xref: /openbmc/linux/fs/ext4/file.c (revision 110e6f26)
1 /*
2  *  linux/fs/ext4/file.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/file.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  ext4 fs regular file handling primitives
16  *
17  *  64-bit file support on 64-bit platforms by Jakub Jelinek
18  *	(jj@sunsite.ms.mff.cuni.cz)
19  */
20 
21 #include <linux/time.h>
22 #include <linux/fs.h>
23 #include <linux/mount.h>
24 #include <linux/path.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/pagevec.h>
28 #include <linux/uio.h>
29 #include "ext4.h"
30 #include "ext4_jbd2.h"
31 #include "xattr.h"
32 #include "acl.h"
33 
34 /*
35  * Called when an inode is released. Note that this is different
36  * from ext4_file_open: open gets called at every open, but release
37  * gets called only when /all/ the files are closed.
38  */
39 static int ext4_release_file(struct inode *inode, struct file *filp)
40 {
41 	if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) {
42 		ext4_alloc_da_blocks(inode);
43 		ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
44 	}
45 	/* if we are the last writer on the inode, drop the block reservation */
46 	if ((filp->f_mode & FMODE_WRITE) &&
47 			(atomic_read(&inode->i_writecount) == 1) &&
48 		        !EXT4_I(inode)->i_reserved_data_blocks)
49 	{
50 		down_write(&EXT4_I(inode)->i_data_sem);
51 		ext4_discard_preallocations(inode);
52 		up_write(&EXT4_I(inode)->i_data_sem);
53 	}
54 	if (is_dx(inode) && filp->private_data)
55 		ext4_htree_free_dir_info(filp->private_data);
56 
57 	return 0;
58 }
59 
60 static void ext4_unwritten_wait(struct inode *inode)
61 {
62 	wait_queue_head_t *wq = ext4_ioend_wq(inode);
63 
64 	wait_event(*wq, (atomic_read(&EXT4_I(inode)->i_unwritten) == 0));
65 }
66 
67 /*
68  * This tests whether the IO in question is block-aligned or not.
69  * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
70  * are converted to written only after the IO is complete.  Until they are
71  * mapped, these blocks appear as holes, so dio_zero_block() will assume that
72  * it needs to zero out portions of the start and/or end block.  If 2 AIO
73  * threads are at work on the same unwritten block, they must be synchronized
74  * or one thread will zero the other's data, causing corruption.
75  */
76 static int
77 ext4_unaligned_aio(struct inode *inode, struct iov_iter *from, loff_t pos)
78 {
79 	struct super_block *sb = inode->i_sb;
80 	int blockmask = sb->s_blocksize - 1;
81 
82 	if (pos >= i_size_read(inode))
83 		return 0;
84 
85 	if ((pos | iov_iter_alignment(from)) & blockmask)
86 		return 1;
87 
88 	return 0;
89 }
90 
91 static ssize_t
92 ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
93 {
94 	struct file *file = iocb->ki_filp;
95 	struct inode *inode = file_inode(iocb->ki_filp);
96 	struct blk_plug plug;
97 	int o_direct = iocb->ki_flags & IOCB_DIRECT;
98 	int unaligned_aio = 0;
99 	int overwrite = 0;
100 	ssize_t ret;
101 
102 	inode_lock(inode);
103 	ret = generic_write_checks(iocb, from);
104 	if (ret <= 0)
105 		goto out;
106 
107 	/*
108 	 * Unaligned direct AIO must be serialized among each other as zeroing
109 	 * of partial blocks of two competing unaligned AIOs can result in data
110 	 * corruption.
111 	 */
112 	if (o_direct && ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) &&
113 	    !is_sync_kiocb(iocb) &&
114 	    ext4_unaligned_aio(inode, from, iocb->ki_pos)) {
115 		unaligned_aio = 1;
116 		ext4_unwritten_wait(inode);
117 	}
118 
119 	/*
120 	 * If we have encountered a bitmap-format file, the size limit
121 	 * is smaller than s_maxbytes, which is for extent-mapped files.
122 	 */
123 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
124 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
125 
126 		if (iocb->ki_pos >= sbi->s_bitmap_maxbytes) {
127 			ret = -EFBIG;
128 			goto out;
129 		}
130 		iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos);
131 	}
132 
133 	iocb->private = &overwrite;
134 	if (o_direct) {
135 		size_t length = iov_iter_count(from);
136 		loff_t pos = iocb->ki_pos;
137 		blk_start_plug(&plug);
138 
139 		/* check whether we do a DIO overwrite or not */
140 		if (ext4_should_dioread_nolock(inode) && !unaligned_aio &&
141 		    !file->f_mapping->nrpages && pos + length <= i_size_read(inode)) {
142 			struct ext4_map_blocks map;
143 			unsigned int blkbits = inode->i_blkbits;
144 			int err, len;
145 
146 			map.m_lblk = pos >> blkbits;
147 			map.m_len = (EXT4_BLOCK_ALIGN(pos + length, blkbits) >> blkbits)
148 				- map.m_lblk;
149 			len = map.m_len;
150 
151 			err = ext4_map_blocks(NULL, inode, &map, 0);
152 			/*
153 			 * 'err==len' means that all of blocks has
154 			 * been preallocated no matter they are
155 			 * initialized or not.  For excluding
156 			 * unwritten extents, we need to check
157 			 * m_flags.  There are two conditions that
158 			 * indicate for initialized extents.  1) If we
159 			 * hit extent cache, EXT4_MAP_MAPPED flag is
160 			 * returned; 2) If we do a real lookup,
161 			 * non-flags are returned.  So we should check
162 			 * these two conditions.
163 			 */
164 			if (err == len && (map.m_flags & EXT4_MAP_MAPPED))
165 				overwrite = 1;
166 		}
167 	}
168 
169 	ret = __generic_file_write_iter(iocb, from);
170 	inode_unlock(inode);
171 
172 	if (ret > 0) {
173 		ssize_t err;
174 
175 		err = generic_write_sync(file, iocb->ki_pos - ret, ret);
176 		if (err < 0)
177 			ret = err;
178 	}
179 	if (o_direct)
180 		blk_finish_plug(&plug);
181 
182 	return ret;
183 
184 out:
185 	inode_unlock(inode);
186 	return ret;
187 }
188 
189 #ifdef CONFIG_FS_DAX
190 static int ext4_dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
191 {
192 	int result;
193 	handle_t *handle = NULL;
194 	struct inode *inode = file_inode(vma->vm_file);
195 	struct super_block *sb = inode->i_sb;
196 	bool write = vmf->flags & FAULT_FLAG_WRITE;
197 
198 	if (write) {
199 		sb_start_pagefault(sb);
200 		file_update_time(vma->vm_file);
201 		down_read(&EXT4_I(inode)->i_mmap_sem);
202 		handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE,
203 						EXT4_DATA_TRANS_BLOCKS(sb));
204 	} else
205 		down_read(&EXT4_I(inode)->i_mmap_sem);
206 
207 	if (IS_ERR(handle))
208 		result = VM_FAULT_SIGBUS;
209 	else
210 		result = __dax_fault(vma, vmf, ext4_dax_mmap_get_block, NULL);
211 
212 	if (write) {
213 		if (!IS_ERR(handle))
214 			ext4_journal_stop(handle);
215 		up_read(&EXT4_I(inode)->i_mmap_sem);
216 		sb_end_pagefault(sb);
217 	} else
218 		up_read(&EXT4_I(inode)->i_mmap_sem);
219 
220 	return result;
221 }
222 
223 static int ext4_dax_pmd_fault(struct vm_area_struct *vma, unsigned long addr,
224 						pmd_t *pmd, unsigned int flags)
225 {
226 	int result;
227 	handle_t *handle = NULL;
228 	struct inode *inode = file_inode(vma->vm_file);
229 	struct super_block *sb = inode->i_sb;
230 	bool write = flags & FAULT_FLAG_WRITE;
231 
232 	if (write) {
233 		sb_start_pagefault(sb);
234 		file_update_time(vma->vm_file);
235 		down_read(&EXT4_I(inode)->i_mmap_sem);
236 		handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE,
237 				ext4_chunk_trans_blocks(inode,
238 							PMD_SIZE / PAGE_SIZE));
239 	} else
240 		down_read(&EXT4_I(inode)->i_mmap_sem);
241 
242 	if (IS_ERR(handle))
243 		result = VM_FAULT_SIGBUS;
244 	else
245 		result = __dax_pmd_fault(vma, addr, pmd, flags,
246 				ext4_dax_mmap_get_block, NULL);
247 
248 	if (write) {
249 		if (!IS_ERR(handle))
250 			ext4_journal_stop(handle);
251 		up_read(&EXT4_I(inode)->i_mmap_sem);
252 		sb_end_pagefault(sb);
253 	} else
254 		up_read(&EXT4_I(inode)->i_mmap_sem);
255 
256 	return result;
257 }
258 
259 /*
260  * Handle write fault for VM_MIXEDMAP mappings. Similarly to ext4_dax_fault()
261  * handler we check for races agaist truncate. Note that since we cycle through
262  * i_mmap_sem, we are sure that also any hole punching that began before we
263  * were called is finished by now and so if it included part of the file we
264  * are working on, our pte will get unmapped and the check for pte_same() in
265  * wp_pfn_shared() fails. Thus fault gets retried and things work out as
266  * desired.
267  */
268 static int ext4_dax_pfn_mkwrite(struct vm_area_struct *vma,
269 				struct vm_fault *vmf)
270 {
271 	struct inode *inode = file_inode(vma->vm_file);
272 	struct super_block *sb = inode->i_sb;
273 	loff_t size;
274 	int ret;
275 
276 	sb_start_pagefault(sb);
277 	file_update_time(vma->vm_file);
278 	down_read(&EXT4_I(inode)->i_mmap_sem);
279 	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
280 	if (vmf->pgoff >= size)
281 		ret = VM_FAULT_SIGBUS;
282 	else
283 		ret = dax_pfn_mkwrite(vma, vmf);
284 	up_read(&EXT4_I(inode)->i_mmap_sem);
285 	sb_end_pagefault(sb);
286 
287 	return ret;
288 }
289 
290 static const struct vm_operations_struct ext4_dax_vm_ops = {
291 	.fault		= ext4_dax_fault,
292 	.pmd_fault	= ext4_dax_pmd_fault,
293 	.page_mkwrite	= ext4_dax_fault,
294 	.pfn_mkwrite	= ext4_dax_pfn_mkwrite,
295 };
296 #else
297 #define ext4_dax_vm_ops	ext4_file_vm_ops
298 #endif
299 
300 static const struct vm_operations_struct ext4_file_vm_ops = {
301 	.fault		= ext4_filemap_fault,
302 	.map_pages	= filemap_map_pages,
303 	.page_mkwrite   = ext4_page_mkwrite,
304 };
305 
306 static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
307 {
308 	struct inode *inode = file->f_mapping->host;
309 
310 	if (ext4_encrypted_inode(inode)) {
311 		int err = ext4_get_encryption_info(inode);
312 		if (err)
313 			return 0;
314 		if (ext4_encryption_info(inode) == NULL)
315 			return -ENOKEY;
316 	}
317 	file_accessed(file);
318 	if (IS_DAX(file_inode(file))) {
319 		vma->vm_ops = &ext4_dax_vm_ops;
320 		vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
321 	} else {
322 		vma->vm_ops = &ext4_file_vm_ops;
323 	}
324 	return 0;
325 }
326 
327 static int ext4_file_open(struct inode * inode, struct file * filp)
328 {
329 	struct super_block *sb = inode->i_sb;
330 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
331 	struct vfsmount *mnt = filp->f_path.mnt;
332 	struct dentry *dir;
333 	struct path path;
334 	char buf[64], *cp;
335 	int ret;
336 
337 	if (unlikely(!(sbi->s_mount_flags & EXT4_MF_MNTDIR_SAMPLED) &&
338 		     !(sb->s_flags & MS_RDONLY))) {
339 		sbi->s_mount_flags |= EXT4_MF_MNTDIR_SAMPLED;
340 		/*
341 		 * Sample where the filesystem has been mounted and
342 		 * store it in the superblock for sysadmin convenience
343 		 * when trying to sort through large numbers of block
344 		 * devices or filesystem images.
345 		 */
346 		memset(buf, 0, sizeof(buf));
347 		path.mnt = mnt;
348 		path.dentry = mnt->mnt_root;
349 		cp = d_path(&path, buf, sizeof(buf));
350 		if (!IS_ERR(cp)) {
351 			handle_t *handle;
352 			int err;
353 
354 			handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
355 			if (IS_ERR(handle))
356 				return PTR_ERR(handle);
357 			BUFFER_TRACE(sbi->s_sbh, "get_write_access");
358 			err = ext4_journal_get_write_access(handle, sbi->s_sbh);
359 			if (err) {
360 				ext4_journal_stop(handle);
361 				return err;
362 			}
363 			strlcpy(sbi->s_es->s_last_mounted, cp,
364 				sizeof(sbi->s_es->s_last_mounted));
365 			ext4_handle_dirty_super(handle, sb);
366 			ext4_journal_stop(handle);
367 		}
368 	}
369 	if (ext4_encrypted_inode(inode)) {
370 		ret = ext4_get_encryption_info(inode);
371 		if (ret)
372 			return -EACCES;
373 		if (ext4_encryption_info(inode) == NULL)
374 			return -ENOKEY;
375 	}
376 
377 	dir = dget_parent(file_dentry(filp));
378 	if (ext4_encrypted_inode(d_inode(dir)) &&
379 	    !ext4_is_child_context_consistent_with_parent(d_inode(dir), inode)) {
380 		ext4_warning(inode->i_sb,
381 			     "Inconsistent encryption contexts: %lu/%lu\n",
382 			     (unsigned long) d_inode(dir)->i_ino,
383 			     (unsigned long) inode->i_ino);
384 		dput(dir);
385 		return -EPERM;
386 	}
387 	dput(dir);
388 	/*
389 	 * Set up the jbd2_inode if we are opening the inode for
390 	 * writing and the journal is present
391 	 */
392 	if (filp->f_mode & FMODE_WRITE) {
393 		ret = ext4_inode_attach_jinode(inode);
394 		if (ret < 0)
395 			return ret;
396 	}
397 	return dquot_file_open(inode, filp);
398 }
399 
400 /*
401  * Here we use ext4_map_blocks() to get a block mapping for a extent-based
402  * file rather than ext4_ext_walk_space() because we can introduce
403  * SEEK_DATA/SEEK_HOLE for block-mapped and extent-mapped file at the same
404  * function.  When extent status tree has been fully implemented, it will
405  * track all extent status for a file and we can directly use it to
406  * retrieve the offset for SEEK_DATA/SEEK_HOLE.
407  */
408 
409 /*
410  * When we retrieve the offset for SEEK_DATA/SEEK_HOLE, we would need to
411  * lookup page cache to check whether or not there has some data between
412  * [startoff, endoff] because, if this range contains an unwritten extent,
413  * we determine this extent as a data or a hole according to whether the
414  * page cache has data or not.
415  */
416 static int ext4_find_unwritten_pgoff(struct inode *inode,
417 				     int whence,
418 				     ext4_lblk_t end_blk,
419 				     loff_t *offset)
420 {
421 	struct pagevec pvec;
422 	unsigned int blkbits;
423 	pgoff_t index;
424 	pgoff_t end;
425 	loff_t endoff;
426 	loff_t startoff;
427 	loff_t lastoff;
428 	int found = 0;
429 
430 	blkbits = inode->i_sb->s_blocksize_bits;
431 	startoff = *offset;
432 	lastoff = startoff;
433 	endoff = (loff_t)end_blk << blkbits;
434 
435 	index = startoff >> PAGE_SHIFT;
436 	end = endoff >> PAGE_SHIFT;
437 
438 	pagevec_init(&pvec, 0);
439 	do {
440 		int i, num;
441 		unsigned long nr_pages;
442 
443 		num = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
444 		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
445 					  (pgoff_t)num);
446 		if (nr_pages == 0) {
447 			if (whence == SEEK_DATA)
448 				break;
449 
450 			BUG_ON(whence != SEEK_HOLE);
451 			/*
452 			 * If this is the first time to go into the loop and
453 			 * offset is not beyond the end offset, it will be a
454 			 * hole at this offset
455 			 */
456 			if (lastoff == startoff || lastoff < endoff)
457 				found = 1;
458 			break;
459 		}
460 
461 		/*
462 		 * If this is the first time to go into the loop and
463 		 * offset is smaller than the first page offset, it will be a
464 		 * hole at this offset.
465 		 */
466 		if (lastoff == startoff && whence == SEEK_HOLE &&
467 		    lastoff < page_offset(pvec.pages[0])) {
468 			found = 1;
469 			break;
470 		}
471 
472 		for (i = 0; i < nr_pages; i++) {
473 			struct page *page = pvec.pages[i];
474 			struct buffer_head *bh, *head;
475 
476 			/*
477 			 * If the current offset is not beyond the end of given
478 			 * range, it will be a hole.
479 			 */
480 			if (lastoff < endoff && whence == SEEK_HOLE &&
481 			    page->index > end) {
482 				found = 1;
483 				*offset = lastoff;
484 				goto out;
485 			}
486 
487 			lock_page(page);
488 
489 			if (unlikely(page->mapping != inode->i_mapping)) {
490 				unlock_page(page);
491 				continue;
492 			}
493 
494 			if (!page_has_buffers(page)) {
495 				unlock_page(page);
496 				continue;
497 			}
498 
499 			if (page_has_buffers(page)) {
500 				lastoff = page_offset(page);
501 				bh = head = page_buffers(page);
502 				do {
503 					if (buffer_uptodate(bh) ||
504 					    buffer_unwritten(bh)) {
505 						if (whence == SEEK_DATA)
506 							found = 1;
507 					} else {
508 						if (whence == SEEK_HOLE)
509 							found = 1;
510 					}
511 					if (found) {
512 						*offset = max_t(loff_t,
513 							startoff, lastoff);
514 						unlock_page(page);
515 						goto out;
516 					}
517 					lastoff += bh->b_size;
518 					bh = bh->b_this_page;
519 				} while (bh != head);
520 			}
521 
522 			lastoff = page_offset(page) + PAGE_SIZE;
523 			unlock_page(page);
524 		}
525 
526 		/*
527 		 * The no. of pages is less than our desired, that would be a
528 		 * hole in there.
529 		 */
530 		if (nr_pages < num && whence == SEEK_HOLE) {
531 			found = 1;
532 			*offset = lastoff;
533 			break;
534 		}
535 
536 		index = pvec.pages[i - 1]->index + 1;
537 		pagevec_release(&pvec);
538 	} while (index <= end);
539 
540 out:
541 	pagevec_release(&pvec);
542 	return found;
543 }
544 
545 /*
546  * ext4_seek_data() retrieves the offset for SEEK_DATA.
547  */
548 static loff_t ext4_seek_data(struct file *file, loff_t offset, loff_t maxsize)
549 {
550 	struct inode *inode = file->f_mapping->host;
551 	struct extent_status es;
552 	ext4_lblk_t start, last, end;
553 	loff_t dataoff, isize;
554 	int blkbits;
555 	int ret;
556 
557 	inode_lock(inode);
558 
559 	isize = i_size_read(inode);
560 	if (offset >= isize) {
561 		inode_unlock(inode);
562 		return -ENXIO;
563 	}
564 
565 	blkbits = inode->i_sb->s_blocksize_bits;
566 	start = offset >> blkbits;
567 	last = start;
568 	end = isize >> blkbits;
569 	dataoff = offset;
570 
571 	do {
572 		ret = ext4_get_next_extent(inode, last, end - last + 1, &es);
573 		if (ret <= 0) {
574 			/* No extent found -> no data */
575 			if (ret == 0)
576 				ret = -ENXIO;
577 			inode_unlock(inode);
578 			return ret;
579 		}
580 
581 		last = es.es_lblk;
582 		if (last != start)
583 			dataoff = (loff_t)last << blkbits;
584 		if (!ext4_es_is_unwritten(&es))
585 			break;
586 
587 		/*
588 		 * If there is a unwritten extent at this offset,
589 		 * it will be as a data or a hole according to page
590 		 * cache that has data or not.
591 		 */
592 		if (ext4_find_unwritten_pgoff(inode, SEEK_DATA,
593 					      es.es_lblk + es.es_len, &dataoff))
594 			break;
595 		last += es.es_len;
596 		dataoff = (loff_t)last << blkbits;
597 		cond_resched();
598 	} while (last <= end);
599 
600 	inode_unlock(inode);
601 
602 	if (dataoff > isize)
603 		return -ENXIO;
604 
605 	return vfs_setpos(file, dataoff, maxsize);
606 }
607 
608 /*
609  * ext4_seek_hole() retrieves the offset for SEEK_HOLE.
610  */
611 static loff_t ext4_seek_hole(struct file *file, loff_t offset, loff_t maxsize)
612 {
613 	struct inode *inode = file->f_mapping->host;
614 	struct extent_status es;
615 	ext4_lblk_t start, last, end;
616 	loff_t holeoff, isize;
617 	int blkbits;
618 	int ret;
619 
620 	inode_lock(inode);
621 
622 	isize = i_size_read(inode);
623 	if (offset >= isize) {
624 		inode_unlock(inode);
625 		return -ENXIO;
626 	}
627 
628 	blkbits = inode->i_sb->s_blocksize_bits;
629 	start = offset >> blkbits;
630 	last = start;
631 	end = isize >> blkbits;
632 	holeoff = offset;
633 
634 	do {
635 		ret = ext4_get_next_extent(inode, last, end - last + 1, &es);
636 		if (ret < 0) {
637 			inode_unlock(inode);
638 			return ret;
639 		}
640 		/* Found a hole? */
641 		if (ret == 0 || es.es_lblk > last) {
642 			if (last != start)
643 				holeoff = (loff_t)last << blkbits;
644 			break;
645 		}
646 		/*
647 		 * If there is a unwritten extent at this offset,
648 		 * it will be as a data or a hole according to page
649 		 * cache that has data or not.
650 		 */
651 		if (ext4_es_is_unwritten(&es) &&
652 		    ext4_find_unwritten_pgoff(inode, SEEK_HOLE,
653 					      last + es.es_len, &holeoff))
654 			break;
655 
656 		last += es.es_len;
657 		holeoff = (loff_t)last << blkbits;
658 		cond_resched();
659 	} while (last <= end);
660 
661 	inode_unlock(inode);
662 
663 	if (holeoff > isize)
664 		holeoff = isize;
665 
666 	return vfs_setpos(file, holeoff, maxsize);
667 }
668 
669 /*
670  * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
671  * by calling generic_file_llseek_size() with the appropriate maxbytes
672  * value for each.
673  */
674 loff_t ext4_llseek(struct file *file, loff_t offset, int whence)
675 {
676 	struct inode *inode = file->f_mapping->host;
677 	loff_t maxbytes;
678 
679 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
680 		maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes;
681 	else
682 		maxbytes = inode->i_sb->s_maxbytes;
683 
684 	switch (whence) {
685 	case SEEK_SET:
686 	case SEEK_CUR:
687 	case SEEK_END:
688 		return generic_file_llseek_size(file, offset, whence,
689 						maxbytes, i_size_read(inode));
690 	case SEEK_DATA:
691 		return ext4_seek_data(file, offset, maxbytes);
692 	case SEEK_HOLE:
693 		return ext4_seek_hole(file, offset, maxbytes);
694 	}
695 
696 	return -EINVAL;
697 }
698 
699 const struct file_operations ext4_file_operations = {
700 	.llseek		= ext4_llseek,
701 	.read_iter	= generic_file_read_iter,
702 	.write_iter	= ext4_file_write_iter,
703 	.unlocked_ioctl = ext4_ioctl,
704 #ifdef CONFIG_COMPAT
705 	.compat_ioctl	= ext4_compat_ioctl,
706 #endif
707 	.mmap		= ext4_file_mmap,
708 	.open		= ext4_file_open,
709 	.release	= ext4_release_file,
710 	.fsync		= ext4_sync_file,
711 	.splice_read	= generic_file_splice_read,
712 	.splice_write	= iter_file_splice_write,
713 	.fallocate	= ext4_fallocate,
714 };
715 
716 const struct inode_operations ext4_file_inode_operations = {
717 	.setattr	= ext4_setattr,
718 	.getattr	= ext4_getattr,
719 	.setxattr	= generic_setxattr,
720 	.getxattr	= generic_getxattr,
721 	.listxattr	= ext4_listxattr,
722 	.removexattr	= generic_removexattr,
723 	.get_acl	= ext4_get_acl,
724 	.set_acl	= ext4_set_acl,
725 	.fiemap		= ext4_fiemap,
726 };
727 
728