xref: /openbmc/linux/fs/ext4/fast_commit.c (revision de8c12110a130337c8e7e7b8250de0580e644dee)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /*
4  * fs/ext4/fast_commit.c
5  *
6  * Written by Harshad Shirwadkar <harshadshirwadkar@gmail.com>
7  *
8  * Ext4 fast commits routines.
9  */
10 #include "ext4.h"
11 #include "ext4_jbd2.h"
12 #include "ext4_extents.h"
13 #include "mballoc.h"
14 
15 /*
16  * Ext4 Fast Commits
17  * -----------------
18  *
19  * Ext4 fast commits implement fine grained journalling for Ext4.
20  *
21  * Fast commits are organized as a log of tag-length-value (TLV) structs. (See
22  * struct ext4_fc_tl). Each TLV contains some delta that is replayed TLV by
23  * TLV during the recovery phase. For the scenarios for which we currently
24  * don't have replay code, fast commit falls back to full commits.
25  * Fast commits record delta in one of the following three categories.
26  *
27  * (A) Directory entry updates:
28  *
29  * - EXT4_FC_TAG_UNLINK		- records directory entry unlink
30  * - EXT4_FC_TAG_LINK		- records directory entry link
31  * - EXT4_FC_TAG_CREAT		- records inode and directory entry creation
32  *
33  * (B) File specific data range updates:
34  *
35  * - EXT4_FC_TAG_ADD_RANGE	- records addition of new blocks to an inode
36  * - EXT4_FC_TAG_DEL_RANGE	- records deletion of blocks from an inode
37  *
38  * (C) Inode metadata (mtime / ctime etc):
39  *
40  * - EXT4_FC_TAG_INODE		- record the inode that should be replayed
41  *				  during recovery. Note that iblocks field is
42  *				  not replayed and instead derived during
43  *				  replay.
44  * Commit Operation
45  * ----------------
46  * With fast commits, we maintain all the directory entry operations in the
47  * order in which they are issued in an in-memory queue. This queue is flushed
48  * to disk during the commit operation. We also maintain a list of inodes
49  * that need to be committed during a fast commit in another in memory queue of
50  * inodes. During the commit operation, we commit in the following order:
51  *
52  * [1] Lock inodes for any further data updates by setting COMMITTING state
53  * [2] Submit data buffers of all the inodes
54  * [3] Wait for [2] to complete
55  * [4] Commit all the directory entry updates in the fast commit space
56  * [5] Commit all the changed inode structures
57  * [6] Write tail tag (this tag ensures the atomicity, please read the following
58  *     section for more details).
59  * [7] Wait for [4], [5] and [6] to complete.
60  *
61  * All the inode updates must call ext4_fc_start_update() before starting an
62  * update. If such an ongoing update is present, fast commit waits for it to
63  * complete. The completion of such an update is marked by
64  * ext4_fc_stop_update().
65  *
66  * Fast Commit Ineligibility
67  * -------------------------
68  * Not all operations are supported by fast commits today (e.g extended
69  * attributes). Fast commit ineligiblity is marked by calling one of the
70  * two following functions:
71  *
72  * - ext4_fc_mark_ineligible(): This makes next fast commit operation to fall
73  *   back to full commit. This is useful in case of transient errors.
74  *
75  * - ext4_fc_start_ineligible() and ext4_fc_stop_ineligible() - This makes all
76  *   the fast commits happening between ext4_fc_start_ineligible() and
77  *   ext4_fc_stop_ineligible() and one fast commit after the call to
78  *   ext4_fc_stop_ineligible() to fall back to full commits. It is important to
79  *   make one more fast commit to fall back to full commit after stop call so
80  *   that it guaranteed that the fast commit ineligible operation contained
81  *   within ext4_fc_start_ineligible() and ext4_fc_stop_ineligible() is
82  *   followed by at least 1 full commit.
83  *
84  * Atomicity of commits
85  * --------------------
86  * In order to guarantee atomicity during the commit operation, fast commit
87  * uses "EXT4_FC_TAG_TAIL" tag that marks a fast commit as complete. Tail
88  * tag contains CRC of the contents and TID of the transaction after which
89  * this fast commit should be applied. Recovery code replays fast commit
90  * logs only if there's at least 1 valid tail present. For every fast commit
91  * operation, there is 1 tail. This means, we may end up with multiple tails
92  * in the fast commit space. Here's an example:
93  *
94  * - Create a new file A and remove existing file B
95  * - fsync()
96  * - Append contents to file A
97  * - Truncate file A
98  * - fsync()
99  *
100  * The fast commit space at the end of above operations would look like this:
101  *      [HEAD] [CREAT A] [UNLINK B] [TAIL] [ADD_RANGE A] [DEL_RANGE A] [TAIL]
102  *             |<---  Fast Commit 1   --->|<---      Fast Commit 2     ---->|
103  *
104  * Replay code should thus check for all the valid tails in the FC area.
105  *
106  * Fast Commit Replay Idempotence
107  * ------------------------------
108  *
109  * Fast commits tags are idempotent in nature provided the recovery code follows
110  * certain rules. The guiding principle that the commit path follows while
111  * committing is that it stores the result of a particular operation instead of
112  * storing the procedure.
113  *
114  * Let's consider this rename operation: 'mv /a /b'. Let's assume dirent '/a'
115  * was associated with inode 10. During fast commit, instead of storing this
116  * operation as a procedure "rename a to b", we store the resulting file system
117  * state as a "series" of outcomes:
118  *
119  * - Link dirent b to inode 10
120  * - Unlink dirent a
121  * - Inode <10> with valid refcount
122  *
123  * Now when recovery code runs, it needs "enforce" this state on the file
124  * system. This is what guarantees idempotence of fast commit replay.
125  *
126  * Let's take an example of a procedure that is not idempotent and see how fast
127  * commits make it idempotent. Consider following sequence of operations:
128  *
129  *     rm A;    mv B A;    read A
130  *  (x)     (y)        (z)
131  *
132  * (x), (y) and (z) are the points at which we can crash. If we store this
133  * sequence of operations as is then the replay is not idempotent. Let's say
134  * while in replay, we crash at (z). During the second replay, file A (which was
135  * actually created as a result of "mv B A" operation) would get deleted. Thus,
136  * file named A would be absent when we try to read A. So, this sequence of
137  * operations is not idempotent. However, as mentioned above, instead of storing
138  * the procedure fast commits store the outcome of each procedure. Thus the fast
139  * commit log for above procedure would be as follows:
140  *
141  * (Let's assume dirent A was linked to inode 10 and dirent B was linked to
142  * inode 11 before the replay)
143  *
144  *    [Unlink A]   [Link A to inode 11]   [Unlink B]   [Inode 11]
145  * (w)          (x)                    (y)          (z)
146  *
147  * If we crash at (z), we will have file A linked to inode 11. During the second
148  * replay, we will remove file A (inode 11). But we will create it back and make
149  * it point to inode 11. We won't find B, so we'll just skip that step. At this
150  * point, the refcount for inode 11 is not reliable, but that gets fixed by the
151  * replay of last inode 11 tag. Crashes at points (w), (x) and (y) get handled
152  * similarly. Thus, by converting a non-idempotent procedure into a series of
153  * idempotent outcomes, fast commits ensured idempotence during the replay.
154  *
155  * TODOs
156  * -----
157  *
158  * 0) Fast commit replay path hardening: Fast commit replay code should use
159  *    journal handles to make sure all the updates it does during the replay
160  *    path are atomic. With that if we crash during fast commit replay, after
161  *    trying to do recovery again, we will find a file system where fast commit
162  *    area is invalid (because new full commit would be found). In order to deal
163  *    with that, fast commit replay code should ensure that the "FC_REPLAY"
164  *    superblock state is persisted before starting the replay, so that after
165  *    the crash, fast commit recovery code can look at that flag and perform
166  *    fast commit recovery even if that area is invalidated by later full
167  *    commits.
168  *
169  * 1) Make fast commit atomic updates more fine grained. Today, a fast commit
170  *    eligible update must be protected within ext4_fc_start_update() and
171  *    ext4_fc_stop_update(). These routines are called at much higher
172  *    routines. This can be made more fine grained by combining with
173  *    ext4_journal_start().
174  *
175  * 2) Same above for ext4_fc_start_ineligible() and ext4_fc_stop_ineligible()
176  *
177  * 3) Handle more ineligible cases.
178  */
179 
180 #include <trace/events/ext4.h>
181 static struct kmem_cache *ext4_fc_dentry_cachep;
182 
183 static void ext4_end_buffer_io_sync(struct buffer_head *bh, int uptodate)
184 {
185 	BUFFER_TRACE(bh, "");
186 	if (uptodate) {
187 		ext4_debug("%s: Block %lld up-to-date",
188 			   __func__, bh->b_blocknr);
189 		set_buffer_uptodate(bh);
190 	} else {
191 		ext4_debug("%s: Block %lld not up-to-date",
192 			   __func__, bh->b_blocknr);
193 		clear_buffer_uptodate(bh);
194 	}
195 
196 	unlock_buffer(bh);
197 }
198 
199 static inline void ext4_fc_reset_inode(struct inode *inode)
200 {
201 	struct ext4_inode_info *ei = EXT4_I(inode);
202 
203 	ei->i_fc_lblk_start = 0;
204 	ei->i_fc_lblk_len = 0;
205 }
206 
207 void ext4_fc_init_inode(struct inode *inode)
208 {
209 	struct ext4_inode_info *ei = EXT4_I(inode);
210 
211 	ext4_fc_reset_inode(inode);
212 	ext4_clear_inode_state(inode, EXT4_STATE_FC_COMMITTING);
213 	INIT_LIST_HEAD(&ei->i_fc_list);
214 	init_waitqueue_head(&ei->i_fc_wait);
215 	atomic_set(&ei->i_fc_updates, 0);
216 }
217 
218 /* This function must be called with sbi->s_fc_lock held. */
219 static void ext4_fc_wait_committing_inode(struct inode *inode)
220 __releases(&EXT4_SB(inode->i_sb)->s_fc_lock)
221 {
222 	wait_queue_head_t *wq;
223 	struct ext4_inode_info *ei = EXT4_I(inode);
224 
225 #if (BITS_PER_LONG < 64)
226 	DEFINE_WAIT_BIT(wait, &ei->i_state_flags,
227 			EXT4_STATE_FC_COMMITTING);
228 	wq = bit_waitqueue(&ei->i_state_flags,
229 				EXT4_STATE_FC_COMMITTING);
230 #else
231 	DEFINE_WAIT_BIT(wait, &ei->i_flags,
232 			EXT4_STATE_FC_COMMITTING);
233 	wq = bit_waitqueue(&ei->i_flags,
234 				EXT4_STATE_FC_COMMITTING);
235 #endif
236 	lockdep_assert_held(&EXT4_SB(inode->i_sb)->s_fc_lock);
237 	prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
238 	spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
239 	schedule();
240 	finish_wait(wq, &wait.wq_entry);
241 }
242 
243 /*
244  * Inform Ext4's fast about start of an inode update
245  *
246  * This function is called by the high level call VFS callbacks before
247  * performing any inode update. This function blocks if there's an ongoing
248  * fast commit on the inode in question.
249  */
250 void ext4_fc_start_update(struct inode *inode)
251 {
252 	struct ext4_inode_info *ei = EXT4_I(inode);
253 
254 	if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) ||
255 	    (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY))
256 		return;
257 
258 restart:
259 	spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock);
260 	if (list_empty(&ei->i_fc_list))
261 		goto out;
262 
263 	if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
264 		ext4_fc_wait_committing_inode(inode);
265 		goto restart;
266 	}
267 out:
268 	atomic_inc(&ei->i_fc_updates);
269 	spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
270 }
271 
272 /*
273  * Stop inode update and wake up waiting fast commits if any.
274  */
275 void ext4_fc_stop_update(struct inode *inode)
276 {
277 	struct ext4_inode_info *ei = EXT4_I(inode);
278 
279 	if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) ||
280 	    (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY))
281 		return;
282 
283 	if (atomic_dec_and_test(&ei->i_fc_updates))
284 		wake_up_all(&ei->i_fc_wait);
285 }
286 
287 /*
288  * Remove inode from fast commit list. If the inode is being committed
289  * we wait until inode commit is done.
290  */
291 void ext4_fc_del(struct inode *inode)
292 {
293 	struct ext4_inode_info *ei = EXT4_I(inode);
294 
295 	if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) ||
296 	    (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY))
297 		return;
298 
299 restart:
300 	spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock);
301 	if (list_empty(&ei->i_fc_list)) {
302 		spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
303 		return;
304 	}
305 
306 	if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
307 		ext4_fc_wait_committing_inode(inode);
308 		goto restart;
309 	}
310 	list_del_init(&ei->i_fc_list);
311 	spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
312 }
313 
314 /*
315  * Mark file system as fast commit ineligible. This means that next commit
316  * operation would result in a full jbd2 commit.
317  */
318 void ext4_fc_mark_ineligible(struct super_block *sb, int reason)
319 {
320 	struct ext4_sb_info *sbi = EXT4_SB(sb);
321 
322 	if (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
323 	    (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))
324 		return;
325 
326 	ext4_set_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
327 	WARN_ON(reason >= EXT4_FC_REASON_MAX);
328 	sbi->s_fc_stats.fc_ineligible_reason_count[reason]++;
329 }
330 
331 /*
332  * Start a fast commit ineligible update. Any commits that happen while
333  * such an operation is in progress fall back to full commits.
334  */
335 void ext4_fc_start_ineligible(struct super_block *sb, int reason)
336 {
337 	struct ext4_sb_info *sbi = EXT4_SB(sb);
338 
339 	if (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
340 	    (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))
341 		return;
342 
343 	WARN_ON(reason >= EXT4_FC_REASON_MAX);
344 	sbi->s_fc_stats.fc_ineligible_reason_count[reason]++;
345 	atomic_inc(&sbi->s_fc_ineligible_updates);
346 }
347 
348 /*
349  * Stop a fast commit ineligible update. We set EXT4_MF_FC_INELIGIBLE flag here
350  * to ensure that after stopping the ineligible update, at least one full
351  * commit takes place.
352  */
353 void ext4_fc_stop_ineligible(struct super_block *sb)
354 {
355 	if (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
356 	    (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))
357 		return;
358 
359 	ext4_set_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
360 	atomic_dec(&EXT4_SB(sb)->s_fc_ineligible_updates);
361 }
362 
363 static inline int ext4_fc_is_ineligible(struct super_block *sb)
364 {
365 	return (ext4_test_mount_flag(sb, EXT4_MF_FC_INELIGIBLE) ||
366 		atomic_read(&EXT4_SB(sb)->s_fc_ineligible_updates));
367 }
368 
369 /*
370  * Generic fast commit tracking function. If this is the first time this we are
371  * called after a full commit, we initialize fast commit fields and then call
372  * __fc_track_fn() with update = 0. If we have already been called after a full
373  * commit, we pass update = 1. Based on that, the track function can determine
374  * if it needs to track a field for the first time or if it needs to just
375  * update the previously tracked value.
376  *
377  * If enqueue is set, this function enqueues the inode in fast commit list.
378  */
379 static int ext4_fc_track_template(
380 	handle_t *handle, struct inode *inode,
381 	int (*__fc_track_fn)(struct inode *, void *, bool),
382 	void *args, int enqueue)
383 {
384 	bool update = false;
385 	struct ext4_inode_info *ei = EXT4_I(inode);
386 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
387 	tid_t tid = 0;
388 	int ret;
389 
390 	if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) ||
391 	    (sbi->s_mount_state & EXT4_FC_REPLAY))
392 		return -EOPNOTSUPP;
393 
394 	if (ext4_fc_is_ineligible(inode->i_sb))
395 		return -EINVAL;
396 
397 	tid = handle->h_transaction->t_tid;
398 	mutex_lock(&ei->i_fc_lock);
399 	if (tid == ei->i_sync_tid) {
400 		update = true;
401 	} else {
402 		ext4_fc_reset_inode(inode);
403 		ei->i_sync_tid = tid;
404 	}
405 	ret = __fc_track_fn(inode, args, update);
406 	mutex_unlock(&ei->i_fc_lock);
407 
408 	if (!enqueue)
409 		return ret;
410 
411 	spin_lock(&sbi->s_fc_lock);
412 	if (list_empty(&EXT4_I(inode)->i_fc_list))
413 		list_add_tail(&EXT4_I(inode)->i_fc_list,
414 				(ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_COMMITTING)) ?
415 				&sbi->s_fc_q[FC_Q_STAGING] :
416 				&sbi->s_fc_q[FC_Q_MAIN]);
417 	spin_unlock(&sbi->s_fc_lock);
418 
419 	return ret;
420 }
421 
422 struct __track_dentry_update_args {
423 	struct dentry *dentry;
424 	int op;
425 };
426 
427 /* __track_fn for directory entry updates. Called with ei->i_fc_lock. */
428 static int __track_dentry_update(struct inode *inode, void *arg, bool update)
429 {
430 	struct ext4_fc_dentry_update *node;
431 	struct ext4_inode_info *ei = EXT4_I(inode);
432 	struct __track_dentry_update_args *dentry_update =
433 		(struct __track_dentry_update_args *)arg;
434 	struct dentry *dentry = dentry_update->dentry;
435 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
436 
437 	mutex_unlock(&ei->i_fc_lock);
438 	node = kmem_cache_alloc(ext4_fc_dentry_cachep, GFP_NOFS);
439 	if (!node) {
440 		ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM);
441 		mutex_lock(&ei->i_fc_lock);
442 		return -ENOMEM;
443 	}
444 
445 	node->fcd_op = dentry_update->op;
446 	node->fcd_parent = dentry->d_parent->d_inode->i_ino;
447 	node->fcd_ino = inode->i_ino;
448 	if (dentry->d_name.len > DNAME_INLINE_LEN) {
449 		node->fcd_name.name = kmalloc(dentry->d_name.len, GFP_NOFS);
450 		if (!node->fcd_name.name) {
451 			kmem_cache_free(ext4_fc_dentry_cachep, node);
452 			ext4_fc_mark_ineligible(inode->i_sb,
453 				EXT4_FC_REASON_NOMEM);
454 			mutex_lock(&ei->i_fc_lock);
455 			return -ENOMEM;
456 		}
457 		memcpy((u8 *)node->fcd_name.name, dentry->d_name.name,
458 			dentry->d_name.len);
459 	} else {
460 		memcpy(node->fcd_iname, dentry->d_name.name,
461 			dentry->d_name.len);
462 		node->fcd_name.name = node->fcd_iname;
463 	}
464 	node->fcd_name.len = dentry->d_name.len;
465 
466 	spin_lock(&sbi->s_fc_lock);
467 	if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_COMMITTING))
468 		list_add_tail(&node->fcd_list,
469 				&sbi->s_fc_dentry_q[FC_Q_STAGING]);
470 	else
471 		list_add_tail(&node->fcd_list, &sbi->s_fc_dentry_q[FC_Q_MAIN]);
472 	spin_unlock(&sbi->s_fc_lock);
473 	mutex_lock(&ei->i_fc_lock);
474 
475 	return 0;
476 }
477 
478 void __ext4_fc_track_unlink(handle_t *handle,
479 		struct inode *inode, struct dentry *dentry)
480 {
481 	struct __track_dentry_update_args args;
482 	int ret;
483 
484 	args.dentry = dentry;
485 	args.op = EXT4_FC_TAG_UNLINK;
486 
487 	ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
488 					(void *)&args, 0);
489 	trace_ext4_fc_track_unlink(inode, dentry, ret);
490 }
491 
492 void ext4_fc_track_unlink(handle_t *handle, struct dentry *dentry)
493 {
494 	__ext4_fc_track_unlink(handle, d_inode(dentry), dentry);
495 }
496 
497 void __ext4_fc_track_link(handle_t *handle,
498 	struct inode *inode, struct dentry *dentry)
499 {
500 	struct __track_dentry_update_args args;
501 	int ret;
502 
503 	args.dentry = dentry;
504 	args.op = EXT4_FC_TAG_LINK;
505 
506 	ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
507 					(void *)&args, 0);
508 	trace_ext4_fc_track_link(inode, dentry, ret);
509 }
510 
511 void ext4_fc_track_link(handle_t *handle, struct dentry *dentry)
512 {
513 	__ext4_fc_track_link(handle, d_inode(dentry), dentry);
514 }
515 
516 void __ext4_fc_track_create(handle_t *handle, struct inode *inode,
517 			  struct dentry *dentry)
518 {
519 	struct __track_dentry_update_args args;
520 	int ret;
521 
522 	args.dentry = dentry;
523 	args.op = EXT4_FC_TAG_CREAT;
524 
525 	ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
526 					(void *)&args, 0);
527 	trace_ext4_fc_track_create(inode, dentry, ret);
528 }
529 
530 void ext4_fc_track_create(handle_t *handle, struct dentry *dentry)
531 {
532 	__ext4_fc_track_create(handle, d_inode(dentry), dentry);
533 }
534 
535 /* __track_fn for inode tracking */
536 static int __track_inode(struct inode *inode, void *arg, bool update)
537 {
538 	if (update)
539 		return -EEXIST;
540 
541 	EXT4_I(inode)->i_fc_lblk_len = 0;
542 
543 	return 0;
544 }
545 
546 void ext4_fc_track_inode(handle_t *handle, struct inode *inode)
547 {
548 	int ret;
549 
550 	if (S_ISDIR(inode->i_mode))
551 		return;
552 
553 	if (ext4_should_journal_data(inode)) {
554 		ext4_fc_mark_ineligible(inode->i_sb,
555 					EXT4_FC_REASON_INODE_JOURNAL_DATA);
556 		return;
557 	}
558 
559 	ret = ext4_fc_track_template(handle, inode, __track_inode, NULL, 1);
560 	trace_ext4_fc_track_inode(inode, ret);
561 }
562 
563 struct __track_range_args {
564 	ext4_lblk_t start, end;
565 };
566 
567 /* __track_fn for tracking data updates */
568 static int __track_range(struct inode *inode, void *arg, bool update)
569 {
570 	struct ext4_inode_info *ei = EXT4_I(inode);
571 	ext4_lblk_t oldstart;
572 	struct __track_range_args *__arg =
573 		(struct __track_range_args *)arg;
574 
575 	if (inode->i_ino < EXT4_FIRST_INO(inode->i_sb)) {
576 		ext4_debug("Special inode %ld being modified\n", inode->i_ino);
577 		return -ECANCELED;
578 	}
579 
580 	oldstart = ei->i_fc_lblk_start;
581 
582 	if (update && ei->i_fc_lblk_len > 0) {
583 		ei->i_fc_lblk_start = min(ei->i_fc_lblk_start, __arg->start);
584 		ei->i_fc_lblk_len =
585 			max(oldstart + ei->i_fc_lblk_len - 1, __arg->end) -
586 				ei->i_fc_lblk_start + 1;
587 	} else {
588 		ei->i_fc_lblk_start = __arg->start;
589 		ei->i_fc_lblk_len = __arg->end - __arg->start + 1;
590 	}
591 
592 	return 0;
593 }
594 
595 void ext4_fc_track_range(handle_t *handle, struct inode *inode, ext4_lblk_t start,
596 			 ext4_lblk_t end)
597 {
598 	struct __track_range_args args;
599 	int ret;
600 
601 	if (S_ISDIR(inode->i_mode))
602 		return;
603 
604 	args.start = start;
605 	args.end = end;
606 
607 	ret = ext4_fc_track_template(handle, inode,  __track_range, &args, 1);
608 
609 	trace_ext4_fc_track_range(inode, start, end, ret);
610 }
611 
612 static void ext4_fc_submit_bh(struct super_block *sb, bool is_tail)
613 {
614 	int write_flags = REQ_SYNC;
615 	struct buffer_head *bh = EXT4_SB(sb)->s_fc_bh;
616 
617 	/* Add REQ_FUA | REQ_PREFLUSH only its tail */
618 	if (test_opt(sb, BARRIER) && is_tail)
619 		write_flags |= REQ_FUA | REQ_PREFLUSH;
620 	lock_buffer(bh);
621 	set_buffer_dirty(bh);
622 	set_buffer_uptodate(bh);
623 	bh->b_end_io = ext4_end_buffer_io_sync;
624 	submit_bh(REQ_OP_WRITE, write_flags, bh);
625 	EXT4_SB(sb)->s_fc_bh = NULL;
626 }
627 
628 /* Ext4 commit path routines */
629 
630 /* memzero and update CRC */
631 static void *ext4_fc_memzero(struct super_block *sb, void *dst, int len,
632 				u32 *crc)
633 {
634 	void *ret;
635 
636 	ret = memset(dst, 0, len);
637 	if (crc)
638 		*crc = ext4_chksum(EXT4_SB(sb), *crc, dst, len);
639 	return ret;
640 }
641 
642 /*
643  * Allocate len bytes on a fast commit buffer.
644  *
645  * During the commit time this function is used to manage fast commit
646  * block space. We don't split a fast commit log onto different
647  * blocks. So this function makes sure that if there's not enough space
648  * on the current block, the remaining space in the current block is
649  * marked as unused by adding EXT4_FC_TAG_PAD tag. In that case,
650  * new block is from jbd2 and CRC is updated to reflect the padding
651  * we added.
652  */
653 static u8 *ext4_fc_reserve_space(struct super_block *sb, int len, u32 *crc)
654 {
655 	struct ext4_fc_tl *tl;
656 	struct ext4_sb_info *sbi = EXT4_SB(sb);
657 	struct buffer_head *bh;
658 	int bsize = sbi->s_journal->j_blocksize;
659 	int ret, off = sbi->s_fc_bytes % bsize;
660 	int pad_len;
661 
662 	/*
663 	 * After allocating len, we should have space at least for a 0 byte
664 	 * padding.
665 	 */
666 	if (len + sizeof(struct ext4_fc_tl) > bsize)
667 		return NULL;
668 
669 	if (bsize - off - 1 > len + sizeof(struct ext4_fc_tl)) {
670 		/*
671 		 * Only allocate from current buffer if we have enough space for
672 		 * this request AND we have space to add a zero byte padding.
673 		 */
674 		if (!sbi->s_fc_bh) {
675 			ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
676 			if (ret)
677 				return NULL;
678 			sbi->s_fc_bh = bh;
679 		}
680 		sbi->s_fc_bytes += len;
681 		return sbi->s_fc_bh->b_data + off;
682 	}
683 	/* Need to add PAD tag */
684 	tl = (struct ext4_fc_tl *)(sbi->s_fc_bh->b_data + off);
685 	tl->fc_tag = cpu_to_le16(EXT4_FC_TAG_PAD);
686 	pad_len = bsize - off - 1 - sizeof(struct ext4_fc_tl);
687 	tl->fc_len = cpu_to_le16(pad_len);
688 	if (crc)
689 		*crc = ext4_chksum(sbi, *crc, tl, sizeof(*tl));
690 	if (pad_len > 0)
691 		ext4_fc_memzero(sb, tl + 1, pad_len, crc);
692 	ext4_fc_submit_bh(sb, false);
693 
694 	ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
695 	if (ret)
696 		return NULL;
697 	sbi->s_fc_bh = bh;
698 	sbi->s_fc_bytes = (sbi->s_fc_bytes / bsize + 1) * bsize + len;
699 	return sbi->s_fc_bh->b_data;
700 }
701 
702 /* memcpy to fc reserved space and update CRC */
703 static void *ext4_fc_memcpy(struct super_block *sb, void *dst, const void *src,
704 				int len, u32 *crc)
705 {
706 	if (crc)
707 		*crc = ext4_chksum(EXT4_SB(sb), *crc, src, len);
708 	return memcpy(dst, src, len);
709 }
710 
711 /*
712  * Complete a fast commit by writing tail tag.
713  *
714  * Writing tail tag marks the end of a fast commit. In order to guarantee
715  * atomicity, after writing tail tag, even if there's space remaining
716  * in the block, next commit shouldn't use it. That's why tail tag
717  * has the length as that of the remaining space on the block.
718  */
719 static int ext4_fc_write_tail(struct super_block *sb, u32 crc)
720 {
721 	struct ext4_sb_info *sbi = EXT4_SB(sb);
722 	struct ext4_fc_tl tl;
723 	struct ext4_fc_tail tail;
724 	int off, bsize = sbi->s_journal->j_blocksize;
725 	u8 *dst;
726 
727 	/*
728 	 * ext4_fc_reserve_space takes care of allocating an extra block if
729 	 * there's no enough space on this block for accommodating this tail.
730 	 */
731 	dst = ext4_fc_reserve_space(sb, sizeof(tl) + sizeof(tail), &crc);
732 	if (!dst)
733 		return -ENOSPC;
734 
735 	off = sbi->s_fc_bytes % bsize;
736 
737 	tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_TAIL);
738 	tl.fc_len = cpu_to_le16(bsize - off - 1 + sizeof(struct ext4_fc_tail));
739 	sbi->s_fc_bytes = round_up(sbi->s_fc_bytes, bsize);
740 
741 	ext4_fc_memcpy(sb, dst, &tl, sizeof(tl), &crc);
742 	dst += sizeof(tl);
743 	tail.fc_tid = cpu_to_le32(sbi->s_journal->j_running_transaction->t_tid);
744 	ext4_fc_memcpy(sb, dst, &tail.fc_tid, sizeof(tail.fc_tid), &crc);
745 	dst += sizeof(tail.fc_tid);
746 	tail.fc_crc = cpu_to_le32(crc);
747 	ext4_fc_memcpy(sb, dst, &tail.fc_crc, sizeof(tail.fc_crc), NULL);
748 
749 	ext4_fc_submit_bh(sb, true);
750 
751 	return 0;
752 }
753 
754 /*
755  * Adds tag, length, value and updates CRC. Returns true if tlv was added.
756  * Returns false if there's not enough space.
757  */
758 static bool ext4_fc_add_tlv(struct super_block *sb, u16 tag, u16 len, u8 *val,
759 			   u32 *crc)
760 {
761 	struct ext4_fc_tl tl;
762 	u8 *dst;
763 
764 	dst = ext4_fc_reserve_space(sb, sizeof(tl) + len, crc);
765 	if (!dst)
766 		return false;
767 
768 	tl.fc_tag = cpu_to_le16(tag);
769 	tl.fc_len = cpu_to_le16(len);
770 
771 	ext4_fc_memcpy(sb, dst, &tl, sizeof(tl), crc);
772 	ext4_fc_memcpy(sb, dst + sizeof(tl), val, len, crc);
773 
774 	return true;
775 }
776 
777 /* Same as above, but adds dentry tlv. */
778 static  bool ext4_fc_add_dentry_tlv(struct super_block *sb, u16 tag,
779 					int parent_ino, int ino, int dlen,
780 					const unsigned char *dname,
781 					u32 *crc)
782 {
783 	struct ext4_fc_dentry_info fcd;
784 	struct ext4_fc_tl tl;
785 	u8 *dst = ext4_fc_reserve_space(sb, sizeof(tl) + sizeof(fcd) + dlen,
786 					crc);
787 
788 	if (!dst)
789 		return false;
790 
791 	fcd.fc_parent_ino = cpu_to_le32(parent_ino);
792 	fcd.fc_ino = cpu_to_le32(ino);
793 	tl.fc_tag = cpu_to_le16(tag);
794 	tl.fc_len = cpu_to_le16(sizeof(fcd) + dlen);
795 	ext4_fc_memcpy(sb, dst, &tl, sizeof(tl), crc);
796 	dst += sizeof(tl);
797 	ext4_fc_memcpy(sb, dst, &fcd, sizeof(fcd), crc);
798 	dst += sizeof(fcd);
799 	ext4_fc_memcpy(sb, dst, dname, dlen, crc);
800 	dst += dlen;
801 
802 	return true;
803 }
804 
805 /*
806  * Writes inode in the fast commit space under TLV with tag @tag.
807  * Returns 0 on success, error on failure.
808  */
809 static int ext4_fc_write_inode(struct inode *inode, u32 *crc)
810 {
811 	struct ext4_inode_info *ei = EXT4_I(inode);
812 	int inode_len = EXT4_GOOD_OLD_INODE_SIZE;
813 	int ret;
814 	struct ext4_iloc iloc;
815 	struct ext4_fc_inode fc_inode;
816 	struct ext4_fc_tl tl;
817 	u8 *dst;
818 
819 	ret = ext4_get_inode_loc(inode, &iloc);
820 	if (ret)
821 		return ret;
822 
823 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE)
824 		inode_len += ei->i_extra_isize;
825 
826 	fc_inode.fc_ino = cpu_to_le32(inode->i_ino);
827 	tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_INODE);
828 	tl.fc_len = cpu_to_le16(inode_len + sizeof(fc_inode.fc_ino));
829 
830 	dst = ext4_fc_reserve_space(inode->i_sb,
831 			sizeof(tl) + inode_len + sizeof(fc_inode.fc_ino), crc);
832 	if (!dst)
833 		return -ECANCELED;
834 
835 	if (!ext4_fc_memcpy(inode->i_sb, dst, &tl, sizeof(tl), crc))
836 		return -ECANCELED;
837 	dst += sizeof(tl);
838 	if (!ext4_fc_memcpy(inode->i_sb, dst, &fc_inode, sizeof(fc_inode), crc))
839 		return -ECANCELED;
840 	dst += sizeof(fc_inode);
841 	if (!ext4_fc_memcpy(inode->i_sb, dst, (u8 *)ext4_raw_inode(&iloc),
842 					inode_len, crc))
843 		return -ECANCELED;
844 
845 	return 0;
846 }
847 
848 /*
849  * Writes updated data ranges for the inode in question. Updates CRC.
850  * Returns 0 on success, error otherwise.
851  */
852 static int ext4_fc_write_inode_data(struct inode *inode, u32 *crc)
853 {
854 	ext4_lblk_t old_blk_size, cur_lblk_off, new_blk_size;
855 	struct ext4_inode_info *ei = EXT4_I(inode);
856 	struct ext4_map_blocks map;
857 	struct ext4_fc_add_range fc_ext;
858 	struct ext4_fc_del_range lrange;
859 	struct ext4_extent *ex;
860 	int ret;
861 
862 	mutex_lock(&ei->i_fc_lock);
863 	if (ei->i_fc_lblk_len == 0) {
864 		mutex_unlock(&ei->i_fc_lock);
865 		return 0;
866 	}
867 	old_blk_size = ei->i_fc_lblk_start;
868 	new_blk_size = ei->i_fc_lblk_start + ei->i_fc_lblk_len - 1;
869 	ei->i_fc_lblk_len = 0;
870 	mutex_unlock(&ei->i_fc_lock);
871 
872 	cur_lblk_off = old_blk_size;
873 	jbd_debug(1, "%s: will try writing %d to %d for inode %ld\n",
874 		  __func__, cur_lblk_off, new_blk_size, inode->i_ino);
875 
876 	while (cur_lblk_off <= new_blk_size) {
877 		map.m_lblk = cur_lblk_off;
878 		map.m_len = new_blk_size - cur_lblk_off + 1;
879 		ret = ext4_map_blocks(NULL, inode, &map, 0);
880 		if (ret < 0)
881 			return -ECANCELED;
882 
883 		if (map.m_len == 0) {
884 			cur_lblk_off++;
885 			continue;
886 		}
887 
888 		if (ret == 0) {
889 			lrange.fc_ino = cpu_to_le32(inode->i_ino);
890 			lrange.fc_lblk = cpu_to_le32(map.m_lblk);
891 			lrange.fc_len = cpu_to_le32(map.m_len);
892 			if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_DEL_RANGE,
893 					    sizeof(lrange), (u8 *)&lrange, crc))
894 				return -ENOSPC;
895 		} else {
896 			fc_ext.fc_ino = cpu_to_le32(inode->i_ino);
897 			ex = (struct ext4_extent *)&fc_ext.fc_ex;
898 			ex->ee_block = cpu_to_le32(map.m_lblk);
899 			ex->ee_len = cpu_to_le16(map.m_len);
900 			ext4_ext_store_pblock(ex, map.m_pblk);
901 			if (map.m_flags & EXT4_MAP_UNWRITTEN)
902 				ext4_ext_mark_unwritten(ex);
903 			else
904 				ext4_ext_mark_initialized(ex);
905 			if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_ADD_RANGE,
906 					    sizeof(fc_ext), (u8 *)&fc_ext, crc))
907 				return -ENOSPC;
908 		}
909 
910 		cur_lblk_off += map.m_len;
911 	}
912 
913 	return 0;
914 }
915 
916 
917 /* Submit data for all the fast commit inodes */
918 static int ext4_fc_submit_inode_data_all(journal_t *journal)
919 {
920 	struct super_block *sb = (struct super_block *)(journal->j_private);
921 	struct ext4_sb_info *sbi = EXT4_SB(sb);
922 	struct ext4_inode_info *ei;
923 	int ret = 0;
924 
925 	spin_lock(&sbi->s_fc_lock);
926 	ext4_set_mount_flag(sb, EXT4_MF_FC_COMMITTING);
927 	list_for_each_entry(ei, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
928 		ext4_set_inode_state(&ei->vfs_inode, EXT4_STATE_FC_COMMITTING);
929 		while (atomic_read(&ei->i_fc_updates)) {
930 			DEFINE_WAIT(wait);
931 
932 			prepare_to_wait(&ei->i_fc_wait, &wait,
933 						TASK_UNINTERRUPTIBLE);
934 			if (atomic_read(&ei->i_fc_updates)) {
935 				spin_unlock(&sbi->s_fc_lock);
936 				schedule();
937 				spin_lock(&sbi->s_fc_lock);
938 			}
939 			finish_wait(&ei->i_fc_wait, &wait);
940 		}
941 		spin_unlock(&sbi->s_fc_lock);
942 		ret = jbd2_submit_inode_data(ei->jinode);
943 		if (ret)
944 			return ret;
945 		spin_lock(&sbi->s_fc_lock);
946 	}
947 	spin_unlock(&sbi->s_fc_lock);
948 
949 	return ret;
950 }
951 
952 /* Wait for completion of data for all the fast commit inodes */
953 static int ext4_fc_wait_inode_data_all(journal_t *journal)
954 {
955 	struct super_block *sb = (struct super_block *)(journal->j_private);
956 	struct ext4_sb_info *sbi = EXT4_SB(sb);
957 	struct ext4_inode_info *pos, *n;
958 	int ret = 0;
959 
960 	spin_lock(&sbi->s_fc_lock);
961 	list_for_each_entry_safe(pos, n, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
962 		if (!ext4_test_inode_state(&pos->vfs_inode,
963 					   EXT4_STATE_FC_COMMITTING))
964 			continue;
965 		spin_unlock(&sbi->s_fc_lock);
966 
967 		ret = jbd2_wait_inode_data(journal, pos->jinode);
968 		if (ret)
969 			return ret;
970 		spin_lock(&sbi->s_fc_lock);
971 	}
972 	spin_unlock(&sbi->s_fc_lock);
973 
974 	return 0;
975 }
976 
977 /* Commit all the directory entry updates */
978 static int ext4_fc_commit_dentry_updates(journal_t *journal, u32 *crc)
979 __acquires(&sbi->s_fc_lock)
980 __releases(&sbi->s_fc_lock)
981 {
982 	struct super_block *sb = (struct super_block *)(journal->j_private);
983 	struct ext4_sb_info *sbi = EXT4_SB(sb);
984 	struct ext4_fc_dentry_update *fc_dentry, *fc_dentry_n;
985 	struct inode *inode;
986 	struct ext4_inode_info *ei, *ei_n;
987 	int ret;
988 
989 	if (list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN]))
990 		return 0;
991 	list_for_each_entry_safe(fc_dentry, fc_dentry_n,
992 				 &sbi->s_fc_dentry_q[FC_Q_MAIN], fcd_list) {
993 		if (fc_dentry->fcd_op != EXT4_FC_TAG_CREAT) {
994 			spin_unlock(&sbi->s_fc_lock);
995 			if (!ext4_fc_add_dentry_tlv(
996 				sb, fc_dentry->fcd_op,
997 				fc_dentry->fcd_parent, fc_dentry->fcd_ino,
998 				fc_dentry->fcd_name.len,
999 				fc_dentry->fcd_name.name, crc)) {
1000 				ret = -ENOSPC;
1001 				goto lock_and_exit;
1002 			}
1003 			spin_lock(&sbi->s_fc_lock);
1004 			continue;
1005 		}
1006 
1007 		inode = NULL;
1008 		list_for_each_entry_safe(ei, ei_n, &sbi->s_fc_q[FC_Q_MAIN],
1009 					 i_fc_list) {
1010 			if (ei->vfs_inode.i_ino == fc_dentry->fcd_ino) {
1011 				inode = &ei->vfs_inode;
1012 				break;
1013 			}
1014 		}
1015 		/*
1016 		 * If we don't find inode in our list, then it was deleted,
1017 		 * in which case, we don't need to record it's create tag.
1018 		 */
1019 		if (!inode)
1020 			continue;
1021 		spin_unlock(&sbi->s_fc_lock);
1022 
1023 		/*
1024 		 * We first write the inode and then the create dirent. This
1025 		 * allows the recovery code to create an unnamed inode first
1026 		 * and then link it to a directory entry. This allows us
1027 		 * to use namei.c routines almost as is and simplifies
1028 		 * the recovery code.
1029 		 */
1030 		ret = ext4_fc_write_inode(inode, crc);
1031 		if (ret)
1032 			goto lock_and_exit;
1033 
1034 		ret = ext4_fc_write_inode_data(inode, crc);
1035 		if (ret)
1036 			goto lock_and_exit;
1037 
1038 		if (!ext4_fc_add_dentry_tlv(
1039 			sb, fc_dentry->fcd_op,
1040 			fc_dentry->fcd_parent, fc_dentry->fcd_ino,
1041 			fc_dentry->fcd_name.len,
1042 			fc_dentry->fcd_name.name, crc)) {
1043 			ret = -ENOSPC;
1044 			goto lock_and_exit;
1045 		}
1046 
1047 		spin_lock(&sbi->s_fc_lock);
1048 	}
1049 	return 0;
1050 lock_and_exit:
1051 	spin_lock(&sbi->s_fc_lock);
1052 	return ret;
1053 }
1054 
1055 static int ext4_fc_perform_commit(journal_t *journal)
1056 {
1057 	struct super_block *sb = (struct super_block *)(journal->j_private);
1058 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1059 	struct ext4_inode_info *iter;
1060 	struct ext4_fc_head head;
1061 	struct inode *inode;
1062 	struct blk_plug plug;
1063 	int ret = 0;
1064 	u32 crc = 0;
1065 
1066 	ret = ext4_fc_submit_inode_data_all(journal);
1067 	if (ret)
1068 		return ret;
1069 
1070 	ret = ext4_fc_wait_inode_data_all(journal);
1071 	if (ret)
1072 		return ret;
1073 
1074 	/*
1075 	 * If file system device is different from journal device, issue a cache
1076 	 * flush before we start writing fast commit blocks.
1077 	 */
1078 	if (journal->j_fs_dev != journal->j_dev)
1079 		blkdev_issue_flush(journal->j_fs_dev);
1080 
1081 	blk_start_plug(&plug);
1082 	if (sbi->s_fc_bytes == 0) {
1083 		/*
1084 		 * Add a head tag only if this is the first fast commit
1085 		 * in this TID.
1086 		 */
1087 		head.fc_features = cpu_to_le32(EXT4_FC_SUPPORTED_FEATURES);
1088 		head.fc_tid = cpu_to_le32(
1089 			sbi->s_journal->j_running_transaction->t_tid);
1090 		if (!ext4_fc_add_tlv(sb, EXT4_FC_TAG_HEAD, sizeof(head),
1091 			(u8 *)&head, &crc))
1092 			goto out;
1093 	}
1094 
1095 	spin_lock(&sbi->s_fc_lock);
1096 	ret = ext4_fc_commit_dentry_updates(journal, &crc);
1097 	if (ret) {
1098 		spin_unlock(&sbi->s_fc_lock);
1099 		goto out;
1100 	}
1101 
1102 	list_for_each_entry(iter, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
1103 		inode = &iter->vfs_inode;
1104 		if (!ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING))
1105 			continue;
1106 
1107 		spin_unlock(&sbi->s_fc_lock);
1108 		ret = ext4_fc_write_inode_data(inode, &crc);
1109 		if (ret)
1110 			goto out;
1111 		ret = ext4_fc_write_inode(inode, &crc);
1112 		if (ret)
1113 			goto out;
1114 		spin_lock(&sbi->s_fc_lock);
1115 	}
1116 	spin_unlock(&sbi->s_fc_lock);
1117 
1118 	ret = ext4_fc_write_tail(sb, crc);
1119 
1120 out:
1121 	blk_finish_plug(&plug);
1122 	return ret;
1123 }
1124 
1125 /*
1126  * The main commit entry point. Performs a fast commit for transaction
1127  * commit_tid if needed. If it's not possible to perform a fast commit
1128  * due to various reasons, we fall back to full commit. Returns 0
1129  * on success, error otherwise.
1130  */
1131 int ext4_fc_commit(journal_t *journal, tid_t commit_tid)
1132 {
1133 	struct super_block *sb = (struct super_block *)(journal->j_private);
1134 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1135 	int nblks = 0, ret, bsize = journal->j_blocksize;
1136 	int subtid = atomic_read(&sbi->s_fc_subtid);
1137 	int reason = EXT4_FC_REASON_OK, fc_bufs_before = 0;
1138 	ktime_t start_time, commit_time;
1139 
1140 	trace_ext4_fc_commit_start(sb);
1141 
1142 	start_time = ktime_get();
1143 
1144 	if (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
1145 		(ext4_fc_is_ineligible(sb))) {
1146 		reason = EXT4_FC_REASON_INELIGIBLE;
1147 		goto out;
1148 	}
1149 
1150 restart_fc:
1151 	ret = jbd2_fc_begin_commit(journal, commit_tid);
1152 	if (ret == -EALREADY) {
1153 		/* There was an ongoing commit, check if we need to restart */
1154 		if (atomic_read(&sbi->s_fc_subtid) <= subtid &&
1155 			commit_tid > journal->j_commit_sequence)
1156 			goto restart_fc;
1157 		reason = EXT4_FC_REASON_ALREADY_COMMITTED;
1158 		goto out;
1159 	} else if (ret) {
1160 		sbi->s_fc_stats.fc_ineligible_reason_count[EXT4_FC_COMMIT_FAILED]++;
1161 		reason = EXT4_FC_REASON_FC_START_FAILED;
1162 		goto out;
1163 	}
1164 
1165 	fc_bufs_before = (sbi->s_fc_bytes + bsize - 1) / bsize;
1166 	ret = ext4_fc_perform_commit(journal);
1167 	if (ret < 0) {
1168 		sbi->s_fc_stats.fc_ineligible_reason_count[EXT4_FC_COMMIT_FAILED]++;
1169 		reason = EXT4_FC_REASON_FC_FAILED;
1170 		goto out;
1171 	}
1172 	nblks = (sbi->s_fc_bytes + bsize - 1) / bsize - fc_bufs_before;
1173 	ret = jbd2_fc_wait_bufs(journal, nblks);
1174 	if (ret < 0) {
1175 		sbi->s_fc_stats.fc_ineligible_reason_count[EXT4_FC_COMMIT_FAILED]++;
1176 		reason = EXT4_FC_REASON_FC_FAILED;
1177 		goto out;
1178 	}
1179 	atomic_inc(&sbi->s_fc_subtid);
1180 	jbd2_fc_end_commit(journal);
1181 out:
1182 	/* Has any ineligible update happened since we started? */
1183 	if (reason == EXT4_FC_REASON_OK && ext4_fc_is_ineligible(sb)) {
1184 		sbi->s_fc_stats.fc_ineligible_reason_count[EXT4_FC_COMMIT_FAILED]++;
1185 		reason = EXT4_FC_REASON_INELIGIBLE;
1186 	}
1187 
1188 	spin_lock(&sbi->s_fc_lock);
1189 	if (reason != EXT4_FC_REASON_OK &&
1190 		reason != EXT4_FC_REASON_ALREADY_COMMITTED) {
1191 		sbi->s_fc_stats.fc_ineligible_commits++;
1192 	} else {
1193 		sbi->s_fc_stats.fc_num_commits++;
1194 		sbi->s_fc_stats.fc_numblks += nblks;
1195 	}
1196 	spin_unlock(&sbi->s_fc_lock);
1197 	nblks = (reason == EXT4_FC_REASON_OK) ? nblks : 0;
1198 	trace_ext4_fc_commit_stop(sb, nblks, reason);
1199 	commit_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
1200 	/*
1201 	 * weight the commit time higher than the average time so we don't
1202 	 * react too strongly to vast changes in the commit time
1203 	 */
1204 	if (likely(sbi->s_fc_avg_commit_time))
1205 		sbi->s_fc_avg_commit_time = (commit_time +
1206 				sbi->s_fc_avg_commit_time * 3) / 4;
1207 	else
1208 		sbi->s_fc_avg_commit_time = commit_time;
1209 	jbd_debug(1,
1210 		"Fast commit ended with blks = %d, reason = %d, subtid - %d",
1211 		nblks, reason, subtid);
1212 	if (reason == EXT4_FC_REASON_FC_FAILED)
1213 		return jbd2_fc_end_commit_fallback(journal);
1214 	if (reason == EXT4_FC_REASON_FC_START_FAILED ||
1215 		reason == EXT4_FC_REASON_INELIGIBLE)
1216 		return jbd2_complete_transaction(journal, commit_tid);
1217 	return 0;
1218 }
1219 
1220 /*
1221  * Fast commit cleanup routine. This is called after every fast commit and
1222  * full commit. full is true if we are called after a full commit.
1223  */
1224 static void ext4_fc_cleanup(journal_t *journal, int full)
1225 {
1226 	struct super_block *sb = journal->j_private;
1227 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1228 	struct ext4_inode_info *iter, *iter_n;
1229 	struct ext4_fc_dentry_update *fc_dentry;
1230 
1231 	if (full && sbi->s_fc_bh)
1232 		sbi->s_fc_bh = NULL;
1233 
1234 	jbd2_fc_release_bufs(journal);
1235 
1236 	spin_lock(&sbi->s_fc_lock);
1237 	list_for_each_entry_safe(iter, iter_n, &sbi->s_fc_q[FC_Q_MAIN],
1238 				 i_fc_list) {
1239 		list_del_init(&iter->i_fc_list);
1240 		ext4_clear_inode_state(&iter->vfs_inode,
1241 				       EXT4_STATE_FC_COMMITTING);
1242 		ext4_fc_reset_inode(&iter->vfs_inode);
1243 		/* Make sure EXT4_STATE_FC_COMMITTING bit is clear */
1244 		smp_mb();
1245 #if (BITS_PER_LONG < 64)
1246 		wake_up_bit(&iter->i_state_flags, EXT4_STATE_FC_COMMITTING);
1247 #else
1248 		wake_up_bit(&iter->i_flags, EXT4_STATE_FC_COMMITTING);
1249 #endif
1250 	}
1251 
1252 	while (!list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN])) {
1253 		fc_dentry = list_first_entry(&sbi->s_fc_dentry_q[FC_Q_MAIN],
1254 					     struct ext4_fc_dentry_update,
1255 					     fcd_list);
1256 		list_del_init(&fc_dentry->fcd_list);
1257 		spin_unlock(&sbi->s_fc_lock);
1258 
1259 		if (fc_dentry->fcd_name.name &&
1260 			fc_dentry->fcd_name.len > DNAME_INLINE_LEN)
1261 			kfree(fc_dentry->fcd_name.name);
1262 		kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry);
1263 		spin_lock(&sbi->s_fc_lock);
1264 	}
1265 
1266 	list_splice_init(&sbi->s_fc_dentry_q[FC_Q_STAGING],
1267 				&sbi->s_fc_dentry_q[FC_Q_MAIN]);
1268 	list_splice_init(&sbi->s_fc_q[FC_Q_STAGING],
1269 				&sbi->s_fc_q[FC_Q_MAIN]);
1270 
1271 	ext4_clear_mount_flag(sb, EXT4_MF_FC_COMMITTING);
1272 	ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
1273 
1274 	if (full)
1275 		sbi->s_fc_bytes = 0;
1276 	spin_unlock(&sbi->s_fc_lock);
1277 	trace_ext4_fc_stats(sb);
1278 }
1279 
1280 /* Ext4 Replay Path Routines */
1281 
1282 /* Helper struct for dentry replay routines */
1283 struct dentry_info_args {
1284 	int parent_ino, dname_len, ino, inode_len;
1285 	char *dname;
1286 };
1287 
1288 static inline void tl_to_darg(struct dentry_info_args *darg,
1289 				struct  ext4_fc_tl *tl)
1290 {
1291 	struct ext4_fc_dentry_info *fcd;
1292 
1293 	fcd = (struct ext4_fc_dentry_info *)ext4_fc_tag_val(tl);
1294 
1295 	darg->parent_ino = le32_to_cpu(fcd->fc_parent_ino);
1296 	darg->ino = le32_to_cpu(fcd->fc_ino);
1297 	darg->dname = fcd->fc_dname;
1298 	darg->dname_len = ext4_fc_tag_len(tl) -
1299 			sizeof(struct ext4_fc_dentry_info);
1300 }
1301 
1302 /* Unlink replay function */
1303 static int ext4_fc_replay_unlink(struct super_block *sb, struct ext4_fc_tl *tl)
1304 {
1305 	struct inode *inode, *old_parent;
1306 	struct qstr entry;
1307 	struct dentry_info_args darg;
1308 	int ret = 0;
1309 
1310 	tl_to_darg(&darg, tl);
1311 
1312 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_UNLINK, darg.ino,
1313 			darg.parent_ino, darg.dname_len);
1314 
1315 	entry.name = darg.dname;
1316 	entry.len = darg.dname_len;
1317 	inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1318 
1319 	if (IS_ERR(inode)) {
1320 		jbd_debug(1, "Inode %d not found", darg.ino);
1321 		return 0;
1322 	}
1323 
1324 	old_parent = ext4_iget(sb, darg.parent_ino,
1325 				EXT4_IGET_NORMAL);
1326 	if (IS_ERR(old_parent)) {
1327 		jbd_debug(1, "Dir with inode  %d not found", darg.parent_ino);
1328 		iput(inode);
1329 		return 0;
1330 	}
1331 
1332 	ret = __ext4_unlink(NULL, old_parent, &entry, inode);
1333 	/* -ENOENT ok coz it might not exist anymore. */
1334 	if (ret == -ENOENT)
1335 		ret = 0;
1336 	iput(old_parent);
1337 	iput(inode);
1338 	return ret;
1339 }
1340 
1341 static int ext4_fc_replay_link_internal(struct super_block *sb,
1342 				struct dentry_info_args *darg,
1343 				struct inode *inode)
1344 {
1345 	struct inode *dir = NULL;
1346 	struct dentry *dentry_dir = NULL, *dentry_inode = NULL;
1347 	struct qstr qstr_dname = QSTR_INIT(darg->dname, darg->dname_len);
1348 	int ret = 0;
1349 
1350 	dir = ext4_iget(sb, darg->parent_ino, EXT4_IGET_NORMAL);
1351 	if (IS_ERR(dir)) {
1352 		jbd_debug(1, "Dir with inode %d not found.", darg->parent_ino);
1353 		dir = NULL;
1354 		goto out;
1355 	}
1356 
1357 	dentry_dir = d_obtain_alias(dir);
1358 	if (IS_ERR(dentry_dir)) {
1359 		jbd_debug(1, "Failed to obtain dentry");
1360 		dentry_dir = NULL;
1361 		goto out;
1362 	}
1363 
1364 	dentry_inode = d_alloc(dentry_dir, &qstr_dname);
1365 	if (!dentry_inode) {
1366 		jbd_debug(1, "Inode dentry not created.");
1367 		ret = -ENOMEM;
1368 		goto out;
1369 	}
1370 
1371 	ret = __ext4_link(dir, inode, dentry_inode);
1372 	/*
1373 	 * It's possible that link already existed since data blocks
1374 	 * for the dir in question got persisted before we crashed OR
1375 	 * we replayed this tag and crashed before the entire replay
1376 	 * could complete.
1377 	 */
1378 	if (ret && ret != -EEXIST) {
1379 		jbd_debug(1, "Failed to link\n");
1380 		goto out;
1381 	}
1382 
1383 	ret = 0;
1384 out:
1385 	if (dentry_dir) {
1386 		d_drop(dentry_dir);
1387 		dput(dentry_dir);
1388 	} else if (dir) {
1389 		iput(dir);
1390 	}
1391 	if (dentry_inode) {
1392 		d_drop(dentry_inode);
1393 		dput(dentry_inode);
1394 	}
1395 
1396 	return ret;
1397 }
1398 
1399 /* Link replay function */
1400 static int ext4_fc_replay_link(struct super_block *sb, struct ext4_fc_tl *tl)
1401 {
1402 	struct inode *inode;
1403 	struct dentry_info_args darg;
1404 	int ret = 0;
1405 
1406 	tl_to_darg(&darg, tl);
1407 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_LINK, darg.ino,
1408 			darg.parent_ino, darg.dname_len);
1409 
1410 	inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1411 	if (IS_ERR(inode)) {
1412 		jbd_debug(1, "Inode not found.");
1413 		return 0;
1414 	}
1415 
1416 	ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1417 	iput(inode);
1418 	return ret;
1419 }
1420 
1421 /*
1422  * Record all the modified inodes during replay. We use this later to setup
1423  * block bitmaps correctly.
1424  */
1425 static int ext4_fc_record_modified_inode(struct super_block *sb, int ino)
1426 {
1427 	struct ext4_fc_replay_state *state;
1428 	int i;
1429 
1430 	state = &EXT4_SB(sb)->s_fc_replay_state;
1431 	for (i = 0; i < state->fc_modified_inodes_used; i++)
1432 		if (state->fc_modified_inodes[i] == ino)
1433 			return 0;
1434 	if (state->fc_modified_inodes_used == state->fc_modified_inodes_size) {
1435 		state->fc_modified_inodes_size +=
1436 			EXT4_FC_REPLAY_REALLOC_INCREMENT;
1437 		state->fc_modified_inodes = krealloc(
1438 					state->fc_modified_inodes, sizeof(int) *
1439 					state->fc_modified_inodes_size,
1440 					GFP_KERNEL);
1441 		if (!state->fc_modified_inodes)
1442 			return -ENOMEM;
1443 	}
1444 	state->fc_modified_inodes[state->fc_modified_inodes_used++] = ino;
1445 	return 0;
1446 }
1447 
1448 /*
1449  * Inode replay function
1450  */
1451 static int ext4_fc_replay_inode(struct super_block *sb, struct ext4_fc_tl *tl)
1452 {
1453 	struct ext4_fc_inode *fc_inode;
1454 	struct ext4_inode *raw_inode;
1455 	struct ext4_inode *raw_fc_inode;
1456 	struct inode *inode = NULL;
1457 	struct ext4_iloc iloc;
1458 	int inode_len, ino, ret, tag = le16_to_cpu(tl->fc_tag);
1459 	struct ext4_extent_header *eh;
1460 
1461 	fc_inode = (struct ext4_fc_inode *)ext4_fc_tag_val(tl);
1462 
1463 	ino = le32_to_cpu(fc_inode->fc_ino);
1464 	trace_ext4_fc_replay(sb, tag, ino, 0, 0);
1465 
1466 	inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1467 	if (!IS_ERR(inode)) {
1468 		ext4_ext_clear_bb(inode);
1469 		iput(inode);
1470 	}
1471 	inode = NULL;
1472 
1473 	ext4_fc_record_modified_inode(sb, ino);
1474 
1475 	raw_fc_inode = (struct ext4_inode *)fc_inode->fc_raw_inode;
1476 	ret = ext4_get_fc_inode_loc(sb, ino, &iloc);
1477 	if (ret)
1478 		goto out;
1479 
1480 	inode_len = ext4_fc_tag_len(tl) - sizeof(struct ext4_fc_inode);
1481 	raw_inode = ext4_raw_inode(&iloc);
1482 
1483 	memcpy(raw_inode, raw_fc_inode, offsetof(struct ext4_inode, i_block));
1484 	memcpy(&raw_inode->i_generation, &raw_fc_inode->i_generation,
1485 		inode_len - offsetof(struct ext4_inode, i_generation));
1486 	if (le32_to_cpu(raw_inode->i_flags) & EXT4_EXTENTS_FL) {
1487 		eh = (struct ext4_extent_header *)(&raw_inode->i_block[0]);
1488 		if (eh->eh_magic != EXT4_EXT_MAGIC) {
1489 			memset(eh, 0, sizeof(*eh));
1490 			eh->eh_magic = EXT4_EXT_MAGIC;
1491 			eh->eh_max = cpu_to_le16(
1492 				(sizeof(raw_inode->i_block) -
1493 				 sizeof(struct ext4_extent_header))
1494 				 / sizeof(struct ext4_extent));
1495 		}
1496 	} else if (le32_to_cpu(raw_inode->i_flags) & EXT4_INLINE_DATA_FL) {
1497 		memcpy(raw_inode->i_block, raw_fc_inode->i_block,
1498 			sizeof(raw_inode->i_block));
1499 	}
1500 
1501 	/* Immediately update the inode on disk. */
1502 	ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1503 	if (ret)
1504 		goto out;
1505 	ret = sync_dirty_buffer(iloc.bh);
1506 	if (ret)
1507 		goto out;
1508 	ret = ext4_mark_inode_used(sb, ino);
1509 	if (ret)
1510 		goto out;
1511 
1512 	/* Given that we just wrote the inode on disk, this SHOULD succeed. */
1513 	inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1514 	if (IS_ERR(inode)) {
1515 		jbd_debug(1, "Inode not found.");
1516 		return -EFSCORRUPTED;
1517 	}
1518 
1519 	/*
1520 	 * Our allocator could have made different decisions than before
1521 	 * crashing. This should be fixed but until then, we calculate
1522 	 * the number of blocks the inode.
1523 	 */
1524 	ext4_ext_replay_set_iblocks(inode);
1525 
1526 	inode->i_generation = le32_to_cpu(ext4_raw_inode(&iloc)->i_generation);
1527 	ext4_reset_inode_seed(inode);
1528 
1529 	ext4_inode_csum_set(inode, ext4_raw_inode(&iloc), EXT4_I(inode));
1530 	ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1531 	sync_dirty_buffer(iloc.bh);
1532 	brelse(iloc.bh);
1533 out:
1534 	iput(inode);
1535 	if (!ret)
1536 		blkdev_issue_flush(sb->s_bdev);
1537 
1538 	return 0;
1539 }
1540 
1541 /*
1542  * Dentry create replay function.
1543  *
1544  * EXT4_FC_TAG_CREAT is preceded by EXT4_FC_TAG_INODE_FULL. Which means, the
1545  * inode for which we are trying to create a dentry here, should already have
1546  * been replayed before we start here.
1547  */
1548 static int ext4_fc_replay_create(struct super_block *sb, struct ext4_fc_tl *tl)
1549 {
1550 	int ret = 0;
1551 	struct inode *inode = NULL;
1552 	struct inode *dir = NULL;
1553 	struct dentry_info_args darg;
1554 
1555 	tl_to_darg(&darg, tl);
1556 
1557 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_CREAT, darg.ino,
1558 			darg.parent_ino, darg.dname_len);
1559 
1560 	/* This takes care of update group descriptor and other metadata */
1561 	ret = ext4_mark_inode_used(sb, darg.ino);
1562 	if (ret)
1563 		goto out;
1564 
1565 	inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1566 	if (IS_ERR(inode)) {
1567 		jbd_debug(1, "inode %d not found.", darg.ino);
1568 		inode = NULL;
1569 		ret = -EINVAL;
1570 		goto out;
1571 	}
1572 
1573 	if (S_ISDIR(inode->i_mode)) {
1574 		/*
1575 		 * If we are creating a directory, we need to make sure that the
1576 		 * dot and dot dot dirents are setup properly.
1577 		 */
1578 		dir = ext4_iget(sb, darg.parent_ino, EXT4_IGET_NORMAL);
1579 		if (IS_ERR(dir)) {
1580 			jbd_debug(1, "Dir %d not found.", darg.ino);
1581 			goto out;
1582 		}
1583 		ret = ext4_init_new_dir(NULL, dir, inode);
1584 		iput(dir);
1585 		if (ret) {
1586 			ret = 0;
1587 			goto out;
1588 		}
1589 	}
1590 	ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1591 	if (ret)
1592 		goto out;
1593 	set_nlink(inode, 1);
1594 	ext4_mark_inode_dirty(NULL, inode);
1595 out:
1596 	if (inode)
1597 		iput(inode);
1598 	return ret;
1599 }
1600 
1601 /*
1602  * Record physical disk regions which are in use as per fast commit area. Our
1603  * simple replay phase allocator excludes these regions from allocation.
1604  */
1605 static int ext4_fc_record_regions(struct super_block *sb, int ino,
1606 		ext4_lblk_t lblk, ext4_fsblk_t pblk, int len)
1607 {
1608 	struct ext4_fc_replay_state *state;
1609 	struct ext4_fc_alloc_region *region;
1610 
1611 	state = &EXT4_SB(sb)->s_fc_replay_state;
1612 	if (state->fc_regions_used == state->fc_regions_size) {
1613 		state->fc_regions_size +=
1614 			EXT4_FC_REPLAY_REALLOC_INCREMENT;
1615 		state->fc_regions = krealloc(
1616 					state->fc_regions,
1617 					state->fc_regions_size *
1618 					sizeof(struct ext4_fc_alloc_region),
1619 					GFP_KERNEL);
1620 		if (!state->fc_regions)
1621 			return -ENOMEM;
1622 	}
1623 	region = &state->fc_regions[state->fc_regions_used++];
1624 	region->ino = ino;
1625 	region->lblk = lblk;
1626 	region->pblk = pblk;
1627 	region->len = len;
1628 
1629 	return 0;
1630 }
1631 
1632 /* Replay add range tag */
1633 static int ext4_fc_replay_add_range(struct super_block *sb,
1634 				struct ext4_fc_tl *tl)
1635 {
1636 	struct ext4_fc_add_range *fc_add_ex;
1637 	struct ext4_extent newex, *ex;
1638 	struct inode *inode;
1639 	ext4_lblk_t start, cur;
1640 	int remaining, len;
1641 	ext4_fsblk_t start_pblk;
1642 	struct ext4_map_blocks map;
1643 	struct ext4_ext_path *path = NULL;
1644 	int ret;
1645 
1646 	fc_add_ex = (struct ext4_fc_add_range *)ext4_fc_tag_val(tl);
1647 	ex = (struct ext4_extent *)&fc_add_ex->fc_ex;
1648 
1649 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_ADD_RANGE,
1650 		le32_to_cpu(fc_add_ex->fc_ino), le32_to_cpu(ex->ee_block),
1651 		ext4_ext_get_actual_len(ex));
1652 
1653 	inode = ext4_iget(sb, le32_to_cpu(fc_add_ex->fc_ino),
1654 				EXT4_IGET_NORMAL);
1655 	if (IS_ERR(inode)) {
1656 		jbd_debug(1, "Inode not found.");
1657 		return 0;
1658 	}
1659 
1660 	ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1661 
1662 	start = le32_to_cpu(ex->ee_block);
1663 	start_pblk = ext4_ext_pblock(ex);
1664 	len = ext4_ext_get_actual_len(ex);
1665 
1666 	cur = start;
1667 	remaining = len;
1668 	jbd_debug(1, "ADD_RANGE, lblk %d, pblk %lld, len %d, unwritten %d, inode %ld\n",
1669 		  start, start_pblk, len, ext4_ext_is_unwritten(ex),
1670 		  inode->i_ino);
1671 
1672 	while (remaining > 0) {
1673 		map.m_lblk = cur;
1674 		map.m_len = remaining;
1675 		map.m_pblk = 0;
1676 		ret = ext4_map_blocks(NULL, inode, &map, 0);
1677 
1678 		if (ret < 0) {
1679 			iput(inode);
1680 			return 0;
1681 		}
1682 
1683 		if (ret == 0) {
1684 			/* Range is not mapped */
1685 			path = ext4_find_extent(inode, cur, NULL, 0);
1686 			if (IS_ERR(path)) {
1687 				iput(inode);
1688 				return 0;
1689 			}
1690 			memset(&newex, 0, sizeof(newex));
1691 			newex.ee_block = cpu_to_le32(cur);
1692 			ext4_ext_store_pblock(
1693 				&newex, start_pblk + cur - start);
1694 			newex.ee_len = cpu_to_le16(map.m_len);
1695 			if (ext4_ext_is_unwritten(ex))
1696 				ext4_ext_mark_unwritten(&newex);
1697 			down_write(&EXT4_I(inode)->i_data_sem);
1698 			ret = ext4_ext_insert_extent(
1699 				NULL, inode, &path, &newex, 0);
1700 			up_write((&EXT4_I(inode)->i_data_sem));
1701 			ext4_ext_drop_refs(path);
1702 			kfree(path);
1703 			if (ret) {
1704 				iput(inode);
1705 				return 0;
1706 			}
1707 			goto next;
1708 		}
1709 
1710 		if (start_pblk + cur - start != map.m_pblk) {
1711 			/*
1712 			 * Logical to physical mapping changed. This can happen
1713 			 * if this range was removed and then reallocated to
1714 			 * map to new physical blocks during a fast commit.
1715 			 */
1716 			ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1717 					ext4_ext_is_unwritten(ex),
1718 					start_pblk + cur - start);
1719 			if (ret) {
1720 				iput(inode);
1721 				return 0;
1722 			}
1723 			/*
1724 			 * Mark the old blocks as free since they aren't used
1725 			 * anymore. We maintain an array of all the modified
1726 			 * inodes. In case these blocks are still used at either
1727 			 * a different logical range in the same inode or in
1728 			 * some different inode, we will mark them as allocated
1729 			 * at the end of the FC replay using our array of
1730 			 * modified inodes.
1731 			 */
1732 			ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 0);
1733 			goto next;
1734 		}
1735 
1736 		/* Range is mapped and needs a state change */
1737 		jbd_debug(1, "Converting from %d to %d %lld",
1738 				map.m_flags & EXT4_MAP_UNWRITTEN,
1739 			ext4_ext_is_unwritten(ex), map.m_pblk);
1740 		ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1741 					ext4_ext_is_unwritten(ex), map.m_pblk);
1742 		if (ret) {
1743 			iput(inode);
1744 			return 0;
1745 		}
1746 		/*
1747 		 * We may have split the extent tree while toggling the state.
1748 		 * Try to shrink the extent tree now.
1749 		 */
1750 		ext4_ext_replay_shrink_inode(inode, start + len);
1751 next:
1752 		cur += map.m_len;
1753 		remaining -= map.m_len;
1754 	}
1755 	ext4_ext_replay_shrink_inode(inode, i_size_read(inode) >>
1756 					sb->s_blocksize_bits);
1757 	iput(inode);
1758 	return 0;
1759 }
1760 
1761 /* Replay DEL_RANGE tag */
1762 static int
1763 ext4_fc_replay_del_range(struct super_block *sb, struct ext4_fc_tl *tl)
1764 {
1765 	struct inode *inode;
1766 	struct ext4_fc_del_range *lrange;
1767 	struct ext4_map_blocks map;
1768 	ext4_lblk_t cur, remaining;
1769 	int ret;
1770 
1771 	lrange = (struct ext4_fc_del_range *)ext4_fc_tag_val(tl);
1772 	cur = le32_to_cpu(lrange->fc_lblk);
1773 	remaining = le32_to_cpu(lrange->fc_len);
1774 
1775 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_DEL_RANGE,
1776 		le32_to_cpu(lrange->fc_ino), cur, remaining);
1777 
1778 	inode = ext4_iget(sb, le32_to_cpu(lrange->fc_ino), EXT4_IGET_NORMAL);
1779 	if (IS_ERR(inode)) {
1780 		jbd_debug(1, "Inode %d not found", le32_to_cpu(lrange->fc_ino));
1781 		return 0;
1782 	}
1783 
1784 	ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1785 
1786 	jbd_debug(1, "DEL_RANGE, inode %ld, lblk %d, len %d\n",
1787 			inode->i_ino, le32_to_cpu(lrange->fc_lblk),
1788 			le32_to_cpu(lrange->fc_len));
1789 	while (remaining > 0) {
1790 		map.m_lblk = cur;
1791 		map.m_len = remaining;
1792 
1793 		ret = ext4_map_blocks(NULL, inode, &map, 0);
1794 		if (ret < 0) {
1795 			iput(inode);
1796 			return 0;
1797 		}
1798 		if (ret > 0) {
1799 			remaining -= ret;
1800 			cur += ret;
1801 			ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 0);
1802 		} else {
1803 			remaining -= map.m_len;
1804 			cur += map.m_len;
1805 		}
1806 	}
1807 
1808 	ret = ext4_punch_hole(inode,
1809 		le32_to_cpu(lrange->fc_lblk) << sb->s_blocksize_bits,
1810 		le32_to_cpu(lrange->fc_len) <<  sb->s_blocksize_bits);
1811 	if (ret)
1812 		jbd_debug(1, "ext4_punch_hole returned %d", ret);
1813 	ext4_ext_replay_shrink_inode(inode,
1814 		i_size_read(inode) >> sb->s_blocksize_bits);
1815 	ext4_mark_inode_dirty(NULL, inode);
1816 	iput(inode);
1817 
1818 	return 0;
1819 }
1820 
1821 static void ext4_fc_set_bitmaps_and_counters(struct super_block *sb)
1822 {
1823 	struct ext4_fc_replay_state *state;
1824 	struct inode *inode;
1825 	struct ext4_ext_path *path = NULL;
1826 	struct ext4_map_blocks map;
1827 	int i, ret, j;
1828 	ext4_lblk_t cur, end;
1829 
1830 	state = &EXT4_SB(sb)->s_fc_replay_state;
1831 	for (i = 0; i < state->fc_modified_inodes_used; i++) {
1832 		inode = ext4_iget(sb, state->fc_modified_inodes[i],
1833 			EXT4_IGET_NORMAL);
1834 		if (IS_ERR(inode)) {
1835 			jbd_debug(1, "Inode %d not found.",
1836 				state->fc_modified_inodes[i]);
1837 			continue;
1838 		}
1839 		cur = 0;
1840 		end = EXT_MAX_BLOCKS;
1841 		while (cur < end) {
1842 			map.m_lblk = cur;
1843 			map.m_len = end - cur;
1844 
1845 			ret = ext4_map_blocks(NULL, inode, &map, 0);
1846 			if (ret < 0)
1847 				break;
1848 
1849 			if (ret > 0) {
1850 				path = ext4_find_extent(inode, map.m_lblk, NULL, 0);
1851 				if (!IS_ERR(path)) {
1852 					for (j = 0; j < path->p_depth; j++)
1853 						ext4_mb_mark_bb(inode->i_sb,
1854 							path[j].p_block, 1, 1);
1855 					ext4_ext_drop_refs(path);
1856 					kfree(path);
1857 				}
1858 				cur += ret;
1859 				ext4_mb_mark_bb(inode->i_sb, map.m_pblk,
1860 							map.m_len, 1);
1861 			} else {
1862 				cur = cur + (map.m_len ? map.m_len : 1);
1863 			}
1864 		}
1865 		iput(inode);
1866 	}
1867 }
1868 
1869 /*
1870  * Check if block is in excluded regions for block allocation. The simple
1871  * allocator that runs during replay phase is calls this function to see
1872  * if it is okay to use a block.
1873  */
1874 bool ext4_fc_replay_check_excluded(struct super_block *sb, ext4_fsblk_t blk)
1875 {
1876 	int i;
1877 	struct ext4_fc_replay_state *state;
1878 
1879 	state = &EXT4_SB(sb)->s_fc_replay_state;
1880 	for (i = 0; i < state->fc_regions_valid; i++) {
1881 		if (state->fc_regions[i].ino == 0 ||
1882 			state->fc_regions[i].len == 0)
1883 			continue;
1884 		if (blk >= state->fc_regions[i].pblk &&
1885 		    blk < state->fc_regions[i].pblk + state->fc_regions[i].len)
1886 			return true;
1887 	}
1888 	return false;
1889 }
1890 
1891 /* Cleanup function called after replay */
1892 void ext4_fc_replay_cleanup(struct super_block *sb)
1893 {
1894 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1895 
1896 	sbi->s_mount_state &= ~EXT4_FC_REPLAY;
1897 	kfree(sbi->s_fc_replay_state.fc_regions);
1898 	kfree(sbi->s_fc_replay_state.fc_modified_inodes);
1899 }
1900 
1901 /*
1902  * Recovery Scan phase handler
1903  *
1904  * This function is called during the scan phase and is responsible
1905  * for doing following things:
1906  * - Make sure the fast commit area has valid tags for replay
1907  * - Count number of tags that need to be replayed by the replay handler
1908  * - Verify CRC
1909  * - Create a list of excluded blocks for allocation during replay phase
1910  *
1911  * This function returns JBD2_FC_REPLAY_CONTINUE to indicate that SCAN is
1912  * incomplete and JBD2 should send more blocks. It returns JBD2_FC_REPLAY_STOP
1913  * to indicate that scan has finished and JBD2 can now start replay phase.
1914  * It returns a negative error to indicate that there was an error. At the end
1915  * of a successful scan phase, sbi->s_fc_replay_state.fc_replay_num_tags is set
1916  * to indicate the number of tags that need to replayed during the replay phase.
1917  */
1918 static int ext4_fc_replay_scan(journal_t *journal,
1919 				struct buffer_head *bh, int off,
1920 				tid_t expected_tid)
1921 {
1922 	struct super_block *sb = journal->j_private;
1923 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1924 	struct ext4_fc_replay_state *state;
1925 	int ret = JBD2_FC_REPLAY_CONTINUE;
1926 	struct ext4_fc_add_range *ext;
1927 	struct ext4_fc_tl *tl;
1928 	struct ext4_fc_tail *tail;
1929 	__u8 *start, *end;
1930 	struct ext4_fc_head *head;
1931 	struct ext4_extent *ex;
1932 
1933 	state = &sbi->s_fc_replay_state;
1934 
1935 	start = (u8 *)bh->b_data;
1936 	end = (__u8 *)bh->b_data + journal->j_blocksize - 1;
1937 
1938 	if (state->fc_replay_expected_off == 0) {
1939 		state->fc_cur_tag = 0;
1940 		state->fc_replay_num_tags = 0;
1941 		state->fc_crc = 0;
1942 		state->fc_regions = NULL;
1943 		state->fc_regions_valid = state->fc_regions_used =
1944 			state->fc_regions_size = 0;
1945 		/* Check if we can stop early */
1946 		if (le16_to_cpu(((struct ext4_fc_tl *)start)->fc_tag)
1947 			!= EXT4_FC_TAG_HEAD)
1948 			return 0;
1949 	}
1950 
1951 	if (off != state->fc_replay_expected_off) {
1952 		ret = -EFSCORRUPTED;
1953 		goto out_err;
1954 	}
1955 
1956 	state->fc_replay_expected_off++;
1957 	fc_for_each_tl(start, end, tl) {
1958 		jbd_debug(3, "Scan phase, tag:%s, blk %lld\n",
1959 			  tag2str(le16_to_cpu(tl->fc_tag)), bh->b_blocknr);
1960 		switch (le16_to_cpu(tl->fc_tag)) {
1961 		case EXT4_FC_TAG_ADD_RANGE:
1962 			ext = (struct ext4_fc_add_range *)ext4_fc_tag_val(tl);
1963 			ex = (struct ext4_extent *)&ext->fc_ex;
1964 			ret = ext4_fc_record_regions(sb,
1965 				le32_to_cpu(ext->fc_ino),
1966 				le32_to_cpu(ex->ee_block), ext4_ext_pblock(ex),
1967 				ext4_ext_get_actual_len(ex));
1968 			if (ret < 0)
1969 				break;
1970 			ret = JBD2_FC_REPLAY_CONTINUE;
1971 			fallthrough;
1972 		case EXT4_FC_TAG_DEL_RANGE:
1973 		case EXT4_FC_TAG_LINK:
1974 		case EXT4_FC_TAG_UNLINK:
1975 		case EXT4_FC_TAG_CREAT:
1976 		case EXT4_FC_TAG_INODE:
1977 		case EXT4_FC_TAG_PAD:
1978 			state->fc_cur_tag++;
1979 			state->fc_crc = ext4_chksum(sbi, state->fc_crc, tl,
1980 					sizeof(*tl) + ext4_fc_tag_len(tl));
1981 			break;
1982 		case EXT4_FC_TAG_TAIL:
1983 			state->fc_cur_tag++;
1984 			tail = (struct ext4_fc_tail *)ext4_fc_tag_val(tl);
1985 			state->fc_crc = ext4_chksum(sbi, state->fc_crc, tl,
1986 						sizeof(*tl) +
1987 						offsetof(struct ext4_fc_tail,
1988 						fc_crc));
1989 			if (le32_to_cpu(tail->fc_tid) == expected_tid &&
1990 				le32_to_cpu(tail->fc_crc) == state->fc_crc) {
1991 				state->fc_replay_num_tags = state->fc_cur_tag;
1992 				state->fc_regions_valid =
1993 					state->fc_regions_used;
1994 			} else {
1995 				ret = state->fc_replay_num_tags ?
1996 					JBD2_FC_REPLAY_STOP : -EFSBADCRC;
1997 			}
1998 			state->fc_crc = 0;
1999 			break;
2000 		case EXT4_FC_TAG_HEAD:
2001 			head = (struct ext4_fc_head *)ext4_fc_tag_val(tl);
2002 			if (le32_to_cpu(head->fc_features) &
2003 				~EXT4_FC_SUPPORTED_FEATURES) {
2004 				ret = -EOPNOTSUPP;
2005 				break;
2006 			}
2007 			if (le32_to_cpu(head->fc_tid) != expected_tid) {
2008 				ret = JBD2_FC_REPLAY_STOP;
2009 				break;
2010 			}
2011 			state->fc_cur_tag++;
2012 			state->fc_crc = ext4_chksum(sbi, state->fc_crc, tl,
2013 					sizeof(*tl) + ext4_fc_tag_len(tl));
2014 			break;
2015 		default:
2016 			ret = state->fc_replay_num_tags ?
2017 				JBD2_FC_REPLAY_STOP : -ECANCELED;
2018 		}
2019 		if (ret < 0 || ret == JBD2_FC_REPLAY_STOP)
2020 			break;
2021 	}
2022 
2023 out_err:
2024 	trace_ext4_fc_replay_scan(sb, ret, off);
2025 	return ret;
2026 }
2027 
2028 /*
2029  * Main recovery path entry point.
2030  * The meaning of return codes is similar as above.
2031  */
2032 static int ext4_fc_replay(journal_t *journal, struct buffer_head *bh,
2033 				enum passtype pass, int off, tid_t expected_tid)
2034 {
2035 	struct super_block *sb = journal->j_private;
2036 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2037 	struct ext4_fc_tl *tl;
2038 	__u8 *start, *end;
2039 	int ret = JBD2_FC_REPLAY_CONTINUE;
2040 	struct ext4_fc_replay_state *state = &sbi->s_fc_replay_state;
2041 	struct ext4_fc_tail *tail;
2042 
2043 	if (pass == PASS_SCAN) {
2044 		state->fc_current_pass = PASS_SCAN;
2045 		return ext4_fc_replay_scan(journal, bh, off, expected_tid);
2046 	}
2047 
2048 	if (state->fc_current_pass != pass) {
2049 		state->fc_current_pass = pass;
2050 		sbi->s_mount_state |= EXT4_FC_REPLAY;
2051 	}
2052 	if (!sbi->s_fc_replay_state.fc_replay_num_tags) {
2053 		jbd_debug(1, "Replay stops\n");
2054 		ext4_fc_set_bitmaps_and_counters(sb);
2055 		return 0;
2056 	}
2057 
2058 #ifdef CONFIG_EXT4_DEBUG
2059 	if (sbi->s_fc_debug_max_replay && off >= sbi->s_fc_debug_max_replay) {
2060 		pr_warn("Dropping fc block %d because max_replay set\n", off);
2061 		return JBD2_FC_REPLAY_STOP;
2062 	}
2063 #endif
2064 
2065 	start = (u8 *)bh->b_data;
2066 	end = (__u8 *)bh->b_data + journal->j_blocksize - 1;
2067 
2068 	fc_for_each_tl(start, end, tl) {
2069 		if (state->fc_replay_num_tags == 0) {
2070 			ret = JBD2_FC_REPLAY_STOP;
2071 			ext4_fc_set_bitmaps_and_counters(sb);
2072 			break;
2073 		}
2074 		jbd_debug(3, "Replay phase, tag:%s\n",
2075 				tag2str(le16_to_cpu(tl->fc_tag)));
2076 		state->fc_replay_num_tags--;
2077 		switch (le16_to_cpu(tl->fc_tag)) {
2078 		case EXT4_FC_TAG_LINK:
2079 			ret = ext4_fc_replay_link(sb, tl);
2080 			break;
2081 		case EXT4_FC_TAG_UNLINK:
2082 			ret = ext4_fc_replay_unlink(sb, tl);
2083 			break;
2084 		case EXT4_FC_TAG_ADD_RANGE:
2085 			ret = ext4_fc_replay_add_range(sb, tl);
2086 			break;
2087 		case EXT4_FC_TAG_CREAT:
2088 			ret = ext4_fc_replay_create(sb, tl);
2089 			break;
2090 		case EXT4_FC_TAG_DEL_RANGE:
2091 			ret = ext4_fc_replay_del_range(sb, tl);
2092 			break;
2093 		case EXT4_FC_TAG_INODE:
2094 			ret = ext4_fc_replay_inode(sb, tl);
2095 			break;
2096 		case EXT4_FC_TAG_PAD:
2097 			trace_ext4_fc_replay(sb, EXT4_FC_TAG_PAD, 0,
2098 				ext4_fc_tag_len(tl), 0);
2099 			break;
2100 		case EXT4_FC_TAG_TAIL:
2101 			trace_ext4_fc_replay(sb, EXT4_FC_TAG_TAIL, 0,
2102 				ext4_fc_tag_len(tl), 0);
2103 			tail = (struct ext4_fc_tail *)ext4_fc_tag_val(tl);
2104 			WARN_ON(le32_to_cpu(tail->fc_tid) != expected_tid);
2105 			break;
2106 		case EXT4_FC_TAG_HEAD:
2107 			break;
2108 		default:
2109 			trace_ext4_fc_replay(sb, le16_to_cpu(tl->fc_tag), 0,
2110 				ext4_fc_tag_len(tl), 0);
2111 			ret = -ECANCELED;
2112 			break;
2113 		}
2114 		if (ret < 0)
2115 			break;
2116 		ret = JBD2_FC_REPLAY_CONTINUE;
2117 	}
2118 	return ret;
2119 }
2120 
2121 void ext4_fc_init(struct super_block *sb, journal_t *journal)
2122 {
2123 	/*
2124 	 * We set replay callback even if fast commit disabled because we may
2125 	 * could still have fast commit blocks that need to be replayed even if
2126 	 * fast commit has now been turned off.
2127 	 */
2128 	journal->j_fc_replay_callback = ext4_fc_replay;
2129 	if (!test_opt2(sb, JOURNAL_FAST_COMMIT))
2130 		return;
2131 	journal->j_fc_cleanup_callback = ext4_fc_cleanup;
2132 }
2133 
2134 static const char *fc_ineligible_reasons[] = {
2135 	"Extended attributes changed",
2136 	"Cross rename",
2137 	"Journal flag changed",
2138 	"Insufficient memory",
2139 	"Swap boot",
2140 	"Resize",
2141 	"Dir renamed",
2142 	"Falloc range op",
2143 	"Data journalling",
2144 	"FC Commit Failed"
2145 };
2146 
2147 int ext4_fc_info_show(struct seq_file *seq, void *v)
2148 {
2149 	struct ext4_sb_info *sbi = EXT4_SB((struct super_block *)seq->private);
2150 	struct ext4_fc_stats *stats = &sbi->s_fc_stats;
2151 	int i;
2152 
2153 	if (v != SEQ_START_TOKEN)
2154 		return 0;
2155 
2156 	seq_printf(seq,
2157 		"fc stats:\n%ld commits\n%ld ineligible\n%ld numblks\n%lluus avg_commit_time\n",
2158 		   stats->fc_num_commits, stats->fc_ineligible_commits,
2159 		   stats->fc_numblks,
2160 		   div_u64(sbi->s_fc_avg_commit_time, 1000));
2161 	seq_puts(seq, "Ineligible reasons:\n");
2162 	for (i = 0; i < EXT4_FC_REASON_MAX; i++)
2163 		seq_printf(seq, "\"%s\":\t%d\n", fc_ineligible_reasons[i],
2164 			stats->fc_ineligible_reason_count[i]);
2165 
2166 	return 0;
2167 }
2168 
2169 int __init ext4_fc_init_dentry_cache(void)
2170 {
2171 	ext4_fc_dentry_cachep = KMEM_CACHE(ext4_fc_dentry_update,
2172 					   SLAB_RECLAIM_ACCOUNT);
2173 
2174 	if (ext4_fc_dentry_cachep == NULL)
2175 		return -ENOMEM;
2176 
2177 	return 0;
2178 }
2179