xref: /openbmc/linux/fs/ext4/fast_commit.c (revision e5242c5f)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /*
4  * fs/ext4/fast_commit.c
5  *
6  * Written by Harshad Shirwadkar <harshadshirwadkar@gmail.com>
7  *
8  * Ext4 fast commits routines.
9  */
10 #include "ext4.h"
11 #include "ext4_jbd2.h"
12 #include "ext4_extents.h"
13 #include "mballoc.h"
14 
15 /*
16  * Ext4 Fast Commits
17  * -----------------
18  *
19  * Ext4 fast commits implement fine grained journalling for Ext4.
20  *
21  * Fast commits are organized as a log of tag-length-value (TLV) structs. (See
22  * struct ext4_fc_tl). Each TLV contains some delta that is replayed TLV by
23  * TLV during the recovery phase. For the scenarios for which we currently
24  * don't have replay code, fast commit falls back to full commits.
25  * Fast commits record delta in one of the following three categories.
26  *
27  * (A) Directory entry updates:
28  *
29  * - EXT4_FC_TAG_UNLINK		- records directory entry unlink
30  * - EXT4_FC_TAG_LINK		- records directory entry link
31  * - EXT4_FC_TAG_CREAT		- records inode and directory entry creation
32  *
33  * (B) File specific data range updates:
34  *
35  * - EXT4_FC_TAG_ADD_RANGE	- records addition of new blocks to an inode
36  * - EXT4_FC_TAG_DEL_RANGE	- records deletion of blocks from an inode
37  *
38  * (C) Inode metadata (mtime / ctime etc):
39  *
40  * - EXT4_FC_TAG_INODE		- record the inode that should be replayed
41  *				  during recovery. Note that iblocks field is
42  *				  not replayed and instead derived during
43  *				  replay.
44  * Commit Operation
45  * ----------------
46  * With fast commits, we maintain all the directory entry operations in the
47  * order in which they are issued in an in-memory queue. This queue is flushed
48  * to disk during the commit operation. We also maintain a list of inodes
49  * that need to be committed during a fast commit in another in memory queue of
50  * inodes. During the commit operation, we commit in the following order:
51  *
52  * [1] Lock inodes for any further data updates by setting COMMITTING state
53  * [2] Submit data buffers of all the inodes
54  * [3] Wait for [2] to complete
55  * [4] Commit all the directory entry updates in the fast commit space
56  * [5] Commit all the changed inode structures
57  * [6] Write tail tag (this tag ensures the atomicity, please read the following
58  *     section for more details).
59  * [7] Wait for [4], [5] and [6] to complete.
60  *
61  * All the inode updates must call ext4_fc_start_update() before starting an
62  * update. If such an ongoing update is present, fast commit waits for it to
63  * complete. The completion of such an update is marked by
64  * ext4_fc_stop_update().
65  *
66  * Fast Commit Ineligibility
67  * -------------------------
68  *
69  * Not all operations are supported by fast commits today (e.g extended
70  * attributes). Fast commit ineligibility is marked by calling
71  * ext4_fc_mark_ineligible(): This makes next fast commit operation to fall back
72  * to full commit.
73  *
74  * Atomicity of commits
75  * --------------------
76  * In order to guarantee atomicity during the commit operation, fast commit
77  * uses "EXT4_FC_TAG_TAIL" tag that marks a fast commit as complete. Tail
78  * tag contains CRC of the contents and TID of the transaction after which
79  * this fast commit should be applied. Recovery code replays fast commit
80  * logs only if there's at least 1 valid tail present. For every fast commit
81  * operation, there is 1 tail. This means, we may end up with multiple tails
82  * in the fast commit space. Here's an example:
83  *
84  * - Create a new file A and remove existing file B
85  * - fsync()
86  * - Append contents to file A
87  * - Truncate file A
88  * - fsync()
89  *
90  * The fast commit space at the end of above operations would look like this:
91  *      [HEAD] [CREAT A] [UNLINK B] [TAIL] [ADD_RANGE A] [DEL_RANGE A] [TAIL]
92  *             |<---  Fast Commit 1   --->|<---      Fast Commit 2     ---->|
93  *
94  * Replay code should thus check for all the valid tails in the FC area.
95  *
96  * Fast Commit Replay Idempotence
97  * ------------------------------
98  *
99  * Fast commits tags are idempotent in nature provided the recovery code follows
100  * certain rules. The guiding principle that the commit path follows while
101  * committing is that it stores the result of a particular operation instead of
102  * storing the procedure.
103  *
104  * Let's consider this rename operation: 'mv /a /b'. Let's assume dirent '/a'
105  * was associated with inode 10. During fast commit, instead of storing this
106  * operation as a procedure "rename a to b", we store the resulting file system
107  * state as a "series" of outcomes:
108  *
109  * - Link dirent b to inode 10
110  * - Unlink dirent a
111  * - Inode <10> with valid refcount
112  *
113  * Now when recovery code runs, it needs "enforce" this state on the file
114  * system. This is what guarantees idempotence of fast commit replay.
115  *
116  * Let's take an example of a procedure that is not idempotent and see how fast
117  * commits make it idempotent. Consider following sequence of operations:
118  *
119  *     rm A;    mv B A;    read A
120  *  (x)     (y)        (z)
121  *
122  * (x), (y) and (z) are the points at which we can crash. If we store this
123  * sequence of operations as is then the replay is not idempotent. Let's say
124  * while in replay, we crash at (z). During the second replay, file A (which was
125  * actually created as a result of "mv B A" operation) would get deleted. Thus,
126  * file named A would be absent when we try to read A. So, this sequence of
127  * operations is not idempotent. However, as mentioned above, instead of storing
128  * the procedure fast commits store the outcome of each procedure. Thus the fast
129  * commit log for above procedure would be as follows:
130  *
131  * (Let's assume dirent A was linked to inode 10 and dirent B was linked to
132  * inode 11 before the replay)
133  *
134  *    [Unlink A]   [Link A to inode 11]   [Unlink B]   [Inode 11]
135  * (w)          (x)                    (y)          (z)
136  *
137  * If we crash at (z), we will have file A linked to inode 11. During the second
138  * replay, we will remove file A (inode 11). But we will create it back and make
139  * it point to inode 11. We won't find B, so we'll just skip that step. At this
140  * point, the refcount for inode 11 is not reliable, but that gets fixed by the
141  * replay of last inode 11 tag. Crashes at points (w), (x) and (y) get handled
142  * similarly. Thus, by converting a non-idempotent procedure into a series of
143  * idempotent outcomes, fast commits ensured idempotence during the replay.
144  *
145  * TODOs
146  * -----
147  *
148  * 0) Fast commit replay path hardening: Fast commit replay code should use
149  *    journal handles to make sure all the updates it does during the replay
150  *    path are atomic. With that if we crash during fast commit replay, after
151  *    trying to do recovery again, we will find a file system where fast commit
152  *    area is invalid (because new full commit would be found). In order to deal
153  *    with that, fast commit replay code should ensure that the "FC_REPLAY"
154  *    superblock state is persisted before starting the replay, so that after
155  *    the crash, fast commit recovery code can look at that flag and perform
156  *    fast commit recovery even if that area is invalidated by later full
157  *    commits.
158  *
159  * 1) Fast commit's commit path locks the entire file system during fast
160  *    commit. This has significant performance penalty. Instead of that, we
161  *    should use ext4_fc_start/stop_update functions to start inode level
162  *    updates from ext4_journal_start/stop. Once we do that we can drop file
163  *    system locking during commit path.
164  *
165  * 2) Handle more ineligible cases.
166  */
167 
168 #include <trace/events/ext4.h>
169 static struct kmem_cache *ext4_fc_dentry_cachep;
170 
171 static void ext4_end_buffer_io_sync(struct buffer_head *bh, int uptodate)
172 {
173 	BUFFER_TRACE(bh, "");
174 	if (uptodate) {
175 		ext4_debug("%s: Block %lld up-to-date",
176 			   __func__, bh->b_blocknr);
177 		set_buffer_uptodate(bh);
178 	} else {
179 		ext4_debug("%s: Block %lld not up-to-date",
180 			   __func__, bh->b_blocknr);
181 		clear_buffer_uptodate(bh);
182 	}
183 
184 	unlock_buffer(bh);
185 }
186 
187 static inline void ext4_fc_reset_inode(struct inode *inode)
188 {
189 	struct ext4_inode_info *ei = EXT4_I(inode);
190 
191 	ei->i_fc_lblk_start = 0;
192 	ei->i_fc_lblk_len = 0;
193 }
194 
195 void ext4_fc_init_inode(struct inode *inode)
196 {
197 	struct ext4_inode_info *ei = EXT4_I(inode);
198 
199 	ext4_fc_reset_inode(inode);
200 	ext4_clear_inode_state(inode, EXT4_STATE_FC_COMMITTING);
201 	INIT_LIST_HEAD(&ei->i_fc_list);
202 	INIT_LIST_HEAD(&ei->i_fc_dilist);
203 	init_waitqueue_head(&ei->i_fc_wait);
204 	atomic_set(&ei->i_fc_updates, 0);
205 }
206 
207 /* This function must be called with sbi->s_fc_lock held. */
208 static void ext4_fc_wait_committing_inode(struct inode *inode)
209 __releases(&EXT4_SB(inode->i_sb)->s_fc_lock)
210 {
211 	wait_queue_head_t *wq;
212 	struct ext4_inode_info *ei = EXT4_I(inode);
213 
214 #if (BITS_PER_LONG < 64)
215 	DEFINE_WAIT_BIT(wait, &ei->i_state_flags,
216 			EXT4_STATE_FC_COMMITTING);
217 	wq = bit_waitqueue(&ei->i_state_flags,
218 				EXT4_STATE_FC_COMMITTING);
219 #else
220 	DEFINE_WAIT_BIT(wait, &ei->i_flags,
221 			EXT4_STATE_FC_COMMITTING);
222 	wq = bit_waitqueue(&ei->i_flags,
223 				EXT4_STATE_FC_COMMITTING);
224 #endif
225 	lockdep_assert_held(&EXT4_SB(inode->i_sb)->s_fc_lock);
226 	prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
227 	spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
228 	schedule();
229 	finish_wait(wq, &wait.wq_entry);
230 }
231 
232 static bool ext4_fc_disabled(struct super_block *sb)
233 {
234 	return (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
235 		(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY));
236 }
237 
238 /*
239  * Inform Ext4's fast about start of an inode update
240  *
241  * This function is called by the high level call VFS callbacks before
242  * performing any inode update. This function blocks if there's an ongoing
243  * fast commit on the inode in question.
244  */
245 void ext4_fc_start_update(struct inode *inode)
246 {
247 	struct ext4_inode_info *ei = EXT4_I(inode);
248 
249 	if (ext4_fc_disabled(inode->i_sb))
250 		return;
251 
252 restart:
253 	spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock);
254 	if (list_empty(&ei->i_fc_list))
255 		goto out;
256 
257 	if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
258 		ext4_fc_wait_committing_inode(inode);
259 		goto restart;
260 	}
261 out:
262 	atomic_inc(&ei->i_fc_updates);
263 	spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
264 }
265 
266 /*
267  * Stop inode update and wake up waiting fast commits if any.
268  */
269 void ext4_fc_stop_update(struct inode *inode)
270 {
271 	struct ext4_inode_info *ei = EXT4_I(inode);
272 
273 	if (ext4_fc_disabled(inode->i_sb))
274 		return;
275 
276 	if (atomic_dec_and_test(&ei->i_fc_updates))
277 		wake_up_all(&ei->i_fc_wait);
278 }
279 
280 /*
281  * Remove inode from fast commit list. If the inode is being committed
282  * we wait until inode commit is done.
283  */
284 void ext4_fc_del(struct inode *inode)
285 {
286 	struct ext4_inode_info *ei = EXT4_I(inode);
287 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
288 	struct ext4_fc_dentry_update *fc_dentry;
289 
290 	if (ext4_fc_disabled(inode->i_sb))
291 		return;
292 
293 restart:
294 	spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock);
295 	if (list_empty(&ei->i_fc_list) && list_empty(&ei->i_fc_dilist)) {
296 		spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
297 		return;
298 	}
299 
300 	if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
301 		ext4_fc_wait_committing_inode(inode);
302 		goto restart;
303 	}
304 
305 	if (!list_empty(&ei->i_fc_list))
306 		list_del_init(&ei->i_fc_list);
307 
308 	/*
309 	 * Since this inode is getting removed, let's also remove all FC
310 	 * dentry create references, since it is not needed to log it anyways.
311 	 */
312 	if (list_empty(&ei->i_fc_dilist)) {
313 		spin_unlock(&sbi->s_fc_lock);
314 		return;
315 	}
316 
317 	fc_dentry = list_first_entry(&ei->i_fc_dilist, struct ext4_fc_dentry_update, fcd_dilist);
318 	WARN_ON(fc_dentry->fcd_op != EXT4_FC_TAG_CREAT);
319 	list_del_init(&fc_dentry->fcd_list);
320 	list_del_init(&fc_dentry->fcd_dilist);
321 
322 	WARN_ON(!list_empty(&ei->i_fc_dilist));
323 	spin_unlock(&sbi->s_fc_lock);
324 
325 	if (fc_dentry->fcd_name.name &&
326 		fc_dentry->fcd_name.len > DNAME_INLINE_LEN)
327 		kfree(fc_dentry->fcd_name.name);
328 	kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry);
329 
330 	return;
331 }
332 
333 /*
334  * Mark file system as fast commit ineligible, and record latest
335  * ineligible transaction tid. This means until the recorded
336  * transaction, commit operation would result in a full jbd2 commit.
337  */
338 void ext4_fc_mark_ineligible(struct super_block *sb, int reason, handle_t *handle)
339 {
340 	struct ext4_sb_info *sbi = EXT4_SB(sb);
341 	tid_t tid;
342 	bool has_transaction = true;
343 	bool is_ineligible;
344 
345 	if (ext4_fc_disabled(sb))
346 		return;
347 
348 	if (handle && !IS_ERR(handle))
349 		tid = handle->h_transaction->t_tid;
350 	else {
351 		read_lock(&sbi->s_journal->j_state_lock);
352 		if (sbi->s_journal->j_running_transaction)
353 			tid = sbi->s_journal->j_running_transaction->t_tid;
354 		else
355 			has_transaction = false;
356 		read_unlock(&sbi->s_journal->j_state_lock);
357 	}
358 	spin_lock(&sbi->s_fc_lock);
359 	is_ineligible = ext4_test_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
360 	if (has_transaction &&
361 	    (!is_ineligible ||
362 	     (is_ineligible && tid_gt(tid, sbi->s_fc_ineligible_tid))))
363 		sbi->s_fc_ineligible_tid = tid;
364 	ext4_set_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
365 	spin_unlock(&sbi->s_fc_lock);
366 	WARN_ON(reason >= EXT4_FC_REASON_MAX);
367 	sbi->s_fc_stats.fc_ineligible_reason_count[reason]++;
368 }
369 
370 /*
371  * Generic fast commit tracking function. If this is the first time this we are
372  * called after a full commit, we initialize fast commit fields and then call
373  * __fc_track_fn() with update = 0. If we have already been called after a full
374  * commit, we pass update = 1. Based on that, the track function can determine
375  * if it needs to track a field for the first time or if it needs to just
376  * update the previously tracked value.
377  *
378  * If enqueue is set, this function enqueues the inode in fast commit list.
379  */
380 static int ext4_fc_track_template(
381 	handle_t *handle, struct inode *inode,
382 	int (*__fc_track_fn)(handle_t *handle, struct inode *, void *, bool),
383 	void *args, int enqueue)
384 {
385 	bool update = false;
386 	struct ext4_inode_info *ei = EXT4_I(inode);
387 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
388 	tid_t tid = 0;
389 	int ret;
390 
391 	tid = handle->h_transaction->t_tid;
392 	mutex_lock(&ei->i_fc_lock);
393 	if (tid == ei->i_sync_tid) {
394 		update = true;
395 	} else {
396 		ext4_fc_reset_inode(inode);
397 		ei->i_sync_tid = tid;
398 	}
399 	ret = __fc_track_fn(handle, inode, args, update);
400 	mutex_unlock(&ei->i_fc_lock);
401 
402 	if (!enqueue)
403 		return ret;
404 
405 	spin_lock(&sbi->s_fc_lock);
406 	if (list_empty(&EXT4_I(inode)->i_fc_list))
407 		list_add_tail(&EXT4_I(inode)->i_fc_list,
408 				(sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
409 				 sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING) ?
410 				&sbi->s_fc_q[FC_Q_STAGING] :
411 				&sbi->s_fc_q[FC_Q_MAIN]);
412 	spin_unlock(&sbi->s_fc_lock);
413 
414 	return ret;
415 }
416 
417 struct __track_dentry_update_args {
418 	struct dentry *dentry;
419 	int op;
420 };
421 
422 /* __track_fn for directory entry updates. Called with ei->i_fc_lock. */
423 static int __track_dentry_update(handle_t *handle, struct inode *inode,
424 				 void *arg, bool update)
425 {
426 	struct ext4_fc_dentry_update *node;
427 	struct ext4_inode_info *ei = EXT4_I(inode);
428 	struct __track_dentry_update_args *dentry_update =
429 		(struct __track_dentry_update_args *)arg;
430 	struct dentry *dentry = dentry_update->dentry;
431 	struct inode *dir = dentry->d_parent->d_inode;
432 	struct super_block *sb = inode->i_sb;
433 	struct ext4_sb_info *sbi = EXT4_SB(sb);
434 
435 	mutex_unlock(&ei->i_fc_lock);
436 
437 	if (IS_ENCRYPTED(dir)) {
438 		ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_ENCRYPTED_FILENAME,
439 					handle);
440 		mutex_lock(&ei->i_fc_lock);
441 		return -EOPNOTSUPP;
442 	}
443 
444 	node = kmem_cache_alloc(ext4_fc_dentry_cachep, GFP_NOFS);
445 	if (!node) {
446 		ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_NOMEM, handle);
447 		mutex_lock(&ei->i_fc_lock);
448 		return -ENOMEM;
449 	}
450 
451 	node->fcd_op = dentry_update->op;
452 	node->fcd_parent = dir->i_ino;
453 	node->fcd_ino = inode->i_ino;
454 	if (dentry->d_name.len > DNAME_INLINE_LEN) {
455 		node->fcd_name.name = kmalloc(dentry->d_name.len, GFP_NOFS);
456 		if (!node->fcd_name.name) {
457 			kmem_cache_free(ext4_fc_dentry_cachep, node);
458 			ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_NOMEM, handle);
459 			mutex_lock(&ei->i_fc_lock);
460 			return -ENOMEM;
461 		}
462 		memcpy((u8 *)node->fcd_name.name, dentry->d_name.name,
463 			dentry->d_name.len);
464 	} else {
465 		memcpy(node->fcd_iname, dentry->d_name.name,
466 			dentry->d_name.len);
467 		node->fcd_name.name = node->fcd_iname;
468 	}
469 	node->fcd_name.len = dentry->d_name.len;
470 	INIT_LIST_HEAD(&node->fcd_dilist);
471 	spin_lock(&sbi->s_fc_lock);
472 	if (sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
473 		sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING)
474 		list_add_tail(&node->fcd_list,
475 				&sbi->s_fc_dentry_q[FC_Q_STAGING]);
476 	else
477 		list_add_tail(&node->fcd_list, &sbi->s_fc_dentry_q[FC_Q_MAIN]);
478 
479 	/*
480 	 * This helps us keep a track of all fc_dentry updates which is part of
481 	 * this ext4 inode. So in case the inode is getting unlinked, before
482 	 * even we get a chance to fsync, we could remove all fc_dentry
483 	 * references while evicting the inode in ext4_fc_del().
484 	 * Also with this, we don't need to loop over all the inodes in
485 	 * sbi->s_fc_q to get the corresponding inode in
486 	 * ext4_fc_commit_dentry_updates().
487 	 */
488 	if (dentry_update->op == EXT4_FC_TAG_CREAT) {
489 		WARN_ON(!list_empty(&ei->i_fc_dilist));
490 		list_add_tail(&node->fcd_dilist, &ei->i_fc_dilist);
491 	}
492 	spin_unlock(&sbi->s_fc_lock);
493 	mutex_lock(&ei->i_fc_lock);
494 
495 	return 0;
496 }
497 
498 void __ext4_fc_track_unlink(handle_t *handle,
499 		struct inode *inode, struct dentry *dentry)
500 {
501 	struct __track_dentry_update_args args;
502 	int ret;
503 
504 	args.dentry = dentry;
505 	args.op = EXT4_FC_TAG_UNLINK;
506 
507 	ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
508 					(void *)&args, 0);
509 	trace_ext4_fc_track_unlink(handle, inode, dentry, ret);
510 }
511 
512 void ext4_fc_track_unlink(handle_t *handle, struct dentry *dentry)
513 {
514 	struct inode *inode = d_inode(dentry);
515 
516 	if (ext4_fc_disabled(inode->i_sb))
517 		return;
518 
519 	if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
520 		return;
521 
522 	__ext4_fc_track_unlink(handle, inode, dentry);
523 }
524 
525 void __ext4_fc_track_link(handle_t *handle,
526 	struct inode *inode, struct dentry *dentry)
527 {
528 	struct __track_dentry_update_args args;
529 	int ret;
530 
531 	args.dentry = dentry;
532 	args.op = EXT4_FC_TAG_LINK;
533 
534 	ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
535 					(void *)&args, 0);
536 	trace_ext4_fc_track_link(handle, inode, dentry, ret);
537 }
538 
539 void ext4_fc_track_link(handle_t *handle, struct dentry *dentry)
540 {
541 	struct inode *inode = d_inode(dentry);
542 
543 	if (ext4_fc_disabled(inode->i_sb))
544 		return;
545 
546 	if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
547 		return;
548 
549 	__ext4_fc_track_link(handle, inode, dentry);
550 }
551 
552 void __ext4_fc_track_create(handle_t *handle, struct inode *inode,
553 			  struct dentry *dentry)
554 {
555 	struct __track_dentry_update_args args;
556 	int ret;
557 
558 	args.dentry = dentry;
559 	args.op = EXT4_FC_TAG_CREAT;
560 
561 	ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
562 					(void *)&args, 0);
563 	trace_ext4_fc_track_create(handle, inode, dentry, ret);
564 }
565 
566 void ext4_fc_track_create(handle_t *handle, struct dentry *dentry)
567 {
568 	struct inode *inode = d_inode(dentry);
569 
570 	if (ext4_fc_disabled(inode->i_sb))
571 		return;
572 
573 	if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
574 		return;
575 
576 	__ext4_fc_track_create(handle, inode, dentry);
577 }
578 
579 /* __track_fn for inode tracking */
580 static int __track_inode(handle_t *handle, struct inode *inode, void *arg,
581 			 bool update)
582 {
583 	if (update)
584 		return -EEXIST;
585 
586 	EXT4_I(inode)->i_fc_lblk_len = 0;
587 
588 	return 0;
589 }
590 
591 void ext4_fc_track_inode(handle_t *handle, struct inode *inode)
592 {
593 	int ret;
594 
595 	if (S_ISDIR(inode->i_mode))
596 		return;
597 
598 	if (ext4_fc_disabled(inode->i_sb))
599 		return;
600 
601 	if (ext4_should_journal_data(inode)) {
602 		ext4_fc_mark_ineligible(inode->i_sb,
603 					EXT4_FC_REASON_INODE_JOURNAL_DATA, handle);
604 		return;
605 	}
606 
607 	if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
608 		return;
609 
610 	ret = ext4_fc_track_template(handle, inode, __track_inode, NULL, 1);
611 	trace_ext4_fc_track_inode(handle, inode, ret);
612 }
613 
614 struct __track_range_args {
615 	ext4_lblk_t start, end;
616 };
617 
618 /* __track_fn for tracking data updates */
619 static int __track_range(handle_t *handle, struct inode *inode, void *arg,
620 			 bool update)
621 {
622 	struct ext4_inode_info *ei = EXT4_I(inode);
623 	ext4_lblk_t oldstart;
624 	struct __track_range_args *__arg =
625 		(struct __track_range_args *)arg;
626 
627 	if (inode->i_ino < EXT4_FIRST_INO(inode->i_sb)) {
628 		ext4_debug("Special inode %ld being modified\n", inode->i_ino);
629 		return -ECANCELED;
630 	}
631 
632 	oldstart = ei->i_fc_lblk_start;
633 
634 	if (update && ei->i_fc_lblk_len > 0) {
635 		ei->i_fc_lblk_start = min(ei->i_fc_lblk_start, __arg->start);
636 		ei->i_fc_lblk_len =
637 			max(oldstart + ei->i_fc_lblk_len - 1, __arg->end) -
638 				ei->i_fc_lblk_start + 1;
639 	} else {
640 		ei->i_fc_lblk_start = __arg->start;
641 		ei->i_fc_lblk_len = __arg->end - __arg->start + 1;
642 	}
643 
644 	return 0;
645 }
646 
647 void ext4_fc_track_range(handle_t *handle, struct inode *inode, ext4_lblk_t start,
648 			 ext4_lblk_t end)
649 {
650 	struct __track_range_args args;
651 	int ret;
652 
653 	if (S_ISDIR(inode->i_mode))
654 		return;
655 
656 	if (ext4_fc_disabled(inode->i_sb))
657 		return;
658 
659 	if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
660 		return;
661 
662 	if (ext4_has_inline_data(inode)) {
663 		ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_XATTR,
664 					handle);
665 		return;
666 	}
667 
668 	args.start = start;
669 	args.end = end;
670 
671 	ret = ext4_fc_track_template(handle, inode,  __track_range, &args, 1);
672 
673 	trace_ext4_fc_track_range(handle, inode, start, end, ret);
674 }
675 
676 static void ext4_fc_submit_bh(struct super_block *sb, bool is_tail)
677 {
678 	blk_opf_t write_flags = REQ_SYNC;
679 	struct buffer_head *bh = EXT4_SB(sb)->s_fc_bh;
680 
681 	/* Add REQ_FUA | REQ_PREFLUSH only its tail */
682 	if (test_opt(sb, BARRIER) && is_tail)
683 		write_flags |= REQ_FUA | REQ_PREFLUSH;
684 	lock_buffer(bh);
685 	set_buffer_dirty(bh);
686 	set_buffer_uptodate(bh);
687 	bh->b_end_io = ext4_end_buffer_io_sync;
688 	submit_bh(REQ_OP_WRITE | write_flags, bh);
689 	EXT4_SB(sb)->s_fc_bh = NULL;
690 }
691 
692 /* Ext4 commit path routines */
693 
694 /*
695  * Allocate len bytes on a fast commit buffer.
696  *
697  * During the commit time this function is used to manage fast commit
698  * block space. We don't split a fast commit log onto different
699  * blocks. So this function makes sure that if there's not enough space
700  * on the current block, the remaining space in the current block is
701  * marked as unused by adding EXT4_FC_TAG_PAD tag. In that case,
702  * new block is from jbd2 and CRC is updated to reflect the padding
703  * we added.
704  */
705 static u8 *ext4_fc_reserve_space(struct super_block *sb, int len, u32 *crc)
706 {
707 	struct ext4_fc_tl tl;
708 	struct ext4_sb_info *sbi = EXT4_SB(sb);
709 	struct buffer_head *bh;
710 	int bsize = sbi->s_journal->j_blocksize;
711 	int ret, off = sbi->s_fc_bytes % bsize;
712 	int remaining;
713 	u8 *dst;
714 
715 	/*
716 	 * If 'len' is too long to fit in any block alongside a PAD tlv, then we
717 	 * cannot fulfill the request.
718 	 */
719 	if (len > bsize - EXT4_FC_TAG_BASE_LEN)
720 		return NULL;
721 
722 	if (!sbi->s_fc_bh) {
723 		ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
724 		if (ret)
725 			return NULL;
726 		sbi->s_fc_bh = bh;
727 	}
728 	dst = sbi->s_fc_bh->b_data + off;
729 
730 	/*
731 	 * Allocate the bytes in the current block if we can do so while still
732 	 * leaving enough space for a PAD tlv.
733 	 */
734 	remaining = bsize - EXT4_FC_TAG_BASE_LEN - off;
735 	if (len <= remaining) {
736 		sbi->s_fc_bytes += len;
737 		return dst;
738 	}
739 
740 	/*
741 	 * Else, terminate the current block with a PAD tlv, then allocate a new
742 	 * block and allocate the bytes at the start of that new block.
743 	 */
744 
745 	tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_PAD);
746 	tl.fc_len = cpu_to_le16(remaining);
747 	memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
748 	memset(dst + EXT4_FC_TAG_BASE_LEN, 0, remaining);
749 	*crc = ext4_chksum(sbi, *crc, sbi->s_fc_bh->b_data, bsize);
750 
751 	ext4_fc_submit_bh(sb, false);
752 
753 	ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
754 	if (ret)
755 		return NULL;
756 	sbi->s_fc_bh = bh;
757 	sbi->s_fc_bytes += bsize - off + len;
758 	return sbi->s_fc_bh->b_data;
759 }
760 
761 /*
762  * Complete a fast commit by writing tail tag.
763  *
764  * Writing tail tag marks the end of a fast commit. In order to guarantee
765  * atomicity, after writing tail tag, even if there's space remaining
766  * in the block, next commit shouldn't use it. That's why tail tag
767  * has the length as that of the remaining space on the block.
768  */
769 static int ext4_fc_write_tail(struct super_block *sb, u32 crc)
770 {
771 	struct ext4_sb_info *sbi = EXT4_SB(sb);
772 	struct ext4_fc_tl tl;
773 	struct ext4_fc_tail tail;
774 	int off, bsize = sbi->s_journal->j_blocksize;
775 	u8 *dst;
776 
777 	/*
778 	 * ext4_fc_reserve_space takes care of allocating an extra block if
779 	 * there's no enough space on this block for accommodating this tail.
780 	 */
781 	dst = ext4_fc_reserve_space(sb, EXT4_FC_TAG_BASE_LEN + sizeof(tail), &crc);
782 	if (!dst)
783 		return -ENOSPC;
784 
785 	off = sbi->s_fc_bytes % bsize;
786 
787 	tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_TAIL);
788 	tl.fc_len = cpu_to_le16(bsize - off + sizeof(struct ext4_fc_tail));
789 	sbi->s_fc_bytes = round_up(sbi->s_fc_bytes, bsize);
790 
791 	memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
792 	dst += EXT4_FC_TAG_BASE_LEN;
793 	tail.fc_tid = cpu_to_le32(sbi->s_journal->j_running_transaction->t_tid);
794 	memcpy(dst, &tail.fc_tid, sizeof(tail.fc_tid));
795 	dst += sizeof(tail.fc_tid);
796 	crc = ext4_chksum(sbi, crc, sbi->s_fc_bh->b_data,
797 			  dst - (u8 *)sbi->s_fc_bh->b_data);
798 	tail.fc_crc = cpu_to_le32(crc);
799 	memcpy(dst, &tail.fc_crc, sizeof(tail.fc_crc));
800 	dst += sizeof(tail.fc_crc);
801 	memset(dst, 0, bsize - off); /* Don't leak uninitialized memory. */
802 
803 	ext4_fc_submit_bh(sb, true);
804 
805 	return 0;
806 }
807 
808 /*
809  * Adds tag, length, value and updates CRC. Returns true if tlv was added.
810  * Returns false if there's not enough space.
811  */
812 static bool ext4_fc_add_tlv(struct super_block *sb, u16 tag, u16 len, u8 *val,
813 			   u32 *crc)
814 {
815 	struct ext4_fc_tl tl;
816 	u8 *dst;
817 
818 	dst = ext4_fc_reserve_space(sb, EXT4_FC_TAG_BASE_LEN + len, crc);
819 	if (!dst)
820 		return false;
821 
822 	tl.fc_tag = cpu_to_le16(tag);
823 	tl.fc_len = cpu_to_le16(len);
824 
825 	memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
826 	memcpy(dst + EXT4_FC_TAG_BASE_LEN, val, len);
827 
828 	return true;
829 }
830 
831 /* Same as above, but adds dentry tlv. */
832 static bool ext4_fc_add_dentry_tlv(struct super_block *sb, u32 *crc,
833 				   struct ext4_fc_dentry_update *fc_dentry)
834 {
835 	struct ext4_fc_dentry_info fcd;
836 	struct ext4_fc_tl tl;
837 	int dlen = fc_dentry->fcd_name.len;
838 	u8 *dst = ext4_fc_reserve_space(sb,
839 			EXT4_FC_TAG_BASE_LEN + sizeof(fcd) + dlen, crc);
840 
841 	if (!dst)
842 		return false;
843 
844 	fcd.fc_parent_ino = cpu_to_le32(fc_dentry->fcd_parent);
845 	fcd.fc_ino = cpu_to_le32(fc_dentry->fcd_ino);
846 	tl.fc_tag = cpu_to_le16(fc_dentry->fcd_op);
847 	tl.fc_len = cpu_to_le16(sizeof(fcd) + dlen);
848 	memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
849 	dst += EXT4_FC_TAG_BASE_LEN;
850 	memcpy(dst, &fcd, sizeof(fcd));
851 	dst += sizeof(fcd);
852 	memcpy(dst, fc_dentry->fcd_name.name, dlen);
853 
854 	return true;
855 }
856 
857 /*
858  * Writes inode in the fast commit space under TLV with tag @tag.
859  * Returns 0 on success, error on failure.
860  */
861 static int ext4_fc_write_inode(struct inode *inode, u32 *crc)
862 {
863 	struct ext4_inode_info *ei = EXT4_I(inode);
864 	int inode_len = EXT4_GOOD_OLD_INODE_SIZE;
865 	int ret;
866 	struct ext4_iloc iloc;
867 	struct ext4_fc_inode fc_inode;
868 	struct ext4_fc_tl tl;
869 	u8 *dst;
870 
871 	ret = ext4_get_inode_loc(inode, &iloc);
872 	if (ret)
873 		return ret;
874 
875 	if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA))
876 		inode_len = EXT4_INODE_SIZE(inode->i_sb);
877 	else if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE)
878 		inode_len += ei->i_extra_isize;
879 
880 	fc_inode.fc_ino = cpu_to_le32(inode->i_ino);
881 	tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_INODE);
882 	tl.fc_len = cpu_to_le16(inode_len + sizeof(fc_inode.fc_ino));
883 
884 	ret = -ECANCELED;
885 	dst = ext4_fc_reserve_space(inode->i_sb,
886 		EXT4_FC_TAG_BASE_LEN + inode_len + sizeof(fc_inode.fc_ino), crc);
887 	if (!dst)
888 		goto err;
889 
890 	memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
891 	dst += EXT4_FC_TAG_BASE_LEN;
892 	memcpy(dst, &fc_inode, sizeof(fc_inode));
893 	dst += sizeof(fc_inode);
894 	memcpy(dst, (u8 *)ext4_raw_inode(&iloc), inode_len);
895 	ret = 0;
896 err:
897 	brelse(iloc.bh);
898 	return ret;
899 }
900 
901 /*
902  * Writes updated data ranges for the inode in question. Updates CRC.
903  * Returns 0 on success, error otherwise.
904  */
905 static int ext4_fc_write_inode_data(struct inode *inode, u32 *crc)
906 {
907 	ext4_lblk_t old_blk_size, cur_lblk_off, new_blk_size;
908 	struct ext4_inode_info *ei = EXT4_I(inode);
909 	struct ext4_map_blocks map;
910 	struct ext4_fc_add_range fc_ext;
911 	struct ext4_fc_del_range lrange;
912 	struct ext4_extent *ex;
913 	int ret;
914 
915 	mutex_lock(&ei->i_fc_lock);
916 	if (ei->i_fc_lblk_len == 0) {
917 		mutex_unlock(&ei->i_fc_lock);
918 		return 0;
919 	}
920 	old_blk_size = ei->i_fc_lblk_start;
921 	new_blk_size = ei->i_fc_lblk_start + ei->i_fc_lblk_len - 1;
922 	ei->i_fc_lblk_len = 0;
923 	mutex_unlock(&ei->i_fc_lock);
924 
925 	cur_lblk_off = old_blk_size;
926 	ext4_debug("will try writing %d to %d for inode %ld\n",
927 		   cur_lblk_off, new_blk_size, inode->i_ino);
928 
929 	while (cur_lblk_off <= new_blk_size) {
930 		map.m_lblk = cur_lblk_off;
931 		map.m_len = new_blk_size - cur_lblk_off + 1;
932 		ret = ext4_map_blocks(NULL, inode, &map, 0);
933 		if (ret < 0)
934 			return -ECANCELED;
935 
936 		if (map.m_len == 0) {
937 			cur_lblk_off++;
938 			continue;
939 		}
940 
941 		if (ret == 0) {
942 			lrange.fc_ino = cpu_to_le32(inode->i_ino);
943 			lrange.fc_lblk = cpu_to_le32(map.m_lblk);
944 			lrange.fc_len = cpu_to_le32(map.m_len);
945 			if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_DEL_RANGE,
946 					    sizeof(lrange), (u8 *)&lrange, crc))
947 				return -ENOSPC;
948 		} else {
949 			unsigned int max = (map.m_flags & EXT4_MAP_UNWRITTEN) ?
950 				EXT_UNWRITTEN_MAX_LEN : EXT_INIT_MAX_LEN;
951 
952 			/* Limit the number of blocks in one extent */
953 			map.m_len = min(max, map.m_len);
954 
955 			fc_ext.fc_ino = cpu_to_le32(inode->i_ino);
956 			ex = (struct ext4_extent *)&fc_ext.fc_ex;
957 			ex->ee_block = cpu_to_le32(map.m_lblk);
958 			ex->ee_len = cpu_to_le16(map.m_len);
959 			ext4_ext_store_pblock(ex, map.m_pblk);
960 			if (map.m_flags & EXT4_MAP_UNWRITTEN)
961 				ext4_ext_mark_unwritten(ex);
962 			else
963 				ext4_ext_mark_initialized(ex);
964 			if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_ADD_RANGE,
965 					    sizeof(fc_ext), (u8 *)&fc_ext, crc))
966 				return -ENOSPC;
967 		}
968 
969 		cur_lblk_off += map.m_len;
970 	}
971 
972 	return 0;
973 }
974 
975 
976 /* Submit data for all the fast commit inodes */
977 static int ext4_fc_submit_inode_data_all(journal_t *journal)
978 {
979 	struct super_block *sb = journal->j_private;
980 	struct ext4_sb_info *sbi = EXT4_SB(sb);
981 	struct ext4_inode_info *ei;
982 	int ret = 0;
983 
984 	spin_lock(&sbi->s_fc_lock);
985 	list_for_each_entry(ei, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
986 		ext4_set_inode_state(&ei->vfs_inode, EXT4_STATE_FC_COMMITTING);
987 		while (atomic_read(&ei->i_fc_updates)) {
988 			DEFINE_WAIT(wait);
989 
990 			prepare_to_wait(&ei->i_fc_wait, &wait,
991 						TASK_UNINTERRUPTIBLE);
992 			if (atomic_read(&ei->i_fc_updates)) {
993 				spin_unlock(&sbi->s_fc_lock);
994 				schedule();
995 				spin_lock(&sbi->s_fc_lock);
996 			}
997 			finish_wait(&ei->i_fc_wait, &wait);
998 		}
999 		spin_unlock(&sbi->s_fc_lock);
1000 		ret = jbd2_submit_inode_data(journal, ei->jinode);
1001 		if (ret)
1002 			return ret;
1003 		spin_lock(&sbi->s_fc_lock);
1004 	}
1005 	spin_unlock(&sbi->s_fc_lock);
1006 
1007 	return ret;
1008 }
1009 
1010 /* Wait for completion of data for all the fast commit inodes */
1011 static int ext4_fc_wait_inode_data_all(journal_t *journal)
1012 {
1013 	struct super_block *sb = journal->j_private;
1014 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1015 	struct ext4_inode_info *pos, *n;
1016 	int ret = 0;
1017 
1018 	spin_lock(&sbi->s_fc_lock);
1019 	list_for_each_entry_safe(pos, n, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
1020 		if (!ext4_test_inode_state(&pos->vfs_inode,
1021 					   EXT4_STATE_FC_COMMITTING))
1022 			continue;
1023 		spin_unlock(&sbi->s_fc_lock);
1024 
1025 		ret = jbd2_wait_inode_data(journal, pos->jinode);
1026 		if (ret)
1027 			return ret;
1028 		spin_lock(&sbi->s_fc_lock);
1029 	}
1030 	spin_unlock(&sbi->s_fc_lock);
1031 
1032 	return 0;
1033 }
1034 
1035 /* Commit all the directory entry updates */
1036 static int ext4_fc_commit_dentry_updates(journal_t *journal, u32 *crc)
1037 __acquires(&sbi->s_fc_lock)
1038 __releases(&sbi->s_fc_lock)
1039 {
1040 	struct super_block *sb = journal->j_private;
1041 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1042 	struct ext4_fc_dentry_update *fc_dentry, *fc_dentry_n;
1043 	struct inode *inode;
1044 	struct ext4_inode_info *ei;
1045 	int ret;
1046 
1047 	if (list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN]))
1048 		return 0;
1049 	list_for_each_entry_safe(fc_dentry, fc_dentry_n,
1050 				 &sbi->s_fc_dentry_q[FC_Q_MAIN], fcd_list) {
1051 		if (fc_dentry->fcd_op != EXT4_FC_TAG_CREAT) {
1052 			spin_unlock(&sbi->s_fc_lock);
1053 			if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry)) {
1054 				ret = -ENOSPC;
1055 				goto lock_and_exit;
1056 			}
1057 			spin_lock(&sbi->s_fc_lock);
1058 			continue;
1059 		}
1060 		/*
1061 		 * With fcd_dilist we need not loop in sbi->s_fc_q to get the
1062 		 * corresponding inode pointer
1063 		 */
1064 		WARN_ON(list_empty(&fc_dentry->fcd_dilist));
1065 		ei = list_first_entry(&fc_dentry->fcd_dilist,
1066 				struct ext4_inode_info, i_fc_dilist);
1067 		inode = &ei->vfs_inode;
1068 		WARN_ON(inode->i_ino != fc_dentry->fcd_ino);
1069 
1070 		spin_unlock(&sbi->s_fc_lock);
1071 
1072 		/*
1073 		 * We first write the inode and then the create dirent. This
1074 		 * allows the recovery code to create an unnamed inode first
1075 		 * and then link it to a directory entry. This allows us
1076 		 * to use namei.c routines almost as is and simplifies
1077 		 * the recovery code.
1078 		 */
1079 		ret = ext4_fc_write_inode(inode, crc);
1080 		if (ret)
1081 			goto lock_and_exit;
1082 
1083 		ret = ext4_fc_write_inode_data(inode, crc);
1084 		if (ret)
1085 			goto lock_and_exit;
1086 
1087 		if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry)) {
1088 			ret = -ENOSPC;
1089 			goto lock_and_exit;
1090 		}
1091 
1092 		spin_lock(&sbi->s_fc_lock);
1093 	}
1094 	return 0;
1095 lock_and_exit:
1096 	spin_lock(&sbi->s_fc_lock);
1097 	return ret;
1098 }
1099 
1100 static int ext4_fc_perform_commit(journal_t *journal)
1101 {
1102 	struct super_block *sb = journal->j_private;
1103 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1104 	struct ext4_inode_info *iter;
1105 	struct ext4_fc_head head;
1106 	struct inode *inode;
1107 	struct blk_plug plug;
1108 	int ret = 0;
1109 	u32 crc = 0;
1110 
1111 	ret = ext4_fc_submit_inode_data_all(journal);
1112 	if (ret)
1113 		return ret;
1114 
1115 	ret = ext4_fc_wait_inode_data_all(journal);
1116 	if (ret)
1117 		return ret;
1118 
1119 	/*
1120 	 * If file system device is different from journal device, issue a cache
1121 	 * flush before we start writing fast commit blocks.
1122 	 */
1123 	if (journal->j_fs_dev != journal->j_dev)
1124 		blkdev_issue_flush(journal->j_fs_dev);
1125 
1126 	blk_start_plug(&plug);
1127 	if (sbi->s_fc_bytes == 0) {
1128 		/*
1129 		 * Add a head tag only if this is the first fast commit
1130 		 * in this TID.
1131 		 */
1132 		head.fc_features = cpu_to_le32(EXT4_FC_SUPPORTED_FEATURES);
1133 		head.fc_tid = cpu_to_le32(
1134 			sbi->s_journal->j_running_transaction->t_tid);
1135 		if (!ext4_fc_add_tlv(sb, EXT4_FC_TAG_HEAD, sizeof(head),
1136 			(u8 *)&head, &crc)) {
1137 			ret = -ENOSPC;
1138 			goto out;
1139 		}
1140 	}
1141 
1142 	spin_lock(&sbi->s_fc_lock);
1143 	ret = ext4_fc_commit_dentry_updates(journal, &crc);
1144 	if (ret) {
1145 		spin_unlock(&sbi->s_fc_lock);
1146 		goto out;
1147 	}
1148 
1149 	list_for_each_entry(iter, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
1150 		inode = &iter->vfs_inode;
1151 		if (!ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING))
1152 			continue;
1153 
1154 		spin_unlock(&sbi->s_fc_lock);
1155 		ret = ext4_fc_write_inode_data(inode, &crc);
1156 		if (ret)
1157 			goto out;
1158 		ret = ext4_fc_write_inode(inode, &crc);
1159 		if (ret)
1160 			goto out;
1161 		spin_lock(&sbi->s_fc_lock);
1162 	}
1163 	spin_unlock(&sbi->s_fc_lock);
1164 
1165 	ret = ext4_fc_write_tail(sb, crc);
1166 
1167 out:
1168 	blk_finish_plug(&plug);
1169 	return ret;
1170 }
1171 
1172 static void ext4_fc_update_stats(struct super_block *sb, int status,
1173 				 u64 commit_time, int nblks, tid_t commit_tid)
1174 {
1175 	struct ext4_fc_stats *stats = &EXT4_SB(sb)->s_fc_stats;
1176 
1177 	ext4_debug("Fast commit ended with status = %d for tid %u",
1178 			status, commit_tid);
1179 	if (status == EXT4_FC_STATUS_OK) {
1180 		stats->fc_num_commits++;
1181 		stats->fc_numblks += nblks;
1182 		if (likely(stats->s_fc_avg_commit_time))
1183 			stats->s_fc_avg_commit_time =
1184 				(commit_time +
1185 				 stats->s_fc_avg_commit_time * 3) / 4;
1186 		else
1187 			stats->s_fc_avg_commit_time = commit_time;
1188 	} else if (status == EXT4_FC_STATUS_FAILED ||
1189 		   status == EXT4_FC_STATUS_INELIGIBLE) {
1190 		if (status == EXT4_FC_STATUS_FAILED)
1191 			stats->fc_failed_commits++;
1192 		stats->fc_ineligible_commits++;
1193 	} else {
1194 		stats->fc_skipped_commits++;
1195 	}
1196 	trace_ext4_fc_commit_stop(sb, nblks, status, commit_tid);
1197 }
1198 
1199 /*
1200  * The main commit entry point. Performs a fast commit for transaction
1201  * commit_tid if needed. If it's not possible to perform a fast commit
1202  * due to various reasons, we fall back to full commit. Returns 0
1203  * on success, error otherwise.
1204  */
1205 int ext4_fc_commit(journal_t *journal, tid_t commit_tid)
1206 {
1207 	struct super_block *sb = journal->j_private;
1208 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1209 	int nblks = 0, ret, bsize = journal->j_blocksize;
1210 	int subtid = atomic_read(&sbi->s_fc_subtid);
1211 	int status = EXT4_FC_STATUS_OK, fc_bufs_before = 0;
1212 	ktime_t start_time, commit_time;
1213 
1214 	if (!test_opt2(sb, JOURNAL_FAST_COMMIT))
1215 		return jbd2_complete_transaction(journal, commit_tid);
1216 
1217 	trace_ext4_fc_commit_start(sb, commit_tid);
1218 
1219 	start_time = ktime_get();
1220 
1221 restart_fc:
1222 	ret = jbd2_fc_begin_commit(journal, commit_tid);
1223 	if (ret == -EALREADY) {
1224 		/* There was an ongoing commit, check if we need to restart */
1225 		if (atomic_read(&sbi->s_fc_subtid) <= subtid &&
1226 		    tid_gt(commit_tid, journal->j_commit_sequence))
1227 			goto restart_fc;
1228 		ext4_fc_update_stats(sb, EXT4_FC_STATUS_SKIPPED, 0, 0,
1229 				commit_tid);
1230 		return 0;
1231 	} else if (ret) {
1232 		/*
1233 		 * Commit couldn't start. Just update stats and perform a
1234 		 * full commit.
1235 		 */
1236 		ext4_fc_update_stats(sb, EXT4_FC_STATUS_FAILED, 0, 0,
1237 				commit_tid);
1238 		return jbd2_complete_transaction(journal, commit_tid);
1239 	}
1240 
1241 	/*
1242 	 * After establishing journal barrier via jbd2_fc_begin_commit(), check
1243 	 * if we are fast commit ineligible.
1244 	 */
1245 	if (ext4_test_mount_flag(sb, EXT4_MF_FC_INELIGIBLE)) {
1246 		status = EXT4_FC_STATUS_INELIGIBLE;
1247 		goto fallback;
1248 	}
1249 
1250 	fc_bufs_before = (sbi->s_fc_bytes + bsize - 1) / bsize;
1251 	ret = ext4_fc_perform_commit(journal);
1252 	if (ret < 0) {
1253 		status = EXT4_FC_STATUS_FAILED;
1254 		goto fallback;
1255 	}
1256 	nblks = (sbi->s_fc_bytes + bsize - 1) / bsize - fc_bufs_before;
1257 	ret = jbd2_fc_wait_bufs(journal, nblks);
1258 	if (ret < 0) {
1259 		status = EXT4_FC_STATUS_FAILED;
1260 		goto fallback;
1261 	}
1262 	atomic_inc(&sbi->s_fc_subtid);
1263 	ret = jbd2_fc_end_commit(journal);
1264 	/*
1265 	 * weight the commit time higher than the average time so we
1266 	 * don't react too strongly to vast changes in the commit time
1267 	 */
1268 	commit_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
1269 	ext4_fc_update_stats(sb, status, commit_time, nblks, commit_tid);
1270 	return ret;
1271 
1272 fallback:
1273 	ret = jbd2_fc_end_commit_fallback(journal);
1274 	ext4_fc_update_stats(sb, status, 0, 0, commit_tid);
1275 	return ret;
1276 }
1277 
1278 /*
1279  * Fast commit cleanup routine. This is called after every fast commit and
1280  * full commit. full is true if we are called after a full commit.
1281  */
1282 static void ext4_fc_cleanup(journal_t *journal, int full, tid_t tid)
1283 {
1284 	struct super_block *sb = journal->j_private;
1285 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1286 	struct ext4_inode_info *iter, *iter_n;
1287 	struct ext4_fc_dentry_update *fc_dentry;
1288 
1289 	if (full && sbi->s_fc_bh)
1290 		sbi->s_fc_bh = NULL;
1291 
1292 	trace_ext4_fc_cleanup(journal, full, tid);
1293 	jbd2_fc_release_bufs(journal);
1294 
1295 	spin_lock(&sbi->s_fc_lock);
1296 	list_for_each_entry_safe(iter, iter_n, &sbi->s_fc_q[FC_Q_MAIN],
1297 				 i_fc_list) {
1298 		list_del_init(&iter->i_fc_list);
1299 		ext4_clear_inode_state(&iter->vfs_inode,
1300 				       EXT4_STATE_FC_COMMITTING);
1301 		if (tid_geq(tid, iter->i_sync_tid)) {
1302 			ext4_fc_reset_inode(&iter->vfs_inode);
1303 		} else if (full) {
1304 			/*
1305 			 * We are called after a full commit, inode has been
1306 			 * modified while the commit was running. Re-enqueue
1307 			 * the inode into STAGING, which will then be splice
1308 			 * back into MAIN. This cannot happen during
1309 			 * fastcommit because the journal is locked all the
1310 			 * time in that case (and tid doesn't increase so
1311 			 * tid check above isn't reliable).
1312 			 */
1313 			list_add_tail(&EXT4_I(&iter->vfs_inode)->i_fc_list,
1314 				      &sbi->s_fc_q[FC_Q_STAGING]);
1315 		}
1316 		/* Make sure EXT4_STATE_FC_COMMITTING bit is clear */
1317 		smp_mb();
1318 #if (BITS_PER_LONG < 64)
1319 		wake_up_bit(&iter->i_state_flags, EXT4_STATE_FC_COMMITTING);
1320 #else
1321 		wake_up_bit(&iter->i_flags, EXT4_STATE_FC_COMMITTING);
1322 #endif
1323 	}
1324 
1325 	while (!list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN])) {
1326 		fc_dentry = list_first_entry(&sbi->s_fc_dentry_q[FC_Q_MAIN],
1327 					     struct ext4_fc_dentry_update,
1328 					     fcd_list);
1329 		list_del_init(&fc_dentry->fcd_list);
1330 		list_del_init(&fc_dentry->fcd_dilist);
1331 		spin_unlock(&sbi->s_fc_lock);
1332 
1333 		if (fc_dentry->fcd_name.name &&
1334 			fc_dentry->fcd_name.len > DNAME_INLINE_LEN)
1335 			kfree(fc_dentry->fcd_name.name);
1336 		kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry);
1337 		spin_lock(&sbi->s_fc_lock);
1338 	}
1339 
1340 	list_splice_init(&sbi->s_fc_dentry_q[FC_Q_STAGING],
1341 				&sbi->s_fc_dentry_q[FC_Q_MAIN]);
1342 	list_splice_init(&sbi->s_fc_q[FC_Q_STAGING],
1343 				&sbi->s_fc_q[FC_Q_MAIN]);
1344 
1345 	if (tid_geq(tid, sbi->s_fc_ineligible_tid)) {
1346 		sbi->s_fc_ineligible_tid = 0;
1347 		ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
1348 	}
1349 
1350 	if (full)
1351 		sbi->s_fc_bytes = 0;
1352 	spin_unlock(&sbi->s_fc_lock);
1353 	trace_ext4_fc_stats(sb);
1354 }
1355 
1356 /* Ext4 Replay Path Routines */
1357 
1358 /* Helper struct for dentry replay routines */
1359 struct dentry_info_args {
1360 	int parent_ino, dname_len, ino, inode_len;
1361 	char *dname;
1362 };
1363 
1364 /* Same as struct ext4_fc_tl, but uses native endianness fields */
1365 struct ext4_fc_tl_mem {
1366 	u16 fc_tag;
1367 	u16 fc_len;
1368 };
1369 
1370 static inline void tl_to_darg(struct dentry_info_args *darg,
1371 			      struct ext4_fc_tl_mem *tl, u8 *val)
1372 {
1373 	struct ext4_fc_dentry_info fcd;
1374 
1375 	memcpy(&fcd, val, sizeof(fcd));
1376 
1377 	darg->parent_ino = le32_to_cpu(fcd.fc_parent_ino);
1378 	darg->ino = le32_to_cpu(fcd.fc_ino);
1379 	darg->dname = val + offsetof(struct ext4_fc_dentry_info, fc_dname);
1380 	darg->dname_len = tl->fc_len - sizeof(struct ext4_fc_dentry_info);
1381 }
1382 
1383 static inline void ext4_fc_get_tl(struct ext4_fc_tl_mem *tl, u8 *val)
1384 {
1385 	struct ext4_fc_tl tl_disk;
1386 
1387 	memcpy(&tl_disk, val, EXT4_FC_TAG_BASE_LEN);
1388 	tl->fc_len = le16_to_cpu(tl_disk.fc_len);
1389 	tl->fc_tag = le16_to_cpu(tl_disk.fc_tag);
1390 }
1391 
1392 /* Unlink replay function */
1393 static int ext4_fc_replay_unlink(struct super_block *sb,
1394 				 struct ext4_fc_tl_mem *tl, u8 *val)
1395 {
1396 	struct inode *inode, *old_parent;
1397 	struct qstr entry;
1398 	struct dentry_info_args darg;
1399 	int ret = 0;
1400 
1401 	tl_to_darg(&darg, tl, val);
1402 
1403 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_UNLINK, darg.ino,
1404 			darg.parent_ino, darg.dname_len);
1405 
1406 	entry.name = darg.dname;
1407 	entry.len = darg.dname_len;
1408 	inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1409 
1410 	if (IS_ERR(inode)) {
1411 		ext4_debug("Inode %d not found", darg.ino);
1412 		return 0;
1413 	}
1414 
1415 	old_parent = ext4_iget(sb, darg.parent_ino,
1416 				EXT4_IGET_NORMAL);
1417 	if (IS_ERR(old_parent)) {
1418 		ext4_debug("Dir with inode %d not found", darg.parent_ino);
1419 		iput(inode);
1420 		return 0;
1421 	}
1422 
1423 	ret = __ext4_unlink(old_parent, &entry, inode, NULL);
1424 	/* -ENOENT ok coz it might not exist anymore. */
1425 	if (ret == -ENOENT)
1426 		ret = 0;
1427 	iput(old_parent);
1428 	iput(inode);
1429 	return ret;
1430 }
1431 
1432 static int ext4_fc_replay_link_internal(struct super_block *sb,
1433 				struct dentry_info_args *darg,
1434 				struct inode *inode)
1435 {
1436 	struct inode *dir = NULL;
1437 	struct dentry *dentry_dir = NULL, *dentry_inode = NULL;
1438 	struct qstr qstr_dname = QSTR_INIT(darg->dname, darg->dname_len);
1439 	int ret = 0;
1440 
1441 	dir = ext4_iget(sb, darg->parent_ino, EXT4_IGET_NORMAL);
1442 	if (IS_ERR(dir)) {
1443 		ext4_debug("Dir with inode %d not found.", darg->parent_ino);
1444 		dir = NULL;
1445 		goto out;
1446 	}
1447 
1448 	dentry_dir = d_obtain_alias(dir);
1449 	if (IS_ERR(dentry_dir)) {
1450 		ext4_debug("Failed to obtain dentry");
1451 		dentry_dir = NULL;
1452 		goto out;
1453 	}
1454 
1455 	dentry_inode = d_alloc(dentry_dir, &qstr_dname);
1456 	if (!dentry_inode) {
1457 		ext4_debug("Inode dentry not created.");
1458 		ret = -ENOMEM;
1459 		goto out;
1460 	}
1461 
1462 	ret = __ext4_link(dir, inode, dentry_inode);
1463 	/*
1464 	 * It's possible that link already existed since data blocks
1465 	 * for the dir in question got persisted before we crashed OR
1466 	 * we replayed this tag and crashed before the entire replay
1467 	 * could complete.
1468 	 */
1469 	if (ret && ret != -EEXIST) {
1470 		ext4_debug("Failed to link\n");
1471 		goto out;
1472 	}
1473 
1474 	ret = 0;
1475 out:
1476 	if (dentry_dir) {
1477 		d_drop(dentry_dir);
1478 		dput(dentry_dir);
1479 	} else if (dir) {
1480 		iput(dir);
1481 	}
1482 	if (dentry_inode) {
1483 		d_drop(dentry_inode);
1484 		dput(dentry_inode);
1485 	}
1486 
1487 	return ret;
1488 }
1489 
1490 /* Link replay function */
1491 static int ext4_fc_replay_link(struct super_block *sb,
1492 			       struct ext4_fc_tl_mem *tl, u8 *val)
1493 {
1494 	struct inode *inode;
1495 	struct dentry_info_args darg;
1496 	int ret = 0;
1497 
1498 	tl_to_darg(&darg, tl, val);
1499 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_LINK, darg.ino,
1500 			darg.parent_ino, darg.dname_len);
1501 
1502 	inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1503 	if (IS_ERR(inode)) {
1504 		ext4_debug("Inode not found.");
1505 		return 0;
1506 	}
1507 
1508 	ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1509 	iput(inode);
1510 	return ret;
1511 }
1512 
1513 /*
1514  * Record all the modified inodes during replay. We use this later to setup
1515  * block bitmaps correctly.
1516  */
1517 static int ext4_fc_record_modified_inode(struct super_block *sb, int ino)
1518 {
1519 	struct ext4_fc_replay_state *state;
1520 	int i;
1521 
1522 	state = &EXT4_SB(sb)->s_fc_replay_state;
1523 	for (i = 0; i < state->fc_modified_inodes_used; i++)
1524 		if (state->fc_modified_inodes[i] == ino)
1525 			return 0;
1526 	if (state->fc_modified_inodes_used == state->fc_modified_inodes_size) {
1527 		int *fc_modified_inodes;
1528 
1529 		fc_modified_inodes = krealloc(state->fc_modified_inodes,
1530 				sizeof(int) * (state->fc_modified_inodes_size +
1531 				EXT4_FC_REPLAY_REALLOC_INCREMENT),
1532 				GFP_KERNEL);
1533 		if (!fc_modified_inodes)
1534 			return -ENOMEM;
1535 		state->fc_modified_inodes = fc_modified_inodes;
1536 		state->fc_modified_inodes_size +=
1537 			EXT4_FC_REPLAY_REALLOC_INCREMENT;
1538 	}
1539 	state->fc_modified_inodes[state->fc_modified_inodes_used++] = ino;
1540 	return 0;
1541 }
1542 
1543 /*
1544  * Inode replay function
1545  */
1546 static int ext4_fc_replay_inode(struct super_block *sb,
1547 				struct ext4_fc_tl_mem *tl, u8 *val)
1548 {
1549 	struct ext4_fc_inode fc_inode;
1550 	struct ext4_inode *raw_inode;
1551 	struct ext4_inode *raw_fc_inode;
1552 	struct inode *inode = NULL;
1553 	struct ext4_iloc iloc;
1554 	int inode_len, ino, ret, tag = tl->fc_tag;
1555 	struct ext4_extent_header *eh;
1556 	size_t off_gen = offsetof(struct ext4_inode, i_generation);
1557 
1558 	memcpy(&fc_inode, val, sizeof(fc_inode));
1559 
1560 	ino = le32_to_cpu(fc_inode.fc_ino);
1561 	trace_ext4_fc_replay(sb, tag, ino, 0, 0);
1562 
1563 	inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1564 	if (!IS_ERR(inode)) {
1565 		ext4_ext_clear_bb(inode);
1566 		iput(inode);
1567 	}
1568 	inode = NULL;
1569 
1570 	ret = ext4_fc_record_modified_inode(sb, ino);
1571 	if (ret)
1572 		goto out;
1573 
1574 	raw_fc_inode = (struct ext4_inode *)
1575 		(val + offsetof(struct ext4_fc_inode, fc_raw_inode));
1576 	ret = ext4_get_fc_inode_loc(sb, ino, &iloc);
1577 	if (ret)
1578 		goto out;
1579 
1580 	inode_len = tl->fc_len - sizeof(struct ext4_fc_inode);
1581 	raw_inode = ext4_raw_inode(&iloc);
1582 
1583 	memcpy(raw_inode, raw_fc_inode, offsetof(struct ext4_inode, i_block));
1584 	memcpy((u8 *)raw_inode + off_gen, (u8 *)raw_fc_inode + off_gen,
1585 	       inode_len - off_gen);
1586 	if (le32_to_cpu(raw_inode->i_flags) & EXT4_EXTENTS_FL) {
1587 		eh = (struct ext4_extent_header *)(&raw_inode->i_block[0]);
1588 		if (eh->eh_magic != EXT4_EXT_MAGIC) {
1589 			memset(eh, 0, sizeof(*eh));
1590 			eh->eh_magic = EXT4_EXT_MAGIC;
1591 			eh->eh_max = cpu_to_le16(
1592 				(sizeof(raw_inode->i_block) -
1593 				 sizeof(struct ext4_extent_header))
1594 				 / sizeof(struct ext4_extent));
1595 		}
1596 	} else if (le32_to_cpu(raw_inode->i_flags) & EXT4_INLINE_DATA_FL) {
1597 		memcpy(raw_inode->i_block, raw_fc_inode->i_block,
1598 			sizeof(raw_inode->i_block));
1599 	}
1600 
1601 	/* Immediately update the inode on disk. */
1602 	ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1603 	if (ret)
1604 		goto out;
1605 	ret = sync_dirty_buffer(iloc.bh);
1606 	if (ret)
1607 		goto out;
1608 	ret = ext4_mark_inode_used(sb, ino);
1609 	if (ret)
1610 		goto out;
1611 
1612 	/* Given that we just wrote the inode on disk, this SHOULD succeed. */
1613 	inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1614 	if (IS_ERR(inode)) {
1615 		ext4_debug("Inode not found.");
1616 		return -EFSCORRUPTED;
1617 	}
1618 
1619 	/*
1620 	 * Our allocator could have made different decisions than before
1621 	 * crashing. This should be fixed but until then, we calculate
1622 	 * the number of blocks the inode.
1623 	 */
1624 	if (!ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA))
1625 		ext4_ext_replay_set_iblocks(inode);
1626 
1627 	inode->i_generation = le32_to_cpu(ext4_raw_inode(&iloc)->i_generation);
1628 	ext4_reset_inode_seed(inode);
1629 
1630 	ext4_inode_csum_set(inode, ext4_raw_inode(&iloc), EXT4_I(inode));
1631 	ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1632 	sync_dirty_buffer(iloc.bh);
1633 	brelse(iloc.bh);
1634 out:
1635 	iput(inode);
1636 	if (!ret)
1637 		blkdev_issue_flush(sb->s_bdev);
1638 
1639 	return 0;
1640 }
1641 
1642 /*
1643  * Dentry create replay function.
1644  *
1645  * EXT4_FC_TAG_CREAT is preceded by EXT4_FC_TAG_INODE_FULL. Which means, the
1646  * inode for which we are trying to create a dentry here, should already have
1647  * been replayed before we start here.
1648  */
1649 static int ext4_fc_replay_create(struct super_block *sb,
1650 				 struct ext4_fc_tl_mem *tl, u8 *val)
1651 {
1652 	int ret = 0;
1653 	struct inode *inode = NULL;
1654 	struct inode *dir = NULL;
1655 	struct dentry_info_args darg;
1656 
1657 	tl_to_darg(&darg, tl, val);
1658 
1659 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_CREAT, darg.ino,
1660 			darg.parent_ino, darg.dname_len);
1661 
1662 	/* This takes care of update group descriptor and other metadata */
1663 	ret = ext4_mark_inode_used(sb, darg.ino);
1664 	if (ret)
1665 		goto out;
1666 
1667 	inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1668 	if (IS_ERR(inode)) {
1669 		ext4_debug("inode %d not found.", darg.ino);
1670 		inode = NULL;
1671 		ret = -EINVAL;
1672 		goto out;
1673 	}
1674 
1675 	if (S_ISDIR(inode->i_mode)) {
1676 		/*
1677 		 * If we are creating a directory, we need to make sure that the
1678 		 * dot and dot dot dirents are setup properly.
1679 		 */
1680 		dir = ext4_iget(sb, darg.parent_ino, EXT4_IGET_NORMAL);
1681 		if (IS_ERR(dir)) {
1682 			ext4_debug("Dir %d not found.", darg.ino);
1683 			goto out;
1684 		}
1685 		ret = ext4_init_new_dir(NULL, dir, inode);
1686 		iput(dir);
1687 		if (ret) {
1688 			ret = 0;
1689 			goto out;
1690 		}
1691 	}
1692 	ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1693 	if (ret)
1694 		goto out;
1695 	set_nlink(inode, 1);
1696 	ext4_mark_inode_dirty(NULL, inode);
1697 out:
1698 	iput(inode);
1699 	return ret;
1700 }
1701 
1702 /*
1703  * Record physical disk regions which are in use as per fast commit area,
1704  * and used by inodes during replay phase. Our simple replay phase
1705  * allocator excludes these regions from allocation.
1706  */
1707 int ext4_fc_record_regions(struct super_block *sb, int ino,
1708 		ext4_lblk_t lblk, ext4_fsblk_t pblk, int len, int replay)
1709 {
1710 	struct ext4_fc_replay_state *state;
1711 	struct ext4_fc_alloc_region *region;
1712 
1713 	state = &EXT4_SB(sb)->s_fc_replay_state;
1714 	/*
1715 	 * during replay phase, the fc_regions_valid may not same as
1716 	 * fc_regions_used, update it when do new additions.
1717 	 */
1718 	if (replay && state->fc_regions_used != state->fc_regions_valid)
1719 		state->fc_regions_used = state->fc_regions_valid;
1720 	if (state->fc_regions_used == state->fc_regions_size) {
1721 		struct ext4_fc_alloc_region *fc_regions;
1722 
1723 		fc_regions = krealloc(state->fc_regions,
1724 				      sizeof(struct ext4_fc_alloc_region) *
1725 				      (state->fc_regions_size +
1726 				       EXT4_FC_REPLAY_REALLOC_INCREMENT),
1727 				      GFP_KERNEL);
1728 		if (!fc_regions)
1729 			return -ENOMEM;
1730 		state->fc_regions_size +=
1731 			EXT4_FC_REPLAY_REALLOC_INCREMENT;
1732 		state->fc_regions = fc_regions;
1733 	}
1734 	region = &state->fc_regions[state->fc_regions_used++];
1735 	region->ino = ino;
1736 	region->lblk = lblk;
1737 	region->pblk = pblk;
1738 	region->len = len;
1739 
1740 	if (replay)
1741 		state->fc_regions_valid++;
1742 
1743 	return 0;
1744 }
1745 
1746 /* Replay add range tag */
1747 static int ext4_fc_replay_add_range(struct super_block *sb,
1748 				    struct ext4_fc_tl_mem *tl, u8 *val)
1749 {
1750 	struct ext4_fc_add_range fc_add_ex;
1751 	struct ext4_extent newex, *ex;
1752 	struct inode *inode;
1753 	ext4_lblk_t start, cur;
1754 	int remaining, len;
1755 	ext4_fsblk_t start_pblk;
1756 	struct ext4_map_blocks map;
1757 	struct ext4_ext_path *path = NULL;
1758 	int ret;
1759 
1760 	memcpy(&fc_add_ex, val, sizeof(fc_add_ex));
1761 	ex = (struct ext4_extent *)&fc_add_ex.fc_ex;
1762 
1763 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_ADD_RANGE,
1764 		le32_to_cpu(fc_add_ex.fc_ino), le32_to_cpu(ex->ee_block),
1765 		ext4_ext_get_actual_len(ex));
1766 
1767 	inode = ext4_iget(sb, le32_to_cpu(fc_add_ex.fc_ino), EXT4_IGET_NORMAL);
1768 	if (IS_ERR(inode)) {
1769 		ext4_debug("Inode not found.");
1770 		return 0;
1771 	}
1772 
1773 	ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1774 	if (ret)
1775 		goto out;
1776 
1777 	start = le32_to_cpu(ex->ee_block);
1778 	start_pblk = ext4_ext_pblock(ex);
1779 	len = ext4_ext_get_actual_len(ex);
1780 
1781 	cur = start;
1782 	remaining = len;
1783 	ext4_debug("ADD_RANGE, lblk %d, pblk %lld, len %d, unwritten %d, inode %ld\n",
1784 		  start, start_pblk, len, ext4_ext_is_unwritten(ex),
1785 		  inode->i_ino);
1786 
1787 	while (remaining > 0) {
1788 		map.m_lblk = cur;
1789 		map.m_len = remaining;
1790 		map.m_pblk = 0;
1791 		ret = ext4_map_blocks(NULL, inode, &map, 0);
1792 
1793 		if (ret < 0)
1794 			goto out;
1795 
1796 		if (ret == 0) {
1797 			/* Range is not mapped */
1798 			path = ext4_find_extent(inode, cur, NULL, 0);
1799 			if (IS_ERR(path))
1800 				goto out;
1801 			memset(&newex, 0, sizeof(newex));
1802 			newex.ee_block = cpu_to_le32(cur);
1803 			ext4_ext_store_pblock(
1804 				&newex, start_pblk + cur - start);
1805 			newex.ee_len = cpu_to_le16(map.m_len);
1806 			if (ext4_ext_is_unwritten(ex))
1807 				ext4_ext_mark_unwritten(&newex);
1808 			down_write(&EXT4_I(inode)->i_data_sem);
1809 			ret = ext4_ext_insert_extent(
1810 				NULL, inode, &path, &newex, 0);
1811 			up_write((&EXT4_I(inode)->i_data_sem));
1812 			ext4_free_ext_path(path);
1813 			if (ret)
1814 				goto out;
1815 			goto next;
1816 		}
1817 
1818 		if (start_pblk + cur - start != map.m_pblk) {
1819 			/*
1820 			 * Logical to physical mapping changed. This can happen
1821 			 * if this range was removed and then reallocated to
1822 			 * map to new physical blocks during a fast commit.
1823 			 */
1824 			ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1825 					ext4_ext_is_unwritten(ex),
1826 					start_pblk + cur - start);
1827 			if (ret)
1828 				goto out;
1829 			/*
1830 			 * Mark the old blocks as free since they aren't used
1831 			 * anymore. We maintain an array of all the modified
1832 			 * inodes. In case these blocks are still used at either
1833 			 * a different logical range in the same inode or in
1834 			 * some different inode, we will mark them as allocated
1835 			 * at the end of the FC replay using our array of
1836 			 * modified inodes.
1837 			 */
1838 			ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 0);
1839 			goto next;
1840 		}
1841 
1842 		/* Range is mapped and needs a state change */
1843 		ext4_debug("Converting from %ld to %d %lld",
1844 				map.m_flags & EXT4_MAP_UNWRITTEN,
1845 			ext4_ext_is_unwritten(ex), map.m_pblk);
1846 		ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1847 					ext4_ext_is_unwritten(ex), map.m_pblk);
1848 		if (ret)
1849 			goto out;
1850 		/*
1851 		 * We may have split the extent tree while toggling the state.
1852 		 * Try to shrink the extent tree now.
1853 		 */
1854 		ext4_ext_replay_shrink_inode(inode, start + len);
1855 next:
1856 		cur += map.m_len;
1857 		remaining -= map.m_len;
1858 	}
1859 	ext4_ext_replay_shrink_inode(inode, i_size_read(inode) >>
1860 					sb->s_blocksize_bits);
1861 out:
1862 	iput(inode);
1863 	return 0;
1864 }
1865 
1866 /* Replay DEL_RANGE tag */
1867 static int
1868 ext4_fc_replay_del_range(struct super_block *sb,
1869 			 struct ext4_fc_tl_mem *tl, u8 *val)
1870 {
1871 	struct inode *inode;
1872 	struct ext4_fc_del_range lrange;
1873 	struct ext4_map_blocks map;
1874 	ext4_lblk_t cur, remaining;
1875 	int ret;
1876 
1877 	memcpy(&lrange, val, sizeof(lrange));
1878 	cur = le32_to_cpu(lrange.fc_lblk);
1879 	remaining = le32_to_cpu(lrange.fc_len);
1880 
1881 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_DEL_RANGE,
1882 		le32_to_cpu(lrange.fc_ino), cur, remaining);
1883 
1884 	inode = ext4_iget(sb, le32_to_cpu(lrange.fc_ino), EXT4_IGET_NORMAL);
1885 	if (IS_ERR(inode)) {
1886 		ext4_debug("Inode %d not found", le32_to_cpu(lrange.fc_ino));
1887 		return 0;
1888 	}
1889 
1890 	ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1891 	if (ret)
1892 		goto out;
1893 
1894 	ext4_debug("DEL_RANGE, inode %ld, lblk %d, len %d\n",
1895 			inode->i_ino, le32_to_cpu(lrange.fc_lblk),
1896 			le32_to_cpu(lrange.fc_len));
1897 	while (remaining > 0) {
1898 		map.m_lblk = cur;
1899 		map.m_len = remaining;
1900 
1901 		ret = ext4_map_blocks(NULL, inode, &map, 0);
1902 		if (ret < 0)
1903 			goto out;
1904 		if (ret > 0) {
1905 			remaining -= ret;
1906 			cur += ret;
1907 			ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 0);
1908 		} else {
1909 			remaining -= map.m_len;
1910 			cur += map.m_len;
1911 		}
1912 	}
1913 
1914 	down_write(&EXT4_I(inode)->i_data_sem);
1915 	ret = ext4_ext_remove_space(inode, le32_to_cpu(lrange.fc_lblk),
1916 				le32_to_cpu(lrange.fc_lblk) +
1917 				le32_to_cpu(lrange.fc_len) - 1);
1918 	up_write(&EXT4_I(inode)->i_data_sem);
1919 	if (ret)
1920 		goto out;
1921 	ext4_ext_replay_shrink_inode(inode,
1922 		i_size_read(inode) >> sb->s_blocksize_bits);
1923 	ext4_mark_inode_dirty(NULL, inode);
1924 out:
1925 	iput(inode);
1926 	return 0;
1927 }
1928 
1929 static void ext4_fc_set_bitmaps_and_counters(struct super_block *sb)
1930 {
1931 	struct ext4_fc_replay_state *state;
1932 	struct inode *inode;
1933 	struct ext4_ext_path *path = NULL;
1934 	struct ext4_map_blocks map;
1935 	int i, ret, j;
1936 	ext4_lblk_t cur, end;
1937 
1938 	state = &EXT4_SB(sb)->s_fc_replay_state;
1939 	for (i = 0; i < state->fc_modified_inodes_used; i++) {
1940 		inode = ext4_iget(sb, state->fc_modified_inodes[i],
1941 			EXT4_IGET_NORMAL);
1942 		if (IS_ERR(inode)) {
1943 			ext4_debug("Inode %d not found.",
1944 				state->fc_modified_inodes[i]);
1945 			continue;
1946 		}
1947 		cur = 0;
1948 		end = EXT_MAX_BLOCKS;
1949 		if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA)) {
1950 			iput(inode);
1951 			continue;
1952 		}
1953 		while (cur < end) {
1954 			map.m_lblk = cur;
1955 			map.m_len = end - cur;
1956 
1957 			ret = ext4_map_blocks(NULL, inode, &map, 0);
1958 			if (ret < 0)
1959 				break;
1960 
1961 			if (ret > 0) {
1962 				path = ext4_find_extent(inode, map.m_lblk, NULL, 0);
1963 				if (!IS_ERR(path)) {
1964 					for (j = 0; j < path->p_depth; j++)
1965 						ext4_mb_mark_bb(inode->i_sb,
1966 							path[j].p_block, 1, 1);
1967 					ext4_free_ext_path(path);
1968 				}
1969 				cur += ret;
1970 				ext4_mb_mark_bb(inode->i_sb, map.m_pblk,
1971 							map.m_len, 1);
1972 			} else {
1973 				cur = cur + (map.m_len ? map.m_len : 1);
1974 			}
1975 		}
1976 		iput(inode);
1977 	}
1978 }
1979 
1980 /*
1981  * Check if block is in excluded regions for block allocation. The simple
1982  * allocator that runs during replay phase is calls this function to see
1983  * if it is okay to use a block.
1984  */
1985 bool ext4_fc_replay_check_excluded(struct super_block *sb, ext4_fsblk_t blk)
1986 {
1987 	int i;
1988 	struct ext4_fc_replay_state *state;
1989 
1990 	state = &EXT4_SB(sb)->s_fc_replay_state;
1991 	for (i = 0; i < state->fc_regions_valid; i++) {
1992 		if (state->fc_regions[i].ino == 0 ||
1993 			state->fc_regions[i].len == 0)
1994 			continue;
1995 		if (in_range(blk, state->fc_regions[i].pblk,
1996 					state->fc_regions[i].len))
1997 			return true;
1998 	}
1999 	return false;
2000 }
2001 
2002 /* Cleanup function called after replay */
2003 void ext4_fc_replay_cleanup(struct super_block *sb)
2004 {
2005 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2006 
2007 	sbi->s_mount_state &= ~EXT4_FC_REPLAY;
2008 	kfree(sbi->s_fc_replay_state.fc_regions);
2009 	kfree(sbi->s_fc_replay_state.fc_modified_inodes);
2010 }
2011 
2012 static bool ext4_fc_value_len_isvalid(struct ext4_sb_info *sbi,
2013 				      int tag, int len)
2014 {
2015 	switch (tag) {
2016 	case EXT4_FC_TAG_ADD_RANGE:
2017 		return len == sizeof(struct ext4_fc_add_range);
2018 	case EXT4_FC_TAG_DEL_RANGE:
2019 		return len == sizeof(struct ext4_fc_del_range);
2020 	case EXT4_FC_TAG_CREAT:
2021 	case EXT4_FC_TAG_LINK:
2022 	case EXT4_FC_TAG_UNLINK:
2023 		len -= sizeof(struct ext4_fc_dentry_info);
2024 		return len >= 1 && len <= EXT4_NAME_LEN;
2025 	case EXT4_FC_TAG_INODE:
2026 		len -= sizeof(struct ext4_fc_inode);
2027 		return len >= EXT4_GOOD_OLD_INODE_SIZE &&
2028 			len <= sbi->s_inode_size;
2029 	case EXT4_FC_TAG_PAD:
2030 		return true; /* padding can have any length */
2031 	case EXT4_FC_TAG_TAIL:
2032 		return len >= sizeof(struct ext4_fc_tail);
2033 	case EXT4_FC_TAG_HEAD:
2034 		return len == sizeof(struct ext4_fc_head);
2035 	}
2036 	return false;
2037 }
2038 
2039 /*
2040  * Recovery Scan phase handler
2041  *
2042  * This function is called during the scan phase and is responsible
2043  * for doing following things:
2044  * - Make sure the fast commit area has valid tags for replay
2045  * - Count number of tags that need to be replayed by the replay handler
2046  * - Verify CRC
2047  * - Create a list of excluded blocks for allocation during replay phase
2048  *
2049  * This function returns JBD2_FC_REPLAY_CONTINUE to indicate that SCAN is
2050  * incomplete and JBD2 should send more blocks. It returns JBD2_FC_REPLAY_STOP
2051  * to indicate that scan has finished and JBD2 can now start replay phase.
2052  * It returns a negative error to indicate that there was an error. At the end
2053  * of a successful scan phase, sbi->s_fc_replay_state.fc_replay_num_tags is set
2054  * to indicate the number of tags that need to replayed during the replay phase.
2055  */
2056 static int ext4_fc_replay_scan(journal_t *journal,
2057 				struct buffer_head *bh, int off,
2058 				tid_t expected_tid)
2059 {
2060 	struct super_block *sb = journal->j_private;
2061 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2062 	struct ext4_fc_replay_state *state;
2063 	int ret = JBD2_FC_REPLAY_CONTINUE;
2064 	struct ext4_fc_add_range ext;
2065 	struct ext4_fc_tl_mem tl;
2066 	struct ext4_fc_tail tail;
2067 	__u8 *start, *end, *cur, *val;
2068 	struct ext4_fc_head head;
2069 	struct ext4_extent *ex;
2070 
2071 	state = &sbi->s_fc_replay_state;
2072 
2073 	start = (u8 *)bh->b_data;
2074 	end = start + journal->j_blocksize;
2075 
2076 	if (state->fc_replay_expected_off == 0) {
2077 		state->fc_cur_tag = 0;
2078 		state->fc_replay_num_tags = 0;
2079 		state->fc_crc = 0;
2080 		state->fc_regions = NULL;
2081 		state->fc_regions_valid = state->fc_regions_used =
2082 			state->fc_regions_size = 0;
2083 		/* Check if we can stop early */
2084 		if (le16_to_cpu(((struct ext4_fc_tl *)start)->fc_tag)
2085 			!= EXT4_FC_TAG_HEAD)
2086 			return 0;
2087 	}
2088 
2089 	if (off != state->fc_replay_expected_off) {
2090 		ret = -EFSCORRUPTED;
2091 		goto out_err;
2092 	}
2093 
2094 	state->fc_replay_expected_off++;
2095 	for (cur = start; cur <= end - EXT4_FC_TAG_BASE_LEN;
2096 	     cur = cur + EXT4_FC_TAG_BASE_LEN + tl.fc_len) {
2097 		ext4_fc_get_tl(&tl, cur);
2098 		val = cur + EXT4_FC_TAG_BASE_LEN;
2099 		if (tl.fc_len > end - val ||
2100 		    !ext4_fc_value_len_isvalid(sbi, tl.fc_tag, tl.fc_len)) {
2101 			ret = state->fc_replay_num_tags ?
2102 				JBD2_FC_REPLAY_STOP : -ECANCELED;
2103 			goto out_err;
2104 		}
2105 		ext4_debug("Scan phase, tag:%s, blk %lld\n",
2106 			   tag2str(tl.fc_tag), bh->b_blocknr);
2107 		switch (tl.fc_tag) {
2108 		case EXT4_FC_TAG_ADD_RANGE:
2109 			memcpy(&ext, val, sizeof(ext));
2110 			ex = (struct ext4_extent *)&ext.fc_ex;
2111 			ret = ext4_fc_record_regions(sb,
2112 				le32_to_cpu(ext.fc_ino),
2113 				le32_to_cpu(ex->ee_block), ext4_ext_pblock(ex),
2114 				ext4_ext_get_actual_len(ex), 0);
2115 			if (ret < 0)
2116 				break;
2117 			ret = JBD2_FC_REPLAY_CONTINUE;
2118 			fallthrough;
2119 		case EXT4_FC_TAG_DEL_RANGE:
2120 		case EXT4_FC_TAG_LINK:
2121 		case EXT4_FC_TAG_UNLINK:
2122 		case EXT4_FC_TAG_CREAT:
2123 		case EXT4_FC_TAG_INODE:
2124 		case EXT4_FC_TAG_PAD:
2125 			state->fc_cur_tag++;
2126 			state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
2127 				EXT4_FC_TAG_BASE_LEN + tl.fc_len);
2128 			break;
2129 		case EXT4_FC_TAG_TAIL:
2130 			state->fc_cur_tag++;
2131 			memcpy(&tail, val, sizeof(tail));
2132 			state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
2133 						EXT4_FC_TAG_BASE_LEN +
2134 						offsetof(struct ext4_fc_tail,
2135 						fc_crc));
2136 			if (le32_to_cpu(tail.fc_tid) == expected_tid &&
2137 				le32_to_cpu(tail.fc_crc) == state->fc_crc) {
2138 				state->fc_replay_num_tags = state->fc_cur_tag;
2139 				state->fc_regions_valid =
2140 					state->fc_regions_used;
2141 			} else {
2142 				ret = state->fc_replay_num_tags ?
2143 					JBD2_FC_REPLAY_STOP : -EFSBADCRC;
2144 			}
2145 			state->fc_crc = 0;
2146 			break;
2147 		case EXT4_FC_TAG_HEAD:
2148 			memcpy(&head, val, sizeof(head));
2149 			if (le32_to_cpu(head.fc_features) &
2150 				~EXT4_FC_SUPPORTED_FEATURES) {
2151 				ret = -EOPNOTSUPP;
2152 				break;
2153 			}
2154 			if (le32_to_cpu(head.fc_tid) != expected_tid) {
2155 				ret = JBD2_FC_REPLAY_STOP;
2156 				break;
2157 			}
2158 			state->fc_cur_tag++;
2159 			state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
2160 				EXT4_FC_TAG_BASE_LEN + tl.fc_len);
2161 			break;
2162 		default:
2163 			ret = state->fc_replay_num_tags ?
2164 				JBD2_FC_REPLAY_STOP : -ECANCELED;
2165 		}
2166 		if (ret < 0 || ret == JBD2_FC_REPLAY_STOP)
2167 			break;
2168 	}
2169 
2170 out_err:
2171 	trace_ext4_fc_replay_scan(sb, ret, off);
2172 	return ret;
2173 }
2174 
2175 /*
2176  * Main recovery path entry point.
2177  * The meaning of return codes is similar as above.
2178  */
2179 static int ext4_fc_replay(journal_t *journal, struct buffer_head *bh,
2180 				enum passtype pass, int off, tid_t expected_tid)
2181 {
2182 	struct super_block *sb = journal->j_private;
2183 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2184 	struct ext4_fc_tl_mem tl;
2185 	__u8 *start, *end, *cur, *val;
2186 	int ret = JBD2_FC_REPLAY_CONTINUE;
2187 	struct ext4_fc_replay_state *state = &sbi->s_fc_replay_state;
2188 	struct ext4_fc_tail tail;
2189 
2190 	if (pass == PASS_SCAN) {
2191 		state->fc_current_pass = PASS_SCAN;
2192 		return ext4_fc_replay_scan(journal, bh, off, expected_tid);
2193 	}
2194 
2195 	if (state->fc_current_pass != pass) {
2196 		state->fc_current_pass = pass;
2197 		sbi->s_mount_state |= EXT4_FC_REPLAY;
2198 	}
2199 	if (!sbi->s_fc_replay_state.fc_replay_num_tags) {
2200 		ext4_debug("Replay stops\n");
2201 		ext4_fc_set_bitmaps_and_counters(sb);
2202 		return 0;
2203 	}
2204 
2205 #ifdef CONFIG_EXT4_DEBUG
2206 	if (sbi->s_fc_debug_max_replay && off >= sbi->s_fc_debug_max_replay) {
2207 		pr_warn("Dropping fc block %d because max_replay set\n", off);
2208 		return JBD2_FC_REPLAY_STOP;
2209 	}
2210 #endif
2211 
2212 	start = (u8 *)bh->b_data;
2213 	end = start + journal->j_blocksize;
2214 
2215 	for (cur = start; cur <= end - EXT4_FC_TAG_BASE_LEN;
2216 	     cur = cur + EXT4_FC_TAG_BASE_LEN + tl.fc_len) {
2217 		ext4_fc_get_tl(&tl, cur);
2218 		val = cur + EXT4_FC_TAG_BASE_LEN;
2219 
2220 		if (state->fc_replay_num_tags == 0) {
2221 			ret = JBD2_FC_REPLAY_STOP;
2222 			ext4_fc_set_bitmaps_and_counters(sb);
2223 			break;
2224 		}
2225 
2226 		ext4_debug("Replay phase, tag:%s\n", tag2str(tl.fc_tag));
2227 		state->fc_replay_num_tags--;
2228 		switch (tl.fc_tag) {
2229 		case EXT4_FC_TAG_LINK:
2230 			ret = ext4_fc_replay_link(sb, &tl, val);
2231 			break;
2232 		case EXT4_FC_TAG_UNLINK:
2233 			ret = ext4_fc_replay_unlink(sb, &tl, val);
2234 			break;
2235 		case EXT4_FC_TAG_ADD_RANGE:
2236 			ret = ext4_fc_replay_add_range(sb, &tl, val);
2237 			break;
2238 		case EXT4_FC_TAG_CREAT:
2239 			ret = ext4_fc_replay_create(sb, &tl, val);
2240 			break;
2241 		case EXT4_FC_TAG_DEL_RANGE:
2242 			ret = ext4_fc_replay_del_range(sb, &tl, val);
2243 			break;
2244 		case EXT4_FC_TAG_INODE:
2245 			ret = ext4_fc_replay_inode(sb, &tl, val);
2246 			break;
2247 		case EXT4_FC_TAG_PAD:
2248 			trace_ext4_fc_replay(sb, EXT4_FC_TAG_PAD, 0,
2249 					     tl.fc_len, 0);
2250 			break;
2251 		case EXT4_FC_TAG_TAIL:
2252 			trace_ext4_fc_replay(sb, EXT4_FC_TAG_TAIL,
2253 					     0, tl.fc_len, 0);
2254 			memcpy(&tail, val, sizeof(tail));
2255 			WARN_ON(le32_to_cpu(tail.fc_tid) != expected_tid);
2256 			break;
2257 		case EXT4_FC_TAG_HEAD:
2258 			break;
2259 		default:
2260 			trace_ext4_fc_replay(sb, tl.fc_tag, 0, tl.fc_len, 0);
2261 			ret = -ECANCELED;
2262 			break;
2263 		}
2264 		if (ret < 0)
2265 			break;
2266 		ret = JBD2_FC_REPLAY_CONTINUE;
2267 	}
2268 	return ret;
2269 }
2270 
2271 void ext4_fc_init(struct super_block *sb, journal_t *journal)
2272 {
2273 	/*
2274 	 * We set replay callback even if fast commit disabled because we may
2275 	 * could still have fast commit blocks that need to be replayed even if
2276 	 * fast commit has now been turned off.
2277 	 */
2278 	journal->j_fc_replay_callback = ext4_fc_replay;
2279 	if (!test_opt2(sb, JOURNAL_FAST_COMMIT))
2280 		return;
2281 	journal->j_fc_cleanup_callback = ext4_fc_cleanup;
2282 }
2283 
2284 static const char * const fc_ineligible_reasons[] = {
2285 	[EXT4_FC_REASON_XATTR] = "Extended attributes changed",
2286 	[EXT4_FC_REASON_CROSS_RENAME] = "Cross rename",
2287 	[EXT4_FC_REASON_JOURNAL_FLAG_CHANGE] = "Journal flag changed",
2288 	[EXT4_FC_REASON_NOMEM] = "Insufficient memory",
2289 	[EXT4_FC_REASON_SWAP_BOOT] = "Swap boot",
2290 	[EXT4_FC_REASON_RESIZE] = "Resize",
2291 	[EXT4_FC_REASON_RENAME_DIR] = "Dir renamed",
2292 	[EXT4_FC_REASON_FALLOC_RANGE] = "Falloc range op",
2293 	[EXT4_FC_REASON_INODE_JOURNAL_DATA] = "Data journalling",
2294 	[EXT4_FC_REASON_ENCRYPTED_FILENAME] = "Encrypted filename",
2295 };
2296 
2297 int ext4_fc_info_show(struct seq_file *seq, void *v)
2298 {
2299 	struct ext4_sb_info *sbi = EXT4_SB((struct super_block *)seq->private);
2300 	struct ext4_fc_stats *stats = &sbi->s_fc_stats;
2301 	int i;
2302 
2303 	if (v != SEQ_START_TOKEN)
2304 		return 0;
2305 
2306 	seq_printf(seq,
2307 		"fc stats:\n%ld commits\n%ld ineligible\n%ld numblks\n%lluus avg_commit_time\n",
2308 		   stats->fc_num_commits, stats->fc_ineligible_commits,
2309 		   stats->fc_numblks,
2310 		   div_u64(stats->s_fc_avg_commit_time, 1000));
2311 	seq_puts(seq, "Ineligible reasons:\n");
2312 	for (i = 0; i < EXT4_FC_REASON_MAX; i++)
2313 		seq_printf(seq, "\"%s\":\t%d\n", fc_ineligible_reasons[i],
2314 			stats->fc_ineligible_reason_count[i]);
2315 
2316 	return 0;
2317 }
2318 
2319 int __init ext4_fc_init_dentry_cache(void)
2320 {
2321 	ext4_fc_dentry_cachep = KMEM_CACHE(ext4_fc_dentry_update,
2322 					   SLAB_RECLAIM_ACCOUNT);
2323 
2324 	if (ext4_fc_dentry_cachep == NULL)
2325 		return -ENOMEM;
2326 
2327 	return 0;
2328 }
2329 
2330 void ext4_fc_destroy_dentry_cache(void)
2331 {
2332 	kmem_cache_destroy(ext4_fc_dentry_cachep);
2333 }
2334