xref: /openbmc/linux/fs/ext4/fast_commit.c (revision e330fb14)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /*
4  * fs/ext4/fast_commit.c
5  *
6  * Written by Harshad Shirwadkar <harshadshirwadkar@gmail.com>
7  *
8  * Ext4 fast commits routines.
9  */
10 #include "ext4.h"
11 #include "ext4_jbd2.h"
12 #include "ext4_extents.h"
13 #include "mballoc.h"
14 
15 /*
16  * Ext4 Fast Commits
17  * -----------------
18  *
19  * Ext4 fast commits implement fine grained journalling for Ext4.
20  *
21  * Fast commits are organized as a log of tag-length-value (TLV) structs. (See
22  * struct ext4_fc_tl). Each TLV contains some delta that is replayed TLV by
23  * TLV during the recovery phase. For the scenarios for which we currently
24  * don't have replay code, fast commit falls back to full commits.
25  * Fast commits record delta in one of the following three categories.
26  *
27  * (A) Directory entry updates:
28  *
29  * - EXT4_FC_TAG_UNLINK		- records directory entry unlink
30  * - EXT4_FC_TAG_LINK		- records directory entry link
31  * - EXT4_FC_TAG_CREAT		- records inode and directory entry creation
32  *
33  * (B) File specific data range updates:
34  *
35  * - EXT4_FC_TAG_ADD_RANGE	- records addition of new blocks to an inode
36  * - EXT4_FC_TAG_DEL_RANGE	- records deletion of blocks from an inode
37  *
38  * (C) Inode metadata (mtime / ctime etc):
39  *
40  * - EXT4_FC_TAG_INODE		- record the inode that should be replayed
41  *				  during recovery. Note that iblocks field is
42  *				  not replayed and instead derived during
43  *				  replay.
44  * Commit Operation
45  * ----------------
46  * With fast commits, we maintain all the directory entry operations in the
47  * order in which they are issued in an in-memory queue. This queue is flushed
48  * to disk during the commit operation. We also maintain a list of inodes
49  * that need to be committed during a fast commit in another in memory queue of
50  * inodes. During the commit operation, we commit in the following order:
51  *
52  * [1] Lock inodes for any further data updates by setting COMMITTING state
53  * [2] Submit data buffers of all the inodes
54  * [3] Wait for [2] to complete
55  * [4] Commit all the directory entry updates in the fast commit space
56  * [5] Commit all the changed inode structures
57  * [6] Write tail tag (this tag ensures the atomicity, please read the following
58  *     section for more details).
59  * [7] Wait for [4], [5] and [6] to complete.
60  *
61  * All the inode updates must call ext4_fc_start_update() before starting an
62  * update. If such an ongoing update is present, fast commit waits for it to
63  * complete. The completion of such an update is marked by
64  * ext4_fc_stop_update().
65  *
66  * Fast Commit Ineligibility
67  * -------------------------
68  * Not all operations are supported by fast commits today (e.g extended
69  * attributes). Fast commit ineligibility is marked by calling one of the
70  * two following functions:
71  *
72  * - ext4_fc_mark_ineligible(): This makes next fast commit operation to fall
73  *   back to full commit. This is useful in case of transient errors.
74  *
75  * - ext4_fc_start_ineligible() and ext4_fc_stop_ineligible() - This makes all
76  *   the fast commits happening between ext4_fc_start_ineligible() and
77  *   ext4_fc_stop_ineligible() and one fast commit after the call to
78  *   ext4_fc_stop_ineligible() to fall back to full commits. It is important to
79  *   make one more fast commit to fall back to full commit after stop call so
80  *   that it guaranteed that the fast commit ineligible operation contained
81  *   within ext4_fc_start_ineligible() and ext4_fc_stop_ineligible() is
82  *   followed by at least 1 full commit.
83  *
84  * Atomicity of commits
85  * --------------------
86  * In order to guarantee atomicity during the commit operation, fast commit
87  * uses "EXT4_FC_TAG_TAIL" tag that marks a fast commit as complete. Tail
88  * tag contains CRC of the contents and TID of the transaction after which
89  * this fast commit should be applied. Recovery code replays fast commit
90  * logs only if there's at least 1 valid tail present. For every fast commit
91  * operation, there is 1 tail. This means, we may end up with multiple tails
92  * in the fast commit space. Here's an example:
93  *
94  * - Create a new file A and remove existing file B
95  * - fsync()
96  * - Append contents to file A
97  * - Truncate file A
98  * - fsync()
99  *
100  * The fast commit space at the end of above operations would look like this:
101  *      [HEAD] [CREAT A] [UNLINK B] [TAIL] [ADD_RANGE A] [DEL_RANGE A] [TAIL]
102  *             |<---  Fast Commit 1   --->|<---      Fast Commit 2     ---->|
103  *
104  * Replay code should thus check for all the valid tails in the FC area.
105  *
106  * Fast Commit Replay Idempotence
107  * ------------------------------
108  *
109  * Fast commits tags are idempotent in nature provided the recovery code follows
110  * certain rules. The guiding principle that the commit path follows while
111  * committing is that it stores the result of a particular operation instead of
112  * storing the procedure.
113  *
114  * Let's consider this rename operation: 'mv /a /b'. Let's assume dirent '/a'
115  * was associated with inode 10. During fast commit, instead of storing this
116  * operation as a procedure "rename a to b", we store the resulting file system
117  * state as a "series" of outcomes:
118  *
119  * - Link dirent b to inode 10
120  * - Unlink dirent a
121  * - Inode <10> with valid refcount
122  *
123  * Now when recovery code runs, it needs "enforce" this state on the file
124  * system. This is what guarantees idempotence of fast commit replay.
125  *
126  * Let's take an example of a procedure that is not idempotent and see how fast
127  * commits make it idempotent. Consider following sequence of operations:
128  *
129  *     rm A;    mv B A;    read A
130  *  (x)     (y)        (z)
131  *
132  * (x), (y) and (z) are the points at which we can crash. If we store this
133  * sequence of operations as is then the replay is not idempotent. Let's say
134  * while in replay, we crash at (z). During the second replay, file A (which was
135  * actually created as a result of "mv B A" operation) would get deleted. Thus,
136  * file named A would be absent when we try to read A. So, this sequence of
137  * operations is not idempotent. However, as mentioned above, instead of storing
138  * the procedure fast commits store the outcome of each procedure. Thus the fast
139  * commit log for above procedure would be as follows:
140  *
141  * (Let's assume dirent A was linked to inode 10 and dirent B was linked to
142  * inode 11 before the replay)
143  *
144  *    [Unlink A]   [Link A to inode 11]   [Unlink B]   [Inode 11]
145  * (w)          (x)                    (y)          (z)
146  *
147  * If we crash at (z), we will have file A linked to inode 11. During the second
148  * replay, we will remove file A (inode 11). But we will create it back and make
149  * it point to inode 11. We won't find B, so we'll just skip that step. At this
150  * point, the refcount for inode 11 is not reliable, but that gets fixed by the
151  * replay of last inode 11 tag. Crashes at points (w), (x) and (y) get handled
152  * similarly. Thus, by converting a non-idempotent procedure into a series of
153  * idempotent outcomes, fast commits ensured idempotence during the replay.
154  *
155  * TODOs
156  * -----
157  *
158  * 0) Fast commit replay path hardening: Fast commit replay code should use
159  *    journal handles to make sure all the updates it does during the replay
160  *    path are atomic. With that if we crash during fast commit replay, after
161  *    trying to do recovery again, we will find a file system where fast commit
162  *    area is invalid (because new full commit would be found). In order to deal
163  *    with that, fast commit replay code should ensure that the "FC_REPLAY"
164  *    superblock state is persisted before starting the replay, so that after
165  *    the crash, fast commit recovery code can look at that flag and perform
166  *    fast commit recovery even if that area is invalidated by later full
167  *    commits.
168  *
169  * 1) Make fast commit atomic updates more fine grained. Today, a fast commit
170  *    eligible update must be protected within ext4_fc_start_update() and
171  *    ext4_fc_stop_update(). These routines are called at much higher
172  *    routines. This can be made more fine grained by combining with
173  *    ext4_journal_start().
174  *
175  * 2) Same above for ext4_fc_start_ineligible() and ext4_fc_stop_ineligible()
176  *
177  * 3) Handle more ineligible cases.
178  */
179 
180 #include <trace/events/ext4.h>
181 static struct kmem_cache *ext4_fc_dentry_cachep;
182 
183 static void ext4_end_buffer_io_sync(struct buffer_head *bh, int uptodate)
184 {
185 	BUFFER_TRACE(bh, "");
186 	if (uptodate) {
187 		ext4_debug("%s: Block %lld up-to-date",
188 			   __func__, bh->b_blocknr);
189 		set_buffer_uptodate(bh);
190 	} else {
191 		ext4_debug("%s: Block %lld not up-to-date",
192 			   __func__, bh->b_blocknr);
193 		clear_buffer_uptodate(bh);
194 	}
195 
196 	unlock_buffer(bh);
197 }
198 
199 static inline void ext4_fc_reset_inode(struct inode *inode)
200 {
201 	struct ext4_inode_info *ei = EXT4_I(inode);
202 
203 	ei->i_fc_lblk_start = 0;
204 	ei->i_fc_lblk_len = 0;
205 }
206 
207 void ext4_fc_init_inode(struct inode *inode)
208 {
209 	struct ext4_inode_info *ei = EXT4_I(inode);
210 
211 	ext4_fc_reset_inode(inode);
212 	ext4_clear_inode_state(inode, EXT4_STATE_FC_COMMITTING);
213 	INIT_LIST_HEAD(&ei->i_fc_list);
214 	init_waitqueue_head(&ei->i_fc_wait);
215 	atomic_set(&ei->i_fc_updates, 0);
216 }
217 
218 /* This function must be called with sbi->s_fc_lock held. */
219 static void ext4_fc_wait_committing_inode(struct inode *inode)
220 __releases(&EXT4_SB(inode->i_sb)->s_fc_lock)
221 {
222 	wait_queue_head_t *wq;
223 	struct ext4_inode_info *ei = EXT4_I(inode);
224 
225 #if (BITS_PER_LONG < 64)
226 	DEFINE_WAIT_BIT(wait, &ei->i_state_flags,
227 			EXT4_STATE_FC_COMMITTING);
228 	wq = bit_waitqueue(&ei->i_state_flags,
229 				EXT4_STATE_FC_COMMITTING);
230 #else
231 	DEFINE_WAIT_BIT(wait, &ei->i_flags,
232 			EXT4_STATE_FC_COMMITTING);
233 	wq = bit_waitqueue(&ei->i_flags,
234 				EXT4_STATE_FC_COMMITTING);
235 #endif
236 	lockdep_assert_held(&EXT4_SB(inode->i_sb)->s_fc_lock);
237 	prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
238 	spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
239 	schedule();
240 	finish_wait(wq, &wait.wq_entry);
241 }
242 
243 /*
244  * Inform Ext4's fast about start of an inode update
245  *
246  * This function is called by the high level call VFS callbacks before
247  * performing any inode update. This function blocks if there's an ongoing
248  * fast commit on the inode in question.
249  */
250 void ext4_fc_start_update(struct inode *inode)
251 {
252 	struct ext4_inode_info *ei = EXT4_I(inode);
253 
254 	if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) ||
255 	    (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY))
256 		return;
257 
258 restart:
259 	spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock);
260 	if (list_empty(&ei->i_fc_list))
261 		goto out;
262 
263 	if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
264 		ext4_fc_wait_committing_inode(inode);
265 		goto restart;
266 	}
267 out:
268 	atomic_inc(&ei->i_fc_updates);
269 	spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
270 }
271 
272 /*
273  * Stop inode update and wake up waiting fast commits if any.
274  */
275 void ext4_fc_stop_update(struct inode *inode)
276 {
277 	struct ext4_inode_info *ei = EXT4_I(inode);
278 
279 	if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) ||
280 	    (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY))
281 		return;
282 
283 	if (atomic_dec_and_test(&ei->i_fc_updates))
284 		wake_up_all(&ei->i_fc_wait);
285 }
286 
287 /*
288  * Remove inode from fast commit list. If the inode is being committed
289  * we wait until inode commit is done.
290  */
291 void ext4_fc_del(struct inode *inode)
292 {
293 	struct ext4_inode_info *ei = EXT4_I(inode);
294 
295 	if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) ||
296 	    (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY))
297 		return;
298 
299 restart:
300 	spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock);
301 	if (list_empty(&ei->i_fc_list)) {
302 		spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
303 		return;
304 	}
305 
306 	if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
307 		ext4_fc_wait_committing_inode(inode);
308 		goto restart;
309 	}
310 	list_del_init(&ei->i_fc_list);
311 	spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
312 }
313 
314 /*
315  * Mark file system as fast commit ineligible. This means that next commit
316  * operation would result in a full jbd2 commit.
317  */
318 void ext4_fc_mark_ineligible(struct super_block *sb, int reason)
319 {
320 	struct ext4_sb_info *sbi = EXT4_SB(sb);
321 
322 	if (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
323 	    (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))
324 		return;
325 
326 	ext4_set_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
327 	WARN_ON(reason >= EXT4_FC_REASON_MAX);
328 	sbi->s_fc_stats.fc_ineligible_reason_count[reason]++;
329 }
330 
331 /*
332  * Start a fast commit ineligible update. Any commits that happen while
333  * such an operation is in progress fall back to full commits.
334  */
335 void ext4_fc_start_ineligible(struct super_block *sb, int reason)
336 {
337 	struct ext4_sb_info *sbi = EXT4_SB(sb);
338 
339 	if (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
340 	    (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))
341 		return;
342 
343 	WARN_ON(reason >= EXT4_FC_REASON_MAX);
344 	sbi->s_fc_stats.fc_ineligible_reason_count[reason]++;
345 	atomic_inc(&sbi->s_fc_ineligible_updates);
346 }
347 
348 /*
349  * Stop a fast commit ineligible update. We set EXT4_MF_FC_INELIGIBLE flag here
350  * to ensure that after stopping the ineligible update, at least one full
351  * commit takes place.
352  */
353 void ext4_fc_stop_ineligible(struct super_block *sb)
354 {
355 	if (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
356 	    (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))
357 		return;
358 
359 	ext4_set_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
360 	atomic_dec(&EXT4_SB(sb)->s_fc_ineligible_updates);
361 }
362 
363 static inline int ext4_fc_is_ineligible(struct super_block *sb)
364 {
365 	return (ext4_test_mount_flag(sb, EXT4_MF_FC_INELIGIBLE) ||
366 		atomic_read(&EXT4_SB(sb)->s_fc_ineligible_updates));
367 }
368 
369 /*
370  * Generic fast commit tracking function. If this is the first time this we are
371  * called after a full commit, we initialize fast commit fields and then call
372  * __fc_track_fn() with update = 0. If we have already been called after a full
373  * commit, we pass update = 1. Based on that, the track function can determine
374  * if it needs to track a field for the first time or if it needs to just
375  * update the previously tracked value.
376  *
377  * If enqueue is set, this function enqueues the inode in fast commit list.
378  */
379 static int ext4_fc_track_template(
380 	handle_t *handle, struct inode *inode,
381 	int (*__fc_track_fn)(struct inode *, void *, bool),
382 	void *args, int enqueue)
383 {
384 	bool update = false;
385 	struct ext4_inode_info *ei = EXT4_I(inode);
386 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
387 	tid_t tid = 0;
388 	int ret;
389 
390 	if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) ||
391 	    (sbi->s_mount_state & EXT4_FC_REPLAY))
392 		return -EOPNOTSUPP;
393 
394 	if (ext4_fc_is_ineligible(inode->i_sb))
395 		return -EINVAL;
396 
397 	tid = handle->h_transaction->t_tid;
398 	mutex_lock(&ei->i_fc_lock);
399 	if (tid == ei->i_sync_tid) {
400 		update = true;
401 	} else {
402 		ext4_fc_reset_inode(inode);
403 		ei->i_sync_tid = tid;
404 	}
405 	ret = __fc_track_fn(inode, args, update);
406 	mutex_unlock(&ei->i_fc_lock);
407 
408 	if (!enqueue)
409 		return ret;
410 
411 	spin_lock(&sbi->s_fc_lock);
412 	if (list_empty(&EXT4_I(inode)->i_fc_list))
413 		list_add_tail(&EXT4_I(inode)->i_fc_list,
414 				(ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_COMMITTING)) ?
415 				&sbi->s_fc_q[FC_Q_STAGING] :
416 				&sbi->s_fc_q[FC_Q_MAIN]);
417 	spin_unlock(&sbi->s_fc_lock);
418 
419 	return ret;
420 }
421 
422 struct __track_dentry_update_args {
423 	struct dentry *dentry;
424 	int op;
425 };
426 
427 /* __track_fn for directory entry updates. Called with ei->i_fc_lock. */
428 static int __track_dentry_update(struct inode *inode, void *arg, bool update)
429 {
430 	struct ext4_fc_dentry_update *node;
431 	struct ext4_inode_info *ei = EXT4_I(inode);
432 	struct __track_dentry_update_args *dentry_update =
433 		(struct __track_dentry_update_args *)arg;
434 	struct dentry *dentry = dentry_update->dentry;
435 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
436 
437 	mutex_unlock(&ei->i_fc_lock);
438 	node = kmem_cache_alloc(ext4_fc_dentry_cachep, GFP_NOFS);
439 	if (!node) {
440 		ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM);
441 		mutex_lock(&ei->i_fc_lock);
442 		return -ENOMEM;
443 	}
444 
445 	node->fcd_op = dentry_update->op;
446 	node->fcd_parent = dentry->d_parent->d_inode->i_ino;
447 	node->fcd_ino = inode->i_ino;
448 	if (dentry->d_name.len > DNAME_INLINE_LEN) {
449 		node->fcd_name.name = kmalloc(dentry->d_name.len, GFP_NOFS);
450 		if (!node->fcd_name.name) {
451 			kmem_cache_free(ext4_fc_dentry_cachep, node);
452 			ext4_fc_mark_ineligible(inode->i_sb,
453 				EXT4_FC_REASON_NOMEM);
454 			mutex_lock(&ei->i_fc_lock);
455 			return -ENOMEM;
456 		}
457 		memcpy((u8 *)node->fcd_name.name, dentry->d_name.name,
458 			dentry->d_name.len);
459 	} else {
460 		memcpy(node->fcd_iname, dentry->d_name.name,
461 			dentry->d_name.len);
462 		node->fcd_name.name = node->fcd_iname;
463 	}
464 	node->fcd_name.len = dentry->d_name.len;
465 
466 	spin_lock(&sbi->s_fc_lock);
467 	if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_COMMITTING))
468 		list_add_tail(&node->fcd_list,
469 				&sbi->s_fc_dentry_q[FC_Q_STAGING]);
470 	else
471 		list_add_tail(&node->fcd_list, &sbi->s_fc_dentry_q[FC_Q_MAIN]);
472 	spin_unlock(&sbi->s_fc_lock);
473 	mutex_lock(&ei->i_fc_lock);
474 
475 	return 0;
476 }
477 
478 void __ext4_fc_track_unlink(handle_t *handle,
479 		struct inode *inode, struct dentry *dentry)
480 {
481 	struct __track_dentry_update_args args;
482 	int ret;
483 
484 	args.dentry = dentry;
485 	args.op = EXT4_FC_TAG_UNLINK;
486 
487 	ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
488 					(void *)&args, 0);
489 	trace_ext4_fc_track_unlink(inode, dentry, ret);
490 }
491 
492 void ext4_fc_track_unlink(handle_t *handle, struct dentry *dentry)
493 {
494 	__ext4_fc_track_unlink(handle, d_inode(dentry), dentry);
495 }
496 
497 void __ext4_fc_track_link(handle_t *handle,
498 	struct inode *inode, struct dentry *dentry)
499 {
500 	struct __track_dentry_update_args args;
501 	int ret;
502 
503 	args.dentry = dentry;
504 	args.op = EXT4_FC_TAG_LINK;
505 
506 	ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
507 					(void *)&args, 0);
508 	trace_ext4_fc_track_link(inode, dentry, ret);
509 }
510 
511 void ext4_fc_track_link(handle_t *handle, struct dentry *dentry)
512 {
513 	__ext4_fc_track_link(handle, d_inode(dentry), dentry);
514 }
515 
516 void __ext4_fc_track_create(handle_t *handle, struct inode *inode,
517 			  struct dentry *dentry)
518 {
519 	struct __track_dentry_update_args args;
520 	int ret;
521 
522 	args.dentry = dentry;
523 	args.op = EXT4_FC_TAG_CREAT;
524 
525 	ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
526 					(void *)&args, 0);
527 	trace_ext4_fc_track_create(inode, dentry, ret);
528 }
529 
530 void ext4_fc_track_create(handle_t *handle, struct dentry *dentry)
531 {
532 	__ext4_fc_track_create(handle, d_inode(dentry), dentry);
533 }
534 
535 /* __track_fn for inode tracking */
536 static int __track_inode(struct inode *inode, void *arg, bool update)
537 {
538 	if (update)
539 		return -EEXIST;
540 
541 	EXT4_I(inode)->i_fc_lblk_len = 0;
542 
543 	return 0;
544 }
545 
546 void ext4_fc_track_inode(handle_t *handle, struct inode *inode)
547 {
548 	int ret;
549 
550 	if (S_ISDIR(inode->i_mode))
551 		return;
552 
553 	if (ext4_should_journal_data(inode)) {
554 		ext4_fc_mark_ineligible(inode->i_sb,
555 					EXT4_FC_REASON_INODE_JOURNAL_DATA);
556 		return;
557 	}
558 
559 	ret = ext4_fc_track_template(handle, inode, __track_inode, NULL, 1);
560 	trace_ext4_fc_track_inode(inode, ret);
561 }
562 
563 struct __track_range_args {
564 	ext4_lblk_t start, end;
565 };
566 
567 /* __track_fn for tracking data updates */
568 static int __track_range(struct inode *inode, void *arg, bool update)
569 {
570 	struct ext4_inode_info *ei = EXT4_I(inode);
571 	ext4_lblk_t oldstart;
572 	struct __track_range_args *__arg =
573 		(struct __track_range_args *)arg;
574 
575 	if (inode->i_ino < EXT4_FIRST_INO(inode->i_sb)) {
576 		ext4_debug("Special inode %ld being modified\n", inode->i_ino);
577 		return -ECANCELED;
578 	}
579 
580 	oldstart = ei->i_fc_lblk_start;
581 
582 	if (update && ei->i_fc_lblk_len > 0) {
583 		ei->i_fc_lblk_start = min(ei->i_fc_lblk_start, __arg->start);
584 		ei->i_fc_lblk_len =
585 			max(oldstart + ei->i_fc_lblk_len - 1, __arg->end) -
586 				ei->i_fc_lblk_start + 1;
587 	} else {
588 		ei->i_fc_lblk_start = __arg->start;
589 		ei->i_fc_lblk_len = __arg->end - __arg->start + 1;
590 	}
591 
592 	return 0;
593 }
594 
595 void ext4_fc_track_range(handle_t *handle, struct inode *inode, ext4_lblk_t start,
596 			 ext4_lblk_t end)
597 {
598 	struct __track_range_args args;
599 	int ret;
600 
601 	if (S_ISDIR(inode->i_mode))
602 		return;
603 
604 	args.start = start;
605 	args.end = end;
606 
607 	ret = ext4_fc_track_template(handle, inode,  __track_range, &args, 1);
608 
609 	trace_ext4_fc_track_range(inode, start, end, ret);
610 }
611 
612 static void ext4_fc_submit_bh(struct super_block *sb, bool is_tail)
613 {
614 	int write_flags = REQ_SYNC;
615 	struct buffer_head *bh = EXT4_SB(sb)->s_fc_bh;
616 
617 	/* Add REQ_FUA | REQ_PREFLUSH only its tail */
618 	if (test_opt(sb, BARRIER) && is_tail)
619 		write_flags |= REQ_FUA | REQ_PREFLUSH;
620 	lock_buffer(bh);
621 	set_buffer_dirty(bh);
622 	set_buffer_uptodate(bh);
623 	bh->b_end_io = ext4_end_buffer_io_sync;
624 	submit_bh(REQ_OP_WRITE, write_flags, bh);
625 	EXT4_SB(sb)->s_fc_bh = NULL;
626 }
627 
628 /* Ext4 commit path routines */
629 
630 /* memzero and update CRC */
631 static void *ext4_fc_memzero(struct super_block *sb, void *dst, int len,
632 				u32 *crc)
633 {
634 	void *ret;
635 
636 	ret = memset(dst, 0, len);
637 	if (crc)
638 		*crc = ext4_chksum(EXT4_SB(sb), *crc, dst, len);
639 	return ret;
640 }
641 
642 /*
643  * Allocate len bytes on a fast commit buffer.
644  *
645  * During the commit time this function is used to manage fast commit
646  * block space. We don't split a fast commit log onto different
647  * blocks. So this function makes sure that if there's not enough space
648  * on the current block, the remaining space in the current block is
649  * marked as unused by adding EXT4_FC_TAG_PAD tag. In that case,
650  * new block is from jbd2 and CRC is updated to reflect the padding
651  * we added.
652  */
653 static u8 *ext4_fc_reserve_space(struct super_block *sb, int len, u32 *crc)
654 {
655 	struct ext4_fc_tl *tl;
656 	struct ext4_sb_info *sbi = EXT4_SB(sb);
657 	struct buffer_head *bh;
658 	int bsize = sbi->s_journal->j_blocksize;
659 	int ret, off = sbi->s_fc_bytes % bsize;
660 	int pad_len;
661 
662 	/*
663 	 * After allocating len, we should have space at least for a 0 byte
664 	 * padding.
665 	 */
666 	if (len + sizeof(struct ext4_fc_tl) > bsize)
667 		return NULL;
668 
669 	if (bsize - off - 1 > len + sizeof(struct ext4_fc_tl)) {
670 		/*
671 		 * Only allocate from current buffer if we have enough space for
672 		 * this request AND we have space to add a zero byte padding.
673 		 */
674 		if (!sbi->s_fc_bh) {
675 			ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
676 			if (ret)
677 				return NULL;
678 			sbi->s_fc_bh = bh;
679 		}
680 		sbi->s_fc_bytes += len;
681 		return sbi->s_fc_bh->b_data + off;
682 	}
683 	/* Need to add PAD tag */
684 	tl = (struct ext4_fc_tl *)(sbi->s_fc_bh->b_data + off);
685 	tl->fc_tag = cpu_to_le16(EXT4_FC_TAG_PAD);
686 	pad_len = bsize - off - 1 - sizeof(struct ext4_fc_tl);
687 	tl->fc_len = cpu_to_le16(pad_len);
688 	if (crc)
689 		*crc = ext4_chksum(sbi, *crc, tl, sizeof(*tl));
690 	if (pad_len > 0)
691 		ext4_fc_memzero(sb, tl + 1, pad_len, crc);
692 	ext4_fc_submit_bh(sb, false);
693 
694 	ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
695 	if (ret)
696 		return NULL;
697 	sbi->s_fc_bh = bh;
698 	sbi->s_fc_bytes = (sbi->s_fc_bytes / bsize + 1) * bsize + len;
699 	return sbi->s_fc_bh->b_data;
700 }
701 
702 /* memcpy to fc reserved space and update CRC */
703 static void *ext4_fc_memcpy(struct super_block *sb, void *dst, const void *src,
704 				int len, u32 *crc)
705 {
706 	if (crc)
707 		*crc = ext4_chksum(EXT4_SB(sb), *crc, src, len);
708 	return memcpy(dst, src, len);
709 }
710 
711 /*
712  * Complete a fast commit by writing tail tag.
713  *
714  * Writing tail tag marks the end of a fast commit. In order to guarantee
715  * atomicity, after writing tail tag, even if there's space remaining
716  * in the block, next commit shouldn't use it. That's why tail tag
717  * has the length as that of the remaining space on the block.
718  */
719 static int ext4_fc_write_tail(struct super_block *sb, u32 crc)
720 {
721 	struct ext4_sb_info *sbi = EXT4_SB(sb);
722 	struct ext4_fc_tl tl;
723 	struct ext4_fc_tail tail;
724 	int off, bsize = sbi->s_journal->j_blocksize;
725 	u8 *dst;
726 
727 	/*
728 	 * ext4_fc_reserve_space takes care of allocating an extra block if
729 	 * there's no enough space on this block for accommodating this tail.
730 	 */
731 	dst = ext4_fc_reserve_space(sb, sizeof(tl) + sizeof(tail), &crc);
732 	if (!dst)
733 		return -ENOSPC;
734 
735 	off = sbi->s_fc_bytes % bsize;
736 
737 	tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_TAIL);
738 	tl.fc_len = cpu_to_le16(bsize - off - 1 + sizeof(struct ext4_fc_tail));
739 	sbi->s_fc_bytes = round_up(sbi->s_fc_bytes, bsize);
740 
741 	ext4_fc_memcpy(sb, dst, &tl, sizeof(tl), &crc);
742 	dst += sizeof(tl);
743 	tail.fc_tid = cpu_to_le32(sbi->s_journal->j_running_transaction->t_tid);
744 	ext4_fc_memcpy(sb, dst, &tail.fc_tid, sizeof(tail.fc_tid), &crc);
745 	dst += sizeof(tail.fc_tid);
746 	tail.fc_crc = cpu_to_le32(crc);
747 	ext4_fc_memcpy(sb, dst, &tail.fc_crc, sizeof(tail.fc_crc), NULL);
748 
749 	ext4_fc_submit_bh(sb, true);
750 
751 	return 0;
752 }
753 
754 /*
755  * Adds tag, length, value and updates CRC. Returns true if tlv was added.
756  * Returns false if there's not enough space.
757  */
758 static bool ext4_fc_add_tlv(struct super_block *sb, u16 tag, u16 len, u8 *val,
759 			   u32 *crc)
760 {
761 	struct ext4_fc_tl tl;
762 	u8 *dst;
763 
764 	dst = ext4_fc_reserve_space(sb, sizeof(tl) + len, crc);
765 	if (!dst)
766 		return false;
767 
768 	tl.fc_tag = cpu_to_le16(tag);
769 	tl.fc_len = cpu_to_le16(len);
770 
771 	ext4_fc_memcpy(sb, dst, &tl, sizeof(tl), crc);
772 	ext4_fc_memcpy(sb, dst + sizeof(tl), val, len, crc);
773 
774 	return true;
775 }
776 
777 /* Same as above, but adds dentry tlv. */
778 static bool ext4_fc_add_dentry_tlv(struct super_block *sb, u32 *crc,
779 				   struct ext4_fc_dentry_update *fc_dentry)
780 {
781 	struct ext4_fc_dentry_info fcd;
782 	struct ext4_fc_tl tl;
783 	int dlen = fc_dentry->fcd_name.len;
784 	u8 *dst = ext4_fc_reserve_space(sb, sizeof(tl) + sizeof(fcd) + dlen,
785 					crc);
786 
787 	if (!dst)
788 		return false;
789 
790 	fcd.fc_parent_ino = cpu_to_le32(fc_dentry->fcd_parent);
791 	fcd.fc_ino = cpu_to_le32(fc_dentry->fcd_ino);
792 	tl.fc_tag = cpu_to_le16(fc_dentry->fcd_op);
793 	tl.fc_len = cpu_to_le16(sizeof(fcd) + dlen);
794 	ext4_fc_memcpy(sb, dst, &tl, sizeof(tl), crc);
795 	dst += sizeof(tl);
796 	ext4_fc_memcpy(sb, dst, &fcd, sizeof(fcd), crc);
797 	dst += sizeof(fcd);
798 	ext4_fc_memcpy(sb, dst, fc_dentry->fcd_name.name, dlen, crc);
799 	dst += dlen;
800 
801 	return true;
802 }
803 
804 /*
805  * Writes inode in the fast commit space under TLV with tag @tag.
806  * Returns 0 on success, error on failure.
807  */
808 static int ext4_fc_write_inode(struct inode *inode, u32 *crc)
809 {
810 	struct ext4_inode_info *ei = EXT4_I(inode);
811 	int inode_len = EXT4_GOOD_OLD_INODE_SIZE;
812 	int ret;
813 	struct ext4_iloc iloc;
814 	struct ext4_fc_inode fc_inode;
815 	struct ext4_fc_tl tl;
816 	u8 *dst;
817 
818 	ret = ext4_get_inode_loc(inode, &iloc);
819 	if (ret)
820 		return ret;
821 
822 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE)
823 		inode_len += ei->i_extra_isize;
824 
825 	fc_inode.fc_ino = cpu_to_le32(inode->i_ino);
826 	tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_INODE);
827 	tl.fc_len = cpu_to_le16(inode_len + sizeof(fc_inode.fc_ino));
828 
829 	dst = ext4_fc_reserve_space(inode->i_sb,
830 			sizeof(tl) + inode_len + sizeof(fc_inode.fc_ino), crc);
831 	if (!dst)
832 		return -ECANCELED;
833 
834 	if (!ext4_fc_memcpy(inode->i_sb, dst, &tl, sizeof(tl), crc))
835 		return -ECANCELED;
836 	dst += sizeof(tl);
837 	if (!ext4_fc_memcpy(inode->i_sb, dst, &fc_inode, sizeof(fc_inode), crc))
838 		return -ECANCELED;
839 	dst += sizeof(fc_inode);
840 	if (!ext4_fc_memcpy(inode->i_sb, dst, (u8 *)ext4_raw_inode(&iloc),
841 					inode_len, crc))
842 		return -ECANCELED;
843 
844 	return 0;
845 }
846 
847 /*
848  * Writes updated data ranges for the inode in question. Updates CRC.
849  * Returns 0 on success, error otherwise.
850  */
851 static int ext4_fc_write_inode_data(struct inode *inode, u32 *crc)
852 {
853 	ext4_lblk_t old_blk_size, cur_lblk_off, new_blk_size;
854 	struct ext4_inode_info *ei = EXT4_I(inode);
855 	struct ext4_map_blocks map;
856 	struct ext4_fc_add_range fc_ext;
857 	struct ext4_fc_del_range lrange;
858 	struct ext4_extent *ex;
859 	int ret;
860 
861 	mutex_lock(&ei->i_fc_lock);
862 	if (ei->i_fc_lblk_len == 0) {
863 		mutex_unlock(&ei->i_fc_lock);
864 		return 0;
865 	}
866 	old_blk_size = ei->i_fc_lblk_start;
867 	new_blk_size = ei->i_fc_lblk_start + ei->i_fc_lblk_len - 1;
868 	ei->i_fc_lblk_len = 0;
869 	mutex_unlock(&ei->i_fc_lock);
870 
871 	cur_lblk_off = old_blk_size;
872 	jbd_debug(1, "%s: will try writing %d to %d for inode %ld\n",
873 		  __func__, cur_lblk_off, new_blk_size, inode->i_ino);
874 
875 	while (cur_lblk_off <= new_blk_size) {
876 		map.m_lblk = cur_lblk_off;
877 		map.m_len = new_blk_size - cur_lblk_off + 1;
878 		ret = ext4_map_blocks(NULL, inode, &map, 0);
879 		if (ret < 0)
880 			return -ECANCELED;
881 
882 		if (map.m_len == 0) {
883 			cur_lblk_off++;
884 			continue;
885 		}
886 
887 		if (ret == 0) {
888 			lrange.fc_ino = cpu_to_le32(inode->i_ino);
889 			lrange.fc_lblk = cpu_to_le32(map.m_lblk);
890 			lrange.fc_len = cpu_to_le32(map.m_len);
891 			if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_DEL_RANGE,
892 					    sizeof(lrange), (u8 *)&lrange, crc))
893 				return -ENOSPC;
894 		} else {
895 			fc_ext.fc_ino = cpu_to_le32(inode->i_ino);
896 			ex = (struct ext4_extent *)&fc_ext.fc_ex;
897 			ex->ee_block = cpu_to_le32(map.m_lblk);
898 			ex->ee_len = cpu_to_le16(map.m_len);
899 			ext4_ext_store_pblock(ex, map.m_pblk);
900 			if (map.m_flags & EXT4_MAP_UNWRITTEN)
901 				ext4_ext_mark_unwritten(ex);
902 			else
903 				ext4_ext_mark_initialized(ex);
904 			if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_ADD_RANGE,
905 					    sizeof(fc_ext), (u8 *)&fc_ext, crc))
906 				return -ENOSPC;
907 		}
908 
909 		cur_lblk_off += map.m_len;
910 	}
911 
912 	return 0;
913 }
914 
915 
916 /* Submit data for all the fast commit inodes */
917 static int ext4_fc_submit_inode_data_all(journal_t *journal)
918 {
919 	struct super_block *sb = (struct super_block *)(journal->j_private);
920 	struct ext4_sb_info *sbi = EXT4_SB(sb);
921 	struct ext4_inode_info *ei;
922 	int ret = 0;
923 
924 	spin_lock(&sbi->s_fc_lock);
925 	ext4_set_mount_flag(sb, EXT4_MF_FC_COMMITTING);
926 	list_for_each_entry(ei, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
927 		ext4_set_inode_state(&ei->vfs_inode, EXT4_STATE_FC_COMMITTING);
928 		while (atomic_read(&ei->i_fc_updates)) {
929 			DEFINE_WAIT(wait);
930 
931 			prepare_to_wait(&ei->i_fc_wait, &wait,
932 						TASK_UNINTERRUPTIBLE);
933 			if (atomic_read(&ei->i_fc_updates)) {
934 				spin_unlock(&sbi->s_fc_lock);
935 				schedule();
936 				spin_lock(&sbi->s_fc_lock);
937 			}
938 			finish_wait(&ei->i_fc_wait, &wait);
939 		}
940 		spin_unlock(&sbi->s_fc_lock);
941 		ret = jbd2_submit_inode_data(ei->jinode);
942 		if (ret)
943 			return ret;
944 		spin_lock(&sbi->s_fc_lock);
945 	}
946 	spin_unlock(&sbi->s_fc_lock);
947 
948 	return ret;
949 }
950 
951 /* Wait for completion of data for all the fast commit inodes */
952 static int ext4_fc_wait_inode_data_all(journal_t *journal)
953 {
954 	struct super_block *sb = (struct super_block *)(journal->j_private);
955 	struct ext4_sb_info *sbi = EXT4_SB(sb);
956 	struct ext4_inode_info *pos, *n;
957 	int ret = 0;
958 
959 	spin_lock(&sbi->s_fc_lock);
960 	list_for_each_entry_safe(pos, n, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
961 		if (!ext4_test_inode_state(&pos->vfs_inode,
962 					   EXT4_STATE_FC_COMMITTING))
963 			continue;
964 		spin_unlock(&sbi->s_fc_lock);
965 
966 		ret = jbd2_wait_inode_data(journal, pos->jinode);
967 		if (ret)
968 			return ret;
969 		spin_lock(&sbi->s_fc_lock);
970 	}
971 	spin_unlock(&sbi->s_fc_lock);
972 
973 	return 0;
974 }
975 
976 /* Commit all the directory entry updates */
977 static int ext4_fc_commit_dentry_updates(journal_t *journal, u32 *crc)
978 __acquires(&sbi->s_fc_lock)
979 __releases(&sbi->s_fc_lock)
980 {
981 	struct super_block *sb = (struct super_block *)(journal->j_private);
982 	struct ext4_sb_info *sbi = EXT4_SB(sb);
983 	struct ext4_fc_dentry_update *fc_dentry, *fc_dentry_n;
984 	struct inode *inode;
985 	struct ext4_inode_info *ei, *ei_n;
986 	int ret;
987 
988 	if (list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN]))
989 		return 0;
990 	list_for_each_entry_safe(fc_dentry, fc_dentry_n,
991 				 &sbi->s_fc_dentry_q[FC_Q_MAIN], fcd_list) {
992 		if (fc_dentry->fcd_op != EXT4_FC_TAG_CREAT) {
993 			spin_unlock(&sbi->s_fc_lock);
994 			if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry)) {
995 				ret = -ENOSPC;
996 				goto lock_and_exit;
997 			}
998 			spin_lock(&sbi->s_fc_lock);
999 			continue;
1000 		}
1001 
1002 		inode = NULL;
1003 		list_for_each_entry_safe(ei, ei_n, &sbi->s_fc_q[FC_Q_MAIN],
1004 					 i_fc_list) {
1005 			if (ei->vfs_inode.i_ino == fc_dentry->fcd_ino) {
1006 				inode = &ei->vfs_inode;
1007 				break;
1008 			}
1009 		}
1010 		/*
1011 		 * If we don't find inode in our list, then it was deleted,
1012 		 * in which case, we don't need to record it's create tag.
1013 		 */
1014 		if (!inode)
1015 			continue;
1016 		spin_unlock(&sbi->s_fc_lock);
1017 
1018 		/*
1019 		 * We first write the inode and then the create dirent. This
1020 		 * allows the recovery code to create an unnamed inode first
1021 		 * and then link it to a directory entry. This allows us
1022 		 * to use namei.c routines almost as is and simplifies
1023 		 * the recovery code.
1024 		 */
1025 		ret = ext4_fc_write_inode(inode, crc);
1026 		if (ret)
1027 			goto lock_and_exit;
1028 
1029 		ret = ext4_fc_write_inode_data(inode, crc);
1030 		if (ret)
1031 			goto lock_and_exit;
1032 
1033 		if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry)) {
1034 			ret = -ENOSPC;
1035 			goto lock_and_exit;
1036 		}
1037 
1038 		spin_lock(&sbi->s_fc_lock);
1039 	}
1040 	return 0;
1041 lock_and_exit:
1042 	spin_lock(&sbi->s_fc_lock);
1043 	return ret;
1044 }
1045 
1046 static int ext4_fc_perform_commit(journal_t *journal)
1047 {
1048 	struct super_block *sb = (struct super_block *)(journal->j_private);
1049 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1050 	struct ext4_inode_info *iter;
1051 	struct ext4_fc_head head;
1052 	struct inode *inode;
1053 	struct blk_plug plug;
1054 	int ret = 0;
1055 	u32 crc = 0;
1056 
1057 	ret = ext4_fc_submit_inode_data_all(journal);
1058 	if (ret)
1059 		return ret;
1060 
1061 	ret = ext4_fc_wait_inode_data_all(journal);
1062 	if (ret)
1063 		return ret;
1064 
1065 	/*
1066 	 * If file system device is different from journal device, issue a cache
1067 	 * flush before we start writing fast commit blocks.
1068 	 */
1069 	if (journal->j_fs_dev != journal->j_dev)
1070 		blkdev_issue_flush(journal->j_fs_dev);
1071 
1072 	blk_start_plug(&plug);
1073 	if (sbi->s_fc_bytes == 0) {
1074 		/*
1075 		 * Add a head tag only if this is the first fast commit
1076 		 * in this TID.
1077 		 */
1078 		head.fc_features = cpu_to_le32(EXT4_FC_SUPPORTED_FEATURES);
1079 		head.fc_tid = cpu_to_le32(
1080 			sbi->s_journal->j_running_transaction->t_tid);
1081 		if (!ext4_fc_add_tlv(sb, EXT4_FC_TAG_HEAD, sizeof(head),
1082 			(u8 *)&head, &crc)) {
1083 			ret = -ENOSPC;
1084 			goto out;
1085 		}
1086 	}
1087 
1088 	spin_lock(&sbi->s_fc_lock);
1089 	ret = ext4_fc_commit_dentry_updates(journal, &crc);
1090 	if (ret) {
1091 		spin_unlock(&sbi->s_fc_lock);
1092 		goto out;
1093 	}
1094 
1095 	list_for_each_entry(iter, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
1096 		inode = &iter->vfs_inode;
1097 		if (!ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING))
1098 			continue;
1099 
1100 		spin_unlock(&sbi->s_fc_lock);
1101 		ret = ext4_fc_write_inode_data(inode, &crc);
1102 		if (ret)
1103 			goto out;
1104 		ret = ext4_fc_write_inode(inode, &crc);
1105 		if (ret)
1106 			goto out;
1107 		spin_lock(&sbi->s_fc_lock);
1108 	}
1109 	spin_unlock(&sbi->s_fc_lock);
1110 
1111 	ret = ext4_fc_write_tail(sb, crc);
1112 
1113 out:
1114 	blk_finish_plug(&plug);
1115 	return ret;
1116 }
1117 
1118 /*
1119  * The main commit entry point. Performs a fast commit for transaction
1120  * commit_tid if needed. If it's not possible to perform a fast commit
1121  * due to various reasons, we fall back to full commit. Returns 0
1122  * on success, error otherwise.
1123  */
1124 int ext4_fc_commit(journal_t *journal, tid_t commit_tid)
1125 {
1126 	struct super_block *sb = (struct super_block *)(journal->j_private);
1127 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1128 	int nblks = 0, ret, bsize = journal->j_blocksize;
1129 	int subtid = atomic_read(&sbi->s_fc_subtid);
1130 	int reason = EXT4_FC_REASON_OK, fc_bufs_before = 0;
1131 	ktime_t start_time, commit_time;
1132 
1133 	trace_ext4_fc_commit_start(sb);
1134 
1135 	start_time = ktime_get();
1136 
1137 	if (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
1138 		(ext4_fc_is_ineligible(sb))) {
1139 		reason = EXT4_FC_REASON_INELIGIBLE;
1140 		goto out;
1141 	}
1142 
1143 restart_fc:
1144 	ret = jbd2_fc_begin_commit(journal, commit_tid);
1145 	if (ret == -EALREADY) {
1146 		/* There was an ongoing commit, check if we need to restart */
1147 		if (atomic_read(&sbi->s_fc_subtid) <= subtid &&
1148 			commit_tid > journal->j_commit_sequence)
1149 			goto restart_fc;
1150 		reason = EXT4_FC_REASON_ALREADY_COMMITTED;
1151 		goto out;
1152 	} else if (ret) {
1153 		sbi->s_fc_stats.fc_ineligible_reason_count[EXT4_FC_COMMIT_FAILED]++;
1154 		reason = EXT4_FC_REASON_FC_START_FAILED;
1155 		goto out;
1156 	}
1157 
1158 	fc_bufs_before = (sbi->s_fc_bytes + bsize - 1) / bsize;
1159 	ret = ext4_fc_perform_commit(journal);
1160 	if (ret < 0) {
1161 		sbi->s_fc_stats.fc_ineligible_reason_count[EXT4_FC_COMMIT_FAILED]++;
1162 		reason = EXT4_FC_REASON_FC_FAILED;
1163 		goto out;
1164 	}
1165 	nblks = (sbi->s_fc_bytes + bsize - 1) / bsize - fc_bufs_before;
1166 	ret = jbd2_fc_wait_bufs(journal, nblks);
1167 	if (ret < 0) {
1168 		sbi->s_fc_stats.fc_ineligible_reason_count[EXT4_FC_COMMIT_FAILED]++;
1169 		reason = EXT4_FC_REASON_FC_FAILED;
1170 		goto out;
1171 	}
1172 	atomic_inc(&sbi->s_fc_subtid);
1173 	jbd2_fc_end_commit(journal);
1174 out:
1175 	/* Has any ineligible update happened since we started? */
1176 	if (reason == EXT4_FC_REASON_OK && ext4_fc_is_ineligible(sb)) {
1177 		sbi->s_fc_stats.fc_ineligible_reason_count[EXT4_FC_COMMIT_FAILED]++;
1178 		reason = EXT4_FC_REASON_INELIGIBLE;
1179 	}
1180 
1181 	spin_lock(&sbi->s_fc_lock);
1182 	if (reason != EXT4_FC_REASON_OK &&
1183 		reason != EXT4_FC_REASON_ALREADY_COMMITTED) {
1184 		sbi->s_fc_stats.fc_ineligible_commits++;
1185 	} else {
1186 		sbi->s_fc_stats.fc_num_commits++;
1187 		sbi->s_fc_stats.fc_numblks += nblks;
1188 	}
1189 	spin_unlock(&sbi->s_fc_lock);
1190 	nblks = (reason == EXT4_FC_REASON_OK) ? nblks : 0;
1191 	trace_ext4_fc_commit_stop(sb, nblks, reason);
1192 	commit_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
1193 	/*
1194 	 * weight the commit time higher than the average time so we don't
1195 	 * react too strongly to vast changes in the commit time
1196 	 */
1197 	if (likely(sbi->s_fc_avg_commit_time))
1198 		sbi->s_fc_avg_commit_time = (commit_time +
1199 				sbi->s_fc_avg_commit_time * 3) / 4;
1200 	else
1201 		sbi->s_fc_avg_commit_time = commit_time;
1202 	jbd_debug(1,
1203 		"Fast commit ended with blks = %d, reason = %d, subtid - %d",
1204 		nblks, reason, subtid);
1205 	if (reason == EXT4_FC_REASON_FC_FAILED)
1206 		return jbd2_fc_end_commit_fallback(journal);
1207 	if (reason == EXT4_FC_REASON_FC_START_FAILED ||
1208 		reason == EXT4_FC_REASON_INELIGIBLE)
1209 		return jbd2_complete_transaction(journal, commit_tid);
1210 	return 0;
1211 }
1212 
1213 /*
1214  * Fast commit cleanup routine. This is called after every fast commit and
1215  * full commit. full is true if we are called after a full commit.
1216  */
1217 static void ext4_fc_cleanup(journal_t *journal, int full)
1218 {
1219 	struct super_block *sb = journal->j_private;
1220 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1221 	struct ext4_inode_info *iter, *iter_n;
1222 	struct ext4_fc_dentry_update *fc_dentry;
1223 
1224 	if (full && sbi->s_fc_bh)
1225 		sbi->s_fc_bh = NULL;
1226 
1227 	jbd2_fc_release_bufs(journal);
1228 
1229 	spin_lock(&sbi->s_fc_lock);
1230 	list_for_each_entry_safe(iter, iter_n, &sbi->s_fc_q[FC_Q_MAIN],
1231 				 i_fc_list) {
1232 		list_del_init(&iter->i_fc_list);
1233 		ext4_clear_inode_state(&iter->vfs_inode,
1234 				       EXT4_STATE_FC_COMMITTING);
1235 		ext4_fc_reset_inode(&iter->vfs_inode);
1236 		/* Make sure EXT4_STATE_FC_COMMITTING bit is clear */
1237 		smp_mb();
1238 #if (BITS_PER_LONG < 64)
1239 		wake_up_bit(&iter->i_state_flags, EXT4_STATE_FC_COMMITTING);
1240 #else
1241 		wake_up_bit(&iter->i_flags, EXT4_STATE_FC_COMMITTING);
1242 #endif
1243 	}
1244 
1245 	while (!list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN])) {
1246 		fc_dentry = list_first_entry(&sbi->s_fc_dentry_q[FC_Q_MAIN],
1247 					     struct ext4_fc_dentry_update,
1248 					     fcd_list);
1249 		list_del_init(&fc_dentry->fcd_list);
1250 		spin_unlock(&sbi->s_fc_lock);
1251 
1252 		if (fc_dentry->fcd_name.name &&
1253 			fc_dentry->fcd_name.len > DNAME_INLINE_LEN)
1254 			kfree(fc_dentry->fcd_name.name);
1255 		kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry);
1256 		spin_lock(&sbi->s_fc_lock);
1257 	}
1258 
1259 	list_splice_init(&sbi->s_fc_dentry_q[FC_Q_STAGING],
1260 				&sbi->s_fc_dentry_q[FC_Q_MAIN]);
1261 	list_splice_init(&sbi->s_fc_q[FC_Q_STAGING],
1262 				&sbi->s_fc_q[FC_Q_MAIN]);
1263 
1264 	ext4_clear_mount_flag(sb, EXT4_MF_FC_COMMITTING);
1265 	ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
1266 
1267 	if (full)
1268 		sbi->s_fc_bytes = 0;
1269 	spin_unlock(&sbi->s_fc_lock);
1270 	trace_ext4_fc_stats(sb);
1271 }
1272 
1273 /* Ext4 Replay Path Routines */
1274 
1275 /* Helper struct for dentry replay routines */
1276 struct dentry_info_args {
1277 	int parent_ino, dname_len, ino, inode_len;
1278 	char *dname;
1279 };
1280 
1281 static inline void tl_to_darg(struct dentry_info_args *darg,
1282 			      struct  ext4_fc_tl *tl, u8 *val)
1283 {
1284 	struct ext4_fc_dentry_info fcd;
1285 
1286 	memcpy(&fcd, val, sizeof(fcd));
1287 
1288 	darg->parent_ino = le32_to_cpu(fcd.fc_parent_ino);
1289 	darg->ino = le32_to_cpu(fcd.fc_ino);
1290 	darg->dname = val + offsetof(struct ext4_fc_dentry_info, fc_dname);
1291 	darg->dname_len = le16_to_cpu(tl->fc_len) -
1292 		sizeof(struct ext4_fc_dentry_info);
1293 }
1294 
1295 /* Unlink replay function */
1296 static int ext4_fc_replay_unlink(struct super_block *sb, struct ext4_fc_tl *tl,
1297 				 u8 *val)
1298 {
1299 	struct inode *inode, *old_parent;
1300 	struct qstr entry;
1301 	struct dentry_info_args darg;
1302 	int ret = 0;
1303 
1304 	tl_to_darg(&darg, tl, val);
1305 
1306 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_UNLINK, darg.ino,
1307 			darg.parent_ino, darg.dname_len);
1308 
1309 	entry.name = darg.dname;
1310 	entry.len = darg.dname_len;
1311 	inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1312 
1313 	if (IS_ERR(inode)) {
1314 		jbd_debug(1, "Inode %d not found", darg.ino);
1315 		return 0;
1316 	}
1317 
1318 	old_parent = ext4_iget(sb, darg.parent_ino,
1319 				EXT4_IGET_NORMAL);
1320 	if (IS_ERR(old_parent)) {
1321 		jbd_debug(1, "Dir with inode  %d not found", darg.parent_ino);
1322 		iput(inode);
1323 		return 0;
1324 	}
1325 
1326 	ret = __ext4_unlink(NULL, old_parent, &entry, inode);
1327 	/* -ENOENT ok coz it might not exist anymore. */
1328 	if (ret == -ENOENT)
1329 		ret = 0;
1330 	iput(old_parent);
1331 	iput(inode);
1332 	return ret;
1333 }
1334 
1335 static int ext4_fc_replay_link_internal(struct super_block *sb,
1336 				struct dentry_info_args *darg,
1337 				struct inode *inode)
1338 {
1339 	struct inode *dir = NULL;
1340 	struct dentry *dentry_dir = NULL, *dentry_inode = NULL;
1341 	struct qstr qstr_dname = QSTR_INIT(darg->dname, darg->dname_len);
1342 	int ret = 0;
1343 
1344 	dir = ext4_iget(sb, darg->parent_ino, EXT4_IGET_NORMAL);
1345 	if (IS_ERR(dir)) {
1346 		jbd_debug(1, "Dir with inode %d not found.", darg->parent_ino);
1347 		dir = NULL;
1348 		goto out;
1349 	}
1350 
1351 	dentry_dir = d_obtain_alias(dir);
1352 	if (IS_ERR(dentry_dir)) {
1353 		jbd_debug(1, "Failed to obtain dentry");
1354 		dentry_dir = NULL;
1355 		goto out;
1356 	}
1357 
1358 	dentry_inode = d_alloc(dentry_dir, &qstr_dname);
1359 	if (!dentry_inode) {
1360 		jbd_debug(1, "Inode dentry not created.");
1361 		ret = -ENOMEM;
1362 		goto out;
1363 	}
1364 
1365 	ret = __ext4_link(dir, inode, dentry_inode);
1366 	/*
1367 	 * It's possible that link already existed since data blocks
1368 	 * for the dir in question got persisted before we crashed OR
1369 	 * we replayed this tag and crashed before the entire replay
1370 	 * could complete.
1371 	 */
1372 	if (ret && ret != -EEXIST) {
1373 		jbd_debug(1, "Failed to link\n");
1374 		goto out;
1375 	}
1376 
1377 	ret = 0;
1378 out:
1379 	if (dentry_dir) {
1380 		d_drop(dentry_dir);
1381 		dput(dentry_dir);
1382 	} else if (dir) {
1383 		iput(dir);
1384 	}
1385 	if (dentry_inode) {
1386 		d_drop(dentry_inode);
1387 		dput(dentry_inode);
1388 	}
1389 
1390 	return ret;
1391 }
1392 
1393 /* Link replay function */
1394 static int ext4_fc_replay_link(struct super_block *sb, struct ext4_fc_tl *tl,
1395 			       u8 *val)
1396 {
1397 	struct inode *inode;
1398 	struct dentry_info_args darg;
1399 	int ret = 0;
1400 
1401 	tl_to_darg(&darg, tl, val);
1402 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_LINK, darg.ino,
1403 			darg.parent_ino, darg.dname_len);
1404 
1405 	inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1406 	if (IS_ERR(inode)) {
1407 		jbd_debug(1, "Inode not found.");
1408 		return 0;
1409 	}
1410 
1411 	ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1412 	iput(inode);
1413 	return ret;
1414 }
1415 
1416 /*
1417  * Record all the modified inodes during replay. We use this later to setup
1418  * block bitmaps correctly.
1419  */
1420 static int ext4_fc_record_modified_inode(struct super_block *sb, int ino)
1421 {
1422 	struct ext4_fc_replay_state *state;
1423 	int i;
1424 
1425 	state = &EXT4_SB(sb)->s_fc_replay_state;
1426 	for (i = 0; i < state->fc_modified_inodes_used; i++)
1427 		if (state->fc_modified_inodes[i] == ino)
1428 			return 0;
1429 	if (state->fc_modified_inodes_used == state->fc_modified_inodes_size) {
1430 		state->fc_modified_inodes_size +=
1431 			EXT4_FC_REPLAY_REALLOC_INCREMENT;
1432 		state->fc_modified_inodes = krealloc(
1433 					state->fc_modified_inodes, sizeof(int) *
1434 					state->fc_modified_inodes_size,
1435 					GFP_KERNEL);
1436 		if (!state->fc_modified_inodes)
1437 			return -ENOMEM;
1438 	}
1439 	state->fc_modified_inodes[state->fc_modified_inodes_used++] = ino;
1440 	return 0;
1441 }
1442 
1443 /*
1444  * Inode replay function
1445  */
1446 static int ext4_fc_replay_inode(struct super_block *sb, struct ext4_fc_tl *tl,
1447 				u8 *val)
1448 {
1449 	struct ext4_fc_inode fc_inode;
1450 	struct ext4_inode *raw_inode;
1451 	struct ext4_inode *raw_fc_inode;
1452 	struct inode *inode = NULL;
1453 	struct ext4_iloc iloc;
1454 	int inode_len, ino, ret, tag = le16_to_cpu(tl->fc_tag);
1455 	struct ext4_extent_header *eh;
1456 
1457 	memcpy(&fc_inode, val, sizeof(fc_inode));
1458 
1459 	ino = le32_to_cpu(fc_inode.fc_ino);
1460 	trace_ext4_fc_replay(sb, tag, ino, 0, 0);
1461 
1462 	inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1463 	if (!IS_ERR(inode)) {
1464 		ext4_ext_clear_bb(inode);
1465 		iput(inode);
1466 	}
1467 	inode = NULL;
1468 
1469 	ext4_fc_record_modified_inode(sb, ino);
1470 
1471 	raw_fc_inode = (struct ext4_inode *)
1472 		(val + offsetof(struct ext4_fc_inode, fc_raw_inode));
1473 	ret = ext4_get_fc_inode_loc(sb, ino, &iloc);
1474 	if (ret)
1475 		goto out;
1476 
1477 	inode_len = le16_to_cpu(tl->fc_len) - sizeof(struct ext4_fc_inode);
1478 	raw_inode = ext4_raw_inode(&iloc);
1479 
1480 	memcpy(raw_inode, raw_fc_inode, offsetof(struct ext4_inode, i_block));
1481 	memcpy(&raw_inode->i_generation, &raw_fc_inode->i_generation,
1482 		inode_len - offsetof(struct ext4_inode, i_generation));
1483 	if (le32_to_cpu(raw_inode->i_flags) & EXT4_EXTENTS_FL) {
1484 		eh = (struct ext4_extent_header *)(&raw_inode->i_block[0]);
1485 		if (eh->eh_magic != EXT4_EXT_MAGIC) {
1486 			memset(eh, 0, sizeof(*eh));
1487 			eh->eh_magic = EXT4_EXT_MAGIC;
1488 			eh->eh_max = cpu_to_le16(
1489 				(sizeof(raw_inode->i_block) -
1490 				 sizeof(struct ext4_extent_header))
1491 				 / sizeof(struct ext4_extent));
1492 		}
1493 	} else if (le32_to_cpu(raw_inode->i_flags) & EXT4_INLINE_DATA_FL) {
1494 		memcpy(raw_inode->i_block, raw_fc_inode->i_block,
1495 			sizeof(raw_inode->i_block));
1496 	}
1497 
1498 	/* Immediately update the inode on disk. */
1499 	ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1500 	if (ret)
1501 		goto out;
1502 	ret = sync_dirty_buffer(iloc.bh);
1503 	if (ret)
1504 		goto out;
1505 	ret = ext4_mark_inode_used(sb, ino);
1506 	if (ret)
1507 		goto out;
1508 
1509 	/* Given that we just wrote the inode on disk, this SHOULD succeed. */
1510 	inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1511 	if (IS_ERR(inode)) {
1512 		jbd_debug(1, "Inode not found.");
1513 		return -EFSCORRUPTED;
1514 	}
1515 
1516 	/*
1517 	 * Our allocator could have made different decisions than before
1518 	 * crashing. This should be fixed but until then, we calculate
1519 	 * the number of blocks the inode.
1520 	 */
1521 	ext4_ext_replay_set_iblocks(inode);
1522 
1523 	inode->i_generation = le32_to_cpu(ext4_raw_inode(&iloc)->i_generation);
1524 	ext4_reset_inode_seed(inode);
1525 
1526 	ext4_inode_csum_set(inode, ext4_raw_inode(&iloc), EXT4_I(inode));
1527 	ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1528 	sync_dirty_buffer(iloc.bh);
1529 	brelse(iloc.bh);
1530 out:
1531 	iput(inode);
1532 	if (!ret)
1533 		blkdev_issue_flush(sb->s_bdev);
1534 
1535 	return 0;
1536 }
1537 
1538 /*
1539  * Dentry create replay function.
1540  *
1541  * EXT4_FC_TAG_CREAT is preceded by EXT4_FC_TAG_INODE_FULL. Which means, the
1542  * inode for which we are trying to create a dentry here, should already have
1543  * been replayed before we start here.
1544  */
1545 static int ext4_fc_replay_create(struct super_block *sb, struct ext4_fc_tl *tl,
1546 				 u8 *val)
1547 {
1548 	int ret = 0;
1549 	struct inode *inode = NULL;
1550 	struct inode *dir = NULL;
1551 	struct dentry_info_args darg;
1552 
1553 	tl_to_darg(&darg, tl, val);
1554 
1555 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_CREAT, darg.ino,
1556 			darg.parent_ino, darg.dname_len);
1557 
1558 	/* This takes care of update group descriptor and other metadata */
1559 	ret = ext4_mark_inode_used(sb, darg.ino);
1560 	if (ret)
1561 		goto out;
1562 
1563 	inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1564 	if (IS_ERR(inode)) {
1565 		jbd_debug(1, "inode %d not found.", darg.ino);
1566 		inode = NULL;
1567 		ret = -EINVAL;
1568 		goto out;
1569 	}
1570 
1571 	if (S_ISDIR(inode->i_mode)) {
1572 		/*
1573 		 * If we are creating a directory, we need to make sure that the
1574 		 * dot and dot dot dirents are setup properly.
1575 		 */
1576 		dir = ext4_iget(sb, darg.parent_ino, EXT4_IGET_NORMAL);
1577 		if (IS_ERR(dir)) {
1578 			jbd_debug(1, "Dir %d not found.", darg.ino);
1579 			goto out;
1580 		}
1581 		ret = ext4_init_new_dir(NULL, dir, inode);
1582 		iput(dir);
1583 		if (ret) {
1584 			ret = 0;
1585 			goto out;
1586 		}
1587 	}
1588 	ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1589 	if (ret)
1590 		goto out;
1591 	set_nlink(inode, 1);
1592 	ext4_mark_inode_dirty(NULL, inode);
1593 out:
1594 	if (inode)
1595 		iput(inode);
1596 	return ret;
1597 }
1598 
1599 /*
1600  * Record physical disk regions which are in use as per fast commit area. Our
1601  * simple replay phase allocator excludes these regions from allocation.
1602  */
1603 static int ext4_fc_record_regions(struct super_block *sb, int ino,
1604 		ext4_lblk_t lblk, ext4_fsblk_t pblk, int len)
1605 {
1606 	struct ext4_fc_replay_state *state;
1607 	struct ext4_fc_alloc_region *region;
1608 
1609 	state = &EXT4_SB(sb)->s_fc_replay_state;
1610 	if (state->fc_regions_used == state->fc_regions_size) {
1611 		state->fc_regions_size +=
1612 			EXT4_FC_REPLAY_REALLOC_INCREMENT;
1613 		state->fc_regions = krealloc(
1614 					state->fc_regions,
1615 					state->fc_regions_size *
1616 					sizeof(struct ext4_fc_alloc_region),
1617 					GFP_KERNEL);
1618 		if (!state->fc_regions)
1619 			return -ENOMEM;
1620 	}
1621 	region = &state->fc_regions[state->fc_regions_used++];
1622 	region->ino = ino;
1623 	region->lblk = lblk;
1624 	region->pblk = pblk;
1625 	region->len = len;
1626 
1627 	return 0;
1628 }
1629 
1630 /* Replay add range tag */
1631 static int ext4_fc_replay_add_range(struct super_block *sb,
1632 				    struct ext4_fc_tl *tl, u8 *val)
1633 {
1634 	struct ext4_fc_add_range fc_add_ex;
1635 	struct ext4_extent newex, *ex;
1636 	struct inode *inode;
1637 	ext4_lblk_t start, cur;
1638 	int remaining, len;
1639 	ext4_fsblk_t start_pblk;
1640 	struct ext4_map_blocks map;
1641 	struct ext4_ext_path *path = NULL;
1642 	int ret;
1643 
1644 	memcpy(&fc_add_ex, val, sizeof(fc_add_ex));
1645 	ex = (struct ext4_extent *)&fc_add_ex.fc_ex;
1646 
1647 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_ADD_RANGE,
1648 		le32_to_cpu(fc_add_ex.fc_ino), le32_to_cpu(ex->ee_block),
1649 		ext4_ext_get_actual_len(ex));
1650 
1651 	inode = ext4_iget(sb, le32_to_cpu(fc_add_ex.fc_ino), EXT4_IGET_NORMAL);
1652 	if (IS_ERR(inode)) {
1653 		jbd_debug(1, "Inode not found.");
1654 		return 0;
1655 	}
1656 
1657 	ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1658 
1659 	start = le32_to_cpu(ex->ee_block);
1660 	start_pblk = ext4_ext_pblock(ex);
1661 	len = ext4_ext_get_actual_len(ex);
1662 
1663 	cur = start;
1664 	remaining = len;
1665 	jbd_debug(1, "ADD_RANGE, lblk %d, pblk %lld, len %d, unwritten %d, inode %ld\n",
1666 		  start, start_pblk, len, ext4_ext_is_unwritten(ex),
1667 		  inode->i_ino);
1668 
1669 	while (remaining > 0) {
1670 		map.m_lblk = cur;
1671 		map.m_len = remaining;
1672 		map.m_pblk = 0;
1673 		ret = ext4_map_blocks(NULL, inode, &map, 0);
1674 
1675 		if (ret < 0) {
1676 			iput(inode);
1677 			return 0;
1678 		}
1679 
1680 		if (ret == 0) {
1681 			/* Range is not mapped */
1682 			path = ext4_find_extent(inode, cur, NULL, 0);
1683 			if (IS_ERR(path)) {
1684 				iput(inode);
1685 				return 0;
1686 			}
1687 			memset(&newex, 0, sizeof(newex));
1688 			newex.ee_block = cpu_to_le32(cur);
1689 			ext4_ext_store_pblock(
1690 				&newex, start_pblk + cur - start);
1691 			newex.ee_len = cpu_to_le16(map.m_len);
1692 			if (ext4_ext_is_unwritten(ex))
1693 				ext4_ext_mark_unwritten(&newex);
1694 			down_write(&EXT4_I(inode)->i_data_sem);
1695 			ret = ext4_ext_insert_extent(
1696 				NULL, inode, &path, &newex, 0);
1697 			up_write((&EXT4_I(inode)->i_data_sem));
1698 			ext4_ext_drop_refs(path);
1699 			kfree(path);
1700 			if (ret) {
1701 				iput(inode);
1702 				return 0;
1703 			}
1704 			goto next;
1705 		}
1706 
1707 		if (start_pblk + cur - start != map.m_pblk) {
1708 			/*
1709 			 * Logical to physical mapping changed. This can happen
1710 			 * if this range was removed and then reallocated to
1711 			 * map to new physical blocks during a fast commit.
1712 			 */
1713 			ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1714 					ext4_ext_is_unwritten(ex),
1715 					start_pblk + cur - start);
1716 			if (ret) {
1717 				iput(inode);
1718 				return 0;
1719 			}
1720 			/*
1721 			 * Mark the old blocks as free since they aren't used
1722 			 * anymore. We maintain an array of all the modified
1723 			 * inodes. In case these blocks are still used at either
1724 			 * a different logical range in the same inode or in
1725 			 * some different inode, we will mark them as allocated
1726 			 * at the end of the FC replay using our array of
1727 			 * modified inodes.
1728 			 */
1729 			ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 0);
1730 			goto next;
1731 		}
1732 
1733 		/* Range is mapped and needs a state change */
1734 		jbd_debug(1, "Converting from %ld to %d %lld",
1735 				map.m_flags & EXT4_MAP_UNWRITTEN,
1736 			ext4_ext_is_unwritten(ex), map.m_pblk);
1737 		ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1738 					ext4_ext_is_unwritten(ex), map.m_pblk);
1739 		if (ret) {
1740 			iput(inode);
1741 			return 0;
1742 		}
1743 		/*
1744 		 * We may have split the extent tree while toggling the state.
1745 		 * Try to shrink the extent tree now.
1746 		 */
1747 		ext4_ext_replay_shrink_inode(inode, start + len);
1748 next:
1749 		cur += map.m_len;
1750 		remaining -= map.m_len;
1751 	}
1752 	ext4_ext_replay_shrink_inode(inode, i_size_read(inode) >>
1753 					sb->s_blocksize_bits);
1754 	iput(inode);
1755 	return 0;
1756 }
1757 
1758 /* Replay DEL_RANGE tag */
1759 static int
1760 ext4_fc_replay_del_range(struct super_block *sb, struct ext4_fc_tl *tl,
1761 			 u8 *val)
1762 {
1763 	struct inode *inode;
1764 	struct ext4_fc_del_range lrange;
1765 	struct ext4_map_blocks map;
1766 	ext4_lblk_t cur, remaining;
1767 	int ret;
1768 
1769 	memcpy(&lrange, val, sizeof(lrange));
1770 	cur = le32_to_cpu(lrange.fc_lblk);
1771 	remaining = le32_to_cpu(lrange.fc_len);
1772 
1773 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_DEL_RANGE,
1774 		le32_to_cpu(lrange.fc_ino), cur, remaining);
1775 
1776 	inode = ext4_iget(sb, le32_to_cpu(lrange.fc_ino), EXT4_IGET_NORMAL);
1777 	if (IS_ERR(inode)) {
1778 		jbd_debug(1, "Inode %d not found", le32_to_cpu(lrange.fc_ino));
1779 		return 0;
1780 	}
1781 
1782 	ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1783 
1784 	jbd_debug(1, "DEL_RANGE, inode %ld, lblk %d, len %d\n",
1785 			inode->i_ino, le32_to_cpu(lrange.fc_lblk),
1786 			le32_to_cpu(lrange.fc_len));
1787 	while (remaining > 0) {
1788 		map.m_lblk = cur;
1789 		map.m_len = remaining;
1790 
1791 		ret = ext4_map_blocks(NULL, inode, &map, 0);
1792 		if (ret < 0) {
1793 			iput(inode);
1794 			return 0;
1795 		}
1796 		if (ret > 0) {
1797 			remaining -= ret;
1798 			cur += ret;
1799 			ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 0);
1800 		} else {
1801 			remaining -= map.m_len;
1802 			cur += map.m_len;
1803 		}
1804 	}
1805 
1806 	ret = ext4_punch_hole(inode,
1807 		le32_to_cpu(lrange.fc_lblk) << sb->s_blocksize_bits,
1808 		le32_to_cpu(lrange.fc_len) <<  sb->s_blocksize_bits);
1809 	if (ret)
1810 		jbd_debug(1, "ext4_punch_hole returned %d", ret);
1811 	ext4_ext_replay_shrink_inode(inode,
1812 		i_size_read(inode) >> sb->s_blocksize_bits);
1813 	ext4_mark_inode_dirty(NULL, inode);
1814 	iput(inode);
1815 
1816 	return 0;
1817 }
1818 
1819 static void ext4_fc_set_bitmaps_and_counters(struct super_block *sb)
1820 {
1821 	struct ext4_fc_replay_state *state;
1822 	struct inode *inode;
1823 	struct ext4_ext_path *path = NULL;
1824 	struct ext4_map_blocks map;
1825 	int i, ret, j;
1826 	ext4_lblk_t cur, end;
1827 
1828 	state = &EXT4_SB(sb)->s_fc_replay_state;
1829 	for (i = 0; i < state->fc_modified_inodes_used; i++) {
1830 		inode = ext4_iget(sb, state->fc_modified_inodes[i],
1831 			EXT4_IGET_NORMAL);
1832 		if (IS_ERR(inode)) {
1833 			jbd_debug(1, "Inode %d not found.",
1834 				state->fc_modified_inodes[i]);
1835 			continue;
1836 		}
1837 		cur = 0;
1838 		end = EXT_MAX_BLOCKS;
1839 		while (cur < end) {
1840 			map.m_lblk = cur;
1841 			map.m_len = end - cur;
1842 
1843 			ret = ext4_map_blocks(NULL, inode, &map, 0);
1844 			if (ret < 0)
1845 				break;
1846 
1847 			if (ret > 0) {
1848 				path = ext4_find_extent(inode, map.m_lblk, NULL, 0);
1849 				if (!IS_ERR(path)) {
1850 					for (j = 0; j < path->p_depth; j++)
1851 						ext4_mb_mark_bb(inode->i_sb,
1852 							path[j].p_block, 1, 1);
1853 					ext4_ext_drop_refs(path);
1854 					kfree(path);
1855 				}
1856 				cur += ret;
1857 				ext4_mb_mark_bb(inode->i_sb, map.m_pblk,
1858 							map.m_len, 1);
1859 			} else {
1860 				cur = cur + (map.m_len ? map.m_len : 1);
1861 			}
1862 		}
1863 		iput(inode);
1864 	}
1865 }
1866 
1867 /*
1868  * Check if block is in excluded regions for block allocation. The simple
1869  * allocator that runs during replay phase is calls this function to see
1870  * if it is okay to use a block.
1871  */
1872 bool ext4_fc_replay_check_excluded(struct super_block *sb, ext4_fsblk_t blk)
1873 {
1874 	int i;
1875 	struct ext4_fc_replay_state *state;
1876 
1877 	state = &EXT4_SB(sb)->s_fc_replay_state;
1878 	for (i = 0; i < state->fc_regions_valid; i++) {
1879 		if (state->fc_regions[i].ino == 0 ||
1880 			state->fc_regions[i].len == 0)
1881 			continue;
1882 		if (blk >= state->fc_regions[i].pblk &&
1883 		    blk < state->fc_regions[i].pblk + state->fc_regions[i].len)
1884 			return true;
1885 	}
1886 	return false;
1887 }
1888 
1889 /* Cleanup function called after replay */
1890 void ext4_fc_replay_cleanup(struct super_block *sb)
1891 {
1892 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1893 
1894 	sbi->s_mount_state &= ~EXT4_FC_REPLAY;
1895 	kfree(sbi->s_fc_replay_state.fc_regions);
1896 	kfree(sbi->s_fc_replay_state.fc_modified_inodes);
1897 }
1898 
1899 /*
1900  * Recovery Scan phase handler
1901  *
1902  * This function is called during the scan phase and is responsible
1903  * for doing following things:
1904  * - Make sure the fast commit area has valid tags for replay
1905  * - Count number of tags that need to be replayed by the replay handler
1906  * - Verify CRC
1907  * - Create a list of excluded blocks for allocation during replay phase
1908  *
1909  * This function returns JBD2_FC_REPLAY_CONTINUE to indicate that SCAN is
1910  * incomplete and JBD2 should send more blocks. It returns JBD2_FC_REPLAY_STOP
1911  * to indicate that scan has finished and JBD2 can now start replay phase.
1912  * It returns a negative error to indicate that there was an error. At the end
1913  * of a successful scan phase, sbi->s_fc_replay_state.fc_replay_num_tags is set
1914  * to indicate the number of tags that need to replayed during the replay phase.
1915  */
1916 static int ext4_fc_replay_scan(journal_t *journal,
1917 				struct buffer_head *bh, int off,
1918 				tid_t expected_tid)
1919 {
1920 	struct super_block *sb = journal->j_private;
1921 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1922 	struct ext4_fc_replay_state *state;
1923 	int ret = JBD2_FC_REPLAY_CONTINUE;
1924 	struct ext4_fc_add_range ext;
1925 	struct ext4_fc_tl tl;
1926 	struct ext4_fc_tail tail;
1927 	__u8 *start, *end, *cur, *val;
1928 	struct ext4_fc_head head;
1929 	struct ext4_extent *ex;
1930 
1931 	state = &sbi->s_fc_replay_state;
1932 
1933 	start = (u8 *)bh->b_data;
1934 	end = (__u8 *)bh->b_data + journal->j_blocksize - 1;
1935 
1936 	if (state->fc_replay_expected_off == 0) {
1937 		state->fc_cur_tag = 0;
1938 		state->fc_replay_num_tags = 0;
1939 		state->fc_crc = 0;
1940 		state->fc_regions = NULL;
1941 		state->fc_regions_valid = state->fc_regions_used =
1942 			state->fc_regions_size = 0;
1943 		/* Check if we can stop early */
1944 		if (le16_to_cpu(((struct ext4_fc_tl *)start)->fc_tag)
1945 			!= EXT4_FC_TAG_HEAD)
1946 			return 0;
1947 	}
1948 
1949 	if (off != state->fc_replay_expected_off) {
1950 		ret = -EFSCORRUPTED;
1951 		goto out_err;
1952 	}
1953 
1954 	state->fc_replay_expected_off++;
1955 	for (cur = start; cur < end; cur = cur + sizeof(tl) + le16_to_cpu(tl.fc_len)) {
1956 		memcpy(&tl, cur, sizeof(tl));
1957 		val = cur + sizeof(tl);
1958 		jbd_debug(3, "Scan phase, tag:%s, blk %lld\n",
1959 			  tag2str(le16_to_cpu(tl.fc_tag)), bh->b_blocknr);
1960 		switch (le16_to_cpu(tl.fc_tag)) {
1961 		case EXT4_FC_TAG_ADD_RANGE:
1962 			memcpy(&ext, val, sizeof(ext));
1963 			ex = (struct ext4_extent *)&ext.fc_ex;
1964 			ret = ext4_fc_record_regions(sb,
1965 				le32_to_cpu(ext.fc_ino),
1966 				le32_to_cpu(ex->ee_block), ext4_ext_pblock(ex),
1967 				ext4_ext_get_actual_len(ex));
1968 			if (ret < 0)
1969 				break;
1970 			ret = JBD2_FC_REPLAY_CONTINUE;
1971 			fallthrough;
1972 		case EXT4_FC_TAG_DEL_RANGE:
1973 		case EXT4_FC_TAG_LINK:
1974 		case EXT4_FC_TAG_UNLINK:
1975 		case EXT4_FC_TAG_CREAT:
1976 		case EXT4_FC_TAG_INODE:
1977 		case EXT4_FC_TAG_PAD:
1978 			state->fc_cur_tag++;
1979 			state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
1980 					sizeof(tl) + le16_to_cpu(tl.fc_len));
1981 			break;
1982 		case EXT4_FC_TAG_TAIL:
1983 			state->fc_cur_tag++;
1984 			memcpy(&tail, val, sizeof(tail));
1985 			state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
1986 						sizeof(tl) +
1987 						offsetof(struct ext4_fc_tail,
1988 						fc_crc));
1989 			if (le32_to_cpu(tail.fc_tid) == expected_tid &&
1990 				le32_to_cpu(tail.fc_crc) == state->fc_crc) {
1991 				state->fc_replay_num_tags = state->fc_cur_tag;
1992 				state->fc_regions_valid =
1993 					state->fc_regions_used;
1994 			} else {
1995 				ret = state->fc_replay_num_tags ?
1996 					JBD2_FC_REPLAY_STOP : -EFSBADCRC;
1997 			}
1998 			state->fc_crc = 0;
1999 			break;
2000 		case EXT4_FC_TAG_HEAD:
2001 			memcpy(&head, val, sizeof(head));
2002 			if (le32_to_cpu(head.fc_features) &
2003 				~EXT4_FC_SUPPORTED_FEATURES) {
2004 				ret = -EOPNOTSUPP;
2005 				break;
2006 			}
2007 			if (le32_to_cpu(head.fc_tid) != expected_tid) {
2008 				ret = JBD2_FC_REPLAY_STOP;
2009 				break;
2010 			}
2011 			state->fc_cur_tag++;
2012 			state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
2013 					    sizeof(tl) + le16_to_cpu(tl.fc_len));
2014 			break;
2015 		default:
2016 			ret = state->fc_replay_num_tags ?
2017 				JBD2_FC_REPLAY_STOP : -ECANCELED;
2018 		}
2019 		if (ret < 0 || ret == JBD2_FC_REPLAY_STOP)
2020 			break;
2021 	}
2022 
2023 out_err:
2024 	trace_ext4_fc_replay_scan(sb, ret, off);
2025 	return ret;
2026 }
2027 
2028 /*
2029  * Main recovery path entry point.
2030  * The meaning of return codes is similar as above.
2031  */
2032 static int ext4_fc_replay(journal_t *journal, struct buffer_head *bh,
2033 				enum passtype pass, int off, tid_t expected_tid)
2034 {
2035 	struct super_block *sb = journal->j_private;
2036 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2037 	struct ext4_fc_tl tl;
2038 	__u8 *start, *end, *cur, *val;
2039 	int ret = JBD2_FC_REPLAY_CONTINUE;
2040 	struct ext4_fc_replay_state *state = &sbi->s_fc_replay_state;
2041 	struct ext4_fc_tail tail;
2042 
2043 	if (pass == PASS_SCAN) {
2044 		state->fc_current_pass = PASS_SCAN;
2045 		return ext4_fc_replay_scan(journal, bh, off, expected_tid);
2046 	}
2047 
2048 	if (state->fc_current_pass != pass) {
2049 		state->fc_current_pass = pass;
2050 		sbi->s_mount_state |= EXT4_FC_REPLAY;
2051 	}
2052 	if (!sbi->s_fc_replay_state.fc_replay_num_tags) {
2053 		jbd_debug(1, "Replay stops\n");
2054 		ext4_fc_set_bitmaps_and_counters(sb);
2055 		return 0;
2056 	}
2057 
2058 #ifdef CONFIG_EXT4_DEBUG
2059 	if (sbi->s_fc_debug_max_replay && off >= sbi->s_fc_debug_max_replay) {
2060 		pr_warn("Dropping fc block %d because max_replay set\n", off);
2061 		return JBD2_FC_REPLAY_STOP;
2062 	}
2063 #endif
2064 
2065 	start = (u8 *)bh->b_data;
2066 	end = (__u8 *)bh->b_data + journal->j_blocksize - 1;
2067 
2068 	for (cur = start; cur < end; cur = cur + sizeof(tl) + le16_to_cpu(tl.fc_len)) {
2069 		memcpy(&tl, cur, sizeof(tl));
2070 		val = cur + sizeof(tl);
2071 
2072 		if (state->fc_replay_num_tags == 0) {
2073 			ret = JBD2_FC_REPLAY_STOP;
2074 			ext4_fc_set_bitmaps_and_counters(sb);
2075 			break;
2076 		}
2077 		jbd_debug(3, "Replay phase, tag:%s\n",
2078 				tag2str(le16_to_cpu(tl.fc_tag)));
2079 		state->fc_replay_num_tags--;
2080 		switch (le16_to_cpu(tl.fc_tag)) {
2081 		case EXT4_FC_TAG_LINK:
2082 			ret = ext4_fc_replay_link(sb, &tl, val);
2083 			break;
2084 		case EXT4_FC_TAG_UNLINK:
2085 			ret = ext4_fc_replay_unlink(sb, &tl, val);
2086 			break;
2087 		case EXT4_FC_TAG_ADD_RANGE:
2088 			ret = ext4_fc_replay_add_range(sb, &tl, val);
2089 			break;
2090 		case EXT4_FC_TAG_CREAT:
2091 			ret = ext4_fc_replay_create(sb, &tl, val);
2092 			break;
2093 		case EXT4_FC_TAG_DEL_RANGE:
2094 			ret = ext4_fc_replay_del_range(sb, &tl, val);
2095 			break;
2096 		case EXT4_FC_TAG_INODE:
2097 			ret = ext4_fc_replay_inode(sb, &tl, val);
2098 			break;
2099 		case EXT4_FC_TAG_PAD:
2100 			trace_ext4_fc_replay(sb, EXT4_FC_TAG_PAD, 0,
2101 					     le16_to_cpu(tl.fc_len), 0);
2102 			break;
2103 		case EXT4_FC_TAG_TAIL:
2104 			trace_ext4_fc_replay(sb, EXT4_FC_TAG_TAIL, 0,
2105 					     le16_to_cpu(tl.fc_len), 0);
2106 			memcpy(&tail, val, sizeof(tail));
2107 			WARN_ON(le32_to_cpu(tail.fc_tid) != expected_tid);
2108 			break;
2109 		case EXT4_FC_TAG_HEAD:
2110 			break;
2111 		default:
2112 			trace_ext4_fc_replay(sb, le16_to_cpu(tl.fc_tag), 0,
2113 					     le16_to_cpu(tl.fc_len), 0);
2114 			ret = -ECANCELED;
2115 			break;
2116 		}
2117 		if (ret < 0)
2118 			break;
2119 		ret = JBD2_FC_REPLAY_CONTINUE;
2120 	}
2121 	return ret;
2122 }
2123 
2124 void ext4_fc_init(struct super_block *sb, journal_t *journal)
2125 {
2126 	/*
2127 	 * We set replay callback even if fast commit disabled because we may
2128 	 * could still have fast commit blocks that need to be replayed even if
2129 	 * fast commit has now been turned off.
2130 	 */
2131 	journal->j_fc_replay_callback = ext4_fc_replay;
2132 	if (!test_opt2(sb, JOURNAL_FAST_COMMIT))
2133 		return;
2134 	journal->j_fc_cleanup_callback = ext4_fc_cleanup;
2135 }
2136 
2137 static const char *fc_ineligible_reasons[] = {
2138 	"Extended attributes changed",
2139 	"Cross rename",
2140 	"Journal flag changed",
2141 	"Insufficient memory",
2142 	"Swap boot",
2143 	"Resize",
2144 	"Dir renamed",
2145 	"Falloc range op",
2146 	"Data journalling",
2147 	"FC Commit Failed"
2148 };
2149 
2150 int ext4_fc_info_show(struct seq_file *seq, void *v)
2151 {
2152 	struct ext4_sb_info *sbi = EXT4_SB((struct super_block *)seq->private);
2153 	struct ext4_fc_stats *stats = &sbi->s_fc_stats;
2154 	int i;
2155 
2156 	if (v != SEQ_START_TOKEN)
2157 		return 0;
2158 
2159 	seq_printf(seq,
2160 		"fc stats:\n%ld commits\n%ld ineligible\n%ld numblks\n%lluus avg_commit_time\n",
2161 		   stats->fc_num_commits, stats->fc_ineligible_commits,
2162 		   stats->fc_numblks,
2163 		   div_u64(sbi->s_fc_avg_commit_time, 1000));
2164 	seq_puts(seq, "Ineligible reasons:\n");
2165 	for (i = 0; i < EXT4_FC_REASON_MAX; i++)
2166 		seq_printf(seq, "\"%s\":\t%d\n", fc_ineligible_reasons[i],
2167 			stats->fc_ineligible_reason_count[i]);
2168 
2169 	return 0;
2170 }
2171 
2172 int __init ext4_fc_init_dentry_cache(void)
2173 {
2174 	ext4_fc_dentry_cachep = KMEM_CACHE(ext4_fc_dentry_update,
2175 					   SLAB_RECLAIM_ACCOUNT);
2176 
2177 	if (ext4_fc_dentry_cachep == NULL)
2178 		return -ENOMEM;
2179 
2180 	return 0;
2181 }
2182