1 /* 2 * linux/fs/ext4/file.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/file.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * ext4 fs regular file handling primitives 16 * 17 * 64-bit file support on 64-bit platforms by Jakub Jelinek 18 * (jj@sunsite.ms.mff.cuni.cz) 19 */ 20 21 #include <linux/time.h> 22 #include <linux/fs.h> 23 #include <linux/mount.h> 24 #include <linux/path.h> 25 #include <linux/dax.h> 26 #include <linux/quotaops.h> 27 #include <linux/pagevec.h> 28 #include <linux/uio.h> 29 #include "ext4.h" 30 #include "ext4_jbd2.h" 31 #include "xattr.h" 32 #include "acl.h" 33 34 /* 35 * Called when an inode is released. Note that this is different 36 * from ext4_file_open: open gets called at every open, but release 37 * gets called only when /all/ the files are closed. 38 */ 39 static int ext4_release_file(struct inode *inode, struct file *filp) 40 { 41 if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) { 42 ext4_alloc_da_blocks(inode); 43 ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 44 } 45 /* if we are the last writer on the inode, drop the block reservation */ 46 if ((filp->f_mode & FMODE_WRITE) && 47 (atomic_read(&inode->i_writecount) == 1) && 48 !EXT4_I(inode)->i_reserved_data_blocks) 49 { 50 down_write(&EXT4_I(inode)->i_data_sem); 51 ext4_discard_preallocations(inode); 52 up_write(&EXT4_I(inode)->i_data_sem); 53 } 54 if (is_dx(inode) && filp->private_data) 55 ext4_htree_free_dir_info(filp->private_data); 56 57 return 0; 58 } 59 60 static void ext4_unwritten_wait(struct inode *inode) 61 { 62 wait_queue_head_t *wq = ext4_ioend_wq(inode); 63 64 wait_event(*wq, (atomic_read(&EXT4_I(inode)->i_unwritten) == 0)); 65 } 66 67 /* 68 * This tests whether the IO in question is block-aligned or not. 69 * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they 70 * are converted to written only after the IO is complete. Until they are 71 * mapped, these blocks appear as holes, so dio_zero_block() will assume that 72 * it needs to zero out portions of the start and/or end block. If 2 AIO 73 * threads are at work on the same unwritten block, they must be synchronized 74 * or one thread will zero the other's data, causing corruption. 75 */ 76 static int 77 ext4_unaligned_aio(struct inode *inode, struct iov_iter *from, loff_t pos) 78 { 79 struct super_block *sb = inode->i_sb; 80 int blockmask = sb->s_blocksize - 1; 81 82 if (pos >= i_size_read(inode)) 83 return 0; 84 85 if ((pos | iov_iter_alignment(from)) & blockmask) 86 return 1; 87 88 return 0; 89 } 90 91 static ssize_t 92 ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 93 { 94 struct file *file = iocb->ki_filp; 95 struct inode *inode = file_inode(iocb->ki_filp); 96 struct mutex *aio_mutex = NULL; 97 struct blk_plug plug; 98 int o_direct = iocb->ki_flags & IOCB_DIRECT; 99 int overwrite = 0; 100 ssize_t ret; 101 102 /* 103 * Unaligned direct AIO must be serialized; see comment above 104 * In the case of O_APPEND, assume that we must always serialize 105 */ 106 if (o_direct && 107 ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) && 108 !is_sync_kiocb(iocb) && 109 (iocb->ki_flags & IOCB_APPEND || 110 ext4_unaligned_aio(inode, from, iocb->ki_pos))) { 111 aio_mutex = ext4_aio_mutex(inode); 112 mutex_lock(aio_mutex); 113 ext4_unwritten_wait(inode); 114 } 115 116 mutex_lock(&inode->i_mutex); 117 ret = generic_write_checks(iocb, from); 118 if (ret <= 0) 119 goto out; 120 121 /* 122 * If we have encountered a bitmap-format file, the size limit 123 * is smaller than s_maxbytes, which is for extent-mapped files. 124 */ 125 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 126 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 127 128 if (iocb->ki_pos >= sbi->s_bitmap_maxbytes) { 129 ret = -EFBIG; 130 goto out; 131 } 132 iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos); 133 } 134 135 iocb->private = &overwrite; 136 if (o_direct) { 137 size_t length = iov_iter_count(from); 138 loff_t pos = iocb->ki_pos; 139 blk_start_plug(&plug); 140 141 /* check whether we do a DIO overwrite or not */ 142 if (ext4_should_dioread_nolock(inode) && !aio_mutex && 143 !file->f_mapping->nrpages && pos + length <= i_size_read(inode)) { 144 struct ext4_map_blocks map; 145 unsigned int blkbits = inode->i_blkbits; 146 int err, len; 147 148 map.m_lblk = pos >> blkbits; 149 map.m_len = (EXT4_BLOCK_ALIGN(pos + length, blkbits) >> blkbits) 150 - map.m_lblk; 151 len = map.m_len; 152 153 err = ext4_map_blocks(NULL, inode, &map, 0); 154 /* 155 * 'err==len' means that all of blocks has 156 * been preallocated no matter they are 157 * initialized or not. For excluding 158 * unwritten extents, we need to check 159 * m_flags. There are two conditions that 160 * indicate for initialized extents. 1) If we 161 * hit extent cache, EXT4_MAP_MAPPED flag is 162 * returned; 2) If we do a real lookup, 163 * non-flags are returned. So we should check 164 * these two conditions. 165 */ 166 if (err == len && (map.m_flags & EXT4_MAP_MAPPED)) 167 overwrite = 1; 168 } 169 } 170 171 ret = __generic_file_write_iter(iocb, from); 172 mutex_unlock(&inode->i_mutex); 173 174 if (ret > 0) { 175 ssize_t err; 176 177 err = generic_write_sync(file, iocb->ki_pos - ret, ret); 178 if (err < 0) 179 ret = err; 180 } 181 if (o_direct) 182 blk_finish_plug(&plug); 183 184 if (aio_mutex) 185 mutex_unlock(aio_mutex); 186 return ret; 187 188 out: 189 mutex_unlock(&inode->i_mutex); 190 if (aio_mutex) 191 mutex_unlock(aio_mutex); 192 return ret; 193 } 194 195 #ifdef CONFIG_FS_DAX 196 static void ext4_end_io_unwritten(struct buffer_head *bh, int uptodate) 197 { 198 struct inode *inode = bh->b_assoc_map->host; 199 /* XXX: breaks on 32-bit > 16TB. Is that even supported? */ 200 loff_t offset = (loff_t)(uintptr_t)bh->b_private << inode->i_blkbits; 201 int err; 202 if (!uptodate) 203 return; 204 WARN_ON(!buffer_unwritten(bh)); 205 err = ext4_convert_unwritten_extents(NULL, inode, offset, bh->b_size); 206 } 207 208 static int ext4_dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 209 { 210 int result; 211 handle_t *handle = NULL; 212 struct super_block *sb = file_inode(vma->vm_file)->i_sb; 213 bool write = vmf->flags & FAULT_FLAG_WRITE; 214 215 if (write) { 216 sb_start_pagefault(sb); 217 file_update_time(vma->vm_file); 218 handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE, 219 EXT4_DATA_TRANS_BLOCKS(sb)); 220 } 221 222 if (IS_ERR(handle)) 223 result = VM_FAULT_SIGBUS; 224 else 225 result = __dax_fault(vma, vmf, ext4_get_block_dax, 226 ext4_end_io_unwritten); 227 228 if (write) { 229 if (!IS_ERR(handle)) 230 ext4_journal_stop(handle); 231 sb_end_pagefault(sb); 232 } 233 234 return result; 235 } 236 237 static int ext4_dax_pmd_fault(struct vm_area_struct *vma, unsigned long addr, 238 pmd_t *pmd, unsigned int flags) 239 { 240 int result; 241 handle_t *handle = NULL; 242 struct inode *inode = file_inode(vma->vm_file); 243 struct super_block *sb = inode->i_sb; 244 bool write = flags & FAULT_FLAG_WRITE; 245 246 if (write) { 247 sb_start_pagefault(sb); 248 file_update_time(vma->vm_file); 249 handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE, 250 ext4_chunk_trans_blocks(inode, 251 PMD_SIZE / PAGE_SIZE)); 252 } 253 254 if (IS_ERR(handle)) 255 result = VM_FAULT_SIGBUS; 256 else 257 result = __dax_pmd_fault(vma, addr, pmd, flags, 258 ext4_get_block_dax, ext4_end_io_unwritten); 259 260 if (write) { 261 if (!IS_ERR(handle)) 262 ext4_journal_stop(handle); 263 sb_end_pagefault(sb); 264 } 265 266 return result; 267 } 268 269 static int ext4_dax_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 270 { 271 return dax_mkwrite(vma, vmf, ext4_get_block_dax, 272 ext4_end_io_unwritten); 273 } 274 275 static const struct vm_operations_struct ext4_dax_vm_ops = { 276 .fault = ext4_dax_fault, 277 .pmd_fault = ext4_dax_pmd_fault, 278 .page_mkwrite = ext4_dax_mkwrite, 279 .pfn_mkwrite = dax_pfn_mkwrite, 280 }; 281 #else 282 #define ext4_dax_vm_ops ext4_file_vm_ops 283 #endif 284 285 static const struct vm_operations_struct ext4_file_vm_ops = { 286 .fault = filemap_fault, 287 .map_pages = filemap_map_pages, 288 .page_mkwrite = ext4_page_mkwrite, 289 }; 290 291 static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma) 292 { 293 struct inode *inode = file->f_mapping->host; 294 295 if (ext4_encrypted_inode(inode)) { 296 int err = ext4_get_encryption_info(inode); 297 if (err) 298 return 0; 299 if (ext4_encryption_info(inode) == NULL) 300 return -ENOKEY; 301 } 302 file_accessed(file); 303 if (IS_DAX(file_inode(file))) { 304 vma->vm_ops = &ext4_dax_vm_ops; 305 vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE; 306 } else { 307 vma->vm_ops = &ext4_file_vm_ops; 308 } 309 return 0; 310 } 311 312 static int ext4_file_open(struct inode * inode, struct file * filp) 313 { 314 struct super_block *sb = inode->i_sb; 315 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 316 struct vfsmount *mnt = filp->f_path.mnt; 317 struct path path; 318 char buf[64], *cp; 319 int ret; 320 321 if (unlikely(!(sbi->s_mount_flags & EXT4_MF_MNTDIR_SAMPLED) && 322 !(sb->s_flags & MS_RDONLY))) { 323 sbi->s_mount_flags |= EXT4_MF_MNTDIR_SAMPLED; 324 /* 325 * Sample where the filesystem has been mounted and 326 * store it in the superblock for sysadmin convenience 327 * when trying to sort through large numbers of block 328 * devices or filesystem images. 329 */ 330 memset(buf, 0, sizeof(buf)); 331 path.mnt = mnt; 332 path.dentry = mnt->mnt_root; 333 cp = d_path(&path, buf, sizeof(buf)); 334 if (!IS_ERR(cp)) { 335 handle_t *handle; 336 int err; 337 338 handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1); 339 if (IS_ERR(handle)) 340 return PTR_ERR(handle); 341 BUFFER_TRACE(sbi->s_sbh, "get_write_access"); 342 err = ext4_journal_get_write_access(handle, sbi->s_sbh); 343 if (err) { 344 ext4_journal_stop(handle); 345 return err; 346 } 347 strlcpy(sbi->s_es->s_last_mounted, cp, 348 sizeof(sbi->s_es->s_last_mounted)); 349 ext4_handle_dirty_super(handle, sb); 350 ext4_journal_stop(handle); 351 } 352 } 353 if (ext4_encrypted_inode(inode)) { 354 ret = ext4_get_encryption_info(inode); 355 if (ret) 356 return -EACCES; 357 if (ext4_encryption_info(inode) == NULL) 358 return -ENOKEY; 359 } 360 /* 361 * Set up the jbd2_inode if we are opening the inode for 362 * writing and the journal is present 363 */ 364 if (filp->f_mode & FMODE_WRITE) { 365 ret = ext4_inode_attach_jinode(inode); 366 if (ret < 0) 367 return ret; 368 } 369 return dquot_file_open(inode, filp); 370 } 371 372 /* 373 * Here we use ext4_map_blocks() to get a block mapping for a extent-based 374 * file rather than ext4_ext_walk_space() because we can introduce 375 * SEEK_DATA/SEEK_HOLE for block-mapped and extent-mapped file at the same 376 * function. When extent status tree has been fully implemented, it will 377 * track all extent status for a file and we can directly use it to 378 * retrieve the offset for SEEK_DATA/SEEK_HOLE. 379 */ 380 381 /* 382 * When we retrieve the offset for SEEK_DATA/SEEK_HOLE, we would need to 383 * lookup page cache to check whether or not there has some data between 384 * [startoff, endoff] because, if this range contains an unwritten extent, 385 * we determine this extent as a data or a hole according to whether the 386 * page cache has data or not. 387 */ 388 static int ext4_find_unwritten_pgoff(struct inode *inode, 389 int whence, 390 struct ext4_map_blocks *map, 391 loff_t *offset) 392 { 393 struct pagevec pvec; 394 unsigned int blkbits; 395 pgoff_t index; 396 pgoff_t end; 397 loff_t endoff; 398 loff_t startoff; 399 loff_t lastoff; 400 int found = 0; 401 402 blkbits = inode->i_sb->s_blocksize_bits; 403 startoff = *offset; 404 lastoff = startoff; 405 endoff = (loff_t)(map->m_lblk + map->m_len) << blkbits; 406 407 index = startoff >> PAGE_CACHE_SHIFT; 408 end = endoff >> PAGE_CACHE_SHIFT; 409 410 pagevec_init(&pvec, 0); 411 do { 412 int i, num; 413 unsigned long nr_pages; 414 415 num = min_t(pgoff_t, end - index, PAGEVEC_SIZE); 416 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index, 417 (pgoff_t)num); 418 if (nr_pages == 0) { 419 if (whence == SEEK_DATA) 420 break; 421 422 BUG_ON(whence != SEEK_HOLE); 423 /* 424 * If this is the first time to go into the loop and 425 * offset is not beyond the end offset, it will be a 426 * hole at this offset 427 */ 428 if (lastoff == startoff || lastoff < endoff) 429 found = 1; 430 break; 431 } 432 433 /* 434 * If this is the first time to go into the loop and 435 * offset is smaller than the first page offset, it will be a 436 * hole at this offset. 437 */ 438 if (lastoff == startoff && whence == SEEK_HOLE && 439 lastoff < page_offset(pvec.pages[0])) { 440 found = 1; 441 break; 442 } 443 444 for (i = 0; i < nr_pages; i++) { 445 struct page *page = pvec.pages[i]; 446 struct buffer_head *bh, *head; 447 448 /* 449 * If the current offset is not beyond the end of given 450 * range, it will be a hole. 451 */ 452 if (lastoff < endoff && whence == SEEK_HOLE && 453 page->index > end) { 454 found = 1; 455 *offset = lastoff; 456 goto out; 457 } 458 459 lock_page(page); 460 461 if (unlikely(page->mapping != inode->i_mapping)) { 462 unlock_page(page); 463 continue; 464 } 465 466 if (!page_has_buffers(page)) { 467 unlock_page(page); 468 continue; 469 } 470 471 if (page_has_buffers(page)) { 472 lastoff = page_offset(page); 473 bh = head = page_buffers(page); 474 do { 475 if (buffer_uptodate(bh) || 476 buffer_unwritten(bh)) { 477 if (whence == SEEK_DATA) 478 found = 1; 479 } else { 480 if (whence == SEEK_HOLE) 481 found = 1; 482 } 483 if (found) { 484 *offset = max_t(loff_t, 485 startoff, lastoff); 486 unlock_page(page); 487 goto out; 488 } 489 lastoff += bh->b_size; 490 bh = bh->b_this_page; 491 } while (bh != head); 492 } 493 494 lastoff = page_offset(page) + PAGE_SIZE; 495 unlock_page(page); 496 } 497 498 /* 499 * The no. of pages is less than our desired, that would be a 500 * hole in there. 501 */ 502 if (nr_pages < num && whence == SEEK_HOLE) { 503 found = 1; 504 *offset = lastoff; 505 break; 506 } 507 508 index = pvec.pages[i - 1]->index + 1; 509 pagevec_release(&pvec); 510 } while (index <= end); 511 512 out: 513 pagevec_release(&pvec); 514 return found; 515 } 516 517 /* 518 * ext4_seek_data() retrieves the offset for SEEK_DATA. 519 */ 520 static loff_t ext4_seek_data(struct file *file, loff_t offset, loff_t maxsize) 521 { 522 struct inode *inode = file->f_mapping->host; 523 struct ext4_map_blocks map; 524 struct extent_status es; 525 ext4_lblk_t start, last, end; 526 loff_t dataoff, isize; 527 int blkbits; 528 int ret = 0; 529 530 mutex_lock(&inode->i_mutex); 531 532 isize = i_size_read(inode); 533 if (offset >= isize) { 534 mutex_unlock(&inode->i_mutex); 535 return -ENXIO; 536 } 537 538 blkbits = inode->i_sb->s_blocksize_bits; 539 start = offset >> blkbits; 540 last = start; 541 end = isize >> blkbits; 542 dataoff = offset; 543 544 do { 545 map.m_lblk = last; 546 map.m_len = end - last + 1; 547 ret = ext4_map_blocks(NULL, inode, &map, 0); 548 if (ret > 0 && !(map.m_flags & EXT4_MAP_UNWRITTEN)) { 549 if (last != start) 550 dataoff = (loff_t)last << blkbits; 551 break; 552 } 553 554 /* 555 * If there is a delay extent at this offset, 556 * it will be as a data. 557 */ 558 ext4_es_find_delayed_extent_range(inode, last, last, &es); 559 if (es.es_len != 0 && in_range(last, es.es_lblk, es.es_len)) { 560 if (last != start) 561 dataoff = (loff_t)last << blkbits; 562 break; 563 } 564 565 /* 566 * If there is a unwritten extent at this offset, 567 * it will be as a data or a hole according to page 568 * cache that has data or not. 569 */ 570 if (map.m_flags & EXT4_MAP_UNWRITTEN) { 571 int unwritten; 572 unwritten = ext4_find_unwritten_pgoff(inode, SEEK_DATA, 573 &map, &dataoff); 574 if (unwritten) 575 break; 576 } 577 578 last++; 579 dataoff = (loff_t)last << blkbits; 580 } while (last <= end); 581 582 mutex_unlock(&inode->i_mutex); 583 584 if (dataoff > isize) 585 return -ENXIO; 586 587 return vfs_setpos(file, dataoff, maxsize); 588 } 589 590 /* 591 * ext4_seek_hole() retrieves the offset for SEEK_HOLE. 592 */ 593 static loff_t ext4_seek_hole(struct file *file, loff_t offset, loff_t maxsize) 594 { 595 struct inode *inode = file->f_mapping->host; 596 struct ext4_map_blocks map; 597 struct extent_status es; 598 ext4_lblk_t start, last, end; 599 loff_t holeoff, isize; 600 int blkbits; 601 int ret = 0; 602 603 mutex_lock(&inode->i_mutex); 604 605 isize = i_size_read(inode); 606 if (offset >= isize) { 607 mutex_unlock(&inode->i_mutex); 608 return -ENXIO; 609 } 610 611 blkbits = inode->i_sb->s_blocksize_bits; 612 start = offset >> blkbits; 613 last = start; 614 end = isize >> blkbits; 615 holeoff = offset; 616 617 do { 618 map.m_lblk = last; 619 map.m_len = end - last + 1; 620 ret = ext4_map_blocks(NULL, inode, &map, 0); 621 if (ret > 0 && !(map.m_flags & EXT4_MAP_UNWRITTEN)) { 622 last += ret; 623 holeoff = (loff_t)last << blkbits; 624 continue; 625 } 626 627 /* 628 * If there is a delay extent at this offset, 629 * we will skip this extent. 630 */ 631 ext4_es_find_delayed_extent_range(inode, last, last, &es); 632 if (es.es_len != 0 && in_range(last, es.es_lblk, es.es_len)) { 633 last = es.es_lblk + es.es_len; 634 holeoff = (loff_t)last << blkbits; 635 continue; 636 } 637 638 /* 639 * If there is a unwritten extent at this offset, 640 * it will be as a data or a hole according to page 641 * cache that has data or not. 642 */ 643 if (map.m_flags & EXT4_MAP_UNWRITTEN) { 644 int unwritten; 645 unwritten = ext4_find_unwritten_pgoff(inode, SEEK_HOLE, 646 &map, &holeoff); 647 if (!unwritten) { 648 last += ret; 649 holeoff = (loff_t)last << blkbits; 650 continue; 651 } 652 } 653 654 /* find a hole */ 655 break; 656 } while (last <= end); 657 658 mutex_unlock(&inode->i_mutex); 659 660 if (holeoff > isize) 661 holeoff = isize; 662 663 return vfs_setpos(file, holeoff, maxsize); 664 } 665 666 /* 667 * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values 668 * by calling generic_file_llseek_size() with the appropriate maxbytes 669 * value for each. 670 */ 671 loff_t ext4_llseek(struct file *file, loff_t offset, int whence) 672 { 673 struct inode *inode = file->f_mapping->host; 674 loff_t maxbytes; 675 676 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 677 maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes; 678 else 679 maxbytes = inode->i_sb->s_maxbytes; 680 681 switch (whence) { 682 case SEEK_SET: 683 case SEEK_CUR: 684 case SEEK_END: 685 return generic_file_llseek_size(file, offset, whence, 686 maxbytes, i_size_read(inode)); 687 case SEEK_DATA: 688 return ext4_seek_data(file, offset, maxbytes); 689 case SEEK_HOLE: 690 return ext4_seek_hole(file, offset, maxbytes); 691 } 692 693 return -EINVAL; 694 } 695 696 const struct file_operations ext4_file_operations = { 697 .llseek = ext4_llseek, 698 .read_iter = generic_file_read_iter, 699 .write_iter = ext4_file_write_iter, 700 .unlocked_ioctl = ext4_ioctl, 701 #ifdef CONFIG_COMPAT 702 .compat_ioctl = ext4_compat_ioctl, 703 #endif 704 .mmap = ext4_file_mmap, 705 .open = ext4_file_open, 706 .release = ext4_release_file, 707 .fsync = ext4_sync_file, 708 .splice_read = generic_file_splice_read, 709 .splice_write = iter_file_splice_write, 710 .fallocate = ext4_fallocate, 711 }; 712 713 const struct inode_operations ext4_file_inode_operations = { 714 .setattr = ext4_setattr, 715 .getattr = ext4_getattr, 716 .setxattr = generic_setxattr, 717 .getxattr = generic_getxattr, 718 .listxattr = ext4_listxattr, 719 .removexattr = generic_removexattr, 720 .get_acl = ext4_get_acl, 721 .set_acl = ext4_set_acl, 722 .fiemap = ext4_fiemap, 723 }; 724 725