1 // SPDX-License-Identifier: GPL-2.0 2 3 /* 4 * fs/ext4/fast_commit.c 5 * 6 * Written by Harshad Shirwadkar <harshadshirwadkar@gmail.com> 7 * 8 * Ext4 fast commits routines. 9 */ 10 #include "ext4.h" 11 #include "ext4_jbd2.h" 12 #include "ext4_extents.h" 13 #include "mballoc.h" 14 15 /* 16 * Ext4 Fast Commits 17 * ----------------- 18 * 19 * Ext4 fast commits implement fine grained journalling for Ext4. 20 * 21 * Fast commits are organized as a log of tag-length-value (TLV) structs. (See 22 * struct ext4_fc_tl). Each TLV contains some delta that is replayed TLV by 23 * TLV during the recovery phase. For the scenarios for which we currently 24 * don't have replay code, fast commit falls back to full commits. 25 * Fast commits record delta in one of the following three categories. 26 * 27 * (A) Directory entry updates: 28 * 29 * - EXT4_FC_TAG_UNLINK - records directory entry unlink 30 * - EXT4_FC_TAG_LINK - records directory entry link 31 * - EXT4_FC_TAG_CREAT - records inode and directory entry creation 32 * 33 * (B) File specific data range updates: 34 * 35 * - EXT4_FC_TAG_ADD_RANGE - records addition of new blocks to an inode 36 * - EXT4_FC_TAG_DEL_RANGE - records deletion of blocks from an inode 37 * 38 * (C) Inode metadata (mtime / ctime etc): 39 * 40 * - EXT4_FC_TAG_INODE - record the inode that should be replayed 41 * during recovery. Note that iblocks field is 42 * not replayed and instead derived during 43 * replay. 44 * Commit Operation 45 * ---------------- 46 * With fast commits, we maintain all the directory entry operations in the 47 * order in which they are issued in an in-memory queue. This queue is flushed 48 * to disk during the commit operation. We also maintain a list of inodes 49 * that need to be committed during a fast commit in another in memory queue of 50 * inodes. During the commit operation, we commit in the following order: 51 * 52 * [1] Lock inodes for any further data updates by setting COMMITTING state 53 * [2] Submit data buffers of all the inodes 54 * [3] Wait for [2] to complete 55 * [4] Commit all the directory entry updates in the fast commit space 56 * [5] Commit all the changed inode structures 57 * [6] Write tail tag (this tag ensures the atomicity, please read the following 58 * section for more details). 59 * [7] Wait for [4], [5] and [6] to complete. 60 * 61 * All the inode updates must call ext4_fc_start_update() before starting an 62 * update. If such an ongoing update is present, fast commit waits for it to 63 * complete. The completion of such an update is marked by 64 * ext4_fc_stop_update(). 65 * 66 * Fast Commit Ineligibility 67 * ------------------------- 68 * 69 * Not all operations are supported by fast commits today (e.g extended 70 * attributes). Fast commit ineligibility is marked by calling 71 * ext4_fc_mark_ineligible(): This makes next fast commit operation to fall back 72 * to full commit. 73 * 74 * Atomicity of commits 75 * -------------------- 76 * In order to guarantee atomicity during the commit operation, fast commit 77 * uses "EXT4_FC_TAG_TAIL" tag that marks a fast commit as complete. Tail 78 * tag contains CRC of the contents and TID of the transaction after which 79 * this fast commit should be applied. Recovery code replays fast commit 80 * logs only if there's at least 1 valid tail present. For every fast commit 81 * operation, there is 1 tail. This means, we may end up with multiple tails 82 * in the fast commit space. Here's an example: 83 * 84 * - Create a new file A and remove existing file B 85 * - fsync() 86 * - Append contents to file A 87 * - Truncate file A 88 * - fsync() 89 * 90 * The fast commit space at the end of above operations would look like this: 91 * [HEAD] [CREAT A] [UNLINK B] [TAIL] [ADD_RANGE A] [DEL_RANGE A] [TAIL] 92 * |<--- Fast Commit 1 --->|<--- Fast Commit 2 ---->| 93 * 94 * Replay code should thus check for all the valid tails in the FC area. 95 * 96 * Fast Commit Replay Idempotence 97 * ------------------------------ 98 * 99 * Fast commits tags are idempotent in nature provided the recovery code follows 100 * certain rules. The guiding principle that the commit path follows while 101 * committing is that it stores the result of a particular operation instead of 102 * storing the procedure. 103 * 104 * Let's consider this rename operation: 'mv /a /b'. Let's assume dirent '/a' 105 * was associated with inode 10. During fast commit, instead of storing this 106 * operation as a procedure "rename a to b", we store the resulting file system 107 * state as a "series" of outcomes: 108 * 109 * - Link dirent b to inode 10 110 * - Unlink dirent a 111 * - Inode <10> with valid refcount 112 * 113 * Now when recovery code runs, it needs "enforce" this state on the file 114 * system. This is what guarantees idempotence of fast commit replay. 115 * 116 * Let's take an example of a procedure that is not idempotent and see how fast 117 * commits make it idempotent. Consider following sequence of operations: 118 * 119 * rm A; mv B A; read A 120 * (x) (y) (z) 121 * 122 * (x), (y) and (z) are the points at which we can crash. If we store this 123 * sequence of operations as is then the replay is not idempotent. Let's say 124 * while in replay, we crash at (z). During the second replay, file A (which was 125 * actually created as a result of "mv B A" operation) would get deleted. Thus, 126 * file named A would be absent when we try to read A. So, this sequence of 127 * operations is not idempotent. However, as mentioned above, instead of storing 128 * the procedure fast commits store the outcome of each procedure. Thus the fast 129 * commit log for above procedure would be as follows: 130 * 131 * (Let's assume dirent A was linked to inode 10 and dirent B was linked to 132 * inode 11 before the replay) 133 * 134 * [Unlink A] [Link A to inode 11] [Unlink B] [Inode 11] 135 * (w) (x) (y) (z) 136 * 137 * If we crash at (z), we will have file A linked to inode 11. During the second 138 * replay, we will remove file A (inode 11). But we will create it back and make 139 * it point to inode 11. We won't find B, so we'll just skip that step. At this 140 * point, the refcount for inode 11 is not reliable, but that gets fixed by the 141 * replay of last inode 11 tag. Crashes at points (w), (x) and (y) get handled 142 * similarly. Thus, by converting a non-idempotent procedure into a series of 143 * idempotent outcomes, fast commits ensured idempotence during the replay. 144 * 145 * TODOs 146 * ----- 147 * 148 * 0) Fast commit replay path hardening: Fast commit replay code should use 149 * journal handles to make sure all the updates it does during the replay 150 * path are atomic. With that if we crash during fast commit replay, after 151 * trying to do recovery again, we will find a file system where fast commit 152 * area is invalid (because new full commit would be found). In order to deal 153 * with that, fast commit replay code should ensure that the "FC_REPLAY" 154 * superblock state is persisted before starting the replay, so that after 155 * the crash, fast commit recovery code can look at that flag and perform 156 * fast commit recovery even if that area is invalidated by later full 157 * commits. 158 * 159 * 1) Fast commit's commit path locks the entire file system during fast 160 * commit. This has significant performance penalty. Instead of that, we 161 * should use ext4_fc_start/stop_update functions to start inode level 162 * updates from ext4_journal_start/stop. Once we do that we can drop file 163 * system locking during commit path. 164 * 165 * 2) Handle more ineligible cases. 166 */ 167 168 #include <trace/events/ext4.h> 169 static struct kmem_cache *ext4_fc_dentry_cachep; 170 171 static void ext4_end_buffer_io_sync(struct buffer_head *bh, int uptodate) 172 { 173 BUFFER_TRACE(bh, ""); 174 if (uptodate) { 175 ext4_debug("%s: Block %lld up-to-date", 176 __func__, bh->b_blocknr); 177 set_buffer_uptodate(bh); 178 } else { 179 ext4_debug("%s: Block %lld not up-to-date", 180 __func__, bh->b_blocknr); 181 clear_buffer_uptodate(bh); 182 } 183 184 unlock_buffer(bh); 185 } 186 187 static inline void ext4_fc_reset_inode(struct inode *inode) 188 { 189 struct ext4_inode_info *ei = EXT4_I(inode); 190 191 ei->i_fc_lblk_start = 0; 192 ei->i_fc_lblk_len = 0; 193 } 194 195 void ext4_fc_init_inode(struct inode *inode) 196 { 197 struct ext4_inode_info *ei = EXT4_I(inode); 198 199 ext4_fc_reset_inode(inode); 200 ext4_clear_inode_state(inode, EXT4_STATE_FC_COMMITTING); 201 INIT_LIST_HEAD(&ei->i_fc_list); 202 INIT_LIST_HEAD(&ei->i_fc_dilist); 203 init_waitqueue_head(&ei->i_fc_wait); 204 atomic_set(&ei->i_fc_updates, 0); 205 } 206 207 /* This function must be called with sbi->s_fc_lock held. */ 208 static void ext4_fc_wait_committing_inode(struct inode *inode) 209 __releases(&EXT4_SB(inode->i_sb)->s_fc_lock) 210 { 211 wait_queue_head_t *wq; 212 struct ext4_inode_info *ei = EXT4_I(inode); 213 214 #if (BITS_PER_LONG < 64) 215 DEFINE_WAIT_BIT(wait, &ei->i_state_flags, 216 EXT4_STATE_FC_COMMITTING); 217 wq = bit_waitqueue(&ei->i_state_flags, 218 EXT4_STATE_FC_COMMITTING); 219 #else 220 DEFINE_WAIT_BIT(wait, &ei->i_flags, 221 EXT4_STATE_FC_COMMITTING); 222 wq = bit_waitqueue(&ei->i_flags, 223 EXT4_STATE_FC_COMMITTING); 224 #endif 225 lockdep_assert_held(&EXT4_SB(inode->i_sb)->s_fc_lock); 226 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 227 spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock); 228 schedule(); 229 finish_wait(wq, &wait.wq_entry); 230 } 231 232 /* 233 * Inform Ext4's fast about start of an inode update 234 * 235 * This function is called by the high level call VFS callbacks before 236 * performing any inode update. This function blocks if there's an ongoing 237 * fast commit on the inode in question. 238 */ 239 void ext4_fc_start_update(struct inode *inode) 240 { 241 struct ext4_inode_info *ei = EXT4_I(inode); 242 243 if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) || 244 (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)) 245 return; 246 247 restart: 248 spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock); 249 if (list_empty(&ei->i_fc_list)) 250 goto out; 251 252 if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) { 253 ext4_fc_wait_committing_inode(inode); 254 goto restart; 255 } 256 out: 257 atomic_inc(&ei->i_fc_updates); 258 spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock); 259 } 260 261 /* 262 * Stop inode update and wake up waiting fast commits if any. 263 */ 264 void ext4_fc_stop_update(struct inode *inode) 265 { 266 struct ext4_inode_info *ei = EXT4_I(inode); 267 268 if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) || 269 (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)) 270 return; 271 272 if (atomic_dec_and_test(&ei->i_fc_updates)) 273 wake_up_all(&ei->i_fc_wait); 274 } 275 276 /* 277 * Remove inode from fast commit list. If the inode is being committed 278 * we wait until inode commit is done. 279 */ 280 void ext4_fc_del(struct inode *inode) 281 { 282 struct ext4_inode_info *ei = EXT4_I(inode); 283 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 284 struct ext4_fc_dentry_update *fc_dentry; 285 286 if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) || 287 (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)) 288 return; 289 290 restart: 291 spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock); 292 if (list_empty(&ei->i_fc_list) && list_empty(&ei->i_fc_dilist)) { 293 spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock); 294 return; 295 } 296 297 if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) { 298 ext4_fc_wait_committing_inode(inode); 299 goto restart; 300 } 301 302 if (!list_empty(&ei->i_fc_list)) 303 list_del_init(&ei->i_fc_list); 304 305 /* 306 * Since this inode is getting removed, let's also remove all FC 307 * dentry create references, since it is not needed to log it anyways. 308 */ 309 if (list_empty(&ei->i_fc_dilist)) { 310 spin_unlock(&sbi->s_fc_lock); 311 return; 312 } 313 314 fc_dentry = list_first_entry(&ei->i_fc_dilist, struct ext4_fc_dentry_update, fcd_dilist); 315 WARN_ON(fc_dentry->fcd_op != EXT4_FC_TAG_CREAT); 316 list_del_init(&fc_dentry->fcd_list); 317 list_del_init(&fc_dentry->fcd_dilist); 318 319 WARN_ON(!list_empty(&ei->i_fc_dilist)); 320 spin_unlock(&sbi->s_fc_lock); 321 322 if (fc_dentry->fcd_name.name && 323 fc_dentry->fcd_name.len > DNAME_INLINE_LEN) 324 kfree(fc_dentry->fcd_name.name); 325 kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry); 326 327 return; 328 } 329 330 /* 331 * Mark file system as fast commit ineligible, and record latest 332 * ineligible transaction tid. This means until the recorded 333 * transaction, commit operation would result in a full jbd2 commit. 334 */ 335 void ext4_fc_mark_ineligible(struct super_block *sb, int reason, handle_t *handle) 336 { 337 struct ext4_sb_info *sbi = EXT4_SB(sb); 338 tid_t tid; 339 340 if (!test_opt2(sb, JOURNAL_FAST_COMMIT) || 341 (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY)) 342 return; 343 344 ext4_set_mount_flag(sb, EXT4_MF_FC_INELIGIBLE); 345 if (handle && !IS_ERR(handle)) 346 tid = handle->h_transaction->t_tid; 347 else { 348 read_lock(&sbi->s_journal->j_state_lock); 349 tid = sbi->s_journal->j_running_transaction ? 350 sbi->s_journal->j_running_transaction->t_tid : 0; 351 read_unlock(&sbi->s_journal->j_state_lock); 352 } 353 spin_lock(&sbi->s_fc_lock); 354 if (sbi->s_fc_ineligible_tid < tid) 355 sbi->s_fc_ineligible_tid = tid; 356 spin_unlock(&sbi->s_fc_lock); 357 WARN_ON(reason >= EXT4_FC_REASON_MAX); 358 sbi->s_fc_stats.fc_ineligible_reason_count[reason]++; 359 } 360 361 /* 362 * Generic fast commit tracking function. If this is the first time this we are 363 * called after a full commit, we initialize fast commit fields and then call 364 * __fc_track_fn() with update = 0. If we have already been called after a full 365 * commit, we pass update = 1. Based on that, the track function can determine 366 * if it needs to track a field for the first time or if it needs to just 367 * update the previously tracked value. 368 * 369 * If enqueue is set, this function enqueues the inode in fast commit list. 370 */ 371 static int ext4_fc_track_template( 372 handle_t *handle, struct inode *inode, 373 int (*__fc_track_fn)(struct inode *, void *, bool), 374 void *args, int enqueue) 375 { 376 bool update = false; 377 struct ext4_inode_info *ei = EXT4_I(inode); 378 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 379 tid_t tid = 0; 380 int ret; 381 382 tid = handle->h_transaction->t_tid; 383 mutex_lock(&ei->i_fc_lock); 384 if (tid == ei->i_sync_tid) { 385 update = true; 386 } else { 387 ext4_fc_reset_inode(inode); 388 ei->i_sync_tid = tid; 389 } 390 ret = __fc_track_fn(inode, args, update); 391 mutex_unlock(&ei->i_fc_lock); 392 393 if (!enqueue) 394 return ret; 395 396 spin_lock(&sbi->s_fc_lock); 397 if (list_empty(&EXT4_I(inode)->i_fc_list)) 398 list_add_tail(&EXT4_I(inode)->i_fc_list, 399 (sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING || 400 sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING) ? 401 &sbi->s_fc_q[FC_Q_STAGING] : 402 &sbi->s_fc_q[FC_Q_MAIN]); 403 spin_unlock(&sbi->s_fc_lock); 404 405 return ret; 406 } 407 408 struct __track_dentry_update_args { 409 struct dentry *dentry; 410 int op; 411 }; 412 413 /* __track_fn for directory entry updates. Called with ei->i_fc_lock. */ 414 static int __track_dentry_update(struct inode *inode, void *arg, bool update) 415 { 416 struct ext4_fc_dentry_update *node; 417 struct ext4_inode_info *ei = EXT4_I(inode); 418 struct __track_dentry_update_args *dentry_update = 419 (struct __track_dentry_update_args *)arg; 420 struct dentry *dentry = dentry_update->dentry; 421 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 422 423 mutex_unlock(&ei->i_fc_lock); 424 node = kmem_cache_alloc(ext4_fc_dentry_cachep, GFP_NOFS); 425 if (!node) { 426 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL); 427 mutex_lock(&ei->i_fc_lock); 428 return -ENOMEM; 429 } 430 431 node->fcd_op = dentry_update->op; 432 node->fcd_parent = dentry->d_parent->d_inode->i_ino; 433 node->fcd_ino = inode->i_ino; 434 if (dentry->d_name.len > DNAME_INLINE_LEN) { 435 node->fcd_name.name = kmalloc(dentry->d_name.len, GFP_NOFS); 436 if (!node->fcd_name.name) { 437 kmem_cache_free(ext4_fc_dentry_cachep, node); 438 ext4_fc_mark_ineligible(inode->i_sb, 439 EXT4_FC_REASON_NOMEM, NULL); 440 mutex_lock(&ei->i_fc_lock); 441 return -ENOMEM; 442 } 443 memcpy((u8 *)node->fcd_name.name, dentry->d_name.name, 444 dentry->d_name.len); 445 } else { 446 memcpy(node->fcd_iname, dentry->d_name.name, 447 dentry->d_name.len); 448 node->fcd_name.name = node->fcd_iname; 449 } 450 node->fcd_name.len = dentry->d_name.len; 451 INIT_LIST_HEAD(&node->fcd_dilist); 452 spin_lock(&sbi->s_fc_lock); 453 if (sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING || 454 sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING) 455 list_add_tail(&node->fcd_list, 456 &sbi->s_fc_dentry_q[FC_Q_STAGING]); 457 else 458 list_add_tail(&node->fcd_list, &sbi->s_fc_dentry_q[FC_Q_MAIN]); 459 460 /* 461 * This helps us keep a track of all fc_dentry updates which is part of 462 * this ext4 inode. So in case the inode is getting unlinked, before 463 * even we get a chance to fsync, we could remove all fc_dentry 464 * references while evicting the inode in ext4_fc_del(). 465 * Also with this, we don't need to loop over all the inodes in 466 * sbi->s_fc_q to get the corresponding inode in 467 * ext4_fc_commit_dentry_updates(). 468 */ 469 if (dentry_update->op == EXT4_FC_TAG_CREAT) { 470 WARN_ON(!list_empty(&ei->i_fc_dilist)); 471 list_add_tail(&node->fcd_dilist, &ei->i_fc_dilist); 472 } 473 spin_unlock(&sbi->s_fc_lock); 474 mutex_lock(&ei->i_fc_lock); 475 476 return 0; 477 } 478 479 void __ext4_fc_track_unlink(handle_t *handle, 480 struct inode *inode, struct dentry *dentry) 481 { 482 struct __track_dentry_update_args args; 483 int ret; 484 485 args.dentry = dentry; 486 args.op = EXT4_FC_TAG_UNLINK; 487 488 ret = ext4_fc_track_template(handle, inode, __track_dentry_update, 489 (void *)&args, 0); 490 trace_ext4_fc_track_unlink(handle, inode, dentry, ret); 491 } 492 493 void ext4_fc_track_unlink(handle_t *handle, struct dentry *dentry) 494 { 495 struct inode *inode = d_inode(dentry); 496 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 497 498 if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) || 499 (sbi->s_mount_state & EXT4_FC_REPLAY)) 500 return; 501 502 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE)) 503 return; 504 505 __ext4_fc_track_unlink(handle, inode, dentry); 506 } 507 508 void __ext4_fc_track_link(handle_t *handle, 509 struct inode *inode, struct dentry *dentry) 510 { 511 struct __track_dentry_update_args args; 512 int ret; 513 514 args.dentry = dentry; 515 args.op = EXT4_FC_TAG_LINK; 516 517 ret = ext4_fc_track_template(handle, inode, __track_dentry_update, 518 (void *)&args, 0); 519 trace_ext4_fc_track_link(handle, inode, dentry, ret); 520 } 521 522 void ext4_fc_track_link(handle_t *handle, struct dentry *dentry) 523 { 524 struct inode *inode = d_inode(dentry); 525 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 526 527 if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) || 528 (sbi->s_mount_state & EXT4_FC_REPLAY)) 529 return; 530 531 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE)) 532 return; 533 534 __ext4_fc_track_link(handle, inode, dentry); 535 } 536 537 void __ext4_fc_track_create(handle_t *handle, struct inode *inode, 538 struct dentry *dentry) 539 { 540 struct __track_dentry_update_args args; 541 int ret; 542 543 args.dentry = dentry; 544 args.op = EXT4_FC_TAG_CREAT; 545 546 ret = ext4_fc_track_template(handle, inode, __track_dentry_update, 547 (void *)&args, 0); 548 trace_ext4_fc_track_create(handle, inode, dentry, ret); 549 } 550 551 void ext4_fc_track_create(handle_t *handle, struct dentry *dentry) 552 { 553 struct inode *inode = d_inode(dentry); 554 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 555 556 if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) || 557 (sbi->s_mount_state & EXT4_FC_REPLAY)) 558 return; 559 560 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE)) 561 return; 562 563 __ext4_fc_track_create(handle, inode, dentry); 564 } 565 566 /* __track_fn for inode tracking */ 567 static int __track_inode(struct inode *inode, void *arg, bool update) 568 { 569 if (update) 570 return -EEXIST; 571 572 EXT4_I(inode)->i_fc_lblk_len = 0; 573 574 return 0; 575 } 576 577 void ext4_fc_track_inode(handle_t *handle, struct inode *inode) 578 { 579 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 580 int ret; 581 582 if (S_ISDIR(inode->i_mode)) 583 return; 584 585 if (ext4_should_journal_data(inode)) { 586 ext4_fc_mark_ineligible(inode->i_sb, 587 EXT4_FC_REASON_INODE_JOURNAL_DATA, handle); 588 return; 589 } 590 591 if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) || 592 (sbi->s_mount_state & EXT4_FC_REPLAY)) 593 return; 594 595 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE)) 596 return; 597 598 ret = ext4_fc_track_template(handle, inode, __track_inode, NULL, 1); 599 trace_ext4_fc_track_inode(handle, inode, ret); 600 } 601 602 struct __track_range_args { 603 ext4_lblk_t start, end; 604 }; 605 606 /* __track_fn for tracking data updates */ 607 static int __track_range(struct inode *inode, void *arg, bool update) 608 { 609 struct ext4_inode_info *ei = EXT4_I(inode); 610 ext4_lblk_t oldstart; 611 struct __track_range_args *__arg = 612 (struct __track_range_args *)arg; 613 614 if (inode->i_ino < EXT4_FIRST_INO(inode->i_sb)) { 615 ext4_debug("Special inode %ld being modified\n", inode->i_ino); 616 return -ECANCELED; 617 } 618 619 oldstart = ei->i_fc_lblk_start; 620 621 if (update && ei->i_fc_lblk_len > 0) { 622 ei->i_fc_lblk_start = min(ei->i_fc_lblk_start, __arg->start); 623 ei->i_fc_lblk_len = 624 max(oldstart + ei->i_fc_lblk_len - 1, __arg->end) - 625 ei->i_fc_lblk_start + 1; 626 } else { 627 ei->i_fc_lblk_start = __arg->start; 628 ei->i_fc_lblk_len = __arg->end - __arg->start + 1; 629 } 630 631 return 0; 632 } 633 634 void ext4_fc_track_range(handle_t *handle, struct inode *inode, ext4_lblk_t start, 635 ext4_lblk_t end) 636 { 637 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 638 struct __track_range_args args; 639 int ret; 640 641 if (S_ISDIR(inode->i_mode)) 642 return; 643 644 if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) || 645 (sbi->s_mount_state & EXT4_FC_REPLAY)) 646 return; 647 648 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE)) 649 return; 650 651 args.start = start; 652 args.end = end; 653 654 ret = ext4_fc_track_template(handle, inode, __track_range, &args, 1); 655 656 trace_ext4_fc_track_range(handle, inode, start, end, ret); 657 } 658 659 static void ext4_fc_submit_bh(struct super_block *sb, bool is_tail) 660 { 661 blk_opf_t write_flags = REQ_SYNC; 662 struct buffer_head *bh = EXT4_SB(sb)->s_fc_bh; 663 664 /* Add REQ_FUA | REQ_PREFLUSH only its tail */ 665 if (test_opt(sb, BARRIER) && is_tail) 666 write_flags |= REQ_FUA | REQ_PREFLUSH; 667 lock_buffer(bh); 668 set_buffer_dirty(bh); 669 set_buffer_uptodate(bh); 670 bh->b_end_io = ext4_end_buffer_io_sync; 671 submit_bh(REQ_OP_WRITE | write_flags, bh); 672 EXT4_SB(sb)->s_fc_bh = NULL; 673 } 674 675 /* Ext4 commit path routines */ 676 677 /* memzero and update CRC */ 678 static void *ext4_fc_memzero(struct super_block *sb, void *dst, int len, 679 u32 *crc) 680 { 681 void *ret; 682 683 ret = memset(dst, 0, len); 684 if (crc) 685 *crc = ext4_chksum(EXT4_SB(sb), *crc, dst, len); 686 return ret; 687 } 688 689 /* 690 * Allocate len bytes on a fast commit buffer. 691 * 692 * During the commit time this function is used to manage fast commit 693 * block space. We don't split a fast commit log onto different 694 * blocks. So this function makes sure that if there's not enough space 695 * on the current block, the remaining space in the current block is 696 * marked as unused by adding EXT4_FC_TAG_PAD tag. In that case, 697 * new block is from jbd2 and CRC is updated to reflect the padding 698 * we added. 699 */ 700 static u8 *ext4_fc_reserve_space(struct super_block *sb, int len, u32 *crc) 701 { 702 struct ext4_fc_tl *tl; 703 struct ext4_sb_info *sbi = EXT4_SB(sb); 704 struct buffer_head *bh; 705 int bsize = sbi->s_journal->j_blocksize; 706 int ret, off = sbi->s_fc_bytes % bsize; 707 int pad_len; 708 709 /* 710 * After allocating len, we should have space at least for a 0 byte 711 * padding. 712 */ 713 if (len + sizeof(struct ext4_fc_tl) > bsize) 714 return NULL; 715 716 if (bsize - off - 1 > len + sizeof(struct ext4_fc_tl)) { 717 /* 718 * Only allocate from current buffer if we have enough space for 719 * this request AND we have space to add a zero byte padding. 720 */ 721 if (!sbi->s_fc_bh) { 722 ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh); 723 if (ret) 724 return NULL; 725 sbi->s_fc_bh = bh; 726 } 727 sbi->s_fc_bytes += len; 728 return sbi->s_fc_bh->b_data + off; 729 } 730 /* Need to add PAD tag */ 731 tl = (struct ext4_fc_tl *)(sbi->s_fc_bh->b_data + off); 732 tl->fc_tag = cpu_to_le16(EXT4_FC_TAG_PAD); 733 pad_len = bsize - off - 1 - sizeof(struct ext4_fc_tl); 734 tl->fc_len = cpu_to_le16(pad_len); 735 if (crc) 736 *crc = ext4_chksum(sbi, *crc, tl, sizeof(*tl)); 737 if (pad_len > 0) 738 ext4_fc_memzero(sb, tl + 1, pad_len, crc); 739 ext4_fc_submit_bh(sb, false); 740 741 ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh); 742 if (ret) 743 return NULL; 744 sbi->s_fc_bh = bh; 745 sbi->s_fc_bytes = (sbi->s_fc_bytes / bsize + 1) * bsize + len; 746 return sbi->s_fc_bh->b_data; 747 } 748 749 /* memcpy to fc reserved space and update CRC */ 750 static void *ext4_fc_memcpy(struct super_block *sb, void *dst, const void *src, 751 int len, u32 *crc) 752 { 753 if (crc) 754 *crc = ext4_chksum(EXT4_SB(sb), *crc, src, len); 755 return memcpy(dst, src, len); 756 } 757 758 /* 759 * Complete a fast commit by writing tail tag. 760 * 761 * Writing tail tag marks the end of a fast commit. In order to guarantee 762 * atomicity, after writing tail tag, even if there's space remaining 763 * in the block, next commit shouldn't use it. That's why tail tag 764 * has the length as that of the remaining space on the block. 765 */ 766 static int ext4_fc_write_tail(struct super_block *sb, u32 crc) 767 { 768 struct ext4_sb_info *sbi = EXT4_SB(sb); 769 struct ext4_fc_tl tl; 770 struct ext4_fc_tail tail; 771 int off, bsize = sbi->s_journal->j_blocksize; 772 u8 *dst; 773 774 /* 775 * ext4_fc_reserve_space takes care of allocating an extra block if 776 * there's no enough space on this block for accommodating this tail. 777 */ 778 dst = ext4_fc_reserve_space(sb, sizeof(tl) + sizeof(tail), &crc); 779 if (!dst) 780 return -ENOSPC; 781 782 off = sbi->s_fc_bytes % bsize; 783 784 tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_TAIL); 785 tl.fc_len = cpu_to_le16(bsize - off - 1 + sizeof(struct ext4_fc_tail)); 786 sbi->s_fc_bytes = round_up(sbi->s_fc_bytes, bsize); 787 788 ext4_fc_memcpy(sb, dst, &tl, sizeof(tl), &crc); 789 dst += sizeof(tl); 790 tail.fc_tid = cpu_to_le32(sbi->s_journal->j_running_transaction->t_tid); 791 ext4_fc_memcpy(sb, dst, &tail.fc_tid, sizeof(tail.fc_tid), &crc); 792 dst += sizeof(tail.fc_tid); 793 tail.fc_crc = cpu_to_le32(crc); 794 ext4_fc_memcpy(sb, dst, &tail.fc_crc, sizeof(tail.fc_crc), NULL); 795 796 ext4_fc_submit_bh(sb, true); 797 798 return 0; 799 } 800 801 /* 802 * Adds tag, length, value and updates CRC. Returns true if tlv was added. 803 * Returns false if there's not enough space. 804 */ 805 static bool ext4_fc_add_tlv(struct super_block *sb, u16 tag, u16 len, u8 *val, 806 u32 *crc) 807 { 808 struct ext4_fc_tl tl; 809 u8 *dst; 810 811 dst = ext4_fc_reserve_space(sb, sizeof(tl) + len, crc); 812 if (!dst) 813 return false; 814 815 tl.fc_tag = cpu_to_le16(tag); 816 tl.fc_len = cpu_to_le16(len); 817 818 ext4_fc_memcpy(sb, dst, &tl, sizeof(tl), crc); 819 ext4_fc_memcpy(sb, dst + sizeof(tl), val, len, crc); 820 821 return true; 822 } 823 824 /* Same as above, but adds dentry tlv. */ 825 static bool ext4_fc_add_dentry_tlv(struct super_block *sb, u32 *crc, 826 struct ext4_fc_dentry_update *fc_dentry) 827 { 828 struct ext4_fc_dentry_info fcd; 829 struct ext4_fc_tl tl; 830 int dlen = fc_dentry->fcd_name.len; 831 u8 *dst = ext4_fc_reserve_space(sb, sizeof(tl) + sizeof(fcd) + dlen, 832 crc); 833 834 if (!dst) 835 return false; 836 837 fcd.fc_parent_ino = cpu_to_le32(fc_dentry->fcd_parent); 838 fcd.fc_ino = cpu_to_le32(fc_dentry->fcd_ino); 839 tl.fc_tag = cpu_to_le16(fc_dentry->fcd_op); 840 tl.fc_len = cpu_to_le16(sizeof(fcd) + dlen); 841 ext4_fc_memcpy(sb, dst, &tl, sizeof(tl), crc); 842 dst += sizeof(tl); 843 ext4_fc_memcpy(sb, dst, &fcd, sizeof(fcd), crc); 844 dst += sizeof(fcd); 845 ext4_fc_memcpy(sb, dst, fc_dentry->fcd_name.name, dlen, crc); 846 847 return true; 848 } 849 850 /* 851 * Writes inode in the fast commit space under TLV with tag @tag. 852 * Returns 0 on success, error on failure. 853 */ 854 static int ext4_fc_write_inode(struct inode *inode, u32 *crc) 855 { 856 struct ext4_inode_info *ei = EXT4_I(inode); 857 int inode_len = EXT4_GOOD_OLD_INODE_SIZE; 858 int ret; 859 struct ext4_iloc iloc; 860 struct ext4_fc_inode fc_inode; 861 struct ext4_fc_tl tl; 862 u8 *dst; 863 864 ret = ext4_get_inode_loc(inode, &iloc); 865 if (ret) 866 return ret; 867 868 if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA)) 869 inode_len = EXT4_INODE_SIZE(inode->i_sb); 870 else if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) 871 inode_len += ei->i_extra_isize; 872 873 fc_inode.fc_ino = cpu_to_le32(inode->i_ino); 874 tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_INODE); 875 tl.fc_len = cpu_to_le16(inode_len + sizeof(fc_inode.fc_ino)); 876 877 dst = ext4_fc_reserve_space(inode->i_sb, 878 sizeof(tl) + inode_len + sizeof(fc_inode.fc_ino), crc); 879 if (!dst) 880 return -ECANCELED; 881 882 if (!ext4_fc_memcpy(inode->i_sb, dst, &tl, sizeof(tl), crc)) 883 return -ECANCELED; 884 dst += sizeof(tl); 885 if (!ext4_fc_memcpy(inode->i_sb, dst, &fc_inode, sizeof(fc_inode), crc)) 886 return -ECANCELED; 887 dst += sizeof(fc_inode); 888 if (!ext4_fc_memcpy(inode->i_sb, dst, (u8 *)ext4_raw_inode(&iloc), 889 inode_len, crc)) 890 return -ECANCELED; 891 892 return 0; 893 } 894 895 /* 896 * Writes updated data ranges for the inode in question. Updates CRC. 897 * Returns 0 on success, error otherwise. 898 */ 899 static int ext4_fc_write_inode_data(struct inode *inode, u32 *crc) 900 { 901 ext4_lblk_t old_blk_size, cur_lblk_off, new_blk_size; 902 struct ext4_inode_info *ei = EXT4_I(inode); 903 struct ext4_map_blocks map; 904 struct ext4_fc_add_range fc_ext; 905 struct ext4_fc_del_range lrange; 906 struct ext4_extent *ex; 907 int ret; 908 909 mutex_lock(&ei->i_fc_lock); 910 if (ei->i_fc_lblk_len == 0) { 911 mutex_unlock(&ei->i_fc_lock); 912 return 0; 913 } 914 old_blk_size = ei->i_fc_lblk_start; 915 new_blk_size = ei->i_fc_lblk_start + ei->i_fc_lblk_len - 1; 916 ei->i_fc_lblk_len = 0; 917 mutex_unlock(&ei->i_fc_lock); 918 919 cur_lblk_off = old_blk_size; 920 ext4_debug("will try writing %d to %d for inode %ld\n", 921 cur_lblk_off, new_blk_size, inode->i_ino); 922 923 while (cur_lblk_off <= new_blk_size) { 924 map.m_lblk = cur_lblk_off; 925 map.m_len = new_blk_size - cur_lblk_off + 1; 926 ret = ext4_map_blocks(NULL, inode, &map, 0); 927 if (ret < 0) 928 return -ECANCELED; 929 930 if (map.m_len == 0) { 931 cur_lblk_off++; 932 continue; 933 } 934 935 if (ret == 0) { 936 lrange.fc_ino = cpu_to_le32(inode->i_ino); 937 lrange.fc_lblk = cpu_to_le32(map.m_lblk); 938 lrange.fc_len = cpu_to_le32(map.m_len); 939 if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_DEL_RANGE, 940 sizeof(lrange), (u8 *)&lrange, crc)) 941 return -ENOSPC; 942 } else { 943 unsigned int max = (map.m_flags & EXT4_MAP_UNWRITTEN) ? 944 EXT_UNWRITTEN_MAX_LEN : EXT_INIT_MAX_LEN; 945 946 /* Limit the number of blocks in one extent */ 947 map.m_len = min(max, map.m_len); 948 949 fc_ext.fc_ino = cpu_to_le32(inode->i_ino); 950 ex = (struct ext4_extent *)&fc_ext.fc_ex; 951 ex->ee_block = cpu_to_le32(map.m_lblk); 952 ex->ee_len = cpu_to_le16(map.m_len); 953 ext4_ext_store_pblock(ex, map.m_pblk); 954 if (map.m_flags & EXT4_MAP_UNWRITTEN) 955 ext4_ext_mark_unwritten(ex); 956 else 957 ext4_ext_mark_initialized(ex); 958 if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_ADD_RANGE, 959 sizeof(fc_ext), (u8 *)&fc_ext, crc)) 960 return -ENOSPC; 961 } 962 963 cur_lblk_off += map.m_len; 964 } 965 966 return 0; 967 } 968 969 970 /* Submit data for all the fast commit inodes */ 971 static int ext4_fc_submit_inode_data_all(journal_t *journal) 972 { 973 struct super_block *sb = journal->j_private; 974 struct ext4_sb_info *sbi = EXT4_SB(sb); 975 struct ext4_inode_info *ei; 976 int ret = 0; 977 978 spin_lock(&sbi->s_fc_lock); 979 list_for_each_entry(ei, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) { 980 ext4_set_inode_state(&ei->vfs_inode, EXT4_STATE_FC_COMMITTING); 981 while (atomic_read(&ei->i_fc_updates)) { 982 DEFINE_WAIT(wait); 983 984 prepare_to_wait(&ei->i_fc_wait, &wait, 985 TASK_UNINTERRUPTIBLE); 986 if (atomic_read(&ei->i_fc_updates)) { 987 spin_unlock(&sbi->s_fc_lock); 988 schedule(); 989 spin_lock(&sbi->s_fc_lock); 990 } 991 finish_wait(&ei->i_fc_wait, &wait); 992 } 993 spin_unlock(&sbi->s_fc_lock); 994 ret = jbd2_submit_inode_data(ei->jinode); 995 if (ret) 996 return ret; 997 spin_lock(&sbi->s_fc_lock); 998 } 999 spin_unlock(&sbi->s_fc_lock); 1000 1001 return ret; 1002 } 1003 1004 /* Wait for completion of data for all the fast commit inodes */ 1005 static int ext4_fc_wait_inode_data_all(journal_t *journal) 1006 { 1007 struct super_block *sb = journal->j_private; 1008 struct ext4_sb_info *sbi = EXT4_SB(sb); 1009 struct ext4_inode_info *pos, *n; 1010 int ret = 0; 1011 1012 spin_lock(&sbi->s_fc_lock); 1013 list_for_each_entry_safe(pos, n, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) { 1014 if (!ext4_test_inode_state(&pos->vfs_inode, 1015 EXT4_STATE_FC_COMMITTING)) 1016 continue; 1017 spin_unlock(&sbi->s_fc_lock); 1018 1019 ret = jbd2_wait_inode_data(journal, pos->jinode); 1020 if (ret) 1021 return ret; 1022 spin_lock(&sbi->s_fc_lock); 1023 } 1024 spin_unlock(&sbi->s_fc_lock); 1025 1026 return 0; 1027 } 1028 1029 /* Commit all the directory entry updates */ 1030 static int ext4_fc_commit_dentry_updates(journal_t *journal, u32 *crc) 1031 __acquires(&sbi->s_fc_lock) 1032 __releases(&sbi->s_fc_lock) 1033 { 1034 struct super_block *sb = journal->j_private; 1035 struct ext4_sb_info *sbi = EXT4_SB(sb); 1036 struct ext4_fc_dentry_update *fc_dentry, *fc_dentry_n; 1037 struct inode *inode; 1038 struct ext4_inode_info *ei; 1039 int ret; 1040 1041 if (list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN])) 1042 return 0; 1043 list_for_each_entry_safe(fc_dentry, fc_dentry_n, 1044 &sbi->s_fc_dentry_q[FC_Q_MAIN], fcd_list) { 1045 if (fc_dentry->fcd_op != EXT4_FC_TAG_CREAT) { 1046 spin_unlock(&sbi->s_fc_lock); 1047 if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry)) { 1048 ret = -ENOSPC; 1049 goto lock_and_exit; 1050 } 1051 spin_lock(&sbi->s_fc_lock); 1052 continue; 1053 } 1054 /* 1055 * With fcd_dilist we need not loop in sbi->s_fc_q to get the 1056 * corresponding inode pointer 1057 */ 1058 WARN_ON(list_empty(&fc_dentry->fcd_dilist)); 1059 ei = list_first_entry(&fc_dentry->fcd_dilist, 1060 struct ext4_inode_info, i_fc_dilist); 1061 inode = &ei->vfs_inode; 1062 WARN_ON(inode->i_ino != fc_dentry->fcd_ino); 1063 1064 spin_unlock(&sbi->s_fc_lock); 1065 1066 /* 1067 * We first write the inode and then the create dirent. This 1068 * allows the recovery code to create an unnamed inode first 1069 * and then link it to a directory entry. This allows us 1070 * to use namei.c routines almost as is and simplifies 1071 * the recovery code. 1072 */ 1073 ret = ext4_fc_write_inode(inode, crc); 1074 if (ret) 1075 goto lock_and_exit; 1076 1077 ret = ext4_fc_write_inode_data(inode, crc); 1078 if (ret) 1079 goto lock_and_exit; 1080 1081 if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry)) { 1082 ret = -ENOSPC; 1083 goto lock_and_exit; 1084 } 1085 1086 spin_lock(&sbi->s_fc_lock); 1087 } 1088 return 0; 1089 lock_and_exit: 1090 spin_lock(&sbi->s_fc_lock); 1091 return ret; 1092 } 1093 1094 static int ext4_fc_perform_commit(journal_t *journal) 1095 { 1096 struct super_block *sb = journal->j_private; 1097 struct ext4_sb_info *sbi = EXT4_SB(sb); 1098 struct ext4_inode_info *iter; 1099 struct ext4_fc_head head; 1100 struct inode *inode; 1101 struct blk_plug plug; 1102 int ret = 0; 1103 u32 crc = 0; 1104 1105 ret = ext4_fc_submit_inode_data_all(journal); 1106 if (ret) 1107 return ret; 1108 1109 ret = ext4_fc_wait_inode_data_all(journal); 1110 if (ret) 1111 return ret; 1112 1113 /* 1114 * If file system device is different from journal device, issue a cache 1115 * flush before we start writing fast commit blocks. 1116 */ 1117 if (journal->j_fs_dev != journal->j_dev) 1118 blkdev_issue_flush(journal->j_fs_dev); 1119 1120 blk_start_plug(&plug); 1121 if (sbi->s_fc_bytes == 0) { 1122 /* 1123 * Add a head tag only if this is the first fast commit 1124 * in this TID. 1125 */ 1126 head.fc_features = cpu_to_le32(EXT4_FC_SUPPORTED_FEATURES); 1127 head.fc_tid = cpu_to_le32( 1128 sbi->s_journal->j_running_transaction->t_tid); 1129 if (!ext4_fc_add_tlv(sb, EXT4_FC_TAG_HEAD, sizeof(head), 1130 (u8 *)&head, &crc)) { 1131 ret = -ENOSPC; 1132 goto out; 1133 } 1134 } 1135 1136 spin_lock(&sbi->s_fc_lock); 1137 ret = ext4_fc_commit_dentry_updates(journal, &crc); 1138 if (ret) { 1139 spin_unlock(&sbi->s_fc_lock); 1140 goto out; 1141 } 1142 1143 list_for_each_entry(iter, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) { 1144 inode = &iter->vfs_inode; 1145 if (!ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) 1146 continue; 1147 1148 spin_unlock(&sbi->s_fc_lock); 1149 ret = ext4_fc_write_inode_data(inode, &crc); 1150 if (ret) 1151 goto out; 1152 ret = ext4_fc_write_inode(inode, &crc); 1153 if (ret) 1154 goto out; 1155 spin_lock(&sbi->s_fc_lock); 1156 } 1157 spin_unlock(&sbi->s_fc_lock); 1158 1159 ret = ext4_fc_write_tail(sb, crc); 1160 1161 out: 1162 blk_finish_plug(&plug); 1163 return ret; 1164 } 1165 1166 static void ext4_fc_update_stats(struct super_block *sb, int status, 1167 u64 commit_time, int nblks, tid_t commit_tid) 1168 { 1169 struct ext4_fc_stats *stats = &EXT4_SB(sb)->s_fc_stats; 1170 1171 ext4_debug("Fast commit ended with status = %d for tid %u", 1172 status, commit_tid); 1173 if (status == EXT4_FC_STATUS_OK) { 1174 stats->fc_num_commits++; 1175 stats->fc_numblks += nblks; 1176 if (likely(stats->s_fc_avg_commit_time)) 1177 stats->s_fc_avg_commit_time = 1178 (commit_time + 1179 stats->s_fc_avg_commit_time * 3) / 4; 1180 else 1181 stats->s_fc_avg_commit_time = commit_time; 1182 } else if (status == EXT4_FC_STATUS_FAILED || 1183 status == EXT4_FC_STATUS_INELIGIBLE) { 1184 if (status == EXT4_FC_STATUS_FAILED) 1185 stats->fc_failed_commits++; 1186 stats->fc_ineligible_commits++; 1187 } else { 1188 stats->fc_skipped_commits++; 1189 } 1190 trace_ext4_fc_commit_stop(sb, nblks, status, commit_tid); 1191 } 1192 1193 /* 1194 * The main commit entry point. Performs a fast commit for transaction 1195 * commit_tid if needed. If it's not possible to perform a fast commit 1196 * due to various reasons, we fall back to full commit. Returns 0 1197 * on success, error otherwise. 1198 */ 1199 int ext4_fc_commit(journal_t *journal, tid_t commit_tid) 1200 { 1201 struct super_block *sb = journal->j_private; 1202 struct ext4_sb_info *sbi = EXT4_SB(sb); 1203 int nblks = 0, ret, bsize = journal->j_blocksize; 1204 int subtid = atomic_read(&sbi->s_fc_subtid); 1205 int status = EXT4_FC_STATUS_OK, fc_bufs_before = 0; 1206 ktime_t start_time, commit_time; 1207 1208 if (!test_opt2(sb, JOURNAL_FAST_COMMIT)) 1209 return jbd2_complete_transaction(journal, commit_tid); 1210 1211 trace_ext4_fc_commit_start(sb, commit_tid); 1212 1213 start_time = ktime_get(); 1214 1215 restart_fc: 1216 ret = jbd2_fc_begin_commit(journal, commit_tid); 1217 if (ret == -EALREADY) { 1218 /* There was an ongoing commit, check if we need to restart */ 1219 if (atomic_read(&sbi->s_fc_subtid) <= subtid && 1220 commit_tid > journal->j_commit_sequence) 1221 goto restart_fc; 1222 ext4_fc_update_stats(sb, EXT4_FC_STATUS_SKIPPED, 0, 0, 1223 commit_tid); 1224 return 0; 1225 } else if (ret) { 1226 /* 1227 * Commit couldn't start. Just update stats and perform a 1228 * full commit. 1229 */ 1230 ext4_fc_update_stats(sb, EXT4_FC_STATUS_FAILED, 0, 0, 1231 commit_tid); 1232 return jbd2_complete_transaction(journal, commit_tid); 1233 } 1234 1235 /* 1236 * After establishing journal barrier via jbd2_fc_begin_commit(), check 1237 * if we are fast commit ineligible. 1238 */ 1239 if (ext4_test_mount_flag(sb, EXT4_MF_FC_INELIGIBLE)) { 1240 status = EXT4_FC_STATUS_INELIGIBLE; 1241 goto fallback; 1242 } 1243 1244 fc_bufs_before = (sbi->s_fc_bytes + bsize - 1) / bsize; 1245 ret = ext4_fc_perform_commit(journal); 1246 if (ret < 0) { 1247 status = EXT4_FC_STATUS_FAILED; 1248 goto fallback; 1249 } 1250 nblks = (sbi->s_fc_bytes + bsize - 1) / bsize - fc_bufs_before; 1251 ret = jbd2_fc_wait_bufs(journal, nblks); 1252 if (ret < 0) { 1253 status = EXT4_FC_STATUS_FAILED; 1254 goto fallback; 1255 } 1256 atomic_inc(&sbi->s_fc_subtid); 1257 ret = jbd2_fc_end_commit(journal); 1258 /* 1259 * weight the commit time higher than the average time so we 1260 * don't react too strongly to vast changes in the commit time 1261 */ 1262 commit_time = ktime_to_ns(ktime_sub(ktime_get(), start_time)); 1263 ext4_fc_update_stats(sb, status, commit_time, nblks, commit_tid); 1264 return ret; 1265 1266 fallback: 1267 ret = jbd2_fc_end_commit_fallback(journal); 1268 ext4_fc_update_stats(sb, status, 0, 0, commit_tid); 1269 return ret; 1270 } 1271 1272 /* 1273 * Fast commit cleanup routine. This is called after every fast commit and 1274 * full commit. full is true if we are called after a full commit. 1275 */ 1276 static void ext4_fc_cleanup(journal_t *journal, int full, tid_t tid) 1277 { 1278 struct super_block *sb = journal->j_private; 1279 struct ext4_sb_info *sbi = EXT4_SB(sb); 1280 struct ext4_inode_info *iter, *iter_n; 1281 struct ext4_fc_dentry_update *fc_dentry; 1282 1283 if (full && sbi->s_fc_bh) 1284 sbi->s_fc_bh = NULL; 1285 1286 trace_ext4_fc_cleanup(journal, full, tid); 1287 jbd2_fc_release_bufs(journal); 1288 1289 spin_lock(&sbi->s_fc_lock); 1290 list_for_each_entry_safe(iter, iter_n, &sbi->s_fc_q[FC_Q_MAIN], 1291 i_fc_list) { 1292 list_del_init(&iter->i_fc_list); 1293 ext4_clear_inode_state(&iter->vfs_inode, 1294 EXT4_STATE_FC_COMMITTING); 1295 if (iter->i_sync_tid <= tid) 1296 ext4_fc_reset_inode(&iter->vfs_inode); 1297 /* Make sure EXT4_STATE_FC_COMMITTING bit is clear */ 1298 smp_mb(); 1299 #if (BITS_PER_LONG < 64) 1300 wake_up_bit(&iter->i_state_flags, EXT4_STATE_FC_COMMITTING); 1301 #else 1302 wake_up_bit(&iter->i_flags, EXT4_STATE_FC_COMMITTING); 1303 #endif 1304 } 1305 1306 while (!list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN])) { 1307 fc_dentry = list_first_entry(&sbi->s_fc_dentry_q[FC_Q_MAIN], 1308 struct ext4_fc_dentry_update, 1309 fcd_list); 1310 list_del_init(&fc_dentry->fcd_list); 1311 list_del_init(&fc_dentry->fcd_dilist); 1312 spin_unlock(&sbi->s_fc_lock); 1313 1314 if (fc_dentry->fcd_name.name && 1315 fc_dentry->fcd_name.len > DNAME_INLINE_LEN) 1316 kfree(fc_dentry->fcd_name.name); 1317 kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry); 1318 spin_lock(&sbi->s_fc_lock); 1319 } 1320 1321 list_splice_init(&sbi->s_fc_dentry_q[FC_Q_STAGING], 1322 &sbi->s_fc_dentry_q[FC_Q_MAIN]); 1323 list_splice_init(&sbi->s_fc_q[FC_Q_STAGING], 1324 &sbi->s_fc_q[FC_Q_MAIN]); 1325 1326 if (tid >= sbi->s_fc_ineligible_tid) { 1327 sbi->s_fc_ineligible_tid = 0; 1328 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE); 1329 } 1330 1331 if (full) 1332 sbi->s_fc_bytes = 0; 1333 spin_unlock(&sbi->s_fc_lock); 1334 trace_ext4_fc_stats(sb); 1335 } 1336 1337 /* Ext4 Replay Path Routines */ 1338 1339 /* Helper struct for dentry replay routines */ 1340 struct dentry_info_args { 1341 int parent_ino, dname_len, ino, inode_len; 1342 char *dname; 1343 }; 1344 1345 static inline void tl_to_darg(struct dentry_info_args *darg, 1346 struct ext4_fc_tl *tl, u8 *val) 1347 { 1348 struct ext4_fc_dentry_info fcd; 1349 1350 memcpy(&fcd, val, sizeof(fcd)); 1351 1352 darg->parent_ino = le32_to_cpu(fcd.fc_parent_ino); 1353 darg->ino = le32_to_cpu(fcd.fc_ino); 1354 darg->dname = val + offsetof(struct ext4_fc_dentry_info, fc_dname); 1355 darg->dname_len = le16_to_cpu(tl->fc_len) - 1356 sizeof(struct ext4_fc_dentry_info); 1357 } 1358 1359 /* Unlink replay function */ 1360 static int ext4_fc_replay_unlink(struct super_block *sb, struct ext4_fc_tl *tl, 1361 u8 *val) 1362 { 1363 struct inode *inode, *old_parent; 1364 struct qstr entry; 1365 struct dentry_info_args darg; 1366 int ret = 0; 1367 1368 tl_to_darg(&darg, tl, val); 1369 1370 trace_ext4_fc_replay(sb, EXT4_FC_TAG_UNLINK, darg.ino, 1371 darg.parent_ino, darg.dname_len); 1372 1373 entry.name = darg.dname; 1374 entry.len = darg.dname_len; 1375 inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL); 1376 1377 if (IS_ERR(inode)) { 1378 ext4_debug("Inode %d not found", darg.ino); 1379 return 0; 1380 } 1381 1382 old_parent = ext4_iget(sb, darg.parent_ino, 1383 EXT4_IGET_NORMAL); 1384 if (IS_ERR(old_parent)) { 1385 ext4_debug("Dir with inode %d not found", darg.parent_ino); 1386 iput(inode); 1387 return 0; 1388 } 1389 1390 ret = __ext4_unlink(NULL, old_parent, &entry, inode); 1391 /* -ENOENT ok coz it might not exist anymore. */ 1392 if (ret == -ENOENT) 1393 ret = 0; 1394 iput(old_parent); 1395 iput(inode); 1396 return ret; 1397 } 1398 1399 static int ext4_fc_replay_link_internal(struct super_block *sb, 1400 struct dentry_info_args *darg, 1401 struct inode *inode) 1402 { 1403 struct inode *dir = NULL; 1404 struct dentry *dentry_dir = NULL, *dentry_inode = NULL; 1405 struct qstr qstr_dname = QSTR_INIT(darg->dname, darg->dname_len); 1406 int ret = 0; 1407 1408 dir = ext4_iget(sb, darg->parent_ino, EXT4_IGET_NORMAL); 1409 if (IS_ERR(dir)) { 1410 ext4_debug("Dir with inode %d not found.", darg->parent_ino); 1411 dir = NULL; 1412 goto out; 1413 } 1414 1415 dentry_dir = d_obtain_alias(dir); 1416 if (IS_ERR(dentry_dir)) { 1417 ext4_debug("Failed to obtain dentry"); 1418 dentry_dir = NULL; 1419 goto out; 1420 } 1421 1422 dentry_inode = d_alloc(dentry_dir, &qstr_dname); 1423 if (!dentry_inode) { 1424 ext4_debug("Inode dentry not created."); 1425 ret = -ENOMEM; 1426 goto out; 1427 } 1428 1429 ret = __ext4_link(dir, inode, dentry_inode); 1430 /* 1431 * It's possible that link already existed since data blocks 1432 * for the dir in question got persisted before we crashed OR 1433 * we replayed this tag and crashed before the entire replay 1434 * could complete. 1435 */ 1436 if (ret && ret != -EEXIST) { 1437 ext4_debug("Failed to link\n"); 1438 goto out; 1439 } 1440 1441 ret = 0; 1442 out: 1443 if (dentry_dir) { 1444 d_drop(dentry_dir); 1445 dput(dentry_dir); 1446 } else if (dir) { 1447 iput(dir); 1448 } 1449 if (dentry_inode) { 1450 d_drop(dentry_inode); 1451 dput(dentry_inode); 1452 } 1453 1454 return ret; 1455 } 1456 1457 /* Link replay function */ 1458 static int ext4_fc_replay_link(struct super_block *sb, struct ext4_fc_tl *tl, 1459 u8 *val) 1460 { 1461 struct inode *inode; 1462 struct dentry_info_args darg; 1463 int ret = 0; 1464 1465 tl_to_darg(&darg, tl, val); 1466 trace_ext4_fc_replay(sb, EXT4_FC_TAG_LINK, darg.ino, 1467 darg.parent_ino, darg.dname_len); 1468 1469 inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL); 1470 if (IS_ERR(inode)) { 1471 ext4_debug("Inode not found."); 1472 return 0; 1473 } 1474 1475 ret = ext4_fc_replay_link_internal(sb, &darg, inode); 1476 iput(inode); 1477 return ret; 1478 } 1479 1480 /* 1481 * Record all the modified inodes during replay. We use this later to setup 1482 * block bitmaps correctly. 1483 */ 1484 static int ext4_fc_record_modified_inode(struct super_block *sb, int ino) 1485 { 1486 struct ext4_fc_replay_state *state; 1487 int i; 1488 1489 state = &EXT4_SB(sb)->s_fc_replay_state; 1490 for (i = 0; i < state->fc_modified_inodes_used; i++) 1491 if (state->fc_modified_inodes[i] == ino) 1492 return 0; 1493 if (state->fc_modified_inodes_used == state->fc_modified_inodes_size) { 1494 state->fc_modified_inodes = krealloc( 1495 state->fc_modified_inodes, 1496 sizeof(int) * (state->fc_modified_inodes_size + 1497 EXT4_FC_REPLAY_REALLOC_INCREMENT), 1498 GFP_KERNEL); 1499 if (!state->fc_modified_inodes) 1500 return -ENOMEM; 1501 state->fc_modified_inodes_size += 1502 EXT4_FC_REPLAY_REALLOC_INCREMENT; 1503 } 1504 state->fc_modified_inodes[state->fc_modified_inodes_used++] = ino; 1505 return 0; 1506 } 1507 1508 /* 1509 * Inode replay function 1510 */ 1511 static int ext4_fc_replay_inode(struct super_block *sb, struct ext4_fc_tl *tl, 1512 u8 *val) 1513 { 1514 struct ext4_fc_inode fc_inode; 1515 struct ext4_inode *raw_inode; 1516 struct ext4_inode *raw_fc_inode; 1517 struct inode *inode = NULL; 1518 struct ext4_iloc iloc; 1519 int inode_len, ino, ret, tag = le16_to_cpu(tl->fc_tag); 1520 struct ext4_extent_header *eh; 1521 1522 memcpy(&fc_inode, val, sizeof(fc_inode)); 1523 1524 ino = le32_to_cpu(fc_inode.fc_ino); 1525 trace_ext4_fc_replay(sb, tag, ino, 0, 0); 1526 1527 inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL); 1528 if (!IS_ERR(inode)) { 1529 ext4_ext_clear_bb(inode); 1530 iput(inode); 1531 } 1532 inode = NULL; 1533 1534 ret = ext4_fc_record_modified_inode(sb, ino); 1535 if (ret) 1536 goto out; 1537 1538 raw_fc_inode = (struct ext4_inode *) 1539 (val + offsetof(struct ext4_fc_inode, fc_raw_inode)); 1540 ret = ext4_get_fc_inode_loc(sb, ino, &iloc); 1541 if (ret) 1542 goto out; 1543 1544 inode_len = le16_to_cpu(tl->fc_len) - sizeof(struct ext4_fc_inode); 1545 raw_inode = ext4_raw_inode(&iloc); 1546 1547 memcpy(raw_inode, raw_fc_inode, offsetof(struct ext4_inode, i_block)); 1548 memcpy(&raw_inode->i_generation, &raw_fc_inode->i_generation, 1549 inode_len - offsetof(struct ext4_inode, i_generation)); 1550 if (le32_to_cpu(raw_inode->i_flags) & EXT4_EXTENTS_FL) { 1551 eh = (struct ext4_extent_header *)(&raw_inode->i_block[0]); 1552 if (eh->eh_magic != EXT4_EXT_MAGIC) { 1553 memset(eh, 0, sizeof(*eh)); 1554 eh->eh_magic = EXT4_EXT_MAGIC; 1555 eh->eh_max = cpu_to_le16( 1556 (sizeof(raw_inode->i_block) - 1557 sizeof(struct ext4_extent_header)) 1558 / sizeof(struct ext4_extent)); 1559 } 1560 } else if (le32_to_cpu(raw_inode->i_flags) & EXT4_INLINE_DATA_FL) { 1561 memcpy(raw_inode->i_block, raw_fc_inode->i_block, 1562 sizeof(raw_inode->i_block)); 1563 } 1564 1565 /* Immediately update the inode on disk. */ 1566 ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh); 1567 if (ret) 1568 goto out; 1569 ret = sync_dirty_buffer(iloc.bh); 1570 if (ret) 1571 goto out; 1572 ret = ext4_mark_inode_used(sb, ino); 1573 if (ret) 1574 goto out; 1575 1576 /* Given that we just wrote the inode on disk, this SHOULD succeed. */ 1577 inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL); 1578 if (IS_ERR(inode)) { 1579 ext4_debug("Inode not found."); 1580 return -EFSCORRUPTED; 1581 } 1582 1583 /* 1584 * Our allocator could have made different decisions than before 1585 * crashing. This should be fixed but until then, we calculate 1586 * the number of blocks the inode. 1587 */ 1588 if (!ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA)) 1589 ext4_ext_replay_set_iblocks(inode); 1590 1591 inode->i_generation = le32_to_cpu(ext4_raw_inode(&iloc)->i_generation); 1592 ext4_reset_inode_seed(inode); 1593 1594 ext4_inode_csum_set(inode, ext4_raw_inode(&iloc), EXT4_I(inode)); 1595 ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh); 1596 sync_dirty_buffer(iloc.bh); 1597 brelse(iloc.bh); 1598 out: 1599 iput(inode); 1600 if (!ret) 1601 blkdev_issue_flush(sb->s_bdev); 1602 1603 return 0; 1604 } 1605 1606 /* 1607 * Dentry create replay function. 1608 * 1609 * EXT4_FC_TAG_CREAT is preceded by EXT4_FC_TAG_INODE_FULL. Which means, the 1610 * inode for which we are trying to create a dentry here, should already have 1611 * been replayed before we start here. 1612 */ 1613 static int ext4_fc_replay_create(struct super_block *sb, struct ext4_fc_tl *tl, 1614 u8 *val) 1615 { 1616 int ret = 0; 1617 struct inode *inode = NULL; 1618 struct inode *dir = NULL; 1619 struct dentry_info_args darg; 1620 1621 tl_to_darg(&darg, tl, val); 1622 1623 trace_ext4_fc_replay(sb, EXT4_FC_TAG_CREAT, darg.ino, 1624 darg.parent_ino, darg.dname_len); 1625 1626 /* This takes care of update group descriptor and other metadata */ 1627 ret = ext4_mark_inode_used(sb, darg.ino); 1628 if (ret) 1629 goto out; 1630 1631 inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL); 1632 if (IS_ERR(inode)) { 1633 ext4_debug("inode %d not found.", darg.ino); 1634 inode = NULL; 1635 ret = -EINVAL; 1636 goto out; 1637 } 1638 1639 if (S_ISDIR(inode->i_mode)) { 1640 /* 1641 * If we are creating a directory, we need to make sure that the 1642 * dot and dot dot dirents are setup properly. 1643 */ 1644 dir = ext4_iget(sb, darg.parent_ino, EXT4_IGET_NORMAL); 1645 if (IS_ERR(dir)) { 1646 ext4_debug("Dir %d not found.", darg.ino); 1647 goto out; 1648 } 1649 ret = ext4_init_new_dir(NULL, dir, inode); 1650 iput(dir); 1651 if (ret) { 1652 ret = 0; 1653 goto out; 1654 } 1655 } 1656 ret = ext4_fc_replay_link_internal(sb, &darg, inode); 1657 if (ret) 1658 goto out; 1659 set_nlink(inode, 1); 1660 ext4_mark_inode_dirty(NULL, inode); 1661 out: 1662 iput(inode); 1663 return ret; 1664 } 1665 1666 /* 1667 * Record physical disk regions which are in use as per fast commit area, 1668 * and used by inodes during replay phase. Our simple replay phase 1669 * allocator excludes these regions from allocation. 1670 */ 1671 int ext4_fc_record_regions(struct super_block *sb, int ino, 1672 ext4_lblk_t lblk, ext4_fsblk_t pblk, int len, int replay) 1673 { 1674 struct ext4_fc_replay_state *state; 1675 struct ext4_fc_alloc_region *region; 1676 1677 state = &EXT4_SB(sb)->s_fc_replay_state; 1678 /* 1679 * during replay phase, the fc_regions_valid may not same as 1680 * fc_regions_used, update it when do new additions. 1681 */ 1682 if (replay && state->fc_regions_used != state->fc_regions_valid) 1683 state->fc_regions_used = state->fc_regions_valid; 1684 if (state->fc_regions_used == state->fc_regions_size) { 1685 state->fc_regions_size += 1686 EXT4_FC_REPLAY_REALLOC_INCREMENT; 1687 state->fc_regions = krealloc( 1688 state->fc_regions, 1689 state->fc_regions_size * 1690 sizeof(struct ext4_fc_alloc_region), 1691 GFP_KERNEL); 1692 if (!state->fc_regions) 1693 return -ENOMEM; 1694 } 1695 region = &state->fc_regions[state->fc_regions_used++]; 1696 region->ino = ino; 1697 region->lblk = lblk; 1698 region->pblk = pblk; 1699 region->len = len; 1700 1701 if (replay) 1702 state->fc_regions_valid++; 1703 1704 return 0; 1705 } 1706 1707 /* Replay add range tag */ 1708 static int ext4_fc_replay_add_range(struct super_block *sb, 1709 struct ext4_fc_tl *tl, u8 *val) 1710 { 1711 struct ext4_fc_add_range fc_add_ex; 1712 struct ext4_extent newex, *ex; 1713 struct inode *inode; 1714 ext4_lblk_t start, cur; 1715 int remaining, len; 1716 ext4_fsblk_t start_pblk; 1717 struct ext4_map_blocks map; 1718 struct ext4_ext_path *path = NULL; 1719 int ret; 1720 1721 memcpy(&fc_add_ex, val, sizeof(fc_add_ex)); 1722 ex = (struct ext4_extent *)&fc_add_ex.fc_ex; 1723 1724 trace_ext4_fc_replay(sb, EXT4_FC_TAG_ADD_RANGE, 1725 le32_to_cpu(fc_add_ex.fc_ino), le32_to_cpu(ex->ee_block), 1726 ext4_ext_get_actual_len(ex)); 1727 1728 inode = ext4_iget(sb, le32_to_cpu(fc_add_ex.fc_ino), EXT4_IGET_NORMAL); 1729 if (IS_ERR(inode)) { 1730 ext4_debug("Inode not found."); 1731 return 0; 1732 } 1733 1734 ret = ext4_fc_record_modified_inode(sb, inode->i_ino); 1735 if (ret) 1736 goto out; 1737 1738 start = le32_to_cpu(ex->ee_block); 1739 start_pblk = ext4_ext_pblock(ex); 1740 len = ext4_ext_get_actual_len(ex); 1741 1742 cur = start; 1743 remaining = len; 1744 ext4_debug("ADD_RANGE, lblk %d, pblk %lld, len %d, unwritten %d, inode %ld\n", 1745 start, start_pblk, len, ext4_ext_is_unwritten(ex), 1746 inode->i_ino); 1747 1748 while (remaining > 0) { 1749 map.m_lblk = cur; 1750 map.m_len = remaining; 1751 map.m_pblk = 0; 1752 ret = ext4_map_blocks(NULL, inode, &map, 0); 1753 1754 if (ret < 0) 1755 goto out; 1756 1757 if (ret == 0) { 1758 /* Range is not mapped */ 1759 path = ext4_find_extent(inode, cur, NULL, 0); 1760 if (IS_ERR(path)) 1761 goto out; 1762 memset(&newex, 0, sizeof(newex)); 1763 newex.ee_block = cpu_to_le32(cur); 1764 ext4_ext_store_pblock( 1765 &newex, start_pblk + cur - start); 1766 newex.ee_len = cpu_to_le16(map.m_len); 1767 if (ext4_ext_is_unwritten(ex)) 1768 ext4_ext_mark_unwritten(&newex); 1769 down_write(&EXT4_I(inode)->i_data_sem); 1770 ret = ext4_ext_insert_extent( 1771 NULL, inode, &path, &newex, 0); 1772 up_write((&EXT4_I(inode)->i_data_sem)); 1773 ext4_ext_drop_refs(path); 1774 kfree(path); 1775 if (ret) 1776 goto out; 1777 goto next; 1778 } 1779 1780 if (start_pblk + cur - start != map.m_pblk) { 1781 /* 1782 * Logical to physical mapping changed. This can happen 1783 * if this range was removed and then reallocated to 1784 * map to new physical blocks during a fast commit. 1785 */ 1786 ret = ext4_ext_replay_update_ex(inode, cur, map.m_len, 1787 ext4_ext_is_unwritten(ex), 1788 start_pblk + cur - start); 1789 if (ret) 1790 goto out; 1791 /* 1792 * Mark the old blocks as free since they aren't used 1793 * anymore. We maintain an array of all the modified 1794 * inodes. In case these blocks are still used at either 1795 * a different logical range in the same inode or in 1796 * some different inode, we will mark them as allocated 1797 * at the end of the FC replay using our array of 1798 * modified inodes. 1799 */ 1800 ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 0); 1801 goto next; 1802 } 1803 1804 /* Range is mapped and needs a state change */ 1805 ext4_debug("Converting from %ld to %d %lld", 1806 map.m_flags & EXT4_MAP_UNWRITTEN, 1807 ext4_ext_is_unwritten(ex), map.m_pblk); 1808 ret = ext4_ext_replay_update_ex(inode, cur, map.m_len, 1809 ext4_ext_is_unwritten(ex), map.m_pblk); 1810 if (ret) 1811 goto out; 1812 /* 1813 * We may have split the extent tree while toggling the state. 1814 * Try to shrink the extent tree now. 1815 */ 1816 ext4_ext_replay_shrink_inode(inode, start + len); 1817 next: 1818 cur += map.m_len; 1819 remaining -= map.m_len; 1820 } 1821 ext4_ext_replay_shrink_inode(inode, i_size_read(inode) >> 1822 sb->s_blocksize_bits); 1823 out: 1824 iput(inode); 1825 return 0; 1826 } 1827 1828 /* Replay DEL_RANGE tag */ 1829 static int 1830 ext4_fc_replay_del_range(struct super_block *sb, struct ext4_fc_tl *tl, 1831 u8 *val) 1832 { 1833 struct inode *inode; 1834 struct ext4_fc_del_range lrange; 1835 struct ext4_map_blocks map; 1836 ext4_lblk_t cur, remaining; 1837 int ret; 1838 1839 memcpy(&lrange, val, sizeof(lrange)); 1840 cur = le32_to_cpu(lrange.fc_lblk); 1841 remaining = le32_to_cpu(lrange.fc_len); 1842 1843 trace_ext4_fc_replay(sb, EXT4_FC_TAG_DEL_RANGE, 1844 le32_to_cpu(lrange.fc_ino), cur, remaining); 1845 1846 inode = ext4_iget(sb, le32_to_cpu(lrange.fc_ino), EXT4_IGET_NORMAL); 1847 if (IS_ERR(inode)) { 1848 ext4_debug("Inode %d not found", le32_to_cpu(lrange.fc_ino)); 1849 return 0; 1850 } 1851 1852 ret = ext4_fc_record_modified_inode(sb, inode->i_ino); 1853 if (ret) 1854 goto out; 1855 1856 ext4_debug("DEL_RANGE, inode %ld, lblk %d, len %d\n", 1857 inode->i_ino, le32_to_cpu(lrange.fc_lblk), 1858 le32_to_cpu(lrange.fc_len)); 1859 while (remaining > 0) { 1860 map.m_lblk = cur; 1861 map.m_len = remaining; 1862 1863 ret = ext4_map_blocks(NULL, inode, &map, 0); 1864 if (ret < 0) 1865 goto out; 1866 if (ret > 0) { 1867 remaining -= ret; 1868 cur += ret; 1869 ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 0); 1870 } else { 1871 remaining -= map.m_len; 1872 cur += map.m_len; 1873 } 1874 } 1875 1876 down_write(&EXT4_I(inode)->i_data_sem); 1877 ret = ext4_ext_remove_space(inode, le32_to_cpu(lrange.fc_lblk), 1878 le32_to_cpu(lrange.fc_lblk) + 1879 le32_to_cpu(lrange.fc_len) - 1); 1880 up_write(&EXT4_I(inode)->i_data_sem); 1881 if (ret) 1882 goto out; 1883 ext4_ext_replay_shrink_inode(inode, 1884 i_size_read(inode) >> sb->s_blocksize_bits); 1885 ext4_mark_inode_dirty(NULL, inode); 1886 out: 1887 iput(inode); 1888 return 0; 1889 } 1890 1891 static void ext4_fc_set_bitmaps_and_counters(struct super_block *sb) 1892 { 1893 struct ext4_fc_replay_state *state; 1894 struct inode *inode; 1895 struct ext4_ext_path *path = NULL; 1896 struct ext4_map_blocks map; 1897 int i, ret, j; 1898 ext4_lblk_t cur, end; 1899 1900 state = &EXT4_SB(sb)->s_fc_replay_state; 1901 for (i = 0; i < state->fc_modified_inodes_used; i++) { 1902 inode = ext4_iget(sb, state->fc_modified_inodes[i], 1903 EXT4_IGET_NORMAL); 1904 if (IS_ERR(inode)) { 1905 ext4_debug("Inode %d not found.", 1906 state->fc_modified_inodes[i]); 1907 continue; 1908 } 1909 cur = 0; 1910 end = EXT_MAX_BLOCKS; 1911 if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA)) { 1912 iput(inode); 1913 continue; 1914 } 1915 while (cur < end) { 1916 map.m_lblk = cur; 1917 map.m_len = end - cur; 1918 1919 ret = ext4_map_blocks(NULL, inode, &map, 0); 1920 if (ret < 0) 1921 break; 1922 1923 if (ret > 0) { 1924 path = ext4_find_extent(inode, map.m_lblk, NULL, 0); 1925 if (!IS_ERR(path)) { 1926 for (j = 0; j < path->p_depth; j++) 1927 ext4_mb_mark_bb(inode->i_sb, 1928 path[j].p_block, 1, 1); 1929 ext4_ext_drop_refs(path); 1930 kfree(path); 1931 } 1932 cur += ret; 1933 ext4_mb_mark_bb(inode->i_sb, map.m_pblk, 1934 map.m_len, 1); 1935 } else { 1936 cur = cur + (map.m_len ? map.m_len : 1); 1937 } 1938 } 1939 iput(inode); 1940 } 1941 } 1942 1943 /* 1944 * Check if block is in excluded regions for block allocation. The simple 1945 * allocator that runs during replay phase is calls this function to see 1946 * if it is okay to use a block. 1947 */ 1948 bool ext4_fc_replay_check_excluded(struct super_block *sb, ext4_fsblk_t blk) 1949 { 1950 int i; 1951 struct ext4_fc_replay_state *state; 1952 1953 state = &EXT4_SB(sb)->s_fc_replay_state; 1954 for (i = 0; i < state->fc_regions_valid; i++) { 1955 if (state->fc_regions[i].ino == 0 || 1956 state->fc_regions[i].len == 0) 1957 continue; 1958 if (in_range(blk, state->fc_regions[i].pblk, 1959 state->fc_regions[i].len)) 1960 return true; 1961 } 1962 return false; 1963 } 1964 1965 /* Cleanup function called after replay */ 1966 void ext4_fc_replay_cleanup(struct super_block *sb) 1967 { 1968 struct ext4_sb_info *sbi = EXT4_SB(sb); 1969 1970 sbi->s_mount_state &= ~EXT4_FC_REPLAY; 1971 kfree(sbi->s_fc_replay_state.fc_regions); 1972 kfree(sbi->s_fc_replay_state.fc_modified_inodes); 1973 } 1974 1975 /* 1976 * Recovery Scan phase handler 1977 * 1978 * This function is called during the scan phase and is responsible 1979 * for doing following things: 1980 * - Make sure the fast commit area has valid tags for replay 1981 * - Count number of tags that need to be replayed by the replay handler 1982 * - Verify CRC 1983 * - Create a list of excluded blocks for allocation during replay phase 1984 * 1985 * This function returns JBD2_FC_REPLAY_CONTINUE to indicate that SCAN is 1986 * incomplete and JBD2 should send more blocks. It returns JBD2_FC_REPLAY_STOP 1987 * to indicate that scan has finished and JBD2 can now start replay phase. 1988 * It returns a negative error to indicate that there was an error. At the end 1989 * of a successful scan phase, sbi->s_fc_replay_state.fc_replay_num_tags is set 1990 * to indicate the number of tags that need to replayed during the replay phase. 1991 */ 1992 static int ext4_fc_replay_scan(journal_t *journal, 1993 struct buffer_head *bh, int off, 1994 tid_t expected_tid) 1995 { 1996 struct super_block *sb = journal->j_private; 1997 struct ext4_sb_info *sbi = EXT4_SB(sb); 1998 struct ext4_fc_replay_state *state; 1999 int ret = JBD2_FC_REPLAY_CONTINUE; 2000 struct ext4_fc_add_range ext; 2001 struct ext4_fc_tl tl; 2002 struct ext4_fc_tail tail; 2003 __u8 *start, *end, *cur, *val; 2004 struct ext4_fc_head head; 2005 struct ext4_extent *ex; 2006 2007 state = &sbi->s_fc_replay_state; 2008 2009 start = (u8 *)bh->b_data; 2010 end = (__u8 *)bh->b_data + journal->j_blocksize - 1; 2011 2012 if (state->fc_replay_expected_off == 0) { 2013 state->fc_cur_tag = 0; 2014 state->fc_replay_num_tags = 0; 2015 state->fc_crc = 0; 2016 state->fc_regions = NULL; 2017 state->fc_regions_valid = state->fc_regions_used = 2018 state->fc_regions_size = 0; 2019 /* Check if we can stop early */ 2020 if (le16_to_cpu(((struct ext4_fc_tl *)start)->fc_tag) 2021 != EXT4_FC_TAG_HEAD) 2022 return 0; 2023 } 2024 2025 if (off != state->fc_replay_expected_off) { 2026 ret = -EFSCORRUPTED; 2027 goto out_err; 2028 } 2029 2030 state->fc_replay_expected_off++; 2031 for (cur = start; cur < end; cur = cur + sizeof(tl) + le16_to_cpu(tl.fc_len)) { 2032 memcpy(&tl, cur, sizeof(tl)); 2033 val = cur + sizeof(tl); 2034 ext4_debug("Scan phase, tag:%s, blk %lld\n", 2035 tag2str(le16_to_cpu(tl.fc_tag)), bh->b_blocknr); 2036 switch (le16_to_cpu(tl.fc_tag)) { 2037 case EXT4_FC_TAG_ADD_RANGE: 2038 memcpy(&ext, val, sizeof(ext)); 2039 ex = (struct ext4_extent *)&ext.fc_ex; 2040 ret = ext4_fc_record_regions(sb, 2041 le32_to_cpu(ext.fc_ino), 2042 le32_to_cpu(ex->ee_block), ext4_ext_pblock(ex), 2043 ext4_ext_get_actual_len(ex), 0); 2044 if (ret < 0) 2045 break; 2046 ret = JBD2_FC_REPLAY_CONTINUE; 2047 fallthrough; 2048 case EXT4_FC_TAG_DEL_RANGE: 2049 case EXT4_FC_TAG_LINK: 2050 case EXT4_FC_TAG_UNLINK: 2051 case EXT4_FC_TAG_CREAT: 2052 case EXT4_FC_TAG_INODE: 2053 case EXT4_FC_TAG_PAD: 2054 state->fc_cur_tag++; 2055 state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur, 2056 sizeof(tl) + le16_to_cpu(tl.fc_len)); 2057 break; 2058 case EXT4_FC_TAG_TAIL: 2059 state->fc_cur_tag++; 2060 memcpy(&tail, val, sizeof(tail)); 2061 state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur, 2062 sizeof(tl) + 2063 offsetof(struct ext4_fc_tail, 2064 fc_crc)); 2065 if (le32_to_cpu(tail.fc_tid) == expected_tid && 2066 le32_to_cpu(tail.fc_crc) == state->fc_crc) { 2067 state->fc_replay_num_tags = state->fc_cur_tag; 2068 state->fc_regions_valid = 2069 state->fc_regions_used; 2070 } else { 2071 ret = state->fc_replay_num_tags ? 2072 JBD2_FC_REPLAY_STOP : -EFSBADCRC; 2073 } 2074 state->fc_crc = 0; 2075 break; 2076 case EXT4_FC_TAG_HEAD: 2077 memcpy(&head, val, sizeof(head)); 2078 if (le32_to_cpu(head.fc_features) & 2079 ~EXT4_FC_SUPPORTED_FEATURES) { 2080 ret = -EOPNOTSUPP; 2081 break; 2082 } 2083 if (le32_to_cpu(head.fc_tid) != expected_tid) { 2084 ret = JBD2_FC_REPLAY_STOP; 2085 break; 2086 } 2087 state->fc_cur_tag++; 2088 state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur, 2089 sizeof(tl) + le16_to_cpu(tl.fc_len)); 2090 break; 2091 default: 2092 ret = state->fc_replay_num_tags ? 2093 JBD2_FC_REPLAY_STOP : -ECANCELED; 2094 } 2095 if (ret < 0 || ret == JBD2_FC_REPLAY_STOP) 2096 break; 2097 } 2098 2099 out_err: 2100 trace_ext4_fc_replay_scan(sb, ret, off); 2101 return ret; 2102 } 2103 2104 /* 2105 * Main recovery path entry point. 2106 * The meaning of return codes is similar as above. 2107 */ 2108 static int ext4_fc_replay(journal_t *journal, struct buffer_head *bh, 2109 enum passtype pass, int off, tid_t expected_tid) 2110 { 2111 struct super_block *sb = journal->j_private; 2112 struct ext4_sb_info *sbi = EXT4_SB(sb); 2113 struct ext4_fc_tl tl; 2114 __u8 *start, *end, *cur, *val; 2115 int ret = JBD2_FC_REPLAY_CONTINUE; 2116 struct ext4_fc_replay_state *state = &sbi->s_fc_replay_state; 2117 struct ext4_fc_tail tail; 2118 2119 if (pass == PASS_SCAN) { 2120 state->fc_current_pass = PASS_SCAN; 2121 return ext4_fc_replay_scan(journal, bh, off, expected_tid); 2122 } 2123 2124 if (state->fc_current_pass != pass) { 2125 state->fc_current_pass = pass; 2126 sbi->s_mount_state |= EXT4_FC_REPLAY; 2127 } 2128 if (!sbi->s_fc_replay_state.fc_replay_num_tags) { 2129 ext4_debug("Replay stops\n"); 2130 ext4_fc_set_bitmaps_and_counters(sb); 2131 return 0; 2132 } 2133 2134 #ifdef CONFIG_EXT4_DEBUG 2135 if (sbi->s_fc_debug_max_replay && off >= sbi->s_fc_debug_max_replay) { 2136 pr_warn("Dropping fc block %d because max_replay set\n", off); 2137 return JBD2_FC_REPLAY_STOP; 2138 } 2139 #endif 2140 2141 start = (u8 *)bh->b_data; 2142 end = (__u8 *)bh->b_data + journal->j_blocksize - 1; 2143 2144 for (cur = start; cur < end; cur = cur + sizeof(tl) + le16_to_cpu(tl.fc_len)) { 2145 memcpy(&tl, cur, sizeof(tl)); 2146 val = cur + sizeof(tl); 2147 2148 if (state->fc_replay_num_tags == 0) { 2149 ret = JBD2_FC_REPLAY_STOP; 2150 ext4_fc_set_bitmaps_and_counters(sb); 2151 break; 2152 } 2153 ext4_debug("Replay phase, tag:%s\n", 2154 tag2str(le16_to_cpu(tl.fc_tag))); 2155 state->fc_replay_num_tags--; 2156 switch (le16_to_cpu(tl.fc_tag)) { 2157 case EXT4_FC_TAG_LINK: 2158 ret = ext4_fc_replay_link(sb, &tl, val); 2159 break; 2160 case EXT4_FC_TAG_UNLINK: 2161 ret = ext4_fc_replay_unlink(sb, &tl, val); 2162 break; 2163 case EXT4_FC_TAG_ADD_RANGE: 2164 ret = ext4_fc_replay_add_range(sb, &tl, val); 2165 break; 2166 case EXT4_FC_TAG_CREAT: 2167 ret = ext4_fc_replay_create(sb, &tl, val); 2168 break; 2169 case EXT4_FC_TAG_DEL_RANGE: 2170 ret = ext4_fc_replay_del_range(sb, &tl, val); 2171 break; 2172 case EXT4_FC_TAG_INODE: 2173 ret = ext4_fc_replay_inode(sb, &tl, val); 2174 break; 2175 case EXT4_FC_TAG_PAD: 2176 trace_ext4_fc_replay(sb, EXT4_FC_TAG_PAD, 0, 2177 le16_to_cpu(tl.fc_len), 0); 2178 break; 2179 case EXT4_FC_TAG_TAIL: 2180 trace_ext4_fc_replay(sb, EXT4_FC_TAG_TAIL, 0, 2181 le16_to_cpu(tl.fc_len), 0); 2182 memcpy(&tail, val, sizeof(tail)); 2183 WARN_ON(le32_to_cpu(tail.fc_tid) != expected_tid); 2184 break; 2185 case EXT4_FC_TAG_HEAD: 2186 break; 2187 default: 2188 trace_ext4_fc_replay(sb, le16_to_cpu(tl.fc_tag), 0, 2189 le16_to_cpu(tl.fc_len), 0); 2190 ret = -ECANCELED; 2191 break; 2192 } 2193 if (ret < 0) 2194 break; 2195 ret = JBD2_FC_REPLAY_CONTINUE; 2196 } 2197 return ret; 2198 } 2199 2200 void ext4_fc_init(struct super_block *sb, journal_t *journal) 2201 { 2202 /* 2203 * We set replay callback even if fast commit disabled because we may 2204 * could still have fast commit blocks that need to be replayed even if 2205 * fast commit has now been turned off. 2206 */ 2207 journal->j_fc_replay_callback = ext4_fc_replay; 2208 if (!test_opt2(sb, JOURNAL_FAST_COMMIT)) 2209 return; 2210 journal->j_fc_cleanup_callback = ext4_fc_cleanup; 2211 } 2212 2213 static const char *fc_ineligible_reasons[] = { 2214 "Extended attributes changed", 2215 "Cross rename", 2216 "Journal flag changed", 2217 "Insufficient memory", 2218 "Swap boot", 2219 "Resize", 2220 "Dir renamed", 2221 "Falloc range op", 2222 "Data journalling", 2223 "FC Commit Failed" 2224 }; 2225 2226 int ext4_fc_info_show(struct seq_file *seq, void *v) 2227 { 2228 struct ext4_sb_info *sbi = EXT4_SB((struct super_block *)seq->private); 2229 struct ext4_fc_stats *stats = &sbi->s_fc_stats; 2230 int i; 2231 2232 if (v != SEQ_START_TOKEN) 2233 return 0; 2234 2235 seq_printf(seq, 2236 "fc stats:\n%ld commits\n%ld ineligible\n%ld numblks\n%lluus avg_commit_time\n", 2237 stats->fc_num_commits, stats->fc_ineligible_commits, 2238 stats->fc_numblks, 2239 div_u64(stats->s_fc_avg_commit_time, 1000)); 2240 seq_puts(seq, "Ineligible reasons:\n"); 2241 for (i = 0; i < EXT4_FC_REASON_MAX; i++) 2242 seq_printf(seq, "\"%s\":\t%d\n", fc_ineligible_reasons[i], 2243 stats->fc_ineligible_reason_count[i]); 2244 2245 return 0; 2246 } 2247 2248 int __init ext4_fc_init_dentry_cache(void) 2249 { 2250 ext4_fc_dentry_cachep = KMEM_CACHE(ext4_fc_dentry_update, 2251 SLAB_RECLAIM_ACCOUNT); 2252 2253 if (ext4_fc_dentry_cachep == NULL) 2254 return -ENOMEM; 2255 2256 return 0; 2257 } 2258 2259 void ext4_fc_destroy_dentry_cache(void) 2260 { 2261 kmem_cache_destroy(ext4_fc_dentry_cachep); 2262 } 2263