xref: /openbmc/linux/fs/ext4/file.c (revision 2d99a7ec)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/file.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/file.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  ext4 fs regular file handling primitives
17  *
18  *  64-bit file support on 64-bit platforms by Jakub Jelinek
19  *	(jj@sunsite.ms.mff.cuni.cz)
20  */
21 
22 #include <linux/time.h>
23 #include <linux/fs.h>
24 #include <linux/iomap.h>
25 #include <linux/mount.h>
26 #include <linux/path.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/pagevec.h>
30 #include <linux/uio.h>
31 #include <linux/mman.h>
32 #include <linux/backing-dev.h>
33 #include "ext4.h"
34 #include "ext4_jbd2.h"
35 #include "xattr.h"
36 #include "acl.h"
37 #include "truncate.h"
38 
39 /*
40  * Returns %true if the given DIO request should be attempted with DIO, or
41  * %false if it should fall back to buffered I/O.
42  *
43  * DIO isn't well specified; when it's unsupported (either due to the request
44  * being misaligned, or due to the file not supporting DIO at all), filesystems
45  * either fall back to buffered I/O or return EINVAL.  For files that don't use
46  * any special features like encryption or verity, ext4 has traditionally
47  * returned EINVAL for misaligned DIO.  iomap_dio_rw() uses this convention too.
48  * In this case, we should attempt the DIO, *not* fall back to buffered I/O.
49  *
50  * In contrast, in cases where DIO is unsupported due to ext4 features, ext4
51  * traditionally falls back to buffered I/O.
52  *
53  * This function implements the traditional ext4 behavior in all these cases.
54  */
55 static bool ext4_should_use_dio(struct kiocb *iocb, struct iov_iter *iter)
56 {
57 	struct inode *inode = file_inode(iocb->ki_filp);
58 	u32 dio_align = ext4_dio_alignment(inode);
59 
60 	if (dio_align == 0)
61 		return false;
62 
63 	if (dio_align == 1)
64 		return true;
65 
66 	return IS_ALIGNED(iocb->ki_pos | iov_iter_alignment(iter), dio_align);
67 }
68 
69 static ssize_t ext4_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
70 {
71 	ssize_t ret;
72 	struct inode *inode = file_inode(iocb->ki_filp);
73 
74 	if (iocb->ki_flags & IOCB_NOWAIT) {
75 		if (!inode_trylock_shared(inode))
76 			return -EAGAIN;
77 	} else {
78 		inode_lock_shared(inode);
79 	}
80 
81 	if (!ext4_should_use_dio(iocb, to)) {
82 		inode_unlock_shared(inode);
83 		/*
84 		 * Fallback to buffered I/O if the operation being performed on
85 		 * the inode is not supported by direct I/O. The IOCB_DIRECT
86 		 * flag needs to be cleared here in order to ensure that the
87 		 * direct I/O path within generic_file_read_iter() is not
88 		 * taken.
89 		 */
90 		iocb->ki_flags &= ~IOCB_DIRECT;
91 		return generic_file_read_iter(iocb, to);
92 	}
93 
94 	ret = iomap_dio_rw(iocb, to, &ext4_iomap_ops, NULL, 0, NULL, 0);
95 	inode_unlock_shared(inode);
96 
97 	file_accessed(iocb->ki_filp);
98 	return ret;
99 }
100 
101 #ifdef CONFIG_FS_DAX
102 static ssize_t ext4_dax_read_iter(struct kiocb *iocb, struct iov_iter *to)
103 {
104 	struct inode *inode = file_inode(iocb->ki_filp);
105 	ssize_t ret;
106 
107 	if (iocb->ki_flags & IOCB_NOWAIT) {
108 		if (!inode_trylock_shared(inode))
109 			return -EAGAIN;
110 	} else {
111 		inode_lock_shared(inode);
112 	}
113 	/*
114 	 * Recheck under inode lock - at this point we are sure it cannot
115 	 * change anymore
116 	 */
117 	if (!IS_DAX(inode)) {
118 		inode_unlock_shared(inode);
119 		/* Fallback to buffered IO in case we cannot support DAX */
120 		return generic_file_read_iter(iocb, to);
121 	}
122 	ret = dax_iomap_rw(iocb, to, &ext4_iomap_ops);
123 	inode_unlock_shared(inode);
124 
125 	file_accessed(iocb->ki_filp);
126 	return ret;
127 }
128 #endif
129 
130 static ssize_t ext4_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
131 {
132 	struct inode *inode = file_inode(iocb->ki_filp);
133 
134 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
135 		return -EIO;
136 
137 	if (!iov_iter_count(to))
138 		return 0; /* skip atime */
139 
140 #ifdef CONFIG_FS_DAX
141 	if (IS_DAX(inode))
142 		return ext4_dax_read_iter(iocb, to);
143 #endif
144 	if (iocb->ki_flags & IOCB_DIRECT)
145 		return ext4_dio_read_iter(iocb, to);
146 
147 	return generic_file_read_iter(iocb, to);
148 }
149 
150 /*
151  * Called when an inode is released. Note that this is different
152  * from ext4_file_open: open gets called at every open, but release
153  * gets called only when /all/ the files are closed.
154  */
155 static int ext4_release_file(struct inode *inode, struct file *filp)
156 {
157 	if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) {
158 		ext4_alloc_da_blocks(inode);
159 		ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
160 	}
161 	/* if we are the last writer on the inode, drop the block reservation */
162 	if ((filp->f_mode & FMODE_WRITE) &&
163 			(atomic_read(&inode->i_writecount) == 1) &&
164 			!EXT4_I(inode)->i_reserved_data_blocks) {
165 		down_write(&EXT4_I(inode)->i_data_sem);
166 		ext4_discard_preallocations(inode, 0);
167 		up_write(&EXT4_I(inode)->i_data_sem);
168 	}
169 	if (is_dx(inode) && filp->private_data)
170 		ext4_htree_free_dir_info(filp->private_data);
171 
172 	return 0;
173 }
174 
175 /*
176  * This tests whether the IO in question is block-aligned or not.
177  * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
178  * are converted to written only after the IO is complete.  Until they are
179  * mapped, these blocks appear as holes, so dio_zero_block() will assume that
180  * it needs to zero out portions of the start and/or end block.  If 2 AIO
181  * threads are at work on the same unwritten block, they must be synchronized
182  * or one thread will zero the other's data, causing corruption.
183  */
184 static bool
185 ext4_unaligned_io(struct inode *inode, struct iov_iter *from, loff_t pos)
186 {
187 	struct super_block *sb = inode->i_sb;
188 	unsigned long blockmask = sb->s_blocksize - 1;
189 
190 	if ((pos | iov_iter_alignment(from)) & blockmask)
191 		return true;
192 
193 	return false;
194 }
195 
196 static bool
197 ext4_extending_io(struct inode *inode, loff_t offset, size_t len)
198 {
199 	if (offset + len > i_size_read(inode) ||
200 	    offset + len > EXT4_I(inode)->i_disksize)
201 		return true;
202 	return false;
203 }
204 
205 /* Is IO overwriting allocated or initialized blocks? */
206 static bool ext4_overwrite_io(struct inode *inode,
207 			      loff_t pos, loff_t len, bool *unwritten)
208 {
209 	struct ext4_map_blocks map;
210 	unsigned int blkbits = inode->i_blkbits;
211 	int err, blklen;
212 
213 	if (pos + len > i_size_read(inode))
214 		return false;
215 
216 	map.m_lblk = pos >> blkbits;
217 	map.m_len = EXT4_MAX_BLOCKS(len, pos, blkbits);
218 	blklen = map.m_len;
219 
220 	err = ext4_map_blocks(NULL, inode, &map, 0);
221 	if (err != blklen)
222 		return false;
223 	/*
224 	 * 'err==len' means that all of the blocks have been preallocated,
225 	 * regardless of whether they have been initialized or not. We need to
226 	 * check m_flags to distinguish the unwritten extents.
227 	 */
228 	*unwritten = !(map.m_flags & EXT4_MAP_MAPPED);
229 	return true;
230 }
231 
232 static ssize_t ext4_generic_write_checks(struct kiocb *iocb,
233 					 struct iov_iter *from)
234 {
235 	struct inode *inode = file_inode(iocb->ki_filp);
236 	ssize_t ret;
237 
238 	if (unlikely(IS_IMMUTABLE(inode)))
239 		return -EPERM;
240 
241 	ret = generic_write_checks(iocb, from);
242 	if (ret <= 0)
243 		return ret;
244 
245 	/*
246 	 * If we have encountered a bitmap-format file, the size limit
247 	 * is smaller than s_maxbytes, which is for extent-mapped files.
248 	 */
249 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
250 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
251 
252 		if (iocb->ki_pos >= sbi->s_bitmap_maxbytes)
253 			return -EFBIG;
254 		iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos);
255 	}
256 
257 	return iov_iter_count(from);
258 }
259 
260 static ssize_t ext4_write_checks(struct kiocb *iocb, struct iov_iter *from)
261 {
262 	ssize_t ret, count;
263 
264 	count = ext4_generic_write_checks(iocb, from);
265 	if (count <= 0)
266 		return count;
267 
268 	ret = file_modified(iocb->ki_filp);
269 	if (ret)
270 		return ret;
271 	return count;
272 }
273 
274 static ssize_t ext4_buffered_write_iter(struct kiocb *iocb,
275 					struct iov_iter *from)
276 {
277 	ssize_t ret;
278 	struct inode *inode = file_inode(iocb->ki_filp);
279 
280 	if (iocb->ki_flags & IOCB_NOWAIT)
281 		return -EOPNOTSUPP;
282 
283 	inode_lock(inode);
284 	ret = ext4_write_checks(iocb, from);
285 	if (ret <= 0)
286 		goto out;
287 
288 	current->backing_dev_info = inode_to_bdi(inode);
289 	ret = generic_perform_write(iocb, from);
290 	current->backing_dev_info = NULL;
291 
292 out:
293 	inode_unlock(inode);
294 	if (likely(ret > 0)) {
295 		iocb->ki_pos += ret;
296 		ret = generic_write_sync(iocb, ret);
297 	}
298 
299 	return ret;
300 }
301 
302 static ssize_t ext4_handle_inode_extension(struct inode *inode, loff_t offset,
303 					   ssize_t written, size_t count)
304 {
305 	handle_t *handle;
306 	bool truncate = false;
307 	u8 blkbits = inode->i_blkbits;
308 	ext4_lblk_t written_blk, end_blk;
309 	int ret;
310 
311 	/*
312 	 * Note that EXT4_I(inode)->i_disksize can get extended up to
313 	 * inode->i_size while the I/O was running due to writeback of delalloc
314 	 * blocks. But, the code in ext4_iomap_alloc() is careful to use
315 	 * zeroed/unwritten extents if this is possible; thus we won't leave
316 	 * uninitialized blocks in a file even if we didn't succeed in writing
317 	 * as much as we intended.
318 	 */
319 	WARN_ON_ONCE(i_size_read(inode) < EXT4_I(inode)->i_disksize);
320 	if (offset + count <= EXT4_I(inode)->i_disksize) {
321 		/*
322 		 * We need to ensure that the inode is removed from the orphan
323 		 * list if it has been added prematurely, due to writeback of
324 		 * delalloc blocks.
325 		 */
326 		if (!list_empty(&EXT4_I(inode)->i_orphan) && inode->i_nlink) {
327 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
328 
329 			if (IS_ERR(handle)) {
330 				ext4_orphan_del(NULL, inode);
331 				return PTR_ERR(handle);
332 			}
333 
334 			ext4_orphan_del(handle, inode);
335 			ext4_journal_stop(handle);
336 		}
337 
338 		return written;
339 	}
340 
341 	if (written < 0)
342 		goto truncate;
343 
344 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
345 	if (IS_ERR(handle)) {
346 		written = PTR_ERR(handle);
347 		goto truncate;
348 	}
349 
350 	if (ext4_update_inode_size(inode, offset + written)) {
351 		ret = ext4_mark_inode_dirty(handle, inode);
352 		if (unlikely(ret)) {
353 			written = ret;
354 			ext4_journal_stop(handle);
355 			goto truncate;
356 		}
357 	}
358 
359 	/*
360 	 * We may need to truncate allocated but not written blocks beyond EOF.
361 	 */
362 	written_blk = ALIGN(offset + written, 1 << blkbits);
363 	end_blk = ALIGN(offset + count, 1 << blkbits);
364 	if (written_blk < end_blk && ext4_can_truncate(inode))
365 		truncate = true;
366 
367 	/*
368 	 * Remove the inode from the orphan list if it has been extended and
369 	 * everything went OK.
370 	 */
371 	if (!truncate && inode->i_nlink)
372 		ext4_orphan_del(handle, inode);
373 	ext4_journal_stop(handle);
374 
375 	if (truncate) {
376 truncate:
377 		ext4_truncate_failed_write(inode);
378 		/*
379 		 * If the truncate operation failed early, then the inode may
380 		 * still be on the orphan list. In that case, we need to try
381 		 * remove the inode from the in-memory linked list.
382 		 */
383 		if (inode->i_nlink)
384 			ext4_orphan_del(NULL, inode);
385 	}
386 
387 	return written;
388 }
389 
390 static int ext4_dio_write_end_io(struct kiocb *iocb, ssize_t size,
391 				 int error, unsigned int flags)
392 {
393 	loff_t pos = iocb->ki_pos;
394 	struct inode *inode = file_inode(iocb->ki_filp);
395 
396 	if (error)
397 		return error;
398 
399 	if (size && flags & IOMAP_DIO_UNWRITTEN) {
400 		error = ext4_convert_unwritten_extents(NULL, inode, pos, size);
401 		if (error < 0)
402 			return error;
403 	}
404 	/*
405 	 * If we are extending the file, we have to update i_size here before
406 	 * page cache gets invalidated in iomap_dio_rw(). Otherwise racing
407 	 * buffered reads could zero out too much from page cache pages. Update
408 	 * of on-disk size will happen later in ext4_dio_write_iter() where
409 	 * we have enough information to also perform orphan list handling etc.
410 	 * Note that we perform all extending writes synchronously under
411 	 * i_rwsem held exclusively so i_size update is safe here in that case.
412 	 * If the write was not extending, we cannot see pos > i_size here
413 	 * because operations reducing i_size like truncate wait for all
414 	 * outstanding DIO before updating i_size.
415 	 */
416 	pos += size;
417 	if (pos > i_size_read(inode))
418 		i_size_write(inode, pos);
419 
420 	return 0;
421 }
422 
423 static const struct iomap_dio_ops ext4_dio_write_ops = {
424 	.end_io = ext4_dio_write_end_io,
425 };
426 
427 /*
428  * The intention here is to start with shared lock acquired then see if any
429  * condition requires an exclusive inode lock. If yes, then we restart the
430  * whole operation by releasing the shared lock and acquiring exclusive lock.
431  *
432  * - For unaligned_io we never take shared lock as it may cause data corruption
433  *   when two unaligned IO tries to modify the same block e.g. while zeroing.
434  *
435  * - For extending writes case we don't take the shared lock, since it requires
436  *   updating inode i_disksize and/or orphan handling with exclusive lock.
437  *
438  * - shared locking will only be true mostly with overwrites, including
439  *   initialized blocks and unwritten blocks. For overwrite unwritten blocks
440  *   we protect splitting extents by i_data_sem in ext4_inode_info, so we can
441  *   also release exclusive i_rwsem lock.
442  *
443  * - Otherwise we will switch to exclusive i_rwsem lock.
444  */
445 static ssize_t ext4_dio_write_checks(struct kiocb *iocb, struct iov_iter *from,
446 				     bool *ilock_shared, bool *extend,
447 				     bool *unwritten)
448 {
449 	struct file *file = iocb->ki_filp;
450 	struct inode *inode = file_inode(file);
451 	loff_t offset;
452 	size_t count;
453 	ssize_t ret;
454 
455 restart:
456 	ret = ext4_generic_write_checks(iocb, from);
457 	if (ret <= 0)
458 		goto out;
459 
460 	offset = iocb->ki_pos;
461 	count = ret;
462 	if (ext4_extending_io(inode, offset, count))
463 		*extend = true;
464 	/*
465 	 * Determine whether the IO operation will overwrite allocated
466 	 * and initialized blocks.
467 	 * We need exclusive i_rwsem for changing security info
468 	 * in file_modified().
469 	 */
470 	if (*ilock_shared && (!IS_NOSEC(inode) || *extend ||
471 	     !ext4_overwrite_io(inode, offset, count, unwritten))) {
472 		if (iocb->ki_flags & IOCB_NOWAIT) {
473 			ret = -EAGAIN;
474 			goto out;
475 		}
476 		inode_unlock_shared(inode);
477 		*ilock_shared = false;
478 		inode_lock(inode);
479 		goto restart;
480 	}
481 
482 	ret = file_modified(file);
483 	if (ret < 0)
484 		goto out;
485 
486 	return count;
487 out:
488 	if (*ilock_shared)
489 		inode_unlock_shared(inode);
490 	else
491 		inode_unlock(inode);
492 	return ret;
493 }
494 
495 static ssize_t ext4_dio_write_iter(struct kiocb *iocb, struct iov_iter *from)
496 {
497 	ssize_t ret;
498 	handle_t *handle;
499 	struct inode *inode = file_inode(iocb->ki_filp);
500 	loff_t offset = iocb->ki_pos;
501 	size_t count = iov_iter_count(from);
502 	const struct iomap_ops *iomap_ops = &ext4_iomap_ops;
503 	bool extend = false, unaligned_io = false, unwritten = false;
504 	bool ilock_shared = true;
505 
506 	/*
507 	 * We initially start with shared inode lock unless it is
508 	 * unaligned IO which needs exclusive lock anyways.
509 	 */
510 	if (ext4_unaligned_io(inode, from, offset)) {
511 		unaligned_io = true;
512 		ilock_shared = false;
513 	}
514 	/*
515 	 * Quick check here without any i_rwsem lock to see if it is extending
516 	 * IO. A more reliable check is done in ext4_dio_write_checks() with
517 	 * proper locking in place.
518 	 */
519 	if (offset + count > i_size_read(inode))
520 		ilock_shared = false;
521 
522 	if (iocb->ki_flags & IOCB_NOWAIT) {
523 		if (ilock_shared) {
524 			if (!inode_trylock_shared(inode))
525 				return -EAGAIN;
526 		} else {
527 			if (!inode_trylock(inode))
528 				return -EAGAIN;
529 		}
530 	} else {
531 		if (ilock_shared)
532 			inode_lock_shared(inode);
533 		else
534 			inode_lock(inode);
535 	}
536 
537 	/* Fallback to buffered I/O if the inode does not support direct I/O. */
538 	if (!ext4_should_use_dio(iocb, from)) {
539 		if (ilock_shared)
540 			inode_unlock_shared(inode);
541 		else
542 			inode_unlock(inode);
543 		return ext4_buffered_write_iter(iocb, from);
544 	}
545 
546 	ret = ext4_dio_write_checks(iocb, from,
547 				    &ilock_shared, &extend, &unwritten);
548 	if (ret <= 0)
549 		return ret;
550 
551 	/* if we're going to block and IOCB_NOWAIT is set, return -EAGAIN */
552 	if ((iocb->ki_flags & IOCB_NOWAIT) && (unaligned_io || extend)) {
553 		ret = -EAGAIN;
554 		goto out;
555 	}
556 	/*
557 	 * Make sure inline data cannot be created anymore since we are going
558 	 * to allocate blocks for DIO. We know the inode does not have any
559 	 * inline data now because ext4_dio_supported() checked for that.
560 	 */
561 	ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
562 
563 	offset = iocb->ki_pos;
564 	count = ret;
565 
566 	/*
567 	 * Unaligned direct IO must be serialized among each other as zeroing
568 	 * of partial blocks of two competing unaligned IOs can result in data
569 	 * corruption.
570 	 *
571 	 * So we make sure we don't allow any unaligned IO in flight.
572 	 * For IOs where we need not wait (like unaligned non-AIO DIO),
573 	 * below inode_dio_wait() may anyway become a no-op, since we start
574 	 * with exclusive lock.
575 	 */
576 	if (unaligned_io)
577 		inode_dio_wait(inode);
578 
579 	if (extend) {
580 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
581 		if (IS_ERR(handle)) {
582 			ret = PTR_ERR(handle);
583 			goto out;
584 		}
585 
586 		ret = ext4_orphan_add(handle, inode);
587 		if (ret) {
588 			ext4_journal_stop(handle);
589 			goto out;
590 		}
591 
592 		ext4_journal_stop(handle);
593 	}
594 
595 	if (ilock_shared && !unwritten)
596 		iomap_ops = &ext4_iomap_overwrite_ops;
597 	ret = iomap_dio_rw(iocb, from, iomap_ops, &ext4_dio_write_ops,
598 			   (unaligned_io || extend) ? IOMAP_DIO_FORCE_WAIT : 0,
599 			   NULL, 0);
600 	if (ret == -ENOTBLK)
601 		ret = 0;
602 
603 	if (extend)
604 		ret = ext4_handle_inode_extension(inode, offset, ret, count);
605 
606 out:
607 	if (ilock_shared)
608 		inode_unlock_shared(inode);
609 	else
610 		inode_unlock(inode);
611 
612 	if (ret >= 0 && iov_iter_count(from)) {
613 		ssize_t err;
614 		loff_t endbyte;
615 
616 		offset = iocb->ki_pos;
617 		err = ext4_buffered_write_iter(iocb, from);
618 		if (err < 0)
619 			return err;
620 
621 		/*
622 		 * We need to ensure that the pages within the page cache for
623 		 * the range covered by this I/O are written to disk and
624 		 * invalidated. This is in attempt to preserve the expected
625 		 * direct I/O semantics in the case we fallback to buffered I/O
626 		 * to complete off the I/O request.
627 		 */
628 		ret += err;
629 		endbyte = offset + err - 1;
630 		err = filemap_write_and_wait_range(iocb->ki_filp->f_mapping,
631 						   offset, endbyte);
632 		if (!err)
633 			invalidate_mapping_pages(iocb->ki_filp->f_mapping,
634 						 offset >> PAGE_SHIFT,
635 						 endbyte >> PAGE_SHIFT);
636 	}
637 
638 	return ret;
639 }
640 
641 #ifdef CONFIG_FS_DAX
642 static ssize_t
643 ext4_dax_write_iter(struct kiocb *iocb, struct iov_iter *from)
644 {
645 	ssize_t ret;
646 	size_t count;
647 	loff_t offset;
648 	handle_t *handle;
649 	bool extend = false;
650 	struct inode *inode = file_inode(iocb->ki_filp);
651 
652 	if (iocb->ki_flags & IOCB_NOWAIT) {
653 		if (!inode_trylock(inode))
654 			return -EAGAIN;
655 	} else {
656 		inode_lock(inode);
657 	}
658 
659 	ret = ext4_write_checks(iocb, from);
660 	if (ret <= 0)
661 		goto out;
662 
663 	offset = iocb->ki_pos;
664 	count = iov_iter_count(from);
665 
666 	if (offset + count > EXT4_I(inode)->i_disksize) {
667 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
668 		if (IS_ERR(handle)) {
669 			ret = PTR_ERR(handle);
670 			goto out;
671 		}
672 
673 		ret = ext4_orphan_add(handle, inode);
674 		if (ret) {
675 			ext4_journal_stop(handle);
676 			goto out;
677 		}
678 
679 		extend = true;
680 		ext4_journal_stop(handle);
681 	}
682 
683 	ret = dax_iomap_rw(iocb, from, &ext4_iomap_ops);
684 
685 	if (extend)
686 		ret = ext4_handle_inode_extension(inode, offset, ret, count);
687 out:
688 	inode_unlock(inode);
689 	if (ret > 0)
690 		ret = generic_write_sync(iocb, ret);
691 	return ret;
692 }
693 #endif
694 
695 static ssize_t
696 ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
697 {
698 	struct inode *inode = file_inode(iocb->ki_filp);
699 
700 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
701 		return -EIO;
702 
703 #ifdef CONFIG_FS_DAX
704 	if (IS_DAX(inode))
705 		return ext4_dax_write_iter(iocb, from);
706 #endif
707 	if (iocb->ki_flags & IOCB_DIRECT)
708 		return ext4_dio_write_iter(iocb, from);
709 	else
710 		return ext4_buffered_write_iter(iocb, from);
711 }
712 
713 #ifdef CONFIG_FS_DAX
714 static vm_fault_t ext4_dax_huge_fault(struct vm_fault *vmf,
715 		enum page_entry_size pe_size)
716 {
717 	int error = 0;
718 	vm_fault_t result;
719 	int retries = 0;
720 	handle_t *handle = NULL;
721 	struct inode *inode = file_inode(vmf->vma->vm_file);
722 	struct super_block *sb = inode->i_sb;
723 
724 	/*
725 	 * We have to distinguish real writes from writes which will result in a
726 	 * COW page; COW writes should *not* poke the journal (the file will not
727 	 * be changed). Doing so would cause unintended failures when mounted
728 	 * read-only.
729 	 *
730 	 * We check for VM_SHARED rather than vmf->cow_page since the latter is
731 	 * unset for pe_size != PE_SIZE_PTE (i.e. only in do_cow_fault); for
732 	 * other sizes, dax_iomap_fault will handle splitting / fallback so that
733 	 * we eventually come back with a COW page.
734 	 */
735 	bool write = (vmf->flags & FAULT_FLAG_WRITE) &&
736 		(vmf->vma->vm_flags & VM_SHARED);
737 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
738 	pfn_t pfn;
739 
740 	if (write) {
741 		sb_start_pagefault(sb);
742 		file_update_time(vmf->vma->vm_file);
743 		filemap_invalidate_lock_shared(mapping);
744 retry:
745 		handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE,
746 					       EXT4_DATA_TRANS_BLOCKS(sb));
747 		if (IS_ERR(handle)) {
748 			filemap_invalidate_unlock_shared(mapping);
749 			sb_end_pagefault(sb);
750 			return VM_FAULT_SIGBUS;
751 		}
752 	} else {
753 		filemap_invalidate_lock_shared(mapping);
754 	}
755 	result = dax_iomap_fault(vmf, pe_size, &pfn, &error, &ext4_iomap_ops);
756 	if (write) {
757 		ext4_journal_stop(handle);
758 
759 		if ((result & VM_FAULT_ERROR) && error == -ENOSPC &&
760 		    ext4_should_retry_alloc(sb, &retries))
761 			goto retry;
762 		/* Handling synchronous page fault? */
763 		if (result & VM_FAULT_NEEDDSYNC)
764 			result = dax_finish_sync_fault(vmf, pe_size, pfn);
765 		filemap_invalidate_unlock_shared(mapping);
766 		sb_end_pagefault(sb);
767 	} else {
768 		filemap_invalidate_unlock_shared(mapping);
769 	}
770 
771 	return result;
772 }
773 
774 static vm_fault_t ext4_dax_fault(struct vm_fault *vmf)
775 {
776 	return ext4_dax_huge_fault(vmf, PE_SIZE_PTE);
777 }
778 
779 static const struct vm_operations_struct ext4_dax_vm_ops = {
780 	.fault		= ext4_dax_fault,
781 	.huge_fault	= ext4_dax_huge_fault,
782 	.page_mkwrite	= ext4_dax_fault,
783 	.pfn_mkwrite	= ext4_dax_fault,
784 };
785 #else
786 #define ext4_dax_vm_ops	ext4_file_vm_ops
787 #endif
788 
789 static const struct vm_operations_struct ext4_file_vm_ops = {
790 	.fault		= filemap_fault,
791 	.map_pages	= filemap_map_pages,
792 	.page_mkwrite   = ext4_page_mkwrite,
793 };
794 
795 static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
796 {
797 	struct inode *inode = file->f_mapping->host;
798 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
799 	struct dax_device *dax_dev = sbi->s_daxdev;
800 
801 	if (unlikely(ext4_forced_shutdown(sbi)))
802 		return -EIO;
803 
804 	/*
805 	 * We don't support synchronous mappings for non-DAX files and
806 	 * for DAX files if underneath dax_device is not synchronous.
807 	 */
808 	if (!daxdev_mapping_supported(vma, dax_dev))
809 		return -EOPNOTSUPP;
810 
811 	file_accessed(file);
812 	if (IS_DAX(file_inode(file))) {
813 		vma->vm_ops = &ext4_dax_vm_ops;
814 		vm_flags_set(vma, VM_HUGEPAGE);
815 	} else {
816 		vma->vm_ops = &ext4_file_vm_ops;
817 	}
818 	return 0;
819 }
820 
821 static int ext4_sample_last_mounted(struct super_block *sb,
822 				    struct vfsmount *mnt)
823 {
824 	struct ext4_sb_info *sbi = EXT4_SB(sb);
825 	struct path path;
826 	char buf[64], *cp;
827 	handle_t *handle;
828 	int err;
829 
830 	if (likely(ext4_test_mount_flag(sb, EXT4_MF_MNTDIR_SAMPLED)))
831 		return 0;
832 
833 	if (sb_rdonly(sb) || !sb_start_intwrite_trylock(sb))
834 		return 0;
835 
836 	ext4_set_mount_flag(sb, EXT4_MF_MNTDIR_SAMPLED);
837 	/*
838 	 * Sample where the filesystem has been mounted and
839 	 * store it in the superblock for sysadmin convenience
840 	 * when trying to sort through large numbers of block
841 	 * devices or filesystem images.
842 	 */
843 	memset(buf, 0, sizeof(buf));
844 	path.mnt = mnt;
845 	path.dentry = mnt->mnt_root;
846 	cp = d_path(&path, buf, sizeof(buf));
847 	err = 0;
848 	if (IS_ERR(cp))
849 		goto out;
850 
851 	handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
852 	err = PTR_ERR(handle);
853 	if (IS_ERR(handle))
854 		goto out;
855 	BUFFER_TRACE(sbi->s_sbh, "get_write_access");
856 	err = ext4_journal_get_write_access(handle, sb, sbi->s_sbh,
857 					    EXT4_JTR_NONE);
858 	if (err)
859 		goto out_journal;
860 	lock_buffer(sbi->s_sbh);
861 	strncpy(sbi->s_es->s_last_mounted, cp,
862 		sizeof(sbi->s_es->s_last_mounted));
863 	ext4_superblock_csum_set(sb);
864 	unlock_buffer(sbi->s_sbh);
865 	ext4_handle_dirty_metadata(handle, NULL, sbi->s_sbh);
866 out_journal:
867 	ext4_journal_stop(handle);
868 out:
869 	sb_end_intwrite(sb);
870 	return err;
871 }
872 
873 static int ext4_file_open(struct inode *inode, struct file *filp)
874 {
875 	int ret;
876 
877 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
878 		return -EIO;
879 
880 	ret = ext4_sample_last_mounted(inode->i_sb, filp->f_path.mnt);
881 	if (ret)
882 		return ret;
883 
884 	ret = fscrypt_file_open(inode, filp);
885 	if (ret)
886 		return ret;
887 
888 	ret = fsverity_file_open(inode, filp);
889 	if (ret)
890 		return ret;
891 
892 	/*
893 	 * Set up the jbd2_inode if we are opening the inode for
894 	 * writing and the journal is present
895 	 */
896 	if (filp->f_mode & FMODE_WRITE) {
897 		ret = ext4_inode_attach_jinode(inode);
898 		if (ret < 0)
899 			return ret;
900 	}
901 
902 	filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
903 	return dquot_file_open(inode, filp);
904 }
905 
906 /*
907  * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
908  * by calling generic_file_llseek_size() with the appropriate maxbytes
909  * value for each.
910  */
911 loff_t ext4_llseek(struct file *file, loff_t offset, int whence)
912 {
913 	struct inode *inode = file->f_mapping->host;
914 	loff_t maxbytes;
915 
916 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
917 		maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes;
918 	else
919 		maxbytes = inode->i_sb->s_maxbytes;
920 
921 	switch (whence) {
922 	default:
923 		return generic_file_llseek_size(file, offset, whence,
924 						maxbytes, i_size_read(inode));
925 	case SEEK_HOLE:
926 		inode_lock_shared(inode);
927 		offset = iomap_seek_hole(inode, offset,
928 					 &ext4_iomap_report_ops);
929 		inode_unlock_shared(inode);
930 		break;
931 	case SEEK_DATA:
932 		inode_lock_shared(inode);
933 		offset = iomap_seek_data(inode, offset,
934 					 &ext4_iomap_report_ops);
935 		inode_unlock_shared(inode);
936 		break;
937 	}
938 
939 	if (offset < 0)
940 		return offset;
941 	return vfs_setpos(file, offset, maxbytes);
942 }
943 
944 const struct file_operations ext4_file_operations = {
945 	.llseek		= ext4_llseek,
946 	.read_iter	= ext4_file_read_iter,
947 	.write_iter	= ext4_file_write_iter,
948 	.iopoll		= iocb_bio_iopoll,
949 	.unlocked_ioctl = ext4_ioctl,
950 #ifdef CONFIG_COMPAT
951 	.compat_ioctl	= ext4_compat_ioctl,
952 #endif
953 	.mmap		= ext4_file_mmap,
954 	.mmap_supported_flags = MAP_SYNC,
955 	.open		= ext4_file_open,
956 	.release	= ext4_release_file,
957 	.fsync		= ext4_sync_file,
958 	.get_unmapped_area = thp_get_unmapped_area,
959 	.splice_read	= generic_file_splice_read,
960 	.splice_write	= iter_file_splice_write,
961 	.fallocate	= ext4_fallocate,
962 };
963 
964 const struct inode_operations ext4_file_inode_operations = {
965 	.setattr	= ext4_setattr,
966 	.getattr	= ext4_file_getattr,
967 	.listxattr	= ext4_listxattr,
968 	.get_inode_acl	= ext4_get_acl,
969 	.set_acl	= ext4_set_acl,
970 	.fiemap		= ext4_fiemap,
971 	.fileattr_get	= ext4_fileattr_get,
972 	.fileattr_set	= ext4_fileattr_set,
973 };
974 
975