } 890 891 /* 892 * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values 893 * by calling generic_file_llseek_size() with the appropriate maxbytes 894 * value for each. 895 */ 896 loff_t ext4_llseek(struct file *file, loff_t offset, int whence) 897 { 898 struct inode *inode = file->f_mapping->host; 899 loff_t maxbytes; 900 901 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 902 maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes; 903 else 904 maxbytes = inode->i_sb->s_maxbytes; 905 906 switch (whence) { 907 default: 908 return generic_file_llseek_size(file, offset, whence, 909 maxbytes, i_size_read(inode)); 910 case SEEK_HOLE: 911 inode_lock_shared(inode); 912 offset = iomap_seek_hole(inode, offset, 913 &ext4_iomap_report_ops); 914 inode_unlock_shared(inode); 915 break; 916 case SEEK_DATA: 917 inode_lock_shared(inode); 918 offset = iomap_seek_data(inode, offset, 919 &ext4_iomap_report_ops); 920 inode_unlock_shared(inode); 921 break; 922 } 923 924 if (offset < 0) 925 return offset; 926 return vfs_setpos(file, offset, maxbytes); 927 } 928 929 const struct file_operations ext4_file_operations = { 930 .llseek = ext4_llseek, 931 .read_iter = ext4_file_read_iter, 932 .write_iter = ext4_file_write_iter, 933 .iopoll = iocb_bio_iopoll, 934 .unlocked_ioctl = ext4_ioctl, 935 #ifdef CONFIG_COMPAT 936 .compat_ioctl = ext4_compat_ioctl, 937 #endif 938 .mmap = ext4_file_mmap, 939 .mmap_supported_flags = MAP_SYNC, 940 .open = ext4_file_open, 941 .release = ext4_release_file, 942 .fsync = ext4_sync_file, 943 .get_unmapped_area = thp_get_unmapped_area, 944 .splice_read = ext4_file_splice_read, 945 .splice_write = iter_file_splice_write, 946 .fallocate = ext4_fallocate, 947 }; 948 949 const struct inode_operations ext4_file_inode_operations = { 950 .setattr = ext4_setattr, 951 .getattr = ext4_file_getattr, 952 .listxattr = ext4_listxattr, 953 .get_inode_acl = ext4_get_acl, 954 .set_acl = ext4_set_acl, 955 .fiemap = ext4_fiemap, 956 .fileattr_get = ext4_fileattr_get, 957 .fileattr_set = ext4_fileattr_set, 958 }; 959 960