1 /* 2 * linux/fs/ext4/file.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/file.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * ext4 fs regular file handling primitives 16 * 17 * 64-bit file support on 64-bit platforms by Jakub Jelinek 18 * (jj@sunsite.ms.mff.cuni.cz) 19 */ 20 21 #include <linux/time.h> 22 #include <linux/fs.h> 23 #include <linux/jbd2.h> 24 #include <linux/mount.h> 25 #include <linux/path.h> 26 #include <linux/aio.h> 27 #include <linux/quotaops.h> 28 #include <linux/pagevec.h> 29 #include "ext4.h" 30 #include "ext4_jbd2.h" 31 #include "xattr.h" 32 #include "acl.h" 33 34 /* 35 * Called when an inode is released. Note that this is different 36 * from ext4_file_open: open gets called at every open, but release 37 * gets called only when /all/ the files are closed. 38 */ 39 static int ext4_release_file(struct inode *inode, struct file *filp) 40 { 41 if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) { 42 ext4_alloc_da_blocks(inode); 43 ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 44 } 45 /* if we are the last writer on the inode, drop the block reservation */ 46 if ((filp->f_mode & FMODE_WRITE) && 47 (atomic_read(&inode->i_writecount) == 1) && 48 !EXT4_I(inode)->i_reserved_data_blocks) 49 { 50 down_write(&EXT4_I(inode)->i_data_sem); 51 ext4_discard_preallocations(inode); 52 up_write(&EXT4_I(inode)->i_data_sem); 53 } 54 if (is_dx(inode) && filp->private_data) 55 ext4_htree_free_dir_info(filp->private_data); 56 57 return 0; 58 } 59 60 void ext4_unwritten_wait(struct inode *inode) 61 { 62 wait_queue_head_t *wq = ext4_ioend_wq(inode); 63 64 wait_event(*wq, (atomic_read(&EXT4_I(inode)->i_unwritten) == 0)); 65 } 66 67 /* 68 * This tests whether the IO in question is block-aligned or not. 69 * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they 70 * are converted to written only after the IO is complete. Until they are 71 * mapped, these blocks appear as holes, so dio_zero_block() will assume that 72 * it needs to zero out portions of the start and/or end block. If 2 AIO 73 * threads are at work on the same unwritten block, they must be synchronized 74 * or one thread will zero the other's data, causing corruption. 75 */ 76 static int 77 ext4_unaligned_aio(struct inode *inode, const struct iovec *iov, 78 unsigned long nr_segs, loff_t pos) 79 { 80 struct super_block *sb = inode->i_sb; 81 int blockmask = sb->s_blocksize - 1; 82 size_t count = iov_length(iov, nr_segs); 83 loff_t final_size = pos + count; 84 85 if (pos >= inode->i_size) 86 return 0; 87 88 if ((pos & blockmask) || (final_size & blockmask)) 89 return 1; 90 91 return 0; 92 } 93 94 static ssize_t 95 ext4_file_dio_write(struct kiocb *iocb, const struct iovec *iov, 96 unsigned long nr_segs, loff_t pos) 97 { 98 struct file *file = iocb->ki_filp; 99 struct inode *inode = file->f_mapping->host; 100 struct blk_plug plug; 101 int unaligned_aio = 0; 102 ssize_t ret; 103 int overwrite = 0; 104 size_t length = iov_length(iov, nr_segs); 105 106 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) && 107 !is_sync_kiocb(iocb)) 108 unaligned_aio = ext4_unaligned_aio(inode, iov, nr_segs, pos); 109 110 /* Unaligned direct AIO must be serialized; see comment above */ 111 if (unaligned_aio) { 112 mutex_lock(ext4_aio_mutex(inode)); 113 ext4_unwritten_wait(inode); 114 } 115 116 BUG_ON(iocb->ki_pos != pos); 117 118 mutex_lock(&inode->i_mutex); 119 blk_start_plug(&plug); 120 121 iocb->private = &overwrite; 122 123 /* check whether we do a DIO overwrite or not */ 124 if (ext4_should_dioread_nolock(inode) && !unaligned_aio && 125 !file->f_mapping->nrpages && pos + length <= i_size_read(inode)) { 126 struct ext4_map_blocks map; 127 unsigned int blkbits = inode->i_blkbits; 128 int err, len; 129 130 map.m_lblk = pos >> blkbits; 131 map.m_len = (EXT4_BLOCK_ALIGN(pos + length, blkbits) >> blkbits) 132 - map.m_lblk; 133 len = map.m_len; 134 135 err = ext4_map_blocks(NULL, inode, &map, 0); 136 /* 137 * 'err==len' means that all of blocks has been preallocated no 138 * matter they are initialized or not. For excluding 139 * uninitialized extents, we need to check m_flags. There are 140 * two conditions that indicate for initialized extents. 141 * 1) If we hit extent cache, EXT4_MAP_MAPPED flag is returned; 142 * 2) If we do a real lookup, non-flags are returned. 143 * So we should check these two conditions. 144 */ 145 if (err == len && (map.m_flags & EXT4_MAP_MAPPED)) 146 overwrite = 1; 147 } 148 149 ret = __generic_file_aio_write(iocb, iov, nr_segs); 150 mutex_unlock(&inode->i_mutex); 151 152 if (ret > 0) { 153 ssize_t err; 154 155 err = generic_write_sync(file, iocb->ki_pos - ret, ret); 156 if (err < 0) 157 ret = err; 158 } 159 blk_finish_plug(&plug); 160 161 if (unaligned_aio) 162 mutex_unlock(ext4_aio_mutex(inode)); 163 164 return ret; 165 } 166 167 static ssize_t 168 ext4_file_write(struct kiocb *iocb, const struct iovec *iov, 169 unsigned long nr_segs, loff_t pos) 170 { 171 struct inode *inode = file_inode(iocb->ki_filp); 172 ssize_t ret; 173 174 /* 175 * If we have encountered a bitmap-format file, the size limit 176 * is smaller than s_maxbytes, which is for extent-mapped files. 177 */ 178 179 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 180 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 181 size_t length = iov_length(iov, nr_segs); 182 183 if ((pos > sbi->s_bitmap_maxbytes || 184 (pos == sbi->s_bitmap_maxbytes && length > 0))) 185 return -EFBIG; 186 187 if (pos + length > sbi->s_bitmap_maxbytes) { 188 nr_segs = iov_shorten((struct iovec *)iov, nr_segs, 189 sbi->s_bitmap_maxbytes - pos); 190 } 191 } 192 193 if (unlikely(iocb->ki_filp->f_flags & O_DIRECT)) 194 ret = ext4_file_dio_write(iocb, iov, nr_segs, pos); 195 else 196 ret = generic_file_aio_write(iocb, iov, nr_segs, pos); 197 198 return ret; 199 } 200 201 static const struct vm_operations_struct ext4_file_vm_ops = { 202 .fault = filemap_fault, 203 .map_pages = filemap_map_pages, 204 .page_mkwrite = ext4_page_mkwrite, 205 .remap_pages = generic_file_remap_pages, 206 }; 207 208 static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma) 209 { 210 struct address_space *mapping = file->f_mapping; 211 212 if (!mapping->a_ops->readpage) 213 return -ENOEXEC; 214 file_accessed(file); 215 vma->vm_ops = &ext4_file_vm_ops; 216 return 0; 217 } 218 219 static int ext4_file_open(struct inode * inode, struct file * filp) 220 { 221 struct super_block *sb = inode->i_sb; 222 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 223 struct vfsmount *mnt = filp->f_path.mnt; 224 struct path path; 225 char buf[64], *cp; 226 227 if (unlikely(!(sbi->s_mount_flags & EXT4_MF_MNTDIR_SAMPLED) && 228 !(sb->s_flags & MS_RDONLY))) { 229 sbi->s_mount_flags |= EXT4_MF_MNTDIR_SAMPLED; 230 /* 231 * Sample where the filesystem has been mounted and 232 * store it in the superblock for sysadmin convenience 233 * when trying to sort through large numbers of block 234 * devices or filesystem images. 235 */ 236 memset(buf, 0, sizeof(buf)); 237 path.mnt = mnt; 238 path.dentry = mnt->mnt_root; 239 cp = d_path(&path, buf, sizeof(buf)); 240 if (!IS_ERR(cp)) { 241 handle_t *handle; 242 int err; 243 244 handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1); 245 if (IS_ERR(handle)) 246 return PTR_ERR(handle); 247 err = ext4_journal_get_write_access(handle, sbi->s_sbh); 248 if (err) { 249 ext4_journal_stop(handle); 250 return err; 251 } 252 strlcpy(sbi->s_es->s_last_mounted, cp, 253 sizeof(sbi->s_es->s_last_mounted)); 254 ext4_handle_dirty_super(handle, sb); 255 ext4_journal_stop(handle); 256 } 257 } 258 /* 259 * Set up the jbd2_inode if we are opening the inode for 260 * writing and the journal is present 261 */ 262 if (filp->f_mode & FMODE_WRITE) { 263 int ret = ext4_inode_attach_jinode(inode); 264 if (ret < 0) 265 return ret; 266 } 267 return dquot_file_open(inode, filp); 268 } 269 270 /* 271 * Here we use ext4_map_blocks() to get a block mapping for a extent-based 272 * file rather than ext4_ext_walk_space() because we can introduce 273 * SEEK_DATA/SEEK_HOLE for block-mapped and extent-mapped file at the same 274 * function. When extent status tree has been fully implemented, it will 275 * track all extent status for a file and we can directly use it to 276 * retrieve the offset for SEEK_DATA/SEEK_HOLE. 277 */ 278 279 /* 280 * When we retrieve the offset for SEEK_DATA/SEEK_HOLE, we would need to 281 * lookup page cache to check whether or not there has some data between 282 * [startoff, endoff] because, if this range contains an unwritten extent, 283 * we determine this extent as a data or a hole according to whether the 284 * page cache has data or not. 285 */ 286 static int ext4_find_unwritten_pgoff(struct inode *inode, 287 int whence, 288 struct ext4_map_blocks *map, 289 loff_t *offset) 290 { 291 struct pagevec pvec; 292 unsigned int blkbits; 293 pgoff_t index; 294 pgoff_t end; 295 loff_t endoff; 296 loff_t startoff; 297 loff_t lastoff; 298 int found = 0; 299 300 blkbits = inode->i_sb->s_blocksize_bits; 301 startoff = *offset; 302 lastoff = startoff; 303 endoff = (loff_t)(map->m_lblk + map->m_len) << blkbits; 304 305 index = startoff >> PAGE_CACHE_SHIFT; 306 end = endoff >> PAGE_CACHE_SHIFT; 307 308 pagevec_init(&pvec, 0); 309 do { 310 int i, num; 311 unsigned long nr_pages; 312 313 num = min_t(pgoff_t, end - index, PAGEVEC_SIZE); 314 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index, 315 (pgoff_t)num); 316 if (nr_pages == 0) { 317 if (whence == SEEK_DATA) 318 break; 319 320 BUG_ON(whence != SEEK_HOLE); 321 /* 322 * If this is the first time to go into the loop and 323 * offset is not beyond the end offset, it will be a 324 * hole at this offset 325 */ 326 if (lastoff == startoff || lastoff < endoff) 327 found = 1; 328 break; 329 } 330 331 /* 332 * If this is the first time to go into the loop and 333 * offset is smaller than the first page offset, it will be a 334 * hole at this offset. 335 */ 336 if (lastoff == startoff && whence == SEEK_HOLE && 337 lastoff < page_offset(pvec.pages[0])) { 338 found = 1; 339 break; 340 } 341 342 for (i = 0; i < nr_pages; i++) { 343 struct page *page = pvec.pages[i]; 344 struct buffer_head *bh, *head; 345 346 /* 347 * If the current offset is not beyond the end of given 348 * range, it will be a hole. 349 */ 350 if (lastoff < endoff && whence == SEEK_HOLE && 351 page->index > end) { 352 found = 1; 353 *offset = lastoff; 354 goto out; 355 } 356 357 lock_page(page); 358 359 if (unlikely(page->mapping != inode->i_mapping)) { 360 unlock_page(page); 361 continue; 362 } 363 364 if (!page_has_buffers(page)) { 365 unlock_page(page); 366 continue; 367 } 368 369 if (page_has_buffers(page)) { 370 lastoff = page_offset(page); 371 bh = head = page_buffers(page); 372 do { 373 if (buffer_uptodate(bh) || 374 buffer_unwritten(bh)) { 375 if (whence == SEEK_DATA) 376 found = 1; 377 } else { 378 if (whence == SEEK_HOLE) 379 found = 1; 380 } 381 if (found) { 382 *offset = max_t(loff_t, 383 startoff, lastoff); 384 unlock_page(page); 385 goto out; 386 } 387 lastoff += bh->b_size; 388 bh = bh->b_this_page; 389 } while (bh != head); 390 } 391 392 lastoff = page_offset(page) + PAGE_SIZE; 393 unlock_page(page); 394 } 395 396 /* 397 * The no. of pages is less than our desired, that would be a 398 * hole in there. 399 */ 400 if (nr_pages < num && whence == SEEK_HOLE) { 401 found = 1; 402 *offset = lastoff; 403 break; 404 } 405 406 index = pvec.pages[i - 1]->index + 1; 407 pagevec_release(&pvec); 408 } while (index <= end); 409 410 out: 411 pagevec_release(&pvec); 412 return found; 413 } 414 415 /* 416 * ext4_seek_data() retrieves the offset for SEEK_DATA. 417 */ 418 static loff_t ext4_seek_data(struct file *file, loff_t offset, loff_t maxsize) 419 { 420 struct inode *inode = file->f_mapping->host; 421 struct ext4_map_blocks map; 422 struct extent_status es; 423 ext4_lblk_t start, last, end; 424 loff_t dataoff, isize; 425 int blkbits; 426 int ret = 0; 427 428 mutex_lock(&inode->i_mutex); 429 430 isize = i_size_read(inode); 431 if (offset >= isize) { 432 mutex_unlock(&inode->i_mutex); 433 return -ENXIO; 434 } 435 436 blkbits = inode->i_sb->s_blocksize_bits; 437 start = offset >> blkbits; 438 last = start; 439 end = isize >> blkbits; 440 dataoff = offset; 441 442 do { 443 map.m_lblk = last; 444 map.m_len = end - last + 1; 445 ret = ext4_map_blocks(NULL, inode, &map, 0); 446 if (ret > 0 && !(map.m_flags & EXT4_MAP_UNWRITTEN)) { 447 if (last != start) 448 dataoff = (loff_t)last << blkbits; 449 break; 450 } 451 452 /* 453 * If there is a delay extent at this offset, 454 * it will be as a data. 455 */ 456 ext4_es_find_delayed_extent_range(inode, last, last, &es); 457 if (es.es_len != 0 && in_range(last, es.es_lblk, es.es_len)) { 458 if (last != start) 459 dataoff = (loff_t)last << blkbits; 460 break; 461 } 462 463 /* 464 * If there is a unwritten extent at this offset, 465 * it will be as a data or a hole according to page 466 * cache that has data or not. 467 */ 468 if (map.m_flags & EXT4_MAP_UNWRITTEN) { 469 int unwritten; 470 unwritten = ext4_find_unwritten_pgoff(inode, SEEK_DATA, 471 &map, &dataoff); 472 if (unwritten) 473 break; 474 } 475 476 last++; 477 dataoff = (loff_t)last << blkbits; 478 } while (last <= end); 479 480 mutex_unlock(&inode->i_mutex); 481 482 if (dataoff > isize) 483 return -ENXIO; 484 485 return vfs_setpos(file, dataoff, maxsize); 486 } 487 488 /* 489 * ext4_seek_hole() retrieves the offset for SEEK_HOLE. 490 */ 491 static loff_t ext4_seek_hole(struct file *file, loff_t offset, loff_t maxsize) 492 { 493 struct inode *inode = file->f_mapping->host; 494 struct ext4_map_blocks map; 495 struct extent_status es; 496 ext4_lblk_t start, last, end; 497 loff_t holeoff, isize; 498 int blkbits; 499 int ret = 0; 500 501 mutex_lock(&inode->i_mutex); 502 503 isize = i_size_read(inode); 504 if (offset >= isize) { 505 mutex_unlock(&inode->i_mutex); 506 return -ENXIO; 507 } 508 509 blkbits = inode->i_sb->s_blocksize_bits; 510 start = offset >> blkbits; 511 last = start; 512 end = isize >> blkbits; 513 holeoff = offset; 514 515 do { 516 map.m_lblk = last; 517 map.m_len = end - last + 1; 518 ret = ext4_map_blocks(NULL, inode, &map, 0); 519 if (ret > 0 && !(map.m_flags & EXT4_MAP_UNWRITTEN)) { 520 last += ret; 521 holeoff = (loff_t)last << blkbits; 522 continue; 523 } 524 525 /* 526 * If there is a delay extent at this offset, 527 * we will skip this extent. 528 */ 529 ext4_es_find_delayed_extent_range(inode, last, last, &es); 530 if (es.es_len != 0 && in_range(last, es.es_lblk, es.es_len)) { 531 last = es.es_lblk + es.es_len; 532 holeoff = (loff_t)last << blkbits; 533 continue; 534 } 535 536 /* 537 * If there is a unwritten extent at this offset, 538 * it will be as a data or a hole according to page 539 * cache that has data or not. 540 */ 541 if (map.m_flags & EXT4_MAP_UNWRITTEN) { 542 int unwritten; 543 unwritten = ext4_find_unwritten_pgoff(inode, SEEK_HOLE, 544 &map, &holeoff); 545 if (!unwritten) { 546 last += ret; 547 holeoff = (loff_t)last << blkbits; 548 continue; 549 } 550 } 551 552 /* find a hole */ 553 break; 554 } while (last <= end); 555 556 mutex_unlock(&inode->i_mutex); 557 558 if (holeoff > isize) 559 holeoff = isize; 560 561 return vfs_setpos(file, holeoff, maxsize); 562 } 563 564 /* 565 * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values 566 * by calling generic_file_llseek_size() with the appropriate maxbytes 567 * value for each. 568 */ 569 loff_t ext4_llseek(struct file *file, loff_t offset, int whence) 570 { 571 struct inode *inode = file->f_mapping->host; 572 loff_t maxbytes; 573 574 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 575 maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes; 576 else 577 maxbytes = inode->i_sb->s_maxbytes; 578 579 switch (whence) { 580 case SEEK_SET: 581 case SEEK_CUR: 582 case SEEK_END: 583 return generic_file_llseek_size(file, offset, whence, 584 maxbytes, i_size_read(inode)); 585 case SEEK_DATA: 586 return ext4_seek_data(file, offset, maxbytes); 587 case SEEK_HOLE: 588 return ext4_seek_hole(file, offset, maxbytes); 589 } 590 591 return -EINVAL; 592 } 593 594 const struct file_operations ext4_file_operations = { 595 .llseek = ext4_llseek, 596 .read = do_sync_read, 597 .write = do_sync_write, 598 .aio_read = generic_file_aio_read, 599 .aio_write = ext4_file_write, 600 .unlocked_ioctl = ext4_ioctl, 601 #ifdef CONFIG_COMPAT 602 .compat_ioctl = ext4_compat_ioctl, 603 #endif 604 .mmap = ext4_file_mmap, 605 .open = ext4_file_open, 606 .release = ext4_release_file, 607 .fsync = ext4_sync_file, 608 .splice_read = generic_file_splice_read, 609 .splice_write = generic_file_splice_write, 610 .fallocate = ext4_fallocate, 611 }; 612 613 const struct inode_operations ext4_file_inode_operations = { 614 .setattr = ext4_setattr, 615 .getattr = ext4_getattr, 616 .setxattr = generic_setxattr, 617 .getxattr = generic_getxattr, 618 .listxattr = ext4_listxattr, 619 .removexattr = generic_removexattr, 620 .get_acl = ext4_get_acl, 621 .set_acl = ext4_set_acl, 622 .fiemap = ext4_fiemap, 623 }; 624 625