xref: /openbmc/linux/fs/ext4/file.c (revision 2d594783)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/file.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/file.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  ext4 fs regular file handling primitives
17  *
18  *  64-bit file support on 64-bit platforms by Jakub Jelinek
19  *	(jj@sunsite.ms.mff.cuni.cz)
20  */
21 
22 #include <linux/time.h>
23 #include <linux/fs.h>
24 #include <linux/iomap.h>
25 #include <linux/mount.h>
26 #include <linux/path.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/pagevec.h>
30 #include <linux/uio.h>
31 #include <linux/mman.h>
32 #include <linux/backing-dev.h>
33 #include "ext4.h"
34 #include "ext4_jbd2.h"
35 #include "xattr.h"
36 #include "acl.h"
37 #include "truncate.h"
38 
39 /*
40  * Returns %true if the given DIO request should be attempted with DIO, or
41  * %false if it should fall back to buffered I/O.
42  *
43  * DIO isn't well specified; when it's unsupported (either due to the request
44  * being misaligned, or due to the file not supporting DIO at all), filesystems
45  * either fall back to buffered I/O or return EINVAL.  For files that don't use
46  * any special features like encryption or verity, ext4 has traditionally
47  * returned EINVAL for misaligned DIO.  iomap_dio_rw() uses this convention too.
48  * In this case, we should attempt the DIO, *not* fall back to buffered I/O.
49  *
50  * In contrast, in cases where DIO is unsupported due to ext4 features, ext4
51  * traditionally falls back to buffered I/O.
52  *
53  * This function implements the traditional ext4 behavior in all these cases.
54  */
55 static bool ext4_should_use_dio(struct kiocb *iocb, struct iov_iter *iter)
56 {
57 	struct inode *inode = file_inode(iocb->ki_filp);
58 	u32 dio_align = ext4_dio_alignment(inode);
59 
60 	if (dio_align == 0)
61 		return false;
62 
63 	if (dio_align == 1)
64 		return true;
65 
66 	return IS_ALIGNED(iocb->ki_pos | iov_iter_alignment(iter), dio_align);
67 }
68 
69 static ssize_t ext4_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
70 {
71 	ssize_t ret;
72 	struct inode *inode = file_inode(iocb->ki_filp);
73 
74 	if (iocb->ki_flags & IOCB_NOWAIT) {
75 		if (!inode_trylock_shared(inode))
76 			return -EAGAIN;
77 	} else {
78 		inode_lock_shared(inode);
79 	}
80 
81 	if (!ext4_should_use_dio(iocb, to)) {
82 		inode_unlock_shared(inode);
83 		/*
84 		 * Fallback to buffered I/O if the operation being performed on
85 		 * the inode is not supported by direct I/O. The IOCB_DIRECT
86 		 * flag needs to be cleared here in order to ensure that the
87 		 * direct I/O path within generic_file_read_iter() is not
88 		 * taken.
89 		 */
90 		iocb->ki_flags &= ~IOCB_DIRECT;
91 		return generic_file_read_iter(iocb, to);
92 	}
93 
94 	ret = iomap_dio_rw(iocb, to, &ext4_iomap_ops, NULL, 0, NULL, 0);
95 	inode_unlock_shared(inode);
96 
97 	file_accessed(iocb->ki_filp);
98 	return ret;
99 }
100 
101 #ifdef CONFIG_FS_DAX
102 static ssize_t ext4_dax_read_iter(struct kiocb *iocb, struct iov_iter *to)
103 {
104 	struct inode *inode = file_inode(iocb->ki_filp);
105 	ssize_t ret;
106 
107 	if (iocb->ki_flags & IOCB_NOWAIT) {
108 		if (!inode_trylock_shared(inode))
109 			return -EAGAIN;
110 	} else {
111 		inode_lock_shared(inode);
112 	}
113 	/*
114 	 * Recheck under inode lock - at this point we are sure it cannot
115 	 * change anymore
116 	 */
117 	if (!IS_DAX(inode)) {
118 		inode_unlock_shared(inode);
119 		/* Fallback to buffered IO in case we cannot support DAX */
120 		return generic_file_read_iter(iocb, to);
121 	}
122 	ret = dax_iomap_rw(iocb, to, &ext4_iomap_ops);
123 	inode_unlock_shared(inode);
124 
125 	file_accessed(iocb->ki_filp);
126 	return ret;
127 }
128 #endif
129 
130 static ssize_t ext4_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
131 {
132 	struct inode *inode = file_inode(iocb->ki_filp);
133 
134 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
135 		return -EIO;
136 
137 	if (!iov_iter_count(to))
138 		return 0; /* skip atime */
139 
140 #ifdef CONFIG_FS_DAX
141 	if (IS_DAX(inode))
142 		return ext4_dax_read_iter(iocb, to);
143 #endif
144 	if (iocb->ki_flags & IOCB_DIRECT)
145 		return ext4_dio_read_iter(iocb, to);
146 
147 	return generic_file_read_iter(iocb, to);
148 }
149 
150 static ssize_t ext4_file_splice_read(struct file *in, loff_t *ppos,
151 				     struct pipe_inode_info *pipe,
152 				     size_t len, unsigned int flags)
153 {
154 	struct inode *inode = file_inode(in);
155 
156 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
157 		return -EIO;
158 	return filemap_splice_read(in, ppos, pipe, len, flags);
159 }
160 
161 /*
162  * Called when an inode is released. Note that this is different
163  * from ext4_file_open: open gets called at every open, but release
164  * gets called only when /all/ the files are closed.
165  */
166 static int ext4_release_file(struct inode *inode, struct file *filp)
167 {
168 	if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) {
169 		ext4_alloc_da_blocks(inode);
170 		ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
171 	}
172 	/* if we are the last writer on the inode, drop the block reservation */
173 	if ((filp->f_mode & FMODE_WRITE) &&
174 			(atomic_read(&inode->i_writecount) == 1) &&
175 			!EXT4_I(inode)->i_reserved_data_blocks) {
176 		down_write(&EXT4_I(inode)->i_data_sem);
177 		ext4_discard_preallocations(inode, 0);
178 		up_write(&EXT4_I(inode)->i_data_sem);
179 	}
180 	if (is_dx(inode) && filp->private_data)
181 		ext4_htree_free_dir_info(filp->private_data);
182 
183 	return 0;
184 }
185 
186 /*
187  * This tests whether the IO in question is block-aligned or not.
188  * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
189  * are converted to written only after the IO is complete.  Until they are
190  * mapped, these blocks appear as holes, so dio_zero_block() will assume that
191  * it needs to zero out portions of the start and/or end block.  If 2 AIO
192  * threads are at work on the same unwritten block, they must be synchronized
193  * or one thread will zero the other's data, causing corruption.
194  */
195 static bool
196 ext4_unaligned_io(struct inode *inode, struct iov_iter *from, loff_t pos)
197 {
198 	struct super_block *sb = inode->i_sb;
199 	unsigned long blockmask = sb->s_blocksize - 1;
200 
201 	if ((pos | iov_iter_alignment(from)) & blockmask)
202 		return true;
203 
204 	return false;
205 }
206 
207 static bool
208 ext4_extending_io(struct inode *inode, loff_t offset, size_t len)
209 {
210 	if (offset + len > i_size_read(inode) ||
211 	    offset + len > EXT4_I(inode)->i_disksize)
212 		return true;
213 	return false;
214 }
215 
216 /* Is IO overwriting allocated or initialized blocks? */
217 static bool ext4_overwrite_io(struct inode *inode,
218 			      loff_t pos, loff_t len, bool *unwritten)
219 {
220 	struct ext4_map_blocks map;
221 	unsigned int blkbits = inode->i_blkbits;
222 	int err, blklen;
223 
224 	if (pos + len > i_size_read(inode))
225 		return false;
226 
227 	map.m_lblk = pos >> blkbits;
228 	map.m_len = EXT4_MAX_BLOCKS(len, pos, blkbits);
229 	blklen = map.m_len;
230 
231 	err = ext4_map_blocks(NULL, inode, &map, 0);
232 	if (err != blklen)
233 		return false;
234 	/*
235 	 * 'err==len' means that all of the blocks have been preallocated,
236 	 * regardless of whether they have been initialized or not. We need to
237 	 * check m_flags to distinguish the unwritten extents.
238 	 */
239 	*unwritten = !(map.m_flags & EXT4_MAP_MAPPED);
240 	return true;
241 }
242 
243 static ssize_t ext4_generic_write_checks(struct kiocb *iocb,
244 					 struct iov_iter *from)
245 {
246 	struct inode *inode = file_inode(iocb->ki_filp);
247 	ssize_t ret;
248 
249 	if (unlikely(IS_IMMUTABLE(inode)))
250 		return -EPERM;
251 
252 	ret = generic_write_checks(iocb, from);
253 	if (ret <= 0)
254 		return ret;
255 
256 	/*
257 	 * If we have encountered a bitmap-format file, the size limit
258 	 * is smaller than s_maxbytes, which is for extent-mapped files.
259 	 */
260 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
261 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
262 
263 		if (iocb->ki_pos >= sbi->s_bitmap_maxbytes)
264 			return -EFBIG;
265 		iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos);
266 	}
267 
268 	return iov_iter_count(from);
269 }
270 
271 static ssize_t ext4_write_checks(struct kiocb *iocb, struct iov_iter *from)
272 {
273 	ssize_t ret, count;
274 
275 	count = ext4_generic_write_checks(iocb, from);
276 	if (count <= 0)
277 		return count;
278 
279 	ret = file_modified(iocb->ki_filp);
280 	if (ret)
281 		return ret;
282 	return count;
283 }
284 
285 static ssize_t ext4_buffered_write_iter(struct kiocb *iocb,
286 					struct iov_iter *from)
287 {
288 	ssize_t ret;
289 	struct inode *inode = file_inode(iocb->ki_filp);
290 
291 	if (iocb->ki_flags & IOCB_NOWAIT)
292 		return -EOPNOTSUPP;
293 
294 	inode_lock(inode);
295 	ret = ext4_write_checks(iocb, from);
296 	if (ret <= 0)
297 		goto out;
298 
299 	ret = generic_perform_write(iocb, from);
300 
301 out:
302 	inode_unlock(inode);
303 	if (unlikely(ret <= 0))
304 		return ret;
305 	return generic_write_sync(iocb, ret);
306 }
307 
308 static ssize_t ext4_handle_inode_extension(struct inode *inode, loff_t offset,
309 					   ssize_t written, size_t count)
310 {
311 	handle_t *handle;
312 	bool truncate = false;
313 	u8 blkbits = inode->i_blkbits;
314 	ext4_lblk_t written_blk, end_blk;
315 	int ret;
316 
317 	/*
318 	 * Note that EXT4_I(inode)->i_disksize can get extended up to
319 	 * inode->i_size while the I/O was running due to writeback of delalloc
320 	 * blocks. But, the code in ext4_iomap_alloc() is careful to use
321 	 * zeroed/unwritten extents if this is possible; thus we won't leave
322 	 * uninitialized blocks in a file even if we didn't succeed in writing
323 	 * as much as we intended.
324 	 */
325 	WARN_ON_ONCE(i_size_read(inode) < EXT4_I(inode)->i_disksize);
326 	if (offset + count <= EXT4_I(inode)->i_disksize) {
327 		/*
328 		 * We need to ensure that the inode is removed from the orphan
329 		 * list if it has been added prematurely, due to writeback of
330 		 * delalloc blocks.
331 		 */
332 		if (!list_empty(&EXT4_I(inode)->i_orphan) && inode->i_nlink) {
333 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
334 
335 			if (IS_ERR(handle)) {
336 				ext4_orphan_del(NULL, inode);
337 				return PTR_ERR(handle);
338 			}
339 
340 			ext4_orphan_del(handle, inode);
341 			ext4_journal_stop(handle);
342 		}
343 
344 		return written;
345 	}
346 
347 	if (written < 0)
348 		goto truncate;
349 
350 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
351 	if (IS_ERR(handle)) {
352 		written = PTR_ERR(handle);
353 		goto truncate;
354 	}
355 
356 	if (ext4_update_inode_size(inode, offset + written)) {
357 		ret = ext4_mark_inode_dirty(handle, inode);
358 		if (unlikely(ret)) {
359 			written = ret;
360 			ext4_journal_stop(handle);
361 			goto truncate;
362 		}
363 	}
364 
365 	/*
366 	 * We may need to truncate allocated but not written blocks beyond EOF.
367 	 */
368 	written_blk = ALIGN(offset + written, 1 << blkbits);
369 	end_blk = ALIGN(offset + count, 1 << blkbits);
370 	if (written_blk < end_blk && ext4_can_truncate(inode))
371 		truncate = true;
372 
373 	/*
374 	 * Remove the inode from the orphan list if it has been extended and
375 	 * everything went OK.
376 	 */
377 	if (!truncate && inode->i_nlink)
378 		ext4_orphan_del(handle, inode);
379 	ext4_journal_stop(handle);
380 
381 	if (truncate) {
382 truncate:
383 		ext4_truncate_failed_write(inode);
384 		/*
385 		 * If the truncate operation failed early, then the inode may
386 		 * still be on the orphan list. In that case, we need to try
387 		 * remove the inode from the in-memory linked list.
388 		 */
389 		if (inode->i_nlink)
390 			ext4_orphan_del(NULL, inode);
391 	}
392 
393 	return written;
394 }
395 
396 static int ext4_dio_write_end_io(struct kiocb *iocb, ssize_t size,
397 				 int error, unsigned int flags)
398 {
399 	loff_t pos = iocb->ki_pos;
400 	struct inode *inode = file_inode(iocb->ki_filp);
401 
402 	if (error)
403 		return error;
404 
405 	if (size && flags & IOMAP_DIO_UNWRITTEN) {
406 		error = ext4_convert_unwritten_extents(NULL, inode, pos, size);
407 		if (error < 0)
408 			return error;
409 	}
410 	/*
411 	 * If we are extending the file, we have to update i_size here before
412 	 * page cache gets invalidated in iomap_dio_rw(). Otherwise racing
413 	 * buffered reads could zero out too much from page cache pages. Update
414 	 * of on-disk size will happen later in ext4_dio_write_iter() where
415 	 * we have enough information to also perform orphan list handling etc.
416 	 * Note that we perform all extending writes synchronously under
417 	 * i_rwsem held exclusively so i_size update is safe here in that case.
418 	 * If the write was not extending, we cannot see pos > i_size here
419 	 * because operations reducing i_size like truncate wait for all
420 	 * outstanding DIO before updating i_size.
421 	 */
422 	pos += size;
423 	if (pos > i_size_read(inode))
424 		i_size_write(inode, pos);
425 
426 	return 0;
427 }
428 
429 static const struct iomap_dio_ops ext4_dio_write_ops = {
430 	.end_io = ext4_dio_write_end_io,
431 };
432 
433 /*
434  * The intention here is to start with shared lock acquired then see if any
435  * condition requires an exclusive inode lock. If yes, then we restart the
436  * whole operation by releasing the shared lock and acquiring exclusive lock.
437  *
438  * - For unaligned_io we never take shared lock as it may cause data corruption
439  *   when two unaligned IO tries to modify the same block e.g. while zeroing.
440  *
441  * - For extending writes case we don't take the shared lock, since it requires
442  *   updating inode i_disksize and/or orphan handling with exclusive lock.
443  *
444  * - shared locking will only be true mostly with overwrites, including
445  *   initialized blocks and unwritten blocks. For overwrite unwritten blocks
446  *   we protect splitting extents by i_data_sem in ext4_inode_info, so we can
447  *   also release exclusive i_rwsem lock.
448  *
449  * - Otherwise we will switch to exclusive i_rwsem lock.
450  */
451 static ssize_t ext4_dio_write_checks(struct kiocb *iocb, struct iov_iter *from,
452 				     bool *ilock_shared, bool *extend,
453 				     bool *unwritten, int *dio_flags)
454 {
455 	struct file *file = iocb->ki_filp;
456 	struct inode *inode = file_inode(file);
457 	loff_t offset;
458 	size_t count;
459 	ssize_t ret;
460 	bool overwrite, unaligned_io;
461 
462 restart:
463 	ret = ext4_generic_write_checks(iocb, from);
464 	if (ret <= 0)
465 		goto out;
466 
467 	offset = iocb->ki_pos;
468 	count = ret;
469 
470 	unaligned_io = ext4_unaligned_io(inode, from, offset);
471 	*extend = ext4_extending_io(inode, offset, count);
472 	overwrite = ext4_overwrite_io(inode, offset, count, unwritten);
473 
474 	/*
475 	 * Determine whether we need to upgrade to an exclusive lock. This is
476 	 * required to change security info in file_modified(), for extending
477 	 * I/O, any form of non-overwrite I/O, and unaligned I/O to unwritten
478 	 * extents (as partial block zeroing may be required).
479 	 */
480 	if (*ilock_shared &&
481 	    ((!IS_NOSEC(inode) || *extend || !overwrite ||
482 	     (unaligned_io && *unwritten)))) {
483 		if (iocb->ki_flags & IOCB_NOWAIT) {
484 			ret = -EAGAIN;
485 			goto out;
486 		}
487 		inode_unlock_shared(inode);
488 		*ilock_shared = false;
489 		inode_lock(inode);
490 		goto restart;
491 	}
492 
493 	/*
494 	 * Now that locking is settled, determine dio flags and exclusivity
495 	 * requirements. Unaligned writes are allowed under shared lock so long
496 	 * as they are pure overwrites. Set the iomap overwrite only flag as an
497 	 * added precaution in this case. Even though this is unnecessary, we
498 	 * can detect and warn on unexpected -EAGAIN if an unsafe unaligned
499 	 * write is ever submitted.
500 	 *
501 	 * Otherwise, concurrent unaligned writes risk data corruption due to
502 	 * partial block zeroing in the dio layer, and so the I/O must occur
503 	 * exclusively. The inode lock is already held exclusive if the write is
504 	 * non-overwrite or extending, so drain all outstanding dio and set the
505 	 * force wait dio flag.
506 	 */
507 	if (*ilock_shared && unaligned_io) {
508 		*dio_flags = IOMAP_DIO_OVERWRITE_ONLY;
509 	} else if (!*ilock_shared && (unaligned_io || *extend)) {
510 		if (iocb->ki_flags & IOCB_NOWAIT) {
511 			ret = -EAGAIN;
512 			goto out;
513 		}
514 		if (unaligned_io && (!overwrite || *unwritten))
515 			inode_dio_wait(inode);
516 		*dio_flags = IOMAP_DIO_FORCE_WAIT;
517 	}
518 
519 	ret = file_modified(file);
520 	if (ret < 0)
521 		goto out;
522 
523 	return count;
524 out:
525 	if (*ilock_shared)
526 		inode_unlock_shared(inode);
527 	else
528 		inode_unlock(inode);
529 	return ret;
530 }
531 
532 static ssize_t ext4_dio_write_iter(struct kiocb *iocb, struct iov_iter *from)
533 {
534 	ssize_t ret;
535 	handle_t *handle;
536 	struct inode *inode = file_inode(iocb->ki_filp);
537 	loff_t offset = iocb->ki_pos;
538 	size_t count = iov_iter_count(from);
539 	const struct iomap_ops *iomap_ops = &ext4_iomap_ops;
540 	bool extend = false, unwritten = false;
541 	bool ilock_shared = true;
542 	int dio_flags = 0;
543 
544 	/*
545 	 * Quick check here without any i_rwsem lock to see if it is extending
546 	 * IO. A more reliable check is done in ext4_dio_write_checks() with
547 	 * proper locking in place.
548 	 */
549 	if (offset + count > i_size_read(inode))
550 		ilock_shared = false;
551 
552 	if (iocb->ki_flags & IOCB_NOWAIT) {
553 		if (ilock_shared) {
554 			if (!inode_trylock_shared(inode))
555 				return -EAGAIN;
556 		} else {
557 			if (!inode_trylock(inode))
558 				return -EAGAIN;
559 		}
560 	} else {
561 		if (ilock_shared)
562 			inode_lock_shared(inode);
563 		else
564 			inode_lock(inode);
565 	}
566 
567 	/* Fallback to buffered I/O if the inode does not support direct I/O. */
568 	if (!ext4_should_use_dio(iocb, from)) {
569 		if (ilock_shared)
570 			inode_unlock_shared(inode);
571 		else
572 			inode_unlock(inode);
573 		return ext4_buffered_write_iter(iocb, from);
574 	}
575 
576 	ret = ext4_dio_write_checks(iocb, from, &ilock_shared, &extend,
577 				    &unwritten, &dio_flags);
578 	if (ret <= 0)
579 		return ret;
580 
581 	/*
582 	 * Make sure inline data cannot be created anymore since we are going
583 	 * to allocate blocks for DIO. We know the inode does not have any
584 	 * inline data now because ext4_dio_supported() checked for that.
585 	 */
586 	ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
587 
588 	offset = iocb->ki_pos;
589 	count = ret;
590 
591 	if (extend) {
592 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
593 		if (IS_ERR(handle)) {
594 			ret = PTR_ERR(handle);
595 			goto out;
596 		}
597 
598 		ret = ext4_orphan_add(handle, inode);
599 		if (ret) {
600 			ext4_journal_stop(handle);
601 			goto out;
602 		}
603 
604 		ext4_journal_stop(handle);
605 	}
606 
607 	if (ilock_shared && !unwritten)
608 		iomap_ops = &ext4_iomap_overwrite_ops;
609 	ret = iomap_dio_rw(iocb, from, iomap_ops, &ext4_dio_write_ops,
610 			   dio_flags, NULL, 0);
611 	WARN_ON_ONCE(ret == -EAGAIN && !(iocb->ki_flags & IOCB_NOWAIT));
612 	if (ret == -ENOTBLK)
613 		ret = 0;
614 
615 	if (extend)
616 		ret = ext4_handle_inode_extension(inode, offset, ret, count);
617 
618 out:
619 	if (ilock_shared)
620 		inode_unlock_shared(inode);
621 	else
622 		inode_unlock(inode);
623 
624 	if (ret >= 0 && iov_iter_count(from)) {
625 		ssize_t err;
626 		loff_t endbyte;
627 
628 		offset = iocb->ki_pos;
629 		err = ext4_buffered_write_iter(iocb, from);
630 		if (err < 0)
631 			return err;
632 
633 		/*
634 		 * We need to ensure that the pages within the page cache for
635 		 * the range covered by this I/O are written to disk and
636 		 * invalidated. This is in attempt to preserve the expected
637 		 * direct I/O semantics in the case we fallback to buffered I/O
638 		 * to complete off the I/O request.
639 		 */
640 		ret += err;
641 		endbyte = offset + err - 1;
642 		err = filemap_write_and_wait_range(iocb->ki_filp->f_mapping,
643 						   offset, endbyte);
644 		if (!err)
645 			invalidate_mapping_pages(iocb->ki_filp->f_mapping,
646 						 offset >> PAGE_SHIFT,
647 						 endbyte >> PAGE_SHIFT);
648 	}
649 
650 	return ret;
651 }
652 
653 #ifdef CONFIG_FS_DAX
654 static ssize_t
655 ext4_dax_write_iter(struct kiocb *iocb, struct iov_iter *from)
656 {
657 	ssize_t ret;
658 	size_t count;
659 	loff_t offset;
660 	handle_t *handle;
661 	bool extend = false;
662 	struct inode *inode = file_inode(iocb->ki_filp);
663 
664 	if (iocb->ki_flags & IOCB_NOWAIT) {
665 		if (!inode_trylock(inode))
666 			return -EAGAIN;
667 	} else {
668 		inode_lock(inode);
669 	}
670 
671 	ret = ext4_write_checks(iocb, from);
672 	if (ret <= 0)
673 		goto out;
674 
675 	offset = iocb->ki_pos;
676 	count = iov_iter_count(from);
677 
678 	if (offset + count > EXT4_I(inode)->i_disksize) {
679 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
680 		if (IS_ERR(handle)) {
681 			ret = PTR_ERR(handle);
682 			goto out;
683 		}
684 
685 		ret = ext4_orphan_add(handle, inode);
686 		if (ret) {
687 			ext4_journal_stop(handle);
688 			goto out;
689 		}
690 
691 		extend = true;
692 		ext4_journal_stop(handle);
693 	}
694 
695 	ret = dax_iomap_rw(iocb, from, &ext4_iomap_ops);
696 
697 	if (extend)
698 		ret = ext4_handle_inode_extension(inode, offset, ret, count);
699 out:
700 	inode_unlock(inode);
701 	if (ret > 0)
702 		ret = generic_write_sync(iocb, ret);
703 	return ret;
704 }
705 #endif
706 
707 static ssize_t
708 ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
709 {
710 	struct inode *inode = file_inode(iocb->ki_filp);
711 
712 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
713 		return -EIO;
714 
715 #ifdef CONFIG_FS_DAX
716 	if (IS_DAX(inode))
717 		return ext4_dax_write_iter(iocb, from);
718 #endif
719 	if (iocb->ki_flags & IOCB_DIRECT)
720 		return ext4_dio_write_iter(iocb, from);
721 	else
722 		return ext4_buffered_write_iter(iocb, from);
723 }
724 
725 #ifdef CONFIG_FS_DAX
726 static vm_fault_t ext4_dax_huge_fault(struct vm_fault *vmf,
727 		enum page_entry_size pe_size)
728 {
729 	int error = 0;
730 	vm_fault_t result;
731 	int retries = 0;
732 	handle_t *handle = NULL;
733 	struct inode *inode = file_inode(vmf->vma->vm_file);
734 	struct super_block *sb = inode->i_sb;
735 
736 	/*
737 	 * We have to distinguish real writes from writes which will result in a
738 	 * COW page; COW writes should *not* poke the journal (the file will not
739 	 * be changed). Doing so would cause unintended failures when mounted
740 	 * read-only.
741 	 *
742 	 * We check for VM_SHARED rather than vmf->cow_page since the latter is
743 	 * unset for pe_size != PE_SIZE_PTE (i.e. only in do_cow_fault); for
744 	 * other sizes, dax_iomap_fault will handle splitting / fallback so that
745 	 * we eventually come back with a COW page.
746 	 */
747 	bool write = (vmf->flags & FAULT_FLAG_WRITE) &&
748 		(vmf->vma->vm_flags & VM_SHARED);
749 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
750 	pfn_t pfn;
751 
752 	if (write) {
753 		sb_start_pagefault(sb);
754 		file_update_time(vmf->vma->vm_file);
755 		filemap_invalidate_lock_shared(mapping);
756 retry:
757 		handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE,
758 					       EXT4_DATA_TRANS_BLOCKS(sb));
759 		if (IS_ERR(handle)) {
760 			filemap_invalidate_unlock_shared(mapping);
761 			sb_end_pagefault(sb);
762 			return VM_FAULT_SIGBUS;
763 		}
764 	} else {
765 		filemap_invalidate_lock_shared(mapping);
766 	}
767 	result = dax_iomap_fault(vmf, pe_size, &pfn, &error, &ext4_iomap_ops);
768 	if (write) {
769 		ext4_journal_stop(handle);
770 
771 		if ((result & VM_FAULT_ERROR) && error == -ENOSPC &&
772 		    ext4_should_retry_alloc(sb, &retries))
773 			goto retry;
774 		/* Handling synchronous page fault? */
775 		if (result & VM_FAULT_NEEDDSYNC)
776 			result = dax_finish_sync_fault(vmf, pe_size, pfn);
777 		filemap_invalidate_unlock_shared(mapping);
778 		sb_end_pagefault(sb);
779 	} else {
780 		filemap_invalidate_unlock_shared(mapping);
781 	}
782 
783 	return result;
784 }
785 
786 static vm_fault_t ext4_dax_fault(struct vm_fault *vmf)
787 {
788 	return ext4_dax_huge_fault(vmf, PE_SIZE_PTE);
789 }
790 
791 static const struct vm_operations_struct ext4_dax_vm_ops = {
792 	.fault		= ext4_dax_fault,
793 	.huge_fault	= ext4_dax_huge_fault,
794 	.page_mkwrite	= ext4_dax_fault,
795 	.pfn_mkwrite	= ext4_dax_fault,
796 };
797 #else
798 #define ext4_dax_vm_ops	ext4_file_vm_ops
799 #endif
800 
801 static const struct vm_operations_struct ext4_file_vm_ops = {
802 	.fault		= filemap_fault,
803 	.map_pages	= filemap_map_pages,
804 	.page_mkwrite   = ext4_page_mkwrite,
805 };
806 
807 static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
808 {
809 	struct inode *inode = file->f_mapping->host;
810 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
811 	struct dax_device *dax_dev = sbi->s_daxdev;
812 
813 	if (unlikely(ext4_forced_shutdown(sbi)))
814 		return -EIO;
815 
816 	/*
817 	 * We don't support synchronous mappings for non-DAX files and
818 	 * for DAX files if underneath dax_device is not synchronous.
819 	 */
820 	if (!daxdev_mapping_supported(vma, dax_dev))
821 		return -EOPNOTSUPP;
822 
823 	file_accessed(file);
824 	if (IS_DAX(file_inode(file))) {
825 		vma->vm_ops = &ext4_dax_vm_ops;
826 		vm_flags_set(vma, VM_HUGEPAGE);
827 	} else {
828 		vma->vm_ops = &ext4_file_vm_ops;
829 	}
830 	return 0;
831 }
832 
833 static int ext4_sample_last_mounted(struct super_block *sb,
834 				    struct vfsmount *mnt)
835 {
836 	struct ext4_sb_info *sbi = EXT4_SB(sb);
837 	struct path path;
838 	char buf[64], *cp;
839 	handle_t *handle;
840 	int err;
841 
842 	if (likely(ext4_test_mount_flag(sb, EXT4_MF_MNTDIR_SAMPLED)))
843 		return 0;
844 
845 	if (sb_rdonly(sb) || !sb_start_intwrite_trylock(sb))
846 		return 0;
847 
848 	ext4_set_mount_flag(sb, EXT4_MF_MNTDIR_SAMPLED);
849 	/*
850 	 * Sample where the filesystem has been mounted and
851 	 * store it in the superblock for sysadmin convenience
852 	 * when trying to sort through large numbers of block
853 	 * devices or filesystem images.
854 	 */
855 	memset(buf, 0, sizeof(buf));
856 	path.mnt = mnt;
857 	path.dentry = mnt->mnt_root;
858 	cp = d_path(&path, buf, sizeof(buf));
859 	err = 0;
860 	if (IS_ERR(cp))
861 		goto out;
862 
863 	handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
864 	err = PTR_ERR(handle);
865 	if (IS_ERR(handle))
866 		goto out;
867 	BUFFER_TRACE(sbi->s_sbh, "get_write_access");
868 	err = ext4_journal_get_write_access(handle, sb, sbi->s_sbh,
869 					    EXT4_JTR_NONE);
870 	if (err)
871 		goto out_journal;
872 	lock_buffer(sbi->s_sbh);
873 	strncpy(sbi->s_es->s_last_mounted, cp,
874 		sizeof(sbi->s_es->s_last_mounted));
875 	ext4_superblock_csum_set(sb);
876 	unlock_buffer(sbi->s_sbh);
877 	ext4_handle_dirty_metadata(handle, NULL, sbi->s_sbh);
878 out_journal:
879 	ext4_journal_stop(handle);
880 out:
881 	sb_end_intwrite(sb);
882 	return err;
883 }
884 
885 static int ext4_file_open(struct inode *inode, struct file *filp)
886 {
887 	int ret;
888 
889 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
890 		return -EIO;
891 
892 	ret = ext4_sample_last_mounted(inode->i_sb, filp->f_path.mnt);
893 	if (ret)
894 		return ret;
895 
896 	ret = fscrypt_file_open(inode, filp);
897 	if (ret)
898 		return ret;
899 
900 	ret = fsverity_file_open(inode, filp);
901 	if (ret)
902 		return ret;
903 
904 	/*
905 	 * Set up the jbd2_inode if we are opening the inode for
906 	 * writing and the journal is present
907 	 */
908 	if (filp->f_mode & FMODE_WRITE) {
909 		ret = ext4_inode_attach_jinode(inode);
910 		if (ret < 0)
911 			return ret;
912 	}
913 
914 	filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC |
915 			FMODE_DIO_PARALLEL_WRITE;
916 	return dquot_file_open(inode, filp);
917 }
918 
919 /*
920  * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
921  * by calling generic_file_llseek_size() with the appropriate maxbytes
922  * value for each.
923  */
924 loff_t ext4_llseek(struct file *file, loff_t offset, int whence)
925 {
926 	struct inode *inode = file->f_mapping->host;
927 	loff_t maxbytes;
928 
929 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
930 		maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes;
931 	else
932 		maxbytes = inode->i_sb->s_maxbytes;
933 
934 	switch (whence) {
935 	default:
936 		return generic_file_llseek_size(file, offset, whence,
937 						maxbytes, i_size_read(inode));
938 	case SEEK_HOLE:
939 		inode_lock_shared(inode);
940 		offset = iomap_seek_hole(inode, offset,
941 					 &ext4_iomap_report_ops);
942 		inode_unlock_shared(inode);
943 		break;
944 	case SEEK_DATA:
945 		inode_lock_shared(inode);
946 		offset = iomap_seek_data(inode, offset,
947 					 &ext4_iomap_report_ops);
948 		inode_unlock_shared(inode);
949 		break;
950 	}
951 
952 	if (offset < 0)
953 		return offset;
954 	return vfs_setpos(file, offset, maxbytes);
955 }
956 
957 const struct file_operations ext4_file_operations = {
958 	.llseek		= ext4_llseek,
959 	.read_iter	= ext4_file_read_iter,
960 	.write_iter	= ext4_file_write_iter,
961 	.iopoll		= iocb_bio_iopoll,
962 	.unlocked_ioctl = ext4_ioctl,
963 #ifdef CONFIG_COMPAT
964 	.compat_ioctl	= ext4_compat_ioctl,
965 #endif
966 	.mmap		= ext4_file_mmap,
967 	.mmap_supported_flags = MAP_SYNC,
968 	.open		= ext4_file_open,
969 	.release	= ext4_release_file,
970 	.fsync		= ext4_sync_file,
971 	.get_unmapped_area = thp_get_unmapped_area,
972 	.splice_read	= ext4_file_splice_read,
973 	.splice_write	= iter_file_splice_write,
974 	.fallocate	= ext4_fallocate,
975 };
976 
977 const struct inode_operations ext4_file_inode_operations = {
978 	.setattr	= ext4_setattr,
979 	.getattr	= ext4_file_getattr,
980 	.listxattr	= ext4_listxattr,
981 	.get_inode_acl	= ext4_get_acl,
982 	.set_acl	= ext4_set_acl,
983 	.fiemap		= ext4_fiemap,
984 	.fileattr_get	= ext4_fileattr_get,
985 	.fileattr_set	= ext4_fileattr_set,
986 };
987 
988