xref: /openbmc/linux/fs/ext4/fast_commit.c (revision d9fd5a71)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /*
4  * fs/ext4/fast_commit.c
5  *
6  * Written by Harshad Shirwadkar <harshadshirwadkar@gmail.com>
7  *
8  * Ext4 fast commits routines.
9  */
10 #include "ext4.h"
11 #include "ext4_jbd2.h"
12 #include "ext4_extents.h"
13 #include "mballoc.h"
14 
15 /*
16  * Ext4 Fast Commits
17  * -----------------
18  *
19  * Ext4 fast commits implement fine grained journalling for Ext4.
20  *
21  * Fast commits are organized as a log of tag-length-value (TLV) structs. (See
22  * struct ext4_fc_tl). Each TLV contains some delta that is replayed TLV by
23  * TLV during the recovery phase. For the scenarios for which we currently
24  * don't have replay code, fast commit falls back to full commits.
25  * Fast commits record delta in one of the following three categories.
26  *
27  * (A) Directory entry updates:
28  *
29  * - EXT4_FC_TAG_UNLINK		- records directory entry unlink
30  * - EXT4_FC_TAG_LINK		- records directory entry link
31  * - EXT4_FC_TAG_CREAT		- records inode and directory entry creation
32  *
33  * (B) File specific data range updates:
34  *
35  * - EXT4_FC_TAG_ADD_RANGE	- records addition of new blocks to an inode
36  * - EXT4_FC_TAG_DEL_RANGE	- records deletion of blocks from an inode
37  *
38  * (C) Inode metadata (mtime / ctime etc):
39  *
40  * - EXT4_FC_TAG_INODE		- record the inode that should be replayed
41  *				  during recovery. Note that iblocks field is
42  *				  not replayed and instead derived during
43  *				  replay.
44  * Commit Operation
45  * ----------------
46  * With fast commits, we maintain all the directory entry operations in the
47  * order in which they are issued in an in-memory queue. This queue is flushed
48  * to disk during the commit operation. We also maintain a list of inodes
49  * that need to be committed during a fast commit in another in memory queue of
50  * inodes. During the commit operation, we commit in the following order:
51  *
52  * [1] Lock inodes for any further data updates by setting COMMITTING state
53  * [2] Submit data buffers of all the inodes
54  * [3] Wait for [2] to complete
55  * [4] Commit all the directory entry updates in the fast commit space
56  * [5] Commit all the changed inode structures
57  * [6] Write tail tag (this tag ensures the atomicity, please read the following
58  *     section for more details).
59  * [7] Wait for [4], [5] and [6] to complete.
60  *
61  * All the inode updates must call ext4_fc_start_update() before starting an
62  * update. If such an ongoing update is present, fast commit waits for it to
63  * complete. The completion of such an update is marked by
64  * ext4_fc_stop_update().
65  *
66  * Fast Commit Ineligibility
67  * -------------------------
68  * Not all operations are supported by fast commits today (e.g extended
69  * attributes). Fast commit ineligiblity is marked by calling one of the
70  * two following functions:
71  *
72  * - ext4_fc_mark_ineligible(): This makes next fast commit operation to fall
73  *   back to full commit. This is useful in case of transient errors.
74  *
75  * - ext4_fc_start_ineligible() and ext4_fc_stop_ineligible() - This makes all
76  *   the fast commits happening between ext4_fc_start_ineligible() and
77  *   ext4_fc_stop_ineligible() and one fast commit after the call to
78  *   ext4_fc_stop_ineligible() to fall back to full commits. It is important to
79  *   make one more fast commit to fall back to full commit after stop call so
80  *   that it guaranteed that the fast commit ineligible operation contained
81  *   within ext4_fc_start_ineligible() and ext4_fc_stop_ineligible() is
82  *   followed by at least 1 full commit.
83  *
84  * Atomicity of commits
85  * --------------------
86  * In order to guarantee atomicity during the commit operation, fast commit
87  * uses "EXT4_FC_TAG_TAIL" tag that marks a fast commit as complete. Tail
88  * tag contains CRC of the contents and TID of the transaction after which
89  * this fast commit should be applied. Recovery code replays fast commit
90  * logs only if there's at least 1 valid tail present. For every fast commit
91  * operation, there is 1 tail. This means, we may end up with multiple tails
92  * in the fast commit space. Here's an example:
93  *
94  * - Create a new file A and remove existing file B
95  * - fsync()
96  * - Append contents to file A
97  * - Truncate file A
98  * - fsync()
99  *
100  * The fast commit space at the end of above operations would look like this:
101  *      [HEAD] [CREAT A] [UNLINK B] [TAIL] [ADD_RANGE A] [DEL_RANGE A] [TAIL]
102  *             |<---  Fast Commit 1   --->|<---      Fast Commit 2     ---->|
103  *
104  * Replay code should thus check for all the valid tails in the FC area.
105  *
106  * Fast Commit Replay Idempotence
107  * ------------------------------
108  *
109  * Fast commits tags are idempotent in nature provided the recovery code follows
110  * certain rules. The guiding principle that the commit path follows while
111  * committing is that it stores the result of a particular operation instead of
112  * storing the procedure.
113  *
114  * Let's consider this rename operation: 'mv /a /b'. Let's assume dirent '/a'
115  * was associated with inode 10. During fast commit, instead of storing this
116  * operation as a procedure "rename a to b", we store the resulting file system
117  * state as a "series" of outcomes:
118  *
119  * - Link dirent b to inode 10
120  * - Unlink dirent a
121  * - Inode <10> with valid refcount
122  *
123  * Now when recovery code runs, it needs "enforce" this state on the file
124  * system. This is what guarantees idempotence of fast commit replay.
125  *
126  * Let's take an example of a procedure that is not idempotent and see how fast
127  * commits make it idempotent. Consider following sequence of operations:
128  *
129  *     rm A;    mv B A;    read A
130  *  (x)     (y)        (z)
131  *
132  * (x), (y) and (z) are the points at which we can crash. If we store this
133  * sequence of operations as is then the replay is not idempotent. Let's say
134  * while in replay, we crash at (z). During the second replay, file A (which was
135  * actually created as a result of "mv B A" operation) would get deleted. Thus,
136  * file named A would be absent when we try to read A. So, this sequence of
137  * operations is not idempotent. However, as mentioned above, instead of storing
138  * the procedure fast commits store the outcome of each procedure. Thus the fast
139  * commit log for above procedure would be as follows:
140  *
141  * (Let's assume dirent A was linked to inode 10 and dirent B was linked to
142  * inode 11 before the replay)
143  *
144  *    [Unlink A]   [Link A to inode 11]   [Unlink B]   [Inode 11]
145  * (w)          (x)                    (y)          (z)
146  *
147  * If we crash at (z), we will have file A linked to inode 11. During the second
148  * replay, we will remove file A (inode 11). But we will create it back and make
149  * it point to inode 11. We won't find B, so we'll just skip that step. At this
150  * point, the refcount for inode 11 is not reliable, but that gets fixed by the
151  * replay of last inode 11 tag. Crashes at points (w), (x) and (y) get handled
152  * similarly. Thus, by converting a non-idempotent procedure into a series of
153  * idempotent outcomes, fast commits ensured idempotence during the replay.
154  *
155  * TODOs
156  * -----
157  *
158  * 0) Fast commit replay path hardening: Fast commit replay code should use
159  *    journal handles to make sure all the updates it does during the replay
160  *    path are atomic. With that if we crash during fast commit replay, after
161  *    trying to do recovery again, we will find a file system where fast commit
162  *    area is invalid (because new full commit would be found). In order to deal
163  *    with that, fast commit replay code should ensure that the "FC_REPLAY"
164  *    superblock state is persisted before starting the replay, so that after
165  *    the crash, fast commit recovery code can look at that flag and perform
166  *    fast commit recovery even if that area is invalidated by later full
167  *    commits.
168  *
169  * 1) Make fast commit atomic updates more fine grained. Today, a fast commit
170  *    eligible update must be protected within ext4_fc_start_update() and
171  *    ext4_fc_stop_update(). These routines are called at much higher
172  *    routines. This can be made more fine grained by combining with
173  *    ext4_journal_start().
174  *
175  * 2) Same above for ext4_fc_start_ineligible() and ext4_fc_stop_ineligible()
176  *
177  * 3) Handle more ineligible cases.
178  */
179 
180 #include <trace/events/ext4.h>
181 static struct kmem_cache *ext4_fc_dentry_cachep;
182 
183 static void ext4_end_buffer_io_sync(struct buffer_head *bh, int uptodate)
184 {
185 	BUFFER_TRACE(bh, "");
186 	if (uptodate) {
187 		ext4_debug("%s: Block %lld up-to-date",
188 			   __func__, bh->b_blocknr);
189 		set_buffer_uptodate(bh);
190 	} else {
191 		ext4_debug("%s: Block %lld not up-to-date",
192 			   __func__, bh->b_blocknr);
193 		clear_buffer_uptodate(bh);
194 	}
195 
196 	unlock_buffer(bh);
197 }
198 
199 static inline void ext4_fc_reset_inode(struct inode *inode)
200 {
201 	struct ext4_inode_info *ei = EXT4_I(inode);
202 
203 	ei->i_fc_lblk_start = 0;
204 	ei->i_fc_lblk_len = 0;
205 }
206 
207 void ext4_fc_init_inode(struct inode *inode)
208 {
209 	struct ext4_inode_info *ei = EXT4_I(inode);
210 
211 	ext4_fc_reset_inode(inode);
212 	ext4_clear_inode_state(inode, EXT4_STATE_FC_COMMITTING);
213 	INIT_LIST_HEAD(&ei->i_fc_list);
214 	init_waitqueue_head(&ei->i_fc_wait);
215 	atomic_set(&ei->i_fc_updates, 0);
216 }
217 
218 /* This function must be called with sbi->s_fc_lock held. */
219 static void ext4_fc_wait_committing_inode(struct inode *inode)
220 __releases(&EXT4_SB(inode->i_sb)->s_fc_lock)
221 {
222 	wait_queue_head_t *wq;
223 	struct ext4_inode_info *ei = EXT4_I(inode);
224 
225 #if (BITS_PER_LONG < 64)
226 	DEFINE_WAIT_BIT(wait, &ei->i_state_flags,
227 			EXT4_STATE_FC_COMMITTING);
228 	wq = bit_waitqueue(&ei->i_state_flags,
229 				EXT4_STATE_FC_COMMITTING);
230 #else
231 	DEFINE_WAIT_BIT(wait, &ei->i_flags,
232 			EXT4_STATE_FC_COMMITTING);
233 	wq = bit_waitqueue(&ei->i_flags,
234 				EXT4_STATE_FC_COMMITTING);
235 #endif
236 	lockdep_assert_held(&EXT4_SB(inode->i_sb)->s_fc_lock);
237 	prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
238 	spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
239 	schedule();
240 	finish_wait(wq, &wait.wq_entry);
241 }
242 
243 /*
244  * Inform Ext4's fast about start of an inode update
245  *
246  * This function is called by the high level call VFS callbacks before
247  * performing any inode update. This function blocks if there's an ongoing
248  * fast commit on the inode in question.
249  */
250 void ext4_fc_start_update(struct inode *inode)
251 {
252 	struct ext4_inode_info *ei = EXT4_I(inode);
253 
254 	if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) ||
255 	    (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY))
256 		return;
257 
258 restart:
259 	spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock);
260 	if (list_empty(&ei->i_fc_list))
261 		goto out;
262 
263 	if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
264 		ext4_fc_wait_committing_inode(inode);
265 		goto restart;
266 	}
267 out:
268 	atomic_inc(&ei->i_fc_updates);
269 	spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
270 }
271 
272 /*
273  * Stop inode update and wake up waiting fast commits if any.
274  */
275 void ext4_fc_stop_update(struct inode *inode)
276 {
277 	struct ext4_inode_info *ei = EXT4_I(inode);
278 
279 	if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) ||
280 	    (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY))
281 		return;
282 
283 	if (atomic_dec_and_test(&ei->i_fc_updates))
284 		wake_up_all(&ei->i_fc_wait);
285 }
286 
287 /*
288  * Remove inode from fast commit list. If the inode is being committed
289  * we wait until inode commit is done.
290  */
291 void ext4_fc_del(struct inode *inode)
292 {
293 	struct ext4_inode_info *ei = EXT4_I(inode);
294 
295 	if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) ||
296 	    (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY))
297 		return;
298 
299 restart:
300 	spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock);
301 	if (list_empty(&ei->i_fc_list)) {
302 		spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
303 		return;
304 	}
305 
306 	if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
307 		ext4_fc_wait_committing_inode(inode);
308 		goto restart;
309 	}
310 	list_del_init(&ei->i_fc_list);
311 	spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
312 }
313 
314 /*
315  * Mark file system as fast commit ineligible. This means that next commit
316  * operation would result in a full jbd2 commit.
317  */
318 void ext4_fc_mark_ineligible(struct super_block *sb, int reason)
319 {
320 	struct ext4_sb_info *sbi = EXT4_SB(sb);
321 
322 	if (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
323 	    (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))
324 		return;
325 
326 	ext4_set_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
327 	WARN_ON(reason >= EXT4_FC_REASON_MAX);
328 	sbi->s_fc_stats.fc_ineligible_reason_count[reason]++;
329 }
330 
331 /*
332  * Start a fast commit ineligible update. Any commits that happen while
333  * such an operation is in progress fall back to full commits.
334  */
335 void ext4_fc_start_ineligible(struct super_block *sb, int reason)
336 {
337 	struct ext4_sb_info *sbi = EXT4_SB(sb);
338 
339 	if (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
340 	    (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))
341 		return;
342 
343 	WARN_ON(reason >= EXT4_FC_REASON_MAX);
344 	sbi->s_fc_stats.fc_ineligible_reason_count[reason]++;
345 	atomic_inc(&sbi->s_fc_ineligible_updates);
346 }
347 
348 /*
349  * Stop a fast commit ineligible update. We set EXT4_MF_FC_INELIGIBLE flag here
350  * to ensure that after stopping the ineligible update, at least one full
351  * commit takes place.
352  */
353 void ext4_fc_stop_ineligible(struct super_block *sb)
354 {
355 	if (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
356 	    (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))
357 		return;
358 
359 	ext4_set_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
360 	atomic_dec(&EXT4_SB(sb)->s_fc_ineligible_updates);
361 }
362 
363 static inline int ext4_fc_is_ineligible(struct super_block *sb)
364 {
365 	return (ext4_test_mount_flag(sb, EXT4_MF_FC_INELIGIBLE) ||
366 		atomic_read(&EXT4_SB(sb)->s_fc_ineligible_updates));
367 }
368 
369 /*
370  * Generic fast commit tracking function. If this is the first time this we are
371  * called after a full commit, we initialize fast commit fields and then call
372  * __fc_track_fn() with update = 0. If we have already been called after a full
373  * commit, we pass update = 1. Based on that, the track function can determine
374  * if it needs to track a field for the first time or if it needs to just
375  * update the previously tracked value.
376  *
377  * If enqueue is set, this function enqueues the inode in fast commit list.
378  */
379 static int ext4_fc_track_template(
380 	handle_t *handle, struct inode *inode,
381 	int (*__fc_track_fn)(struct inode *, void *, bool),
382 	void *args, int enqueue)
383 {
384 	bool update = false;
385 	struct ext4_inode_info *ei = EXT4_I(inode);
386 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
387 	tid_t tid = 0;
388 	int ret;
389 
390 	if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) ||
391 	    (sbi->s_mount_state & EXT4_FC_REPLAY))
392 		return -EOPNOTSUPP;
393 
394 	if (ext4_fc_is_ineligible(inode->i_sb))
395 		return -EINVAL;
396 
397 	tid = handle->h_transaction->t_tid;
398 	mutex_lock(&ei->i_fc_lock);
399 	if (tid == ei->i_sync_tid) {
400 		update = true;
401 	} else {
402 		ext4_fc_reset_inode(inode);
403 		ei->i_sync_tid = tid;
404 	}
405 	ret = __fc_track_fn(inode, args, update);
406 	mutex_unlock(&ei->i_fc_lock);
407 
408 	if (!enqueue)
409 		return ret;
410 
411 	spin_lock(&sbi->s_fc_lock);
412 	if (list_empty(&EXT4_I(inode)->i_fc_list))
413 		list_add_tail(&EXT4_I(inode)->i_fc_list,
414 				(ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_COMMITTING)) ?
415 				&sbi->s_fc_q[FC_Q_STAGING] :
416 				&sbi->s_fc_q[FC_Q_MAIN]);
417 	spin_unlock(&sbi->s_fc_lock);
418 
419 	return ret;
420 }
421 
422 struct __track_dentry_update_args {
423 	struct dentry *dentry;
424 	int op;
425 };
426 
427 /* __track_fn for directory entry updates. Called with ei->i_fc_lock. */
428 static int __track_dentry_update(struct inode *inode, void *arg, bool update)
429 {
430 	struct ext4_fc_dentry_update *node;
431 	struct ext4_inode_info *ei = EXT4_I(inode);
432 	struct __track_dentry_update_args *dentry_update =
433 		(struct __track_dentry_update_args *)arg;
434 	struct dentry *dentry = dentry_update->dentry;
435 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
436 
437 	mutex_unlock(&ei->i_fc_lock);
438 	node = kmem_cache_alloc(ext4_fc_dentry_cachep, GFP_NOFS);
439 	if (!node) {
440 		ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM);
441 		mutex_lock(&ei->i_fc_lock);
442 		return -ENOMEM;
443 	}
444 
445 	node->fcd_op = dentry_update->op;
446 	node->fcd_parent = dentry->d_parent->d_inode->i_ino;
447 	node->fcd_ino = inode->i_ino;
448 	if (dentry->d_name.len > DNAME_INLINE_LEN) {
449 		node->fcd_name.name = kmalloc(dentry->d_name.len, GFP_NOFS);
450 		if (!node->fcd_name.name) {
451 			kmem_cache_free(ext4_fc_dentry_cachep, node);
452 			ext4_fc_mark_ineligible(inode->i_sb,
453 				EXT4_FC_REASON_NOMEM);
454 			mutex_lock(&ei->i_fc_lock);
455 			return -ENOMEM;
456 		}
457 		memcpy((u8 *)node->fcd_name.name, dentry->d_name.name,
458 			dentry->d_name.len);
459 	} else {
460 		memcpy(node->fcd_iname, dentry->d_name.name,
461 			dentry->d_name.len);
462 		node->fcd_name.name = node->fcd_iname;
463 	}
464 	node->fcd_name.len = dentry->d_name.len;
465 
466 	spin_lock(&sbi->s_fc_lock);
467 	if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_COMMITTING))
468 		list_add_tail(&node->fcd_list,
469 				&sbi->s_fc_dentry_q[FC_Q_STAGING]);
470 	else
471 		list_add_tail(&node->fcd_list, &sbi->s_fc_dentry_q[FC_Q_MAIN]);
472 	spin_unlock(&sbi->s_fc_lock);
473 	mutex_lock(&ei->i_fc_lock);
474 
475 	return 0;
476 }
477 
478 void __ext4_fc_track_unlink(handle_t *handle,
479 		struct inode *inode, struct dentry *dentry)
480 {
481 	struct __track_dentry_update_args args;
482 	int ret;
483 
484 	args.dentry = dentry;
485 	args.op = EXT4_FC_TAG_UNLINK;
486 
487 	ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
488 					(void *)&args, 0);
489 	trace_ext4_fc_track_unlink(inode, dentry, ret);
490 }
491 
492 void ext4_fc_track_unlink(handle_t *handle, struct dentry *dentry)
493 {
494 	__ext4_fc_track_unlink(handle, d_inode(dentry), dentry);
495 }
496 
497 void __ext4_fc_track_link(handle_t *handle,
498 	struct inode *inode, struct dentry *dentry)
499 {
500 	struct __track_dentry_update_args args;
501 	int ret;
502 
503 	args.dentry = dentry;
504 	args.op = EXT4_FC_TAG_LINK;
505 
506 	ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
507 					(void *)&args, 0);
508 	trace_ext4_fc_track_link(inode, dentry, ret);
509 }
510 
511 void ext4_fc_track_link(handle_t *handle, struct dentry *dentry)
512 {
513 	__ext4_fc_track_link(handle, d_inode(dentry), dentry);
514 }
515 
516 void ext4_fc_track_create(handle_t *handle, struct dentry *dentry)
517 {
518 	struct __track_dentry_update_args args;
519 	struct inode *inode = d_inode(dentry);
520 	int ret;
521 
522 	args.dentry = dentry;
523 	args.op = EXT4_FC_TAG_CREAT;
524 
525 	ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
526 					(void *)&args, 0);
527 	trace_ext4_fc_track_create(inode, dentry, ret);
528 }
529 
530 /* __track_fn for inode tracking */
531 static int __track_inode(struct inode *inode, void *arg, bool update)
532 {
533 	if (update)
534 		return -EEXIST;
535 
536 	EXT4_I(inode)->i_fc_lblk_len = 0;
537 
538 	return 0;
539 }
540 
541 void ext4_fc_track_inode(handle_t *handle, struct inode *inode)
542 {
543 	int ret;
544 
545 	if (S_ISDIR(inode->i_mode))
546 		return;
547 
548 	if (ext4_should_journal_data(inode)) {
549 		ext4_fc_mark_ineligible(inode->i_sb,
550 					EXT4_FC_REASON_INODE_JOURNAL_DATA);
551 		return;
552 	}
553 
554 	ret = ext4_fc_track_template(handle, inode, __track_inode, NULL, 1);
555 	trace_ext4_fc_track_inode(inode, ret);
556 }
557 
558 struct __track_range_args {
559 	ext4_lblk_t start, end;
560 };
561 
562 /* __track_fn for tracking data updates */
563 static int __track_range(struct inode *inode, void *arg, bool update)
564 {
565 	struct ext4_inode_info *ei = EXT4_I(inode);
566 	ext4_lblk_t oldstart;
567 	struct __track_range_args *__arg =
568 		(struct __track_range_args *)arg;
569 
570 	if (inode->i_ino < EXT4_FIRST_INO(inode->i_sb)) {
571 		ext4_debug("Special inode %ld being modified\n", inode->i_ino);
572 		return -ECANCELED;
573 	}
574 
575 	oldstart = ei->i_fc_lblk_start;
576 
577 	if (update && ei->i_fc_lblk_len > 0) {
578 		ei->i_fc_lblk_start = min(ei->i_fc_lblk_start, __arg->start);
579 		ei->i_fc_lblk_len =
580 			max(oldstart + ei->i_fc_lblk_len - 1, __arg->end) -
581 				ei->i_fc_lblk_start + 1;
582 	} else {
583 		ei->i_fc_lblk_start = __arg->start;
584 		ei->i_fc_lblk_len = __arg->end - __arg->start + 1;
585 	}
586 
587 	return 0;
588 }
589 
590 void ext4_fc_track_range(handle_t *handle, struct inode *inode, ext4_lblk_t start,
591 			 ext4_lblk_t end)
592 {
593 	struct __track_range_args args;
594 	int ret;
595 
596 	if (S_ISDIR(inode->i_mode))
597 		return;
598 
599 	args.start = start;
600 	args.end = end;
601 
602 	ret = ext4_fc_track_template(handle, inode,  __track_range, &args, 1);
603 
604 	trace_ext4_fc_track_range(inode, start, end, ret);
605 }
606 
607 static void ext4_fc_submit_bh(struct super_block *sb, bool is_tail)
608 {
609 	int write_flags = REQ_SYNC;
610 	struct buffer_head *bh = EXT4_SB(sb)->s_fc_bh;
611 
612 	/* Add REQ_FUA | REQ_PREFLUSH only its tail */
613 	if (test_opt(sb, BARRIER) && is_tail)
614 		write_flags |= REQ_FUA | REQ_PREFLUSH;
615 	lock_buffer(bh);
616 	set_buffer_dirty(bh);
617 	set_buffer_uptodate(bh);
618 	bh->b_end_io = ext4_end_buffer_io_sync;
619 	submit_bh(REQ_OP_WRITE, write_flags, bh);
620 	EXT4_SB(sb)->s_fc_bh = NULL;
621 }
622 
623 /* Ext4 commit path routines */
624 
625 /* memzero and update CRC */
626 static void *ext4_fc_memzero(struct super_block *sb, void *dst, int len,
627 				u32 *crc)
628 {
629 	void *ret;
630 
631 	ret = memset(dst, 0, len);
632 	if (crc)
633 		*crc = ext4_chksum(EXT4_SB(sb), *crc, dst, len);
634 	return ret;
635 }
636 
637 /*
638  * Allocate len bytes on a fast commit buffer.
639  *
640  * During the commit time this function is used to manage fast commit
641  * block space. We don't split a fast commit log onto different
642  * blocks. So this function makes sure that if there's not enough space
643  * on the current block, the remaining space in the current block is
644  * marked as unused by adding EXT4_FC_TAG_PAD tag. In that case,
645  * new block is from jbd2 and CRC is updated to reflect the padding
646  * we added.
647  */
648 static u8 *ext4_fc_reserve_space(struct super_block *sb, int len, u32 *crc)
649 {
650 	struct ext4_fc_tl *tl;
651 	struct ext4_sb_info *sbi = EXT4_SB(sb);
652 	struct buffer_head *bh;
653 	int bsize = sbi->s_journal->j_blocksize;
654 	int ret, off = sbi->s_fc_bytes % bsize;
655 	int pad_len;
656 
657 	/*
658 	 * After allocating len, we should have space at least for a 0 byte
659 	 * padding.
660 	 */
661 	if (len + sizeof(struct ext4_fc_tl) > bsize)
662 		return NULL;
663 
664 	if (bsize - off - 1 > len + sizeof(struct ext4_fc_tl)) {
665 		/*
666 		 * Only allocate from current buffer if we have enough space for
667 		 * this request AND we have space to add a zero byte padding.
668 		 */
669 		if (!sbi->s_fc_bh) {
670 			ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
671 			if (ret)
672 				return NULL;
673 			sbi->s_fc_bh = bh;
674 		}
675 		sbi->s_fc_bytes += len;
676 		return sbi->s_fc_bh->b_data + off;
677 	}
678 	/* Need to add PAD tag */
679 	tl = (struct ext4_fc_tl *)(sbi->s_fc_bh->b_data + off);
680 	tl->fc_tag = cpu_to_le16(EXT4_FC_TAG_PAD);
681 	pad_len = bsize - off - 1 - sizeof(struct ext4_fc_tl);
682 	tl->fc_len = cpu_to_le16(pad_len);
683 	if (crc)
684 		*crc = ext4_chksum(sbi, *crc, tl, sizeof(*tl));
685 	if (pad_len > 0)
686 		ext4_fc_memzero(sb, tl + 1, pad_len, crc);
687 	ext4_fc_submit_bh(sb, false);
688 
689 	ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
690 	if (ret)
691 		return NULL;
692 	sbi->s_fc_bh = bh;
693 	sbi->s_fc_bytes = (sbi->s_fc_bytes / bsize + 1) * bsize + len;
694 	return sbi->s_fc_bh->b_data;
695 }
696 
697 /* memcpy to fc reserved space and update CRC */
698 static void *ext4_fc_memcpy(struct super_block *sb, void *dst, const void *src,
699 				int len, u32 *crc)
700 {
701 	if (crc)
702 		*crc = ext4_chksum(EXT4_SB(sb), *crc, src, len);
703 	return memcpy(dst, src, len);
704 }
705 
706 /*
707  * Complete a fast commit by writing tail tag.
708  *
709  * Writing tail tag marks the end of a fast commit. In order to guarantee
710  * atomicity, after writing tail tag, even if there's space remaining
711  * in the block, next commit shouldn't use it. That's why tail tag
712  * has the length as that of the remaining space on the block.
713  */
714 static int ext4_fc_write_tail(struct super_block *sb, u32 crc)
715 {
716 	struct ext4_sb_info *sbi = EXT4_SB(sb);
717 	struct ext4_fc_tl tl;
718 	struct ext4_fc_tail tail;
719 	int off, bsize = sbi->s_journal->j_blocksize;
720 	u8 *dst;
721 
722 	/*
723 	 * ext4_fc_reserve_space takes care of allocating an extra block if
724 	 * there's no enough space on this block for accommodating this tail.
725 	 */
726 	dst = ext4_fc_reserve_space(sb, sizeof(tl) + sizeof(tail), &crc);
727 	if (!dst)
728 		return -ENOSPC;
729 
730 	off = sbi->s_fc_bytes % bsize;
731 
732 	tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_TAIL);
733 	tl.fc_len = cpu_to_le16(bsize - off - 1 + sizeof(struct ext4_fc_tail));
734 	sbi->s_fc_bytes = round_up(sbi->s_fc_bytes, bsize);
735 
736 	ext4_fc_memcpy(sb, dst, &tl, sizeof(tl), &crc);
737 	dst += sizeof(tl);
738 	tail.fc_tid = cpu_to_le32(sbi->s_journal->j_running_transaction->t_tid);
739 	ext4_fc_memcpy(sb, dst, &tail.fc_tid, sizeof(tail.fc_tid), &crc);
740 	dst += sizeof(tail.fc_tid);
741 	tail.fc_crc = cpu_to_le32(crc);
742 	ext4_fc_memcpy(sb, dst, &tail.fc_crc, sizeof(tail.fc_crc), NULL);
743 
744 	ext4_fc_submit_bh(sb, true);
745 
746 	return 0;
747 }
748 
749 /*
750  * Adds tag, length, value and updates CRC. Returns true if tlv was added.
751  * Returns false if there's not enough space.
752  */
753 static bool ext4_fc_add_tlv(struct super_block *sb, u16 tag, u16 len, u8 *val,
754 			   u32 *crc)
755 {
756 	struct ext4_fc_tl tl;
757 	u8 *dst;
758 
759 	dst = ext4_fc_reserve_space(sb, sizeof(tl) + len, crc);
760 	if (!dst)
761 		return false;
762 
763 	tl.fc_tag = cpu_to_le16(tag);
764 	tl.fc_len = cpu_to_le16(len);
765 
766 	ext4_fc_memcpy(sb, dst, &tl, sizeof(tl), crc);
767 	ext4_fc_memcpy(sb, dst + sizeof(tl), val, len, crc);
768 
769 	return true;
770 }
771 
772 /* Same as above, but adds dentry tlv. */
773 static  bool ext4_fc_add_dentry_tlv(struct super_block *sb, u16 tag,
774 					int parent_ino, int ino, int dlen,
775 					const unsigned char *dname,
776 					u32 *crc)
777 {
778 	struct ext4_fc_dentry_info fcd;
779 	struct ext4_fc_tl tl;
780 	u8 *dst = ext4_fc_reserve_space(sb, sizeof(tl) + sizeof(fcd) + dlen,
781 					crc);
782 
783 	if (!dst)
784 		return false;
785 
786 	fcd.fc_parent_ino = cpu_to_le32(parent_ino);
787 	fcd.fc_ino = cpu_to_le32(ino);
788 	tl.fc_tag = cpu_to_le16(tag);
789 	tl.fc_len = cpu_to_le16(sizeof(fcd) + dlen);
790 	ext4_fc_memcpy(sb, dst, &tl, sizeof(tl), crc);
791 	dst += sizeof(tl);
792 	ext4_fc_memcpy(sb, dst, &fcd, sizeof(fcd), crc);
793 	dst += sizeof(fcd);
794 	ext4_fc_memcpy(sb, dst, dname, dlen, crc);
795 	dst += dlen;
796 
797 	return true;
798 }
799 
800 /*
801  * Writes inode in the fast commit space under TLV with tag @tag.
802  * Returns 0 on success, error on failure.
803  */
804 static int ext4_fc_write_inode(struct inode *inode, u32 *crc)
805 {
806 	struct ext4_inode_info *ei = EXT4_I(inode);
807 	int inode_len = EXT4_GOOD_OLD_INODE_SIZE;
808 	int ret;
809 	struct ext4_iloc iloc;
810 	struct ext4_fc_inode fc_inode;
811 	struct ext4_fc_tl tl;
812 	u8 *dst;
813 
814 	ret = ext4_get_inode_loc(inode, &iloc);
815 	if (ret)
816 		return ret;
817 
818 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE)
819 		inode_len += ei->i_extra_isize;
820 
821 	fc_inode.fc_ino = cpu_to_le32(inode->i_ino);
822 	tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_INODE);
823 	tl.fc_len = cpu_to_le16(inode_len + sizeof(fc_inode.fc_ino));
824 
825 	dst = ext4_fc_reserve_space(inode->i_sb,
826 			sizeof(tl) + inode_len + sizeof(fc_inode.fc_ino), crc);
827 	if (!dst)
828 		return -ECANCELED;
829 
830 	if (!ext4_fc_memcpy(inode->i_sb, dst, &tl, sizeof(tl), crc))
831 		return -ECANCELED;
832 	dst += sizeof(tl);
833 	if (!ext4_fc_memcpy(inode->i_sb, dst, &fc_inode, sizeof(fc_inode), crc))
834 		return -ECANCELED;
835 	dst += sizeof(fc_inode);
836 	if (!ext4_fc_memcpy(inode->i_sb, dst, (u8 *)ext4_raw_inode(&iloc),
837 					inode_len, crc))
838 		return -ECANCELED;
839 
840 	return 0;
841 }
842 
843 /*
844  * Writes updated data ranges for the inode in question. Updates CRC.
845  * Returns 0 on success, error otherwise.
846  */
847 static int ext4_fc_write_inode_data(struct inode *inode, u32 *crc)
848 {
849 	ext4_lblk_t old_blk_size, cur_lblk_off, new_blk_size;
850 	struct ext4_inode_info *ei = EXT4_I(inode);
851 	struct ext4_map_blocks map;
852 	struct ext4_fc_add_range fc_ext;
853 	struct ext4_fc_del_range lrange;
854 	struct ext4_extent *ex;
855 	int ret;
856 
857 	mutex_lock(&ei->i_fc_lock);
858 	if (ei->i_fc_lblk_len == 0) {
859 		mutex_unlock(&ei->i_fc_lock);
860 		return 0;
861 	}
862 	old_blk_size = ei->i_fc_lblk_start;
863 	new_blk_size = ei->i_fc_lblk_start + ei->i_fc_lblk_len - 1;
864 	ei->i_fc_lblk_len = 0;
865 	mutex_unlock(&ei->i_fc_lock);
866 
867 	cur_lblk_off = old_blk_size;
868 	jbd_debug(1, "%s: will try writing %d to %d for inode %ld\n",
869 		  __func__, cur_lblk_off, new_blk_size, inode->i_ino);
870 
871 	while (cur_lblk_off <= new_blk_size) {
872 		map.m_lblk = cur_lblk_off;
873 		map.m_len = new_blk_size - cur_lblk_off + 1;
874 		ret = ext4_map_blocks(NULL, inode, &map, 0);
875 		if (ret < 0)
876 			return -ECANCELED;
877 
878 		if (map.m_len == 0) {
879 			cur_lblk_off++;
880 			continue;
881 		}
882 
883 		if (ret == 0) {
884 			lrange.fc_ino = cpu_to_le32(inode->i_ino);
885 			lrange.fc_lblk = cpu_to_le32(map.m_lblk);
886 			lrange.fc_len = cpu_to_le32(map.m_len);
887 			if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_DEL_RANGE,
888 					    sizeof(lrange), (u8 *)&lrange, crc))
889 				return -ENOSPC;
890 		} else {
891 			fc_ext.fc_ino = cpu_to_le32(inode->i_ino);
892 			ex = (struct ext4_extent *)&fc_ext.fc_ex;
893 			ex->ee_block = cpu_to_le32(map.m_lblk);
894 			ex->ee_len = cpu_to_le16(map.m_len);
895 			ext4_ext_store_pblock(ex, map.m_pblk);
896 			if (map.m_flags & EXT4_MAP_UNWRITTEN)
897 				ext4_ext_mark_unwritten(ex);
898 			else
899 				ext4_ext_mark_initialized(ex);
900 			if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_ADD_RANGE,
901 					    sizeof(fc_ext), (u8 *)&fc_ext, crc))
902 				return -ENOSPC;
903 		}
904 
905 		cur_lblk_off += map.m_len;
906 	}
907 
908 	return 0;
909 }
910 
911 
912 /* Submit data for all the fast commit inodes */
913 static int ext4_fc_submit_inode_data_all(journal_t *journal)
914 {
915 	struct super_block *sb = (struct super_block *)(journal->j_private);
916 	struct ext4_sb_info *sbi = EXT4_SB(sb);
917 	struct ext4_inode_info *ei;
918 	struct list_head *pos;
919 	int ret = 0;
920 
921 	spin_lock(&sbi->s_fc_lock);
922 	ext4_set_mount_flag(sb, EXT4_MF_FC_COMMITTING);
923 	list_for_each(pos, &sbi->s_fc_q[FC_Q_MAIN]) {
924 		ei = list_entry(pos, struct ext4_inode_info, i_fc_list);
925 		ext4_set_inode_state(&ei->vfs_inode, EXT4_STATE_FC_COMMITTING);
926 		while (atomic_read(&ei->i_fc_updates)) {
927 			DEFINE_WAIT(wait);
928 
929 			prepare_to_wait(&ei->i_fc_wait, &wait,
930 						TASK_UNINTERRUPTIBLE);
931 			if (atomic_read(&ei->i_fc_updates)) {
932 				spin_unlock(&sbi->s_fc_lock);
933 				schedule();
934 				spin_lock(&sbi->s_fc_lock);
935 			}
936 			finish_wait(&ei->i_fc_wait, &wait);
937 		}
938 		spin_unlock(&sbi->s_fc_lock);
939 		ret = jbd2_submit_inode_data(ei->jinode);
940 		if (ret)
941 			return ret;
942 		spin_lock(&sbi->s_fc_lock);
943 	}
944 	spin_unlock(&sbi->s_fc_lock);
945 
946 	return ret;
947 }
948 
949 /* Wait for completion of data for all the fast commit inodes */
950 static int ext4_fc_wait_inode_data_all(journal_t *journal)
951 {
952 	struct super_block *sb = (struct super_block *)(journal->j_private);
953 	struct ext4_sb_info *sbi = EXT4_SB(sb);
954 	struct ext4_inode_info *pos, *n;
955 	int ret = 0;
956 
957 	spin_lock(&sbi->s_fc_lock);
958 	list_for_each_entry_safe(pos, n, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
959 		if (!ext4_test_inode_state(&pos->vfs_inode,
960 					   EXT4_STATE_FC_COMMITTING))
961 			continue;
962 		spin_unlock(&sbi->s_fc_lock);
963 
964 		ret = jbd2_wait_inode_data(journal, pos->jinode);
965 		if (ret)
966 			return ret;
967 		spin_lock(&sbi->s_fc_lock);
968 	}
969 	spin_unlock(&sbi->s_fc_lock);
970 
971 	return 0;
972 }
973 
974 /* Commit all the directory entry updates */
975 static int ext4_fc_commit_dentry_updates(journal_t *journal, u32 *crc)
976 __acquires(&sbi->s_fc_lock)
977 __releases(&sbi->s_fc_lock)
978 {
979 	struct super_block *sb = (struct super_block *)(journal->j_private);
980 	struct ext4_sb_info *sbi = EXT4_SB(sb);
981 	struct ext4_fc_dentry_update *fc_dentry;
982 	struct inode *inode;
983 	struct list_head *pos, *n, *fcd_pos, *fcd_n;
984 	struct ext4_inode_info *ei;
985 	int ret;
986 
987 	if (list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN]))
988 		return 0;
989 	list_for_each_safe(fcd_pos, fcd_n, &sbi->s_fc_dentry_q[FC_Q_MAIN]) {
990 		fc_dentry = list_entry(fcd_pos, struct ext4_fc_dentry_update,
991 					fcd_list);
992 		if (fc_dentry->fcd_op != EXT4_FC_TAG_CREAT) {
993 			spin_unlock(&sbi->s_fc_lock);
994 			if (!ext4_fc_add_dentry_tlv(
995 				sb, fc_dentry->fcd_op,
996 				fc_dentry->fcd_parent, fc_dentry->fcd_ino,
997 				fc_dentry->fcd_name.len,
998 				fc_dentry->fcd_name.name, crc)) {
999 				ret = -ENOSPC;
1000 				goto lock_and_exit;
1001 			}
1002 			spin_lock(&sbi->s_fc_lock);
1003 			continue;
1004 		}
1005 
1006 		inode = NULL;
1007 		list_for_each_safe(pos, n, &sbi->s_fc_q[FC_Q_MAIN]) {
1008 			ei = list_entry(pos, struct ext4_inode_info, i_fc_list);
1009 			if (ei->vfs_inode.i_ino == fc_dentry->fcd_ino) {
1010 				inode = &ei->vfs_inode;
1011 				break;
1012 			}
1013 		}
1014 		/*
1015 		 * If we don't find inode in our list, then it was deleted,
1016 		 * in which case, we don't need to record it's create tag.
1017 		 */
1018 		if (!inode)
1019 			continue;
1020 		spin_unlock(&sbi->s_fc_lock);
1021 
1022 		/*
1023 		 * We first write the inode and then the create dirent. This
1024 		 * allows the recovery code to create an unnamed inode first
1025 		 * and then link it to a directory entry. This allows us
1026 		 * to use namei.c routines almost as is and simplifies
1027 		 * the recovery code.
1028 		 */
1029 		ret = ext4_fc_write_inode(inode, crc);
1030 		if (ret)
1031 			goto lock_and_exit;
1032 
1033 		ret = ext4_fc_write_inode_data(inode, crc);
1034 		if (ret)
1035 			goto lock_and_exit;
1036 
1037 		if (!ext4_fc_add_dentry_tlv(
1038 			sb, fc_dentry->fcd_op,
1039 			fc_dentry->fcd_parent, fc_dentry->fcd_ino,
1040 			fc_dentry->fcd_name.len,
1041 			fc_dentry->fcd_name.name, crc)) {
1042 			ret = -ENOSPC;
1043 			goto lock_and_exit;
1044 		}
1045 
1046 		spin_lock(&sbi->s_fc_lock);
1047 	}
1048 	return 0;
1049 lock_and_exit:
1050 	spin_lock(&sbi->s_fc_lock);
1051 	return ret;
1052 }
1053 
1054 static int ext4_fc_perform_commit(journal_t *journal)
1055 {
1056 	struct super_block *sb = (struct super_block *)(journal->j_private);
1057 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1058 	struct ext4_inode_info *iter;
1059 	struct ext4_fc_head head;
1060 	struct list_head *pos;
1061 	struct inode *inode;
1062 	struct blk_plug plug;
1063 	int ret = 0;
1064 	u32 crc = 0;
1065 
1066 	ret = ext4_fc_submit_inode_data_all(journal);
1067 	if (ret)
1068 		return ret;
1069 
1070 	ret = ext4_fc_wait_inode_data_all(journal);
1071 	if (ret)
1072 		return ret;
1073 
1074 	/*
1075 	 * If file system device is different from journal device, issue a cache
1076 	 * flush before we start writing fast commit blocks.
1077 	 */
1078 	if (journal->j_fs_dev != journal->j_dev)
1079 		blkdev_issue_flush(journal->j_fs_dev);
1080 
1081 	blk_start_plug(&plug);
1082 	if (sbi->s_fc_bytes == 0) {
1083 		/*
1084 		 * Add a head tag only if this is the first fast commit
1085 		 * in this TID.
1086 		 */
1087 		head.fc_features = cpu_to_le32(EXT4_FC_SUPPORTED_FEATURES);
1088 		head.fc_tid = cpu_to_le32(
1089 			sbi->s_journal->j_running_transaction->t_tid);
1090 		if (!ext4_fc_add_tlv(sb, EXT4_FC_TAG_HEAD, sizeof(head),
1091 			(u8 *)&head, &crc))
1092 			goto out;
1093 	}
1094 
1095 	spin_lock(&sbi->s_fc_lock);
1096 	ret = ext4_fc_commit_dentry_updates(journal, &crc);
1097 	if (ret) {
1098 		spin_unlock(&sbi->s_fc_lock);
1099 		goto out;
1100 	}
1101 
1102 	list_for_each(pos, &sbi->s_fc_q[FC_Q_MAIN]) {
1103 		iter = list_entry(pos, struct ext4_inode_info, i_fc_list);
1104 		inode = &iter->vfs_inode;
1105 		if (!ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING))
1106 			continue;
1107 
1108 		spin_unlock(&sbi->s_fc_lock);
1109 		ret = ext4_fc_write_inode_data(inode, &crc);
1110 		if (ret)
1111 			goto out;
1112 		ret = ext4_fc_write_inode(inode, &crc);
1113 		if (ret)
1114 			goto out;
1115 		spin_lock(&sbi->s_fc_lock);
1116 	}
1117 	spin_unlock(&sbi->s_fc_lock);
1118 
1119 	ret = ext4_fc_write_tail(sb, crc);
1120 
1121 out:
1122 	blk_finish_plug(&plug);
1123 	return ret;
1124 }
1125 
1126 /*
1127  * The main commit entry point. Performs a fast commit for transaction
1128  * commit_tid if needed. If it's not possible to perform a fast commit
1129  * due to various reasons, we fall back to full commit. Returns 0
1130  * on success, error otherwise.
1131  */
1132 int ext4_fc_commit(journal_t *journal, tid_t commit_tid)
1133 {
1134 	struct super_block *sb = (struct super_block *)(journal->j_private);
1135 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1136 	int nblks = 0, ret, bsize = journal->j_blocksize;
1137 	int subtid = atomic_read(&sbi->s_fc_subtid);
1138 	int reason = EXT4_FC_REASON_OK, fc_bufs_before = 0;
1139 	ktime_t start_time, commit_time;
1140 
1141 	trace_ext4_fc_commit_start(sb);
1142 
1143 	start_time = ktime_get();
1144 
1145 	if (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
1146 		(ext4_fc_is_ineligible(sb))) {
1147 		reason = EXT4_FC_REASON_INELIGIBLE;
1148 		goto out;
1149 	}
1150 
1151 restart_fc:
1152 	ret = jbd2_fc_begin_commit(journal, commit_tid);
1153 	if (ret == -EALREADY) {
1154 		/* There was an ongoing commit, check if we need to restart */
1155 		if (atomic_read(&sbi->s_fc_subtid) <= subtid &&
1156 			commit_tid > journal->j_commit_sequence)
1157 			goto restart_fc;
1158 		reason = EXT4_FC_REASON_ALREADY_COMMITTED;
1159 		goto out;
1160 	} else if (ret) {
1161 		sbi->s_fc_stats.fc_ineligible_reason_count[EXT4_FC_COMMIT_FAILED]++;
1162 		reason = EXT4_FC_REASON_FC_START_FAILED;
1163 		goto out;
1164 	}
1165 
1166 	fc_bufs_before = (sbi->s_fc_bytes + bsize - 1) / bsize;
1167 	ret = ext4_fc_perform_commit(journal);
1168 	if (ret < 0) {
1169 		sbi->s_fc_stats.fc_ineligible_reason_count[EXT4_FC_COMMIT_FAILED]++;
1170 		reason = EXT4_FC_REASON_FC_FAILED;
1171 		goto out;
1172 	}
1173 	nblks = (sbi->s_fc_bytes + bsize - 1) / bsize - fc_bufs_before;
1174 	ret = jbd2_fc_wait_bufs(journal, nblks);
1175 	if (ret < 0) {
1176 		sbi->s_fc_stats.fc_ineligible_reason_count[EXT4_FC_COMMIT_FAILED]++;
1177 		reason = EXT4_FC_REASON_FC_FAILED;
1178 		goto out;
1179 	}
1180 	atomic_inc(&sbi->s_fc_subtid);
1181 	jbd2_fc_end_commit(journal);
1182 out:
1183 	/* Has any ineligible update happened since we started? */
1184 	if (reason == EXT4_FC_REASON_OK && ext4_fc_is_ineligible(sb)) {
1185 		sbi->s_fc_stats.fc_ineligible_reason_count[EXT4_FC_COMMIT_FAILED]++;
1186 		reason = EXT4_FC_REASON_INELIGIBLE;
1187 	}
1188 
1189 	spin_lock(&sbi->s_fc_lock);
1190 	if (reason != EXT4_FC_REASON_OK &&
1191 		reason != EXT4_FC_REASON_ALREADY_COMMITTED) {
1192 		sbi->s_fc_stats.fc_ineligible_commits++;
1193 	} else {
1194 		sbi->s_fc_stats.fc_num_commits++;
1195 		sbi->s_fc_stats.fc_numblks += nblks;
1196 	}
1197 	spin_unlock(&sbi->s_fc_lock);
1198 	nblks = (reason == EXT4_FC_REASON_OK) ? nblks : 0;
1199 	trace_ext4_fc_commit_stop(sb, nblks, reason);
1200 	commit_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
1201 	/*
1202 	 * weight the commit time higher than the average time so we don't
1203 	 * react too strongly to vast changes in the commit time
1204 	 */
1205 	if (likely(sbi->s_fc_avg_commit_time))
1206 		sbi->s_fc_avg_commit_time = (commit_time +
1207 				sbi->s_fc_avg_commit_time * 3) / 4;
1208 	else
1209 		sbi->s_fc_avg_commit_time = commit_time;
1210 	jbd_debug(1,
1211 		"Fast commit ended with blks = %d, reason = %d, subtid - %d",
1212 		nblks, reason, subtid);
1213 	if (reason == EXT4_FC_REASON_FC_FAILED)
1214 		return jbd2_fc_end_commit_fallback(journal);
1215 	if (reason == EXT4_FC_REASON_FC_START_FAILED ||
1216 		reason == EXT4_FC_REASON_INELIGIBLE)
1217 		return jbd2_complete_transaction(journal, commit_tid);
1218 	return 0;
1219 }
1220 
1221 /*
1222  * Fast commit cleanup routine. This is called after every fast commit and
1223  * full commit. full is true if we are called after a full commit.
1224  */
1225 static void ext4_fc_cleanup(journal_t *journal, int full)
1226 {
1227 	struct super_block *sb = journal->j_private;
1228 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1229 	struct ext4_inode_info *iter;
1230 	struct ext4_fc_dentry_update *fc_dentry;
1231 	struct list_head *pos, *n;
1232 
1233 	if (full && sbi->s_fc_bh)
1234 		sbi->s_fc_bh = NULL;
1235 
1236 	jbd2_fc_release_bufs(journal);
1237 
1238 	spin_lock(&sbi->s_fc_lock);
1239 	list_for_each_safe(pos, n, &sbi->s_fc_q[FC_Q_MAIN]) {
1240 		iter = list_entry(pos, struct ext4_inode_info, i_fc_list);
1241 		list_del_init(&iter->i_fc_list);
1242 		ext4_clear_inode_state(&iter->vfs_inode,
1243 				       EXT4_STATE_FC_COMMITTING);
1244 		ext4_fc_reset_inode(&iter->vfs_inode);
1245 		/* Make sure EXT4_STATE_FC_COMMITTING bit is clear */
1246 		smp_mb();
1247 #if (BITS_PER_LONG < 64)
1248 		wake_up_bit(&iter->i_state_flags, EXT4_STATE_FC_COMMITTING);
1249 #else
1250 		wake_up_bit(&iter->i_flags, EXT4_STATE_FC_COMMITTING);
1251 #endif
1252 	}
1253 
1254 	while (!list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN])) {
1255 		fc_dentry = list_first_entry(&sbi->s_fc_dentry_q[FC_Q_MAIN],
1256 					     struct ext4_fc_dentry_update,
1257 					     fcd_list);
1258 		list_del_init(&fc_dentry->fcd_list);
1259 		spin_unlock(&sbi->s_fc_lock);
1260 
1261 		if (fc_dentry->fcd_name.name &&
1262 			fc_dentry->fcd_name.len > DNAME_INLINE_LEN)
1263 			kfree(fc_dentry->fcd_name.name);
1264 		kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry);
1265 		spin_lock(&sbi->s_fc_lock);
1266 	}
1267 
1268 	list_splice_init(&sbi->s_fc_dentry_q[FC_Q_STAGING],
1269 				&sbi->s_fc_dentry_q[FC_Q_MAIN]);
1270 	list_splice_init(&sbi->s_fc_q[FC_Q_STAGING],
1271 				&sbi->s_fc_q[FC_Q_MAIN]);
1272 
1273 	ext4_clear_mount_flag(sb, EXT4_MF_FC_COMMITTING);
1274 	ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
1275 
1276 	if (full)
1277 		sbi->s_fc_bytes = 0;
1278 	spin_unlock(&sbi->s_fc_lock);
1279 	trace_ext4_fc_stats(sb);
1280 }
1281 
1282 /* Ext4 Replay Path Routines */
1283 
1284 /* Helper struct for dentry replay routines */
1285 struct dentry_info_args {
1286 	int parent_ino, dname_len, ino, inode_len;
1287 	char *dname;
1288 };
1289 
1290 static inline void tl_to_darg(struct dentry_info_args *darg,
1291 				struct  ext4_fc_tl *tl)
1292 {
1293 	struct ext4_fc_dentry_info *fcd;
1294 
1295 	fcd = (struct ext4_fc_dentry_info *)ext4_fc_tag_val(tl);
1296 
1297 	darg->parent_ino = le32_to_cpu(fcd->fc_parent_ino);
1298 	darg->ino = le32_to_cpu(fcd->fc_ino);
1299 	darg->dname = fcd->fc_dname;
1300 	darg->dname_len = ext4_fc_tag_len(tl) -
1301 			sizeof(struct ext4_fc_dentry_info);
1302 }
1303 
1304 /* Unlink replay function */
1305 static int ext4_fc_replay_unlink(struct super_block *sb, struct ext4_fc_tl *tl)
1306 {
1307 	struct inode *inode, *old_parent;
1308 	struct qstr entry;
1309 	struct dentry_info_args darg;
1310 	int ret = 0;
1311 
1312 	tl_to_darg(&darg, tl);
1313 
1314 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_UNLINK, darg.ino,
1315 			darg.parent_ino, darg.dname_len);
1316 
1317 	entry.name = darg.dname;
1318 	entry.len = darg.dname_len;
1319 	inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1320 
1321 	if (IS_ERR(inode)) {
1322 		jbd_debug(1, "Inode %d not found", darg.ino);
1323 		return 0;
1324 	}
1325 
1326 	old_parent = ext4_iget(sb, darg.parent_ino,
1327 				EXT4_IGET_NORMAL);
1328 	if (IS_ERR(old_parent)) {
1329 		jbd_debug(1, "Dir with inode  %d not found", darg.parent_ino);
1330 		iput(inode);
1331 		return 0;
1332 	}
1333 
1334 	ret = __ext4_unlink(NULL, old_parent, &entry, inode);
1335 	/* -ENOENT ok coz it might not exist anymore. */
1336 	if (ret == -ENOENT)
1337 		ret = 0;
1338 	iput(old_parent);
1339 	iput(inode);
1340 	return ret;
1341 }
1342 
1343 static int ext4_fc_replay_link_internal(struct super_block *sb,
1344 				struct dentry_info_args *darg,
1345 				struct inode *inode)
1346 {
1347 	struct inode *dir = NULL;
1348 	struct dentry *dentry_dir = NULL, *dentry_inode = NULL;
1349 	struct qstr qstr_dname = QSTR_INIT(darg->dname, darg->dname_len);
1350 	int ret = 0;
1351 
1352 	dir = ext4_iget(sb, darg->parent_ino, EXT4_IGET_NORMAL);
1353 	if (IS_ERR(dir)) {
1354 		jbd_debug(1, "Dir with inode %d not found.", darg->parent_ino);
1355 		dir = NULL;
1356 		goto out;
1357 	}
1358 
1359 	dentry_dir = d_obtain_alias(dir);
1360 	if (IS_ERR(dentry_dir)) {
1361 		jbd_debug(1, "Failed to obtain dentry");
1362 		dentry_dir = NULL;
1363 		goto out;
1364 	}
1365 
1366 	dentry_inode = d_alloc(dentry_dir, &qstr_dname);
1367 	if (!dentry_inode) {
1368 		jbd_debug(1, "Inode dentry not created.");
1369 		ret = -ENOMEM;
1370 		goto out;
1371 	}
1372 
1373 	ret = __ext4_link(dir, inode, dentry_inode);
1374 	/*
1375 	 * It's possible that link already existed since data blocks
1376 	 * for the dir in question got persisted before we crashed OR
1377 	 * we replayed this tag and crashed before the entire replay
1378 	 * could complete.
1379 	 */
1380 	if (ret && ret != -EEXIST) {
1381 		jbd_debug(1, "Failed to link\n");
1382 		goto out;
1383 	}
1384 
1385 	ret = 0;
1386 out:
1387 	if (dentry_dir) {
1388 		d_drop(dentry_dir);
1389 		dput(dentry_dir);
1390 	} else if (dir) {
1391 		iput(dir);
1392 	}
1393 	if (dentry_inode) {
1394 		d_drop(dentry_inode);
1395 		dput(dentry_inode);
1396 	}
1397 
1398 	return ret;
1399 }
1400 
1401 /* Link replay function */
1402 static int ext4_fc_replay_link(struct super_block *sb, struct ext4_fc_tl *tl)
1403 {
1404 	struct inode *inode;
1405 	struct dentry_info_args darg;
1406 	int ret = 0;
1407 
1408 	tl_to_darg(&darg, tl);
1409 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_LINK, darg.ino,
1410 			darg.parent_ino, darg.dname_len);
1411 
1412 	inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1413 	if (IS_ERR(inode)) {
1414 		jbd_debug(1, "Inode not found.");
1415 		return 0;
1416 	}
1417 
1418 	ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1419 	iput(inode);
1420 	return ret;
1421 }
1422 
1423 /*
1424  * Record all the modified inodes during replay. We use this later to setup
1425  * block bitmaps correctly.
1426  */
1427 static int ext4_fc_record_modified_inode(struct super_block *sb, int ino)
1428 {
1429 	struct ext4_fc_replay_state *state;
1430 	int i;
1431 
1432 	state = &EXT4_SB(sb)->s_fc_replay_state;
1433 	for (i = 0; i < state->fc_modified_inodes_used; i++)
1434 		if (state->fc_modified_inodes[i] == ino)
1435 			return 0;
1436 	if (state->fc_modified_inodes_used == state->fc_modified_inodes_size) {
1437 		state->fc_modified_inodes_size +=
1438 			EXT4_FC_REPLAY_REALLOC_INCREMENT;
1439 		state->fc_modified_inodes = krealloc(
1440 					state->fc_modified_inodes, sizeof(int) *
1441 					state->fc_modified_inodes_size,
1442 					GFP_KERNEL);
1443 		if (!state->fc_modified_inodes)
1444 			return -ENOMEM;
1445 	}
1446 	state->fc_modified_inodes[state->fc_modified_inodes_used++] = ino;
1447 	return 0;
1448 }
1449 
1450 /*
1451  * Inode replay function
1452  */
1453 static int ext4_fc_replay_inode(struct super_block *sb, struct ext4_fc_tl *tl)
1454 {
1455 	struct ext4_fc_inode *fc_inode;
1456 	struct ext4_inode *raw_inode;
1457 	struct ext4_inode *raw_fc_inode;
1458 	struct inode *inode = NULL;
1459 	struct ext4_iloc iloc;
1460 	int inode_len, ino, ret, tag = le16_to_cpu(tl->fc_tag);
1461 	struct ext4_extent_header *eh;
1462 
1463 	fc_inode = (struct ext4_fc_inode *)ext4_fc_tag_val(tl);
1464 
1465 	ino = le32_to_cpu(fc_inode->fc_ino);
1466 	trace_ext4_fc_replay(sb, tag, ino, 0, 0);
1467 
1468 	inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1469 	if (!IS_ERR(inode)) {
1470 		ext4_ext_clear_bb(inode);
1471 		iput(inode);
1472 	}
1473 	inode = NULL;
1474 
1475 	ext4_fc_record_modified_inode(sb, ino);
1476 
1477 	raw_fc_inode = (struct ext4_inode *)fc_inode->fc_raw_inode;
1478 	ret = ext4_get_fc_inode_loc(sb, ino, &iloc);
1479 	if (ret)
1480 		goto out;
1481 
1482 	inode_len = ext4_fc_tag_len(tl) - sizeof(struct ext4_fc_inode);
1483 	raw_inode = ext4_raw_inode(&iloc);
1484 
1485 	memcpy(raw_inode, raw_fc_inode, offsetof(struct ext4_inode, i_block));
1486 	memcpy(&raw_inode->i_generation, &raw_fc_inode->i_generation,
1487 		inode_len - offsetof(struct ext4_inode, i_generation));
1488 	if (le32_to_cpu(raw_inode->i_flags) & EXT4_EXTENTS_FL) {
1489 		eh = (struct ext4_extent_header *)(&raw_inode->i_block[0]);
1490 		if (eh->eh_magic != EXT4_EXT_MAGIC) {
1491 			memset(eh, 0, sizeof(*eh));
1492 			eh->eh_magic = EXT4_EXT_MAGIC;
1493 			eh->eh_max = cpu_to_le16(
1494 				(sizeof(raw_inode->i_block) -
1495 				 sizeof(struct ext4_extent_header))
1496 				 / sizeof(struct ext4_extent));
1497 		}
1498 	} else if (le32_to_cpu(raw_inode->i_flags) & EXT4_INLINE_DATA_FL) {
1499 		memcpy(raw_inode->i_block, raw_fc_inode->i_block,
1500 			sizeof(raw_inode->i_block));
1501 	}
1502 
1503 	/* Immediately update the inode on disk. */
1504 	ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1505 	if (ret)
1506 		goto out;
1507 	ret = sync_dirty_buffer(iloc.bh);
1508 	if (ret)
1509 		goto out;
1510 	ret = ext4_mark_inode_used(sb, ino);
1511 	if (ret)
1512 		goto out;
1513 
1514 	/* Given that we just wrote the inode on disk, this SHOULD succeed. */
1515 	inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1516 	if (IS_ERR(inode)) {
1517 		jbd_debug(1, "Inode not found.");
1518 		return -EFSCORRUPTED;
1519 	}
1520 
1521 	/*
1522 	 * Our allocator could have made different decisions than before
1523 	 * crashing. This should be fixed but until then, we calculate
1524 	 * the number of blocks the inode.
1525 	 */
1526 	ext4_ext_replay_set_iblocks(inode);
1527 
1528 	inode->i_generation = le32_to_cpu(ext4_raw_inode(&iloc)->i_generation);
1529 	ext4_reset_inode_seed(inode);
1530 
1531 	ext4_inode_csum_set(inode, ext4_raw_inode(&iloc), EXT4_I(inode));
1532 	ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1533 	sync_dirty_buffer(iloc.bh);
1534 	brelse(iloc.bh);
1535 out:
1536 	iput(inode);
1537 	if (!ret)
1538 		blkdev_issue_flush(sb->s_bdev);
1539 
1540 	return 0;
1541 }
1542 
1543 /*
1544  * Dentry create replay function.
1545  *
1546  * EXT4_FC_TAG_CREAT is preceded by EXT4_FC_TAG_INODE_FULL. Which means, the
1547  * inode for which we are trying to create a dentry here, should already have
1548  * been replayed before we start here.
1549  */
1550 static int ext4_fc_replay_create(struct super_block *sb, struct ext4_fc_tl *tl)
1551 {
1552 	int ret = 0;
1553 	struct inode *inode = NULL;
1554 	struct inode *dir = NULL;
1555 	struct dentry_info_args darg;
1556 
1557 	tl_to_darg(&darg, tl);
1558 
1559 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_CREAT, darg.ino,
1560 			darg.parent_ino, darg.dname_len);
1561 
1562 	/* This takes care of update group descriptor and other metadata */
1563 	ret = ext4_mark_inode_used(sb, darg.ino);
1564 	if (ret)
1565 		goto out;
1566 
1567 	inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1568 	if (IS_ERR(inode)) {
1569 		jbd_debug(1, "inode %d not found.", darg.ino);
1570 		inode = NULL;
1571 		ret = -EINVAL;
1572 		goto out;
1573 	}
1574 
1575 	if (S_ISDIR(inode->i_mode)) {
1576 		/*
1577 		 * If we are creating a directory, we need to make sure that the
1578 		 * dot and dot dot dirents are setup properly.
1579 		 */
1580 		dir = ext4_iget(sb, darg.parent_ino, EXT4_IGET_NORMAL);
1581 		if (IS_ERR(dir)) {
1582 			jbd_debug(1, "Dir %d not found.", darg.ino);
1583 			goto out;
1584 		}
1585 		ret = ext4_init_new_dir(NULL, dir, inode);
1586 		iput(dir);
1587 		if (ret) {
1588 			ret = 0;
1589 			goto out;
1590 		}
1591 	}
1592 	ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1593 	if (ret)
1594 		goto out;
1595 	set_nlink(inode, 1);
1596 	ext4_mark_inode_dirty(NULL, inode);
1597 out:
1598 	if (inode)
1599 		iput(inode);
1600 	return ret;
1601 }
1602 
1603 /*
1604  * Record physical disk regions which are in use as per fast commit area. Our
1605  * simple replay phase allocator excludes these regions from allocation.
1606  */
1607 static int ext4_fc_record_regions(struct super_block *sb, int ino,
1608 		ext4_lblk_t lblk, ext4_fsblk_t pblk, int len)
1609 {
1610 	struct ext4_fc_replay_state *state;
1611 	struct ext4_fc_alloc_region *region;
1612 
1613 	state = &EXT4_SB(sb)->s_fc_replay_state;
1614 	if (state->fc_regions_used == state->fc_regions_size) {
1615 		state->fc_regions_size +=
1616 			EXT4_FC_REPLAY_REALLOC_INCREMENT;
1617 		state->fc_regions = krealloc(
1618 					state->fc_regions,
1619 					state->fc_regions_size *
1620 					sizeof(struct ext4_fc_alloc_region),
1621 					GFP_KERNEL);
1622 		if (!state->fc_regions)
1623 			return -ENOMEM;
1624 	}
1625 	region = &state->fc_regions[state->fc_regions_used++];
1626 	region->ino = ino;
1627 	region->lblk = lblk;
1628 	region->pblk = pblk;
1629 	region->len = len;
1630 
1631 	return 0;
1632 }
1633 
1634 /* Replay add range tag */
1635 static int ext4_fc_replay_add_range(struct super_block *sb,
1636 				struct ext4_fc_tl *tl)
1637 {
1638 	struct ext4_fc_add_range *fc_add_ex;
1639 	struct ext4_extent newex, *ex;
1640 	struct inode *inode;
1641 	ext4_lblk_t start, cur;
1642 	int remaining, len;
1643 	ext4_fsblk_t start_pblk;
1644 	struct ext4_map_blocks map;
1645 	struct ext4_ext_path *path = NULL;
1646 	int ret;
1647 
1648 	fc_add_ex = (struct ext4_fc_add_range *)ext4_fc_tag_val(tl);
1649 	ex = (struct ext4_extent *)&fc_add_ex->fc_ex;
1650 
1651 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_ADD_RANGE,
1652 		le32_to_cpu(fc_add_ex->fc_ino), le32_to_cpu(ex->ee_block),
1653 		ext4_ext_get_actual_len(ex));
1654 
1655 	inode = ext4_iget(sb, le32_to_cpu(fc_add_ex->fc_ino),
1656 				EXT4_IGET_NORMAL);
1657 	if (IS_ERR(inode)) {
1658 		jbd_debug(1, "Inode not found.");
1659 		return 0;
1660 	}
1661 
1662 	ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1663 
1664 	start = le32_to_cpu(ex->ee_block);
1665 	start_pblk = ext4_ext_pblock(ex);
1666 	len = ext4_ext_get_actual_len(ex);
1667 
1668 	cur = start;
1669 	remaining = len;
1670 	jbd_debug(1, "ADD_RANGE, lblk %d, pblk %lld, len %d, unwritten %d, inode %ld\n",
1671 		  start, start_pblk, len, ext4_ext_is_unwritten(ex),
1672 		  inode->i_ino);
1673 
1674 	while (remaining > 0) {
1675 		map.m_lblk = cur;
1676 		map.m_len = remaining;
1677 		map.m_pblk = 0;
1678 		ret = ext4_map_blocks(NULL, inode, &map, 0);
1679 
1680 		if (ret < 0) {
1681 			iput(inode);
1682 			return 0;
1683 		}
1684 
1685 		if (ret == 0) {
1686 			/* Range is not mapped */
1687 			path = ext4_find_extent(inode, cur, NULL, 0);
1688 			if (IS_ERR(path)) {
1689 				iput(inode);
1690 				return 0;
1691 			}
1692 			memset(&newex, 0, sizeof(newex));
1693 			newex.ee_block = cpu_to_le32(cur);
1694 			ext4_ext_store_pblock(
1695 				&newex, start_pblk + cur - start);
1696 			newex.ee_len = cpu_to_le16(map.m_len);
1697 			if (ext4_ext_is_unwritten(ex))
1698 				ext4_ext_mark_unwritten(&newex);
1699 			down_write(&EXT4_I(inode)->i_data_sem);
1700 			ret = ext4_ext_insert_extent(
1701 				NULL, inode, &path, &newex, 0);
1702 			up_write((&EXT4_I(inode)->i_data_sem));
1703 			ext4_ext_drop_refs(path);
1704 			kfree(path);
1705 			if (ret) {
1706 				iput(inode);
1707 				return 0;
1708 			}
1709 			goto next;
1710 		}
1711 
1712 		if (start_pblk + cur - start != map.m_pblk) {
1713 			/*
1714 			 * Logical to physical mapping changed. This can happen
1715 			 * if this range was removed and then reallocated to
1716 			 * map to new physical blocks during a fast commit.
1717 			 */
1718 			ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1719 					ext4_ext_is_unwritten(ex),
1720 					start_pblk + cur - start);
1721 			if (ret) {
1722 				iput(inode);
1723 				return 0;
1724 			}
1725 			/*
1726 			 * Mark the old blocks as free since they aren't used
1727 			 * anymore. We maintain an array of all the modified
1728 			 * inodes. In case these blocks are still used at either
1729 			 * a different logical range in the same inode or in
1730 			 * some different inode, we will mark them as allocated
1731 			 * at the end of the FC replay using our array of
1732 			 * modified inodes.
1733 			 */
1734 			ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 0);
1735 			goto next;
1736 		}
1737 
1738 		/* Range is mapped and needs a state change */
1739 		jbd_debug(1, "Converting from %d to %d %lld",
1740 				map.m_flags & EXT4_MAP_UNWRITTEN,
1741 			ext4_ext_is_unwritten(ex), map.m_pblk);
1742 		ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1743 					ext4_ext_is_unwritten(ex), map.m_pblk);
1744 		if (ret) {
1745 			iput(inode);
1746 			return 0;
1747 		}
1748 		/*
1749 		 * We may have split the extent tree while toggling the state.
1750 		 * Try to shrink the extent tree now.
1751 		 */
1752 		ext4_ext_replay_shrink_inode(inode, start + len);
1753 next:
1754 		cur += map.m_len;
1755 		remaining -= map.m_len;
1756 	}
1757 	ext4_ext_replay_shrink_inode(inode, i_size_read(inode) >>
1758 					sb->s_blocksize_bits);
1759 	iput(inode);
1760 	return 0;
1761 }
1762 
1763 /* Replay DEL_RANGE tag */
1764 static int
1765 ext4_fc_replay_del_range(struct super_block *sb, struct ext4_fc_tl *tl)
1766 {
1767 	struct inode *inode;
1768 	struct ext4_fc_del_range *lrange;
1769 	struct ext4_map_blocks map;
1770 	ext4_lblk_t cur, remaining;
1771 	int ret;
1772 
1773 	lrange = (struct ext4_fc_del_range *)ext4_fc_tag_val(tl);
1774 	cur = le32_to_cpu(lrange->fc_lblk);
1775 	remaining = le32_to_cpu(lrange->fc_len);
1776 
1777 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_DEL_RANGE,
1778 		le32_to_cpu(lrange->fc_ino), cur, remaining);
1779 
1780 	inode = ext4_iget(sb, le32_to_cpu(lrange->fc_ino), EXT4_IGET_NORMAL);
1781 	if (IS_ERR(inode)) {
1782 		jbd_debug(1, "Inode %d not found", le32_to_cpu(lrange->fc_ino));
1783 		return 0;
1784 	}
1785 
1786 	ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1787 
1788 	jbd_debug(1, "DEL_RANGE, inode %ld, lblk %d, len %d\n",
1789 			inode->i_ino, le32_to_cpu(lrange->fc_lblk),
1790 			le32_to_cpu(lrange->fc_len));
1791 	while (remaining > 0) {
1792 		map.m_lblk = cur;
1793 		map.m_len = remaining;
1794 
1795 		ret = ext4_map_blocks(NULL, inode, &map, 0);
1796 		if (ret < 0) {
1797 			iput(inode);
1798 			return 0;
1799 		}
1800 		if (ret > 0) {
1801 			remaining -= ret;
1802 			cur += ret;
1803 			ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 0);
1804 		} else {
1805 			remaining -= map.m_len;
1806 			cur += map.m_len;
1807 		}
1808 	}
1809 
1810 	ret = ext4_punch_hole(inode,
1811 		le32_to_cpu(lrange->fc_lblk) << sb->s_blocksize_bits,
1812 		le32_to_cpu(lrange->fc_len) <<  sb->s_blocksize_bits);
1813 	if (ret)
1814 		jbd_debug(1, "ext4_punch_hole returned %d", ret);
1815 	ext4_ext_replay_shrink_inode(inode,
1816 		i_size_read(inode) >> sb->s_blocksize_bits);
1817 	ext4_mark_inode_dirty(NULL, inode);
1818 	iput(inode);
1819 
1820 	return 0;
1821 }
1822 
1823 static void ext4_fc_set_bitmaps_and_counters(struct super_block *sb)
1824 {
1825 	struct ext4_fc_replay_state *state;
1826 	struct inode *inode;
1827 	struct ext4_ext_path *path = NULL;
1828 	struct ext4_map_blocks map;
1829 	int i, ret, j;
1830 	ext4_lblk_t cur, end;
1831 
1832 	state = &EXT4_SB(sb)->s_fc_replay_state;
1833 	for (i = 0; i < state->fc_modified_inodes_used; i++) {
1834 		inode = ext4_iget(sb, state->fc_modified_inodes[i],
1835 			EXT4_IGET_NORMAL);
1836 		if (IS_ERR(inode)) {
1837 			jbd_debug(1, "Inode %d not found.",
1838 				state->fc_modified_inodes[i]);
1839 			continue;
1840 		}
1841 		cur = 0;
1842 		end = EXT_MAX_BLOCKS;
1843 		while (cur < end) {
1844 			map.m_lblk = cur;
1845 			map.m_len = end - cur;
1846 
1847 			ret = ext4_map_blocks(NULL, inode, &map, 0);
1848 			if (ret < 0)
1849 				break;
1850 
1851 			if (ret > 0) {
1852 				path = ext4_find_extent(inode, map.m_lblk, NULL, 0);
1853 				if (!IS_ERR(path)) {
1854 					for (j = 0; j < path->p_depth; j++)
1855 						ext4_mb_mark_bb(inode->i_sb,
1856 							path[j].p_block, 1, 1);
1857 					ext4_ext_drop_refs(path);
1858 					kfree(path);
1859 				}
1860 				cur += ret;
1861 				ext4_mb_mark_bb(inode->i_sb, map.m_pblk,
1862 							map.m_len, 1);
1863 			} else {
1864 				cur = cur + (map.m_len ? map.m_len : 1);
1865 			}
1866 		}
1867 		iput(inode);
1868 	}
1869 }
1870 
1871 /*
1872  * Check if block is in excluded regions for block allocation. The simple
1873  * allocator that runs during replay phase is calls this function to see
1874  * if it is okay to use a block.
1875  */
1876 bool ext4_fc_replay_check_excluded(struct super_block *sb, ext4_fsblk_t blk)
1877 {
1878 	int i;
1879 	struct ext4_fc_replay_state *state;
1880 
1881 	state = &EXT4_SB(sb)->s_fc_replay_state;
1882 	for (i = 0; i < state->fc_regions_valid; i++) {
1883 		if (state->fc_regions[i].ino == 0 ||
1884 			state->fc_regions[i].len == 0)
1885 			continue;
1886 		if (blk >= state->fc_regions[i].pblk &&
1887 		    blk < state->fc_regions[i].pblk + state->fc_regions[i].len)
1888 			return true;
1889 	}
1890 	return false;
1891 }
1892 
1893 /* Cleanup function called after replay */
1894 void ext4_fc_replay_cleanup(struct super_block *sb)
1895 {
1896 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1897 
1898 	sbi->s_mount_state &= ~EXT4_FC_REPLAY;
1899 	kfree(sbi->s_fc_replay_state.fc_regions);
1900 	kfree(sbi->s_fc_replay_state.fc_modified_inodes);
1901 }
1902 
1903 /*
1904  * Recovery Scan phase handler
1905  *
1906  * This function is called during the scan phase and is responsible
1907  * for doing following things:
1908  * - Make sure the fast commit area has valid tags for replay
1909  * - Count number of tags that need to be replayed by the replay handler
1910  * - Verify CRC
1911  * - Create a list of excluded blocks for allocation during replay phase
1912  *
1913  * This function returns JBD2_FC_REPLAY_CONTINUE to indicate that SCAN is
1914  * incomplete and JBD2 should send more blocks. It returns JBD2_FC_REPLAY_STOP
1915  * to indicate that scan has finished and JBD2 can now start replay phase.
1916  * It returns a negative error to indicate that there was an error. At the end
1917  * of a successful scan phase, sbi->s_fc_replay_state.fc_replay_num_tags is set
1918  * to indicate the number of tags that need to replayed during the replay phase.
1919  */
1920 static int ext4_fc_replay_scan(journal_t *journal,
1921 				struct buffer_head *bh, int off,
1922 				tid_t expected_tid)
1923 {
1924 	struct super_block *sb = journal->j_private;
1925 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1926 	struct ext4_fc_replay_state *state;
1927 	int ret = JBD2_FC_REPLAY_CONTINUE;
1928 	struct ext4_fc_add_range *ext;
1929 	struct ext4_fc_tl *tl;
1930 	struct ext4_fc_tail *tail;
1931 	__u8 *start, *end;
1932 	struct ext4_fc_head *head;
1933 	struct ext4_extent *ex;
1934 
1935 	state = &sbi->s_fc_replay_state;
1936 
1937 	start = (u8 *)bh->b_data;
1938 	end = (__u8 *)bh->b_data + journal->j_blocksize - 1;
1939 
1940 	if (state->fc_replay_expected_off == 0) {
1941 		state->fc_cur_tag = 0;
1942 		state->fc_replay_num_tags = 0;
1943 		state->fc_crc = 0;
1944 		state->fc_regions = NULL;
1945 		state->fc_regions_valid = state->fc_regions_used =
1946 			state->fc_regions_size = 0;
1947 		/* Check if we can stop early */
1948 		if (le16_to_cpu(((struct ext4_fc_tl *)start)->fc_tag)
1949 			!= EXT4_FC_TAG_HEAD)
1950 			return 0;
1951 	}
1952 
1953 	if (off != state->fc_replay_expected_off) {
1954 		ret = -EFSCORRUPTED;
1955 		goto out_err;
1956 	}
1957 
1958 	state->fc_replay_expected_off++;
1959 	fc_for_each_tl(start, end, tl) {
1960 		jbd_debug(3, "Scan phase, tag:%s, blk %lld\n",
1961 			  tag2str(le16_to_cpu(tl->fc_tag)), bh->b_blocknr);
1962 		switch (le16_to_cpu(tl->fc_tag)) {
1963 		case EXT4_FC_TAG_ADD_RANGE:
1964 			ext = (struct ext4_fc_add_range *)ext4_fc_tag_val(tl);
1965 			ex = (struct ext4_extent *)&ext->fc_ex;
1966 			ret = ext4_fc_record_regions(sb,
1967 				le32_to_cpu(ext->fc_ino),
1968 				le32_to_cpu(ex->ee_block), ext4_ext_pblock(ex),
1969 				ext4_ext_get_actual_len(ex));
1970 			if (ret < 0)
1971 				break;
1972 			ret = JBD2_FC_REPLAY_CONTINUE;
1973 			fallthrough;
1974 		case EXT4_FC_TAG_DEL_RANGE:
1975 		case EXT4_FC_TAG_LINK:
1976 		case EXT4_FC_TAG_UNLINK:
1977 		case EXT4_FC_TAG_CREAT:
1978 		case EXT4_FC_TAG_INODE:
1979 		case EXT4_FC_TAG_PAD:
1980 			state->fc_cur_tag++;
1981 			state->fc_crc = ext4_chksum(sbi, state->fc_crc, tl,
1982 					sizeof(*tl) + ext4_fc_tag_len(tl));
1983 			break;
1984 		case EXT4_FC_TAG_TAIL:
1985 			state->fc_cur_tag++;
1986 			tail = (struct ext4_fc_tail *)ext4_fc_tag_val(tl);
1987 			state->fc_crc = ext4_chksum(sbi, state->fc_crc, tl,
1988 						sizeof(*tl) +
1989 						offsetof(struct ext4_fc_tail,
1990 						fc_crc));
1991 			if (le32_to_cpu(tail->fc_tid) == expected_tid &&
1992 				le32_to_cpu(tail->fc_crc) == state->fc_crc) {
1993 				state->fc_replay_num_tags = state->fc_cur_tag;
1994 				state->fc_regions_valid =
1995 					state->fc_regions_used;
1996 			} else {
1997 				ret = state->fc_replay_num_tags ?
1998 					JBD2_FC_REPLAY_STOP : -EFSBADCRC;
1999 			}
2000 			state->fc_crc = 0;
2001 			break;
2002 		case EXT4_FC_TAG_HEAD:
2003 			head = (struct ext4_fc_head *)ext4_fc_tag_val(tl);
2004 			if (le32_to_cpu(head->fc_features) &
2005 				~EXT4_FC_SUPPORTED_FEATURES) {
2006 				ret = -EOPNOTSUPP;
2007 				break;
2008 			}
2009 			if (le32_to_cpu(head->fc_tid) != expected_tid) {
2010 				ret = JBD2_FC_REPLAY_STOP;
2011 				break;
2012 			}
2013 			state->fc_cur_tag++;
2014 			state->fc_crc = ext4_chksum(sbi, state->fc_crc, tl,
2015 					sizeof(*tl) + ext4_fc_tag_len(tl));
2016 			break;
2017 		default:
2018 			ret = state->fc_replay_num_tags ?
2019 				JBD2_FC_REPLAY_STOP : -ECANCELED;
2020 		}
2021 		if (ret < 0 || ret == JBD2_FC_REPLAY_STOP)
2022 			break;
2023 	}
2024 
2025 out_err:
2026 	trace_ext4_fc_replay_scan(sb, ret, off);
2027 	return ret;
2028 }
2029 
2030 /*
2031  * Main recovery path entry point.
2032  * The meaning of return codes is similar as above.
2033  */
2034 static int ext4_fc_replay(journal_t *journal, struct buffer_head *bh,
2035 				enum passtype pass, int off, tid_t expected_tid)
2036 {
2037 	struct super_block *sb = journal->j_private;
2038 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2039 	struct ext4_fc_tl *tl;
2040 	__u8 *start, *end;
2041 	int ret = JBD2_FC_REPLAY_CONTINUE;
2042 	struct ext4_fc_replay_state *state = &sbi->s_fc_replay_state;
2043 	struct ext4_fc_tail *tail;
2044 
2045 	if (pass == PASS_SCAN) {
2046 		state->fc_current_pass = PASS_SCAN;
2047 		return ext4_fc_replay_scan(journal, bh, off, expected_tid);
2048 	}
2049 
2050 	if (state->fc_current_pass != pass) {
2051 		state->fc_current_pass = pass;
2052 		sbi->s_mount_state |= EXT4_FC_REPLAY;
2053 	}
2054 	if (!sbi->s_fc_replay_state.fc_replay_num_tags) {
2055 		jbd_debug(1, "Replay stops\n");
2056 		ext4_fc_set_bitmaps_and_counters(sb);
2057 		return 0;
2058 	}
2059 
2060 #ifdef CONFIG_EXT4_DEBUG
2061 	if (sbi->s_fc_debug_max_replay && off >= sbi->s_fc_debug_max_replay) {
2062 		pr_warn("Dropping fc block %d because max_replay set\n", off);
2063 		return JBD2_FC_REPLAY_STOP;
2064 	}
2065 #endif
2066 
2067 	start = (u8 *)bh->b_data;
2068 	end = (__u8 *)bh->b_data + journal->j_blocksize - 1;
2069 
2070 	fc_for_each_tl(start, end, tl) {
2071 		if (state->fc_replay_num_tags == 0) {
2072 			ret = JBD2_FC_REPLAY_STOP;
2073 			ext4_fc_set_bitmaps_and_counters(sb);
2074 			break;
2075 		}
2076 		jbd_debug(3, "Replay phase, tag:%s\n",
2077 				tag2str(le16_to_cpu(tl->fc_tag)));
2078 		state->fc_replay_num_tags--;
2079 		switch (le16_to_cpu(tl->fc_tag)) {
2080 		case EXT4_FC_TAG_LINK:
2081 			ret = ext4_fc_replay_link(sb, tl);
2082 			break;
2083 		case EXT4_FC_TAG_UNLINK:
2084 			ret = ext4_fc_replay_unlink(sb, tl);
2085 			break;
2086 		case EXT4_FC_TAG_ADD_RANGE:
2087 			ret = ext4_fc_replay_add_range(sb, tl);
2088 			break;
2089 		case EXT4_FC_TAG_CREAT:
2090 			ret = ext4_fc_replay_create(sb, tl);
2091 			break;
2092 		case EXT4_FC_TAG_DEL_RANGE:
2093 			ret = ext4_fc_replay_del_range(sb, tl);
2094 			break;
2095 		case EXT4_FC_TAG_INODE:
2096 			ret = ext4_fc_replay_inode(sb, tl);
2097 			break;
2098 		case EXT4_FC_TAG_PAD:
2099 			trace_ext4_fc_replay(sb, EXT4_FC_TAG_PAD, 0,
2100 				ext4_fc_tag_len(tl), 0);
2101 			break;
2102 		case EXT4_FC_TAG_TAIL:
2103 			trace_ext4_fc_replay(sb, EXT4_FC_TAG_TAIL, 0,
2104 				ext4_fc_tag_len(tl), 0);
2105 			tail = (struct ext4_fc_tail *)ext4_fc_tag_val(tl);
2106 			WARN_ON(le32_to_cpu(tail->fc_tid) != expected_tid);
2107 			break;
2108 		case EXT4_FC_TAG_HEAD:
2109 			break;
2110 		default:
2111 			trace_ext4_fc_replay(sb, le16_to_cpu(tl->fc_tag), 0,
2112 				ext4_fc_tag_len(tl), 0);
2113 			ret = -ECANCELED;
2114 			break;
2115 		}
2116 		if (ret < 0)
2117 			break;
2118 		ret = JBD2_FC_REPLAY_CONTINUE;
2119 	}
2120 	return ret;
2121 }
2122 
2123 void ext4_fc_init(struct super_block *sb, journal_t *journal)
2124 {
2125 	/*
2126 	 * We set replay callback even if fast commit disabled because we may
2127 	 * could still have fast commit blocks that need to be replayed even if
2128 	 * fast commit has now been turned off.
2129 	 */
2130 	journal->j_fc_replay_callback = ext4_fc_replay;
2131 	if (!test_opt2(sb, JOURNAL_FAST_COMMIT))
2132 		return;
2133 	journal->j_fc_cleanup_callback = ext4_fc_cleanup;
2134 }
2135 
2136 static const char *fc_ineligible_reasons[] = {
2137 	"Extended attributes changed",
2138 	"Cross rename",
2139 	"Journal flag changed",
2140 	"Insufficient memory",
2141 	"Swap boot",
2142 	"Resize",
2143 	"Dir renamed",
2144 	"Falloc range op",
2145 	"Data journalling",
2146 	"FC Commit Failed"
2147 };
2148 
2149 int ext4_fc_info_show(struct seq_file *seq, void *v)
2150 {
2151 	struct ext4_sb_info *sbi = EXT4_SB((struct super_block *)seq->private);
2152 	struct ext4_fc_stats *stats = &sbi->s_fc_stats;
2153 	int i;
2154 
2155 	if (v != SEQ_START_TOKEN)
2156 		return 0;
2157 
2158 	seq_printf(seq,
2159 		"fc stats:\n%ld commits\n%ld ineligible\n%ld numblks\n%lluus avg_commit_time\n",
2160 		   stats->fc_num_commits, stats->fc_ineligible_commits,
2161 		   stats->fc_numblks,
2162 		   div_u64(sbi->s_fc_avg_commit_time, 1000));
2163 	seq_puts(seq, "Ineligible reasons:\n");
2164 	for (i = 0; i < EXT4_FC_REASON_MAX; i++)
2165 		seq_printf(seq, "\"%s\":\t%d\n", fc_ineligible_reasons[i],
2166 			stats->fc_ineligible_reason_count[i]);
2167 
2168 	return 0;
2169 }
2170 
2171 int __init ext4_fc_init_dentry_cache(void)
2172 {
2173 	ext4_fc_dentry_cachep = KMEM_CACHE(ext4_fc_dentry_update,
2174 					   SLAB_RECLAIM_ACCOUNT);
2175 
2176 	if (ext4_fc_dentry_cachep == NULL)
2177 		return -ENOMEM;
2178 
2179 	return 0;
2180 }
2181