xref: /openbmc/linux/fs/ext4/fast_commit.c (revision 83c4a4ee)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /*
4  * fs/ext4/fast_commit.c
5  *
6  * Written by Harshad Shirwadkar <harshadshirwadkar@gmail.com>
7  *
8  * Ext4 fast commits routines.
9  */
10 #include "ext4.h"
11 #include "ext4_jbd2.h"
12 #include "ext4_extents.h"
13 #include "mballoc.h"
14 
15 /*
16  * Ext4 Fast Commits
17  * -----------------
18  *
19  * Ext4 fast commits implement fine grained journalling for Ext4.
20  *
21  * Fast commits are organized as a log of tag-length-value (TLV) structs. (See
22  * struct ext4_fc_tl). Each TLV contains some delta that is replayed TLV by
23  * TLV during the recovery phase. For the scenarios for which we currently
24  * don't have replay code, fast commit falls back to full commits.
25  * Fast commits record delta in one of the following three categories.
26  *
27  * (A) Directory entry updates:
28  *
29  * - EXT4_FC_TAG_UNLINK		- records directory entry unlink
30  * - EXT4_FC_TAG_LINK		- records directory entry link
31  * - EXT4_FC_TAG_CREAT		- records inode and directory entry creation
32  *
33  * (B) File specific data range updates:
34  *
35  * - EXT4_FC_TAG_ADD_RANGE	- records addition of new blocks to an inode
36  * - EXT4_FC_TAG_DEL_RANGE	- records deletion of blocks from an inode
37  *
38  * (C) Inode metadata (mtime / ctime etc):
39  *
40  * - EXT4_FC_TAG_INODE		- record the inode that should be replayed
41  *				  during recovery. Note that iblocks field is
42  *				  not replayed and instead derived during
43  *				  replay.
44  * Commit Operation
45  * ----------------
46  * With fast commits, we maintain all the directory entry operations in the
47  * order in which they are issued in an in-memory queue. This queue is flushed
48  * to disk during the commit operation. We also maintain a list of inodes
49  * that need to be committed during a fast commit in another in memory queue of
50  * inodes. During the commit operation, we commit in the following order:
51  *
52  * [1] Lock inodes for any further data updates by setting COMMITTING state
53  * [2] Submit data buffers of all the inodes
54  * [3] Wait for [2] to complete
55  * [4] Commit all the directory entry updates in the fast commit space
56  * [5] Commit all the changed inode structures
57  * [6] Write tail tag (this tag ensures the atomicity, please read the following
58  *     section for more details).
59  * [7] Wait for [4], [5] and [6] to complete.
60  *
61  * All the inode updates must call ext4_fc_start_update() before starting an
62  * update. If such an ongoing update is present, fast commit waits for it to
63  * complete. The completion of such an update is marked by
64  * ext4_fc_stop_update().
65  *
66  * Fast Commit Ineligibility
67  * -------------------------
68  * Not all operations are supported by fast commits today (e.g extended
69  * attributes). Fast commit ineligiblity is marked by calling one of the
70  * two following functions:
71  *
72  * - ext4_fc_mark_ineligible(): This makes next fast commit operation to fall
73  *   back to full commit. This is useful in case of transient errors.
74  *
75  * - ext4_fc_start_ineligible() and ext4_fc_stop_ineligible() - This makes all
76  *   the fast commits happening between ext4_fc_start_ineligible() and
77  *   ext4_fc_stop_ineligible() and one fast commit after the call to
78  *   ext4_fc_stop_ineligible() to fall back to full commits. It is important to
79  *   make one more fast commit to fall back to full commit after stop call so
80  *   that it guaranteed that the fast commit ineligible operation contained
81  *   within ext4_fc_start_ineligible() and ext4_fc_stop_ineligible() is
82  *   followed by at least 1 full commit.
83  *
84  * Atomicity of commits
85  * --------------------
86  * In order to guarantee atomicity during the commit operation, fast commit
87  * uses "EXT4_FC_TAG_TAIL" tag that marks a fast commit as complete. Tail
88  * tag contains CRC of the contents and TID of the transaction after which
89  * this fast commit should be applied. Recovery code replays fast commit
90  * logs only if there's at least 1 valid tail present. For every fast commit
91  * operation, there is 1 tail. This means, we may end up with multiple tails
92  * in the fast commit space. Here's an example:
93  *
94  * - Create a new file A and remove existing file B
95  * - fsync()
96  * - Append contents to file A
97  * - Truncate file A
98  * - fsync()
99  *
100  * The fast commit space at the end of above operations would look like this:
101  *      [HEAD] [CREAT A] [UNLINK B] [TAIL] [ADD_RANGE A] [DEL_RANGE A] [TAIL]
102  *             |<---  Fast Commit 1   --->|<---      Fast Commit 2     ---->|
103  *
104  * Replay code should thus check for all the valid tails in the FC area.
105  *
106  * Fast Commit Replay Idempotence
107  * ------------------------------
108  *
109  * Fast commits tags are idempotent in nature provided the recovery code follows
110  * certain rules. The guiding principle that the commit path follows while
111  * committing is that it stores the result of a particular operation instead of
112  * storing the procedure.
113  *
114  * Let's consider this rename operation: 'mv /a /b'. Let's assume dirent '/a'
115  * was associated with inode 10. During fast commit, instead of storing this
116  * operation as a procedure "rename a to b", we store the resulting file system
117  * state as a "series" of outcomes:
118  *
119  * - Link dirent b to inode 10
120  * - Unlink dirent a
121  * - Inode <10> with valid refcount
122  *
123  * Now when recovery code runs, it needs "enforce" this state on the file
124  * system. This is what guarantees idempotence of fast commit replay.
125  *
126  * Let's take an example of a procedure that is not idempotent and see how fast
127  * commits make it idempotent. Consider following sequence of operations:
128  *
129  *     rm A;    mv B A;    read A
130  *  (x)     (y)        (z)
131  *
132  * (x), (y) and (z) are the points at which we can crash. If we store this
133  * sequence of operations as is then the replay is not idempotent. Let's say
134  * while in replay, we crash at (z). During the second replay, file A (which was
135  * actually created as a result of "mv B A" operation) would get deleted. Thus,
136  * file named A would be absent when we try to read A. So, this sequence of
137  * operations is not idempotent. However, as mentioned above, instead of storing
138  * the procedure fast commits store the outcome of each procedure. Thus the fast
139  * commit log for above procedure would be as follows:
140  *
141  * (Let's assume dirent A was linked to inode 10 and dirent B was linked to
142  * inode 11 before the replay)
143  *
144  *    [Unlink A]   [Link A to inode 11]   [Unlink B]   [Inode 11]
145  * (w)          (x)                    (y)          (z)
146  *
147  * If we crash at (z), we will have file A linked to inode 11. During the second
148  * replay, we will remove file A (inode 11). But we will create it back and make
149  * it point to inode 11. We won't find B, so we'll just skip that step. At this
150  * point, the refcount for inode 11 is not reliable, but that gets fixed by the
151  * replay of last inode 11 tag. Crashes at points (w), (x) and (y) get handled
152  * similarly. Thus, by converting a non-idempotent procedure into a series of
153  * idempotent outcomes, fast commits ensured idempotence during the replay.
154  *
155  * TODOs
156  * -----
157  *
158  * 0) Fast commit replay path hardening: Fast commit replay code should use
159  *    journal handles to make sure all the updates it does during the replay
160  *    path are atomic. With that if we crash during fast commit replay, after
161  *    trying to do recovery again, we will find a file system where fast commit
162  *    area is invalid (because new full commit would be found). In order to deal
163  *    with that, fast commit replay code should ensure that the "FC_REPLAY"
164  *    superblock state is persisted before starting the replay, so that after
165  *    the crash, fast commit recovery code can look at that flag and perform
166  *    fast commit recovery even if that area is invalidated by later full
167  *    commits.
168  *
169  * 1) Make fast commit atomic updates more fine grained. Today, a fast commit
170  *    eligible update must be protected within ext4_fc_start_update() and
171  *    ext4_fc_stop_update(). These routines are called at much higher
172  *    routines. This can be made more fine grained by combining with
173  *    ext4_journal_start().
174  *
175  * 2) Same above for ext4_fc_start_ineligible() and ext4_fc_stop_ineligible()
176  *
177  * 3) Handle more ineligible cases.
178  */
179 
180 #include <trace/events/ext4.h>
181 static struct kmem_cache *ext4_fc_dentry_cachep;
182 
183 static void ext4_end_buffer_io_sync(struct buffer_head *bh, int uptodate)
184 {
185 	BUFFER_TRACE(bh, "");
186 	if (uptodate) {
187 		ext4_debug("%s: Block %lld up-to-date",
188 			   __func__, bh->b_blocknr);
189 		set_buffer_uptodate(bh);
190 	} else {
191 		ext4_debug("%s: Block %lld not up-to-date",
192 			   __func__, bh->b_blocknr);
193 		clear_buffer_uptodate(bh);
194 	}
195 
196 	unlock_buffer(bh);
197 }
198 
199 static inline void ext4_fc_reset_inode(struct inode *inode)
200 {
201 	struct ext4_inode_info *ei = EXT4_I(inode);
202 
203 	ei->i_fc_lblk_start = 0;
204 	ei->i_fc_lblk_len = 0;
205 }
206 
207 void ext4_fc_init_inode(struct inode *inode)
208 {
209 	struct ext4_inode_info *ei = EXT4_I(inode);
210 
211 	ext4_fc_reset_inode(inode);
212 	ext4_clear_inode_state(inode, EXT4_STATE_FC_COMMITTING);
213 	INIT_LIST_HEAD(&ei->i_fc_list);
214 	init_waitqueue_head(&ei->i_fc_wait);
215 	atomic_set(&ei->i_fc_updates, 0);
216 }
217 
218 /* This function must be called with sbi->s_fc_lock held. */
219 static void ext4_fc_wait_committing_inode(struct inode *inode)
220 __releases(&EXT4_SB(inode->i_sb)->s_fc_lock)
221 {
222 	wait_queue_head_t *wq;
223 	struct ext4_inode_info *ei = EXT4_I(inode);
224 
225 #if (BITS_PER_LONG < 64)
226 	DEFINE_WAIT_BIT(wait, &ei->i_state_flags,
227 			EXT4_STATE_FC_COMMITTING);
228 	wq = bit_waitqueue(&ei->i_state_flags,
229 				EXT4_STATE_FC_COMMITTING);
230 #else
231 	DEFINE_WAIT_BIT(wait, &ei->i_flags,
232 			EXT4_STATE_FC_COMMITTING);
233 	wq = bit_waitqueue(&ei->i_flags,
234 				EXT4_STATE_FC_COMMITTING);
235 #endif
236 	lockdep_assert_held(&EXT4_SB(inode->i_sb)->s_fc_lock);
237 	prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
238 	spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
239 	schedule();
240 	finish_wait(wq, &wait.wq_entry);
241 }
242 
243 /*
244  * Inform Ext4's fast about start of an inode update
245  *
246  * This function is called by the high level call VFS callbacks before
247  * performing any inode update. This function blocks if there's an ongoing
248  * fast commit on the inode in question.
249  */
250 void ext4_fc_start_update(struct inode *inode)
251 {
252 	struct ext4_inode_info *ei = EXT4_I(inode);
253 
254 	if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) ||
255 	    (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY))
256 		return;
257 
258 restart:
259 	spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock);
260 	if (list_empty(&ei->i_fc_list))
261 		goto out;
262 
263 	if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
264 		ext4_fc_wait_committing_inode(inode);
265 		goto restart;
266 	}
267 out:
268 	atomic_inc(&ei->i_fc_updates);
269 	spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
270 }
271 
272 /*
273  * Stop inode update and wake up waiting fast commits if any.
274  */
275 void ext4_fc_stop_update(struct inode *inode)
276 {
277 	struct ext4_inode_info *ei = EXT4_I(inode);
278 
279 	if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) ||
280 	    (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY))
281 		return;
282 
283 	if (atomic_dec_and_test(&ei->i_fc_updates))
284 		wake_up_all(&ei->i_fc_wait);
285 }
286 
287 /*
288  * Remove inode from fast commit list. If the inode is being committed
289  * we wait until inode commit is done.
290  */
291 void ext4_fc_del(struct inode *inode)
292 {
293 	struct ext4_inode_info *ei = EXT4_I(inode);
294 
295 	if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) ||
296 	    (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY))
297 		return;
298 
299 restart:
300 	spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock);
301 	if (list_empty(&ei->i_fc_list)) {
302 		spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
303 		return;
304 	}
305 
306 	if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
307 		ext4_fc_wait_committing_inode(inode);
308 		goto restart;
309 	}
310 	list_del_init(&ei->i_fc_list);
311 	spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
312 }
313 
314 /*
315  * Mark file system as fast commit ineligible. This means that next commit
316  * operation would result in a full jbd2 commit.
317  */
318 void ext4_fc_mark_ineligible(struct super_block *sb, int reason)
319 {
320 	struct ext4_sb_info *sbi = EXT4_SB(sb);
321 
322 	if (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
323 	    (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))
324 		return;
325 
326 	ext4_set_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
327 	WARN_ON(reason >= EXT4_FC_REASON_MAX);
328 	sbi->s_fc_stats.fc_ineligible_reason_count[reason]++;
329 }
330 
331 /*
332  * Start a fast commit ineligible update. Any commits that happen while
333  * such an operation is in progress fall back to full commits.
334  */
335 void ext4_fc_start_ineligible(struct super_block *sb, int reason)
336 {
337 	struct ext4_sb_info *sbi = EXT4_SB(sb);
338 
339 	if (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
340 	    (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))
341 		return;
342 
343 	WARN_ON(reason >= EXT4_FC_REASON_MAX);
344 	sbi->s_fc_stats.fc_ineligible_reason_count[reason]++;
345 	atomic_inc(&sbi->s_fc_ineligible_updates);
346 }
347 
348 /*
349  * Stop a fast commit ineligible update. We set EXT4_MF_FC_INELIGIBLE flag here
350  * to ensure that after stopping the ineligible update, at least one full
351  * commit takes place.
352  */
353 void ext4_fc_stop_ineligible(struct super_block *sb)
354 {
355 	if (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
356 	    (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))
357 		return;
358 
359 	ext4_set_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
360 	atomic_dec(&EXT4_SB(sb)->s_fc_ineligible_updates);
361 }
362 
363 static inline int ext4_fc_is_ineligible(struct super_block *sb)
364 {
365 	return (ext4_test_mount_flag(sb, EXT4_MF_FC_INELIGIBLE) ||
366 		atomic_read(&EXT4_SB(sb)->s_fc_ineligible_updates));
367 }
368 
369 /*
370  * Generic fast commit tracking function. If this is the first time this we are
371  * called after a full commit, we initialize fast commit fields and then call
372  * __fc_track_fn() with update = 0. If we have already been called after a full
373  * commit, we pass update = 1. Based on that, the track function can determine
374  * if it needs to track a field for the first time or if it needs to just
375  * update the previously tracked value.
376  *
377  * If enqueue is set, this function enqueues the inode in fast commit list.
378  */
379 static int ext4_fc_track_template(
380 	handle_t *handle, struct inode *inode,
381 	int (*__fc_track_fn)(struct inode *, void *, bool),
382 	void *args, int enqueue)
383 {
384 	bool update = false;
385 	struct ext4_inode_info *ei = EXT4_I(inode);
386 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
387 	tid_t tid = 0;
388 	int ret;
389 
390 	if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) ||
391 	    (sbi->s_mount_state & EXT4_FC_REPLAY))
392 		return -EOPNOTSUPP;
393 
394 	if (ext4_fc_is_ineligible(inode->i_sb))
395 		return -EINVAL;
396 
397 	tid = handle->h_transaction->t_tid;
398 	mutex_lock(&ei->i_fc_lock);
399 	if (tid == ei->i_sync_tid) {
400 		update = true;
401 	} else {
402 		ext4_fc_reset_inode(inode);
403 		ei->i_sync_tid = tid;
404 	}
405 	ret = __fc_track_fn(inode, args, update);
406 	mutex_unlock(&ei->i_fc_lock);
407 
408 	if (!enqueue)
409 		return ret;
410 
411 	spin_lock(&sbi->s_fc_lock);
412 	if (list_empty(&EXT4_I(inode)->i_fc_list))
413 		list_add_tail(&EXT4_I(inode)->i_fc_list,
414 				(ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_COMMITTING)) ?
415 				&sbi->s_fc_q[FC_Q_STAGING] :
416 				&sbi->s_fc_q[FC_Q_MAIN]);
417 	spin_unlock(&sbi->s_fc_lock);
418 
419 	return ret;
420 }
421 
422 struct __track_dentry_update_args {
423 	struct dentry *dentry;
424 	int op;
425 };
426 
427 /* __track_fn for directory entry updates. Called with ei->i_fc_lock. */
428 static int __track_dentry_update(struct inode *inode, void *arg, bool update)
429 {
430 	struct ext4_fc_dentry_update *node;
431 	struct ext4_inode_info *ei = EXT4_I(inode);
432 	struct __track_dentry_update_args *dentry_update =
433 		(struct __track_dentry_update_args *)arg;
434 	struct dentry *dentry = dentry_update->dentry;
435 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
436 
437 	mutex_unlock(&ei->i_fc_lock);
438 	node = kmem_cache_alloc(ext4_fc_dentry_cachep, GFP_NOFS);
439 	if (!node) {
440 		ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM);
441 		mutex_lock(&ei->i_fc_lock);
442 		return -ENOMEM;
443 	}
444 
445 	node->fcd_op = dentry_update->op;
446 	node->fcd_parent = dentry->d_parent->d_inode->i_ino;
447 	node->fcd_ino = inode->i_ino;
448 	if (dentry->d_name.len > DNAME_INLINE_LEN) {
449 		node->fcd_name.name = kmalloc(dentry->d_name.len, GFP_NOFS);
450 		if (!node->fcd_name.name) {
451 			kmem_cache_free(ext4_fc_dentry_cachep, node);
452 			ext4_fc_mark_ineligible(inode->i_sb,
453 				EXT4_FC_REASON_NOMEM);
454 			mutex_lock(&ei->i_fc_lock);
455 			return -ENOMEM;
456 		}
457 		memcpy((u8 *)node->fcd_name.name, dentry->d_name.name,
458 			dentry->d_name.len);
459 	} else {
460 		memcpy(node->fcd_iname, dentry->d_name.name,
461 			dentry->d_name.len);
462 		node->fcd_name.name = node->fcd_iname;
463 	}
464 	node->fcd_name.len = dentry->d_name.len;
465 
466 	spin_lock(&sbi->s_fc_lock);
467 	if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_COMMITTING))
468 		list_add_tail(&node->fcd_list,
469 				&sbi->s_fc_dentry_q[FC_Q_STAGING]);
470 	else
471 		list_add_tail(&node->fcd_list, &sbi->s_fc_dentry_q[FC_Q_MAIN]);
472 	spin_unlock(&sbi->s_fc_lock);
473 	mutex_lock(&ei->i_fc_lock);
474 
475 	return 0;
476 }
477 
478 void __ext4_fc_track_unlink(handle_t *handle,
479 		struct inode *inode, struct dentry *dentry)
480 {
481 	struct __track_dentry_update_args args;
482 	int ret;
483 
484 	args.dentry = dentry;
485 	args.op = EXT4_FC_TAG_UNLINK;
486 
487 	ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
488 					(void *)&args, 0);
489 	trace_ext4_fc_track_unlink(inode, dentry, ret);
490 }
491 
492 void ext4_fc_track_unlink(handle_t *handle, struct dentry *dentry)
493 {
494 	__ext4_fc_track_unlink(handle, d_inode(dentry), dentry);
495 }
496 
497 void __ext4_fc_track_link(handle_t *handle,
498 	struct inode *inode, struct dentry *dentry)
499 {
500 	struct __track_dentry_update_args args;
501 	int ret;
502 
503 	args.dentry = dentry;
504 	args.op = EXT4_FC_TAG_LINK;
505 
506 	ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
507 					(void *)&args, 0);
508 	trace_ext4_fc_track_link(inode, dentry, ret);
509 }
510 
511 void ext4_fc_track_link(handle_t *handle, struct dentry *dentry)
512 {
513 	__ext4_fc_track_link(handle, d_inode(dentry), dentry);
514 }
515 
516 void ext4_fc_track_create(handle_t *handle, struct dentry *dentry)
517 {
518 	struct __track_dentry_update_args args;
519 	struct inode *inode = d_inode(dentry);
520 	int ret;
521 
522 	args.dentry = dentry;
523 	args.op = EXT4_FC_TAG_CREAT;
524 
525 	ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
526 					(void *)&args, 0);
527 	trace_ext4_fc_track_create(inode, dentry, ret);
528 }
529 
530 /* __track_fn for inode tracking */
531 static int __track_inode(struct inode *inode, void *arg, bool update)
532 {
533 	if (update)
534 		return -EEXIST;
535 
536 	EXT4_I(inode)->i_fc_lblk_len = 0;
537 
538 	return 0;
539 }
540 
541 void ext4_fc_track_inode(handle_t *handle, struct inode *inode)
542 {
543 	int ret;
544 
545 	if (S_ISDIR(inode->i_mode))
546 		return;
547 
548 	if (ext4_should_journal_data(inode)) {
549 		ext4_fc_mark_ineligible(inode->i_sb,
550 					EXT4_FC_REASON_INODE_JOURNAL_DATA);
551 		return;
552 	}
553 
554 	ret = ext4_fc_track_template(handle, inode, __track_inode, NULL, 1);
555 	trace_ext4_fc_track_inode(inode, ret);
556 }
557 
558 struct __track_range_args {
559 	ext4_lblk_t start, end;
560 };
561 
562 /* __track_fn for tracking data updates */
563 static int __track_range(struct inode *inode, void *arg, bool update)
564 {
565 	struct ext4_inode_info *ei = EXT4_I(inode);
566 	ext4_lblk_t oldstart;
567 	struct __track_range_args *__arg =
568 		(struct __track_range_args *)arg;
569 
570 	if (inode->i_ino < EXT4_FIRST_INO(inode->i_sb)) {
571 		ext4_debug("Special inode %ld being modified\n", inode->i_ino);
572 		return -ECANCELED;
573 	}
574 
575 	oldstart = ei->i_fc_lblk_start;
576 
577 	if (update && ei->i_fc_lblk_len > 0) {
578 		ei->i_fc_lblk_start = min(ei->i_fc_lblk_start, __arg->start);
579 		ei->i_fc_lblk_len =
580 			max(oldstart + ei->i_fc_lblk_len - 1, __arg->end) -
581 				ei->i_fc_lblk_start + 1;
582 	} else {
583 		ei->i_fc_lblk_start = __arg->start;
584 		ei->i_fc_lblk_len = __arg->end - __arg->start + 1;
585 	}
586 
587 	return 0;
588 }
589 
590 void ext4_fc_track_range(handle_t *handle, struct inode *inode, ext4_lblk_t start,
591 			 ext4_lblk_t end)
592 {
593 	struct __track_range_args args;
594 	int ret;
595 
596 	if (S_ISDIR(inode->i_mode))
597 		return;
598 
599 	args.start = start;
600 	args.end = end;
601 
602 	ret = ext4_fc_track_template(handle, inode,  __track_range, &args, 1);
603 
604 	trace_ext4_fc_track_range(inode, start, end, ret);
605 }
606 
607 static void ext4_fc_submit_bh(struct super_block *sb)
608 {
609 	int write_flags = REQ_SYNC;
610 	struct buffer_head *bh = EXT4_SB(sb)->s_fc_bh;
611 
612 	/* TODO: REQ_FUA | REQ_PREFLUSH is unnecessarily expensive. */
613 	if (test_opt(sb, BARRIER))
614 		write_flags |= REQ_FUA | REQ_PREFLUSH;
615 	lock_buffer(bh);
616 	set_buffer_dirty(bh);
617 	set_buffer_uptodate(bh);
618 	bh->b_end_io = ext4_end_buffer_io_sync;
619 	submit_bh(REQ_OP_WRITE, write_flags, bh);
620 	EXT4_SB(sb)->s_fc_bh = NULL;
621 }
622 
623 /* Ext4 commit path routines */
624 
625 /* memzero and update CRC */
626 static void *ext4_fc_memzero(struct super_block *sb, void *dst, int len,
627 				u32 *crc)
628 {
629 	void *ret;
630 
631 	ret = memset(dst, 0, len);
632 	if (crc)
633 		*crc = ext4_chksum(EXT4_SB(sb), *crc, dst, len);
634 	return ret;
635 }
636 
637 /*
638  * Allocate len bytes on a fast commit buffer.
639  *
640  * During the commit time this function is used to manage fast commit
641  * block space. We don't split a fast commit log onto different
642  * blocks. So this function makes sure that if there's not enough space
643  * on the current block, the remaining space in the current block is
644  * marked as unused by adding EXT4_FC_TAG_PAD tag. In that case,
645  * new block is from jbd2 and CRC is updated to reflect the padding
646  * we added.
647  */
648 static u8 *ext4_fc_reserve_space(struct super_block *sb, int len, u32 *crc)
649 {
650 	struct ext4_fc_tl *tl;
651 	struct ext4_sb_info *sbi = EXT4_SB(sb);
652 	struct buffer_head *bh;
653 	int bsize = sbi->s_journal->j_blocksize;
654 	int ret, off = sbi->s_fc_bytes % bsize;
655 	int pad_len;
656 
657 	/*
658 	 * After allocating len, we should have space at least for a 0 byte
659 	 * padding.
660 	 */
661 	if (len + sizeof(struct ext4_fc_tl) > bsize)
662 		return NULL;
663 
664 	if (bsize - off - 1 > len + sizeof(struct ext4_fc_tl)) {
665 		/*
666 		 * Only allocate from current buffer if we have enough space for
667 		 * this request AND we have space to add a zero byte padding.
668 		 */
669 		if (!sbi->s_fc_bh) {
670 			ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
671 			if (ret)
672 				return NULL;
673 			sbi->s_fc_bh = bh;
674 		}
675 		sbi->s_fc_bytes += len;
676 		return sbi->s_fc_bh->b_data + off;
677 	}
678 	/* Need to add PAD tag */
679 	tl = (struct ext4_fc_tl *)(sbi->s_fc_bh->b_data + off);
680 	tl->fc_tag = cpu_to_le16(EXT4_FC_TAG_PAD);
681 	pad_len = bsize - off - 1 - sizeof(struct ext4_fc_tl);
682 	tl->fc_len = cpu_to_le16(pad_len);
683 	if (crc)
684 		*crc = ext4_chksum(sbi, *crc, tl, sizeof(*tl));
685 	if (pad_len > 0)
686 		ext4_fc_memzero(sb, tl + 1, pad_len, crc);
687 	ext4_fc_submit_bh(sb);
688 
689 	ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
690 	if (ret)
691 		return NULL;
692 	sbi->s_fc_bh = bh;
693 	sbi->s_fc_bytes = (sbi->s_fc_bytes / bsize + 1) * bsize + len;
694 	return sbi->s_fc_bh->b_data;
695 }
696 
697 /* memcpy to fc reserved space and update CRC */
698 static void *ext4_fc_memcpy(struct super_block *sb, void *dst, const void *src,
699 				int len, u32 *crc)
700 {
701 	if (crc)
702 		*crc = ext4_chksum(EXT4_SB(sb), *crc, src, len);
703 	return memcpy(dst, src, len);
704 }
705 
706 /*
707  * Complete a fast commit by writing tail tag.
708  *
709  * Writing tail tag marks the end of a fast commit. In order to guarantee
710  * atomicity, after writing tail tag, even if there's space remaining
711  * in the block, next commit shouldn't use it. That's why tail tag
712  * has the length as that of the remaining space on the block.
713  */
714 static int ext4_fc_write_tail(struct super_block *sb, u32 crc)
715 {
716 	struct ext4_sb_info *sbi = EXT4_SB(sb);
717 	struct ext4_fc_tl tl;
718 	struct ext4_fc_tail tail;
719 	int off, bsize = sbi->s_journal->j_blocksize;
720 	u8 *dst;
721 
722 	/*
723 	 * ext4_fc_reserve_space takes care of allocating an extra block if
724 	 * there's no enough space on this block for accommodating this tail.
725 	 */
726 	dst = ext4_fc_reserve_space(sb, sizeof(tl) + sizeof(tail), &crc);
727 	if (!dst)
728 		return -ENOSPC;
729 
730 	off = sbi->s_fc_bytes % bsize;
731 
732 	tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_TAIL);
733 	tl.fc_len = cpu_to_le16(bsize - off - 1 + sizeof(struct ext4_fc_tail));
734 	sbi->s_fc_bytes = round_up(sbi->s_fc_bytes, bsize);
735 
736 	ext4_fc_memcpy(sb, dst, &tl, sizeof(tl), &crc);
737 	dst += sizeof(tl);
738 	tail.fc_tid = cpu_to_le32(sbi->s_journal->j_running_transaction->t_tid);
739 	ext4_fc_memcpy(sb, dst, &tail.fc_tid, sizeof(tail.fc_tid), &crc);
740 	dst += sizeof(tail.fc_tid);
741 	tail.fc_crc = cpu_to_le32(crc);
742 	ext4_fc_memcpy(sb, dst, &tail.fc_crc, sizeof(tail.fc_crc), NULL);
743 
744 	ext4_fc_submit_bh(sb);
745 
746 	return 0;
747 }
748 
749 /*
750  * Adds tag, length, value and updates CRC. Returns true if tlv was added.
751  * Returns false if there's not enough space.
752  */
753 static bool ext4_fc_add_tlv(struct super_block *sb, u16 tag, u16 len, u8 *val,
754 			   u32 *crc)
755 {
756 	struct ext4_fc_tl tl;
757 	u8 *dst;
758 
759 	dst = ext4_fc_reserve_space(sb, sizeof(tl) + len, crc);
760 	if (!dst)
761 		return false;
762 
763 	tl.fc_tag = cpu_to_le16(tag);
764 	tl.fc_len = cpu_to_le16(len);
765 
766 	ext4_fc_memcpy(sb, dst, &tl, sizeof(tl), crc);
767 	ext4_fc_memcpy(sb, dst + sizeof(tl), val, len, crc);
768 
769 	return true;
770 }
771 
772 /* Same as above, but adds dentry tlv. */
773 static  bool ext4_fc_add_dentry_tlv(struct super_block *sb, u16 tag,
774 					int parent_ino, int ino, int dlen,
775 					const unsigned char *dname,
776 					u32 *crc)
777 {
778 	struct ext4_fc_dentry_info fcd;
779 	struct ext4_fc_tl tl;
780 	u8 *dst = ext4_fc_reserve_space(sb, sizeof(tl) + sizeof(fcd) + dlen,
781 					crc);
782 
783 	if (!dst)
784 		return false;
785 
786 	fcd.fc_parent_ino = cpu_to_le32(parent_ino);
787 	fcd.fc_ino = cpu_to_le32(ino);
788 	tl.fc_tag = cpu_to_le16(tag);
789 	tl.fc_len = cpu_to_le16(sizeof(fcd) + dlen);
790 	ext4_fc_memcpy(sb, dst, &tl, sizeof(tl), crc);
791 	dst += sizeof(tl);
792 	ext4_fc_memcpy(sb, dst, &fcd, sizeof(fcd), crc);
793 	dst += sizeof(fcd);
794 	ext4_fc_memcpy(sb, dst, dname, dlen, crc);
795 	dst += dlen;
796 
797 	return true;
798 }
799 
800 /*
801  * Writes inode in the fast commit space under TLV with tag @tag.
802  * Returns 0 on success, error on failure.
803  */
804 static int ext4_fc_write_inode(struct inode *inode, u32 *crc)
805 {
806 	struct ext4_inode_info *ei = EXT4_I(inode);
807 	int inode_len = EXT4_GOOD_OLD_INODE_SIZE;
808 	int ret;
809 	struct ext4_iloc iloc;
810 	struct ext4_fc_inode fc_inode;
811 	struct ext4_fc_tl tl;
812 	u8 *dst;
813 
814 	ret = ext4_get_inode_loc(inode, &iloc);
815 	if (ret)
816 		return ret;
817 
818 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE)
819 		inode_len += ei->i_extra_isize;
820 
821 	fc_inode.fc_ino = cpu_to_le32(inode->i_ino);
822 	tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_INODE);
823 	tl.fc_len = cpu_to_le16(inode_len + sizeof(fc_inode.fc_ino));
824 
825 	dst = ext4_fc_reserve_space(inode->i_sb,
826 			sizeof(tl) + inode_len + sizeof(fc_inode.fc_ino), crc);
827 	if (!dst)
828 		return -ECANCELED;
829 
830 	if (!ext4_fc_memcpy(inode->i_sb, dst, &tl, sizeof(tl), crc))
831 		return -ECANCELED;
832 	dst += sizeof(tl);
833 	if (!ext4_fc_memcpy(inode->i_sb, dst, &fc_inode, sizeof(fc_inode), crc))
834 		return -ECANCELED;
835 	dst += sizeof(fc_inode);
836 	if (!ext4_fc_memcpy(inode->i_sb, dst, (u8 *)ext4_raw_inode(&iloc),
837 					inode_len, crc))
838 		return -ECANCELED;
839 
840 	return 0;
841 }
842 
843 /*
844  * Writes updated data ranges for the inode in question. Updates CRC.
845  * Returns 0 on success, error otherwise.
846  */
847 static int ext4_fc_write_inode_data(struct inode *inode, u32 *crc)
848 {
849 	ext4_lblk_t old_blk_size, cur_lblk_off, new_blk_size;
850 	struct ext4_inode_info *ei = EXT4_I(inode);
851 	struct ext4_map_blocks map;
852 	struct ext4_fc_add_range fc_ext;
853 	struct ext4_fc_del_range lrange;
854 	struct ext4_extent *ex;
855 	int ret;
856 
857 	mutex_lock(&ei->i_fc_lock);
858 	if (ei->i_fc_lblk_len == 0) {
859 		mutex_unlock(&ei->i_fc_lock);
860 		return 0;
861 	}
862 	old_blk_size = ei->i_fc_lblk_start;
863 	new_blk_size = ei->i_fc_lblk_start + ei->i_fc_lblk_len - 1;
864 	ei->i_fc_lblk_len = 0;
865 	mutex_unlock(&ei->i_fc_lock);
866 
867 	cur_lblk_off = old_blk_size;
868 	jbd_debug(1, "%s: will try writing %d to %d for inode %ld\n",
869 		  __func__, cur_lblk_off, new_blk_size, inode->i_ino);
870 
871 	while (cur_lblk_off <= new_blk_size) {
872 		map.m_lblk = cur_lblk_off;
873 		map.m_len = new_blk_size - cur_lblk_off + 1;
874 		ret = ext4_map_blocks(NULL, inode, &map, 0);
875 		if (ret < 0)
876 			return -ECANCELED;
877 
878 		if (map.m_len == 0) {
879 			cur_lblk_off++;
880 			continue;
881 		}
882 
883 		if (ret == 0) {
884 			lrange.fc_ino = cpu_to_le32(inode->i_ino);
885 			lrange.fc_lblk = cpu_to_le32(map.m_lblk);
886 			lrange.fc_len = cpu_to_le32(map.m_len);
887 			if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_DEL_RANGE,
888 					    sizeof(lrange), (u8 *)&lrange, crc))
889 				return -ENOSPC;
890 		} else {
891 			fc_ext.fc_ino = cpu_to_le32(inode->i_ino);
892 			ex = (struct ext4_extent *)&fc_ext.fc_ex;
893 			ex->ee_block = cpu_to_le32(map.m_lblk);
894 			ex->ee_len = cpu_to_le16(map.m_len);
895 			ext4_ext_store_pblock(ex, map.m_pblk);
896 			if (map.m_flags & EXT4_MAP_UNWRITTEN)
897 				ext4_ext_mark_unwritten(ex);
898 			else
899 				ext4_ext_mark_initialized(ex);
900 			if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_ADD_RANGE,
901 					    sizeof(fc_ext), (u8 *)&fc_ext, crc))
902 				return -ENOSPC;
903 		}
904 
905 		cur_lblk_off += map.m_len;
906 	}
907 
908 	return 0;
909 }
910 
911 
912 /* Submit data for all the fast commit inodes */
913 static int ext4_fc_submit_inode_data_all(journal_t *journal)
914 {
915 	struct super_block *sb = (struct super_block *)(journal->j_private);
916 	struct ext4_sb_info *sbi = EXT4_SB(sb);
917 	struct ext4_inode_info *ei;
918 	struct list_head *pos;
919 	int ret = 0;
920 
921 	spin_lock(&sbi->s_fc_lock);
922 	ext4_set_mount_flag(sb, EXT4_MF_FC_COMMITTING);
923 	list_for_each(pos, &sbi->s_fc_q[FC_Q_MAIN]) {
924 		ei = list_entry(pos, struct ext4_inode_info, i_fc_list);
925 		ext4_set_inode_state(&ei->vfs_inode, EXT4_STATE_FC_COMMITTING);
926 		while (atomic_read(&ei->i_fc_updates)) {
927 			DEFINE_WAIT(wait);
928 
929 			prepare_to_wait(&ei->i_fc_wait, &wait,
930 						TASK_UNINTERRUPTIBLE);
931 			if (atomic_read(&ei->i_fc_updates)) {
932 				spin_unlock(&sbi->s_fc_lock);
933 				schedule();
934 				spin_lock(&sbi->s_fc_lock);
935 			}
936 			finish_wait(&ei->i_fc_wait, &wait);
937 		}
938 		spin_unlock(&sbi->s_fc_lock);
939 		ret = jbd2_submit_inode_data(ei->jinode);
940 		if (ret)
941 			return ret;
942 		spin_lock(&sbi->s_fc_lock);
943 	}
944 	spin_unlock(&sbi->s_fc_lock);
945 
946 	return ret;
947 }
948 
949 /* Wait for completion of data for all the fast commit inodes */
950 static int ext4_fc_wait_inode_data_all(journal_t *journal)
951 {
952 	struct super_block *sb = (struct super_block *)(journal->j_private);
953 	struct ext4_sb_info *sbi = EXT4_SB(sb);
954 	struct ext4_inode_info *pos, *n;
955 	int ret = 0;
956 
957 	spin_lock(&sbi->s_fc_lock);
958 	list_for_each_entry_safe(pos, n, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
959 		if (!ext4_test_inode_state(&pos->vfs_inode,
960 					   EXT4_STATE_FC_COMMITTING))
961 			continue;
962 		spin_unlock(&sbi->s_fc_lock);
963 
964 		ret = jbd2_wait_inode_data(journal, pos->jinode);
965 		if (ret)
966 			return ret;
967 		spin_lock(&sbi->s_fc_lock);
968 	}
969 	spin_unlock(&sbi->s_fc_lock);
970 
971 	return 0;
972 }
973 
974 /* Commit all the directory entry updates */
975 static int ext4_fc_commit_dentry_updates(journal_t *journal, u32 *crc)
976 __acquires(&sbi->s_fc_lock)
977 __releases(&sbi->s_fc_lock)
978 {
979 	struct super_block *sb = (struct super_block *)(journal->j_private);
980 	struct ext4_sb_info *sbi = EXT4_SB(sb);
981 	struct ext4_fc_dentry_update *fc_dentry;
982 	struct inode *inode;
983 	struct list_head *pos, *n, *fcd_pos, *fcd_n;
984 	struct ext4_inode_info *ei;
985 	int ret;
986 
987 	if (list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN]))
988 		return 0;
989 	list_for_each_safe(fcd_pos, fcd_n, &sbi->s_fc_dentry_q[FC_Q_MAIN]) {
990 		fc_dentry = list_entry(fcd_pos, struct ext4_fc_dentry_update,
991 					fcd_list);
992 		if (fc_dentry->fcd_op != EXT4_FC_TAG_CREAT) {
993 			spin_unlock(&sbi->s_fc_lock);
994 			if (!ext4_fc_add_dentry_tlv(
995 				sb, fc_dentry->fcd_op,
996 				fc_dentry->fcd_parent, fc_dentry->fcd_ino,
997 				fc_dentry->fcd_name.len,
998 				fc_dentry->fcd_name.name, crc)) {
999 				ret = -ENOSPC;
1000 				goto lock_and_exit;
1001 			}
1002 			spin_lock(&sbi->s_fc_lock);
1003 			continue;
1004 		}
1005 
1006 		inode = NULL;
1007 		list_for_each_safe(pos, n, &sbi->s_fc_q[FC_Q_MAIN]) {
1008 			ei = list_entry(pos, struct ext4_inode_info, i_fc_list);
1009 			if (ei->vfs_inode.i_ino == fc_dentry->fcd_ino) {
1010 				inode = &ei->vfs_inode;
1011 				break;
1012 			}
1013 		}
1014 		/*
1015 		 * If we don't find inode in our list, then it was deleted,
1016 		 * in which case, we don't need to record it's create tag.
1017 		 */
1018 		if (!inode)
1019 			continue;
1020 		spin_unlock(&sbi->s_fc_lock);
1021 
1022 		/*
1023 		 * We first write the inode and then the create dirent. This
1024 		 * allows the recovery code to create an unnamed inode first
1025 		 * and then link it to a directory entry. This allows us
1026 		 * to use namei.c routines almost as is and simplifies
1027 		 * the recovery code.
1028 		 */
1029 		ret = ext4_fc_write_inode(inode, crc);
1030 		if (ret)
1031 			goto lock_and_exit;
1032 
1033 		ret = ext4_fc_write_inode_data(inode, crc);
1034 		if (ret)
1035 			goto lock_and_exit;
1036 
1037 		if (!ext4_fc_add_dentry_tlv(
1038 			sb, fc_dentry->fcd_op,
1039 			fc_dentry->fcd_parent, fc_dentry->fcd_ino,
1040 			fc_dentry->fcd_name.len,
1041 			fc_dentry->fcd_name.name, crc)) {
1042 			ret = -ENOSPC;
1043 			goto lock_and_exit;
1044 		}
1045 
1046 		spin_lock(&sbi->s_fc_lock);
1047 	}
1048 	return 0;
1049 lock_and_exit:
1050 	spin_lock(&sbi->s_fc_lock);
1051 	return ret;
1052 }
1053 
1054 static int ext4_fc_perform_commit(journal_t *journal)
1055 {
1056 	struct super_block *sb = (struct super_block *)(journal->j_private);
1057 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1058 	struct ext4_inode_info *iter;
1059 	struct ext4_fc_head head;
1060 	struct list_head *pos;
1061 	struct inode *inode;
1062 	struct blk_plug plug;
1063 	int ret = 0;
1064 	u32 crc = 0;
1065 
1066 	ret = ext4_fc_submit_inode_data_all(journal);
1067 	if (ret)
1068 		return ret;
1069 
1070 	ret = ext4_fc_wait_inode_data_all(journal);
1071 	if (ret)
1072 		return ret;
1073 
1074 	/*
1075 	 * If file system device is different from journal device, issue a cache
1076 	 * flush before we start writing fast commit blocks.
1077 	 */
1078 	if (journal->j_fs_dev != journal->j_dev)
1079 		blkdev_issue_flush(journal->j_fs_dev, GFP_NOFS);
1080 
1081 	blk_start_plug(&plug);
1082 	if (sbi->s_fc_bytes == 0) {
1083 		/*
1084 		 * Add a head tag only if this is the first fast commit
1085 		 * in this TID.
1086 		 */
1087 		head.fc_features = cpu_to_le32(EXT4_FC_SUPPORTED_FEATURES);
1088 		head.fc_tid = cpu_to_le32(
1089 			sbi->s_journal->j_running_transaction->t_tid);
1090 		if (!ext4_fc_add_tlv(sb, EXT4_FC_TAG_HEAD, sizeof(head),
1091 			(u8 *)&head, &crc))
1092 			goto out;
1093 	}
1094 
1095 	spin_lock(&sbi->s_fc_lock);
1096 	ret = ext4_fc_commit_dentry_updates(journal, &crc);
1097 	if (ret) {
1098 		spin_unlock(&sbi->s_fc_lock);
1099 		goto out;
1100 	}
1101 
1102 	list_for_each(pos, &sbi->s_fc_q[FC_Q_MAIN]) {
1103 		iter = list_entry(pos, struct ext4_inode_info, i_fc_list);
1104 		inode = &iter->vfs_inode;
1105 		if (!ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING))
1106 			continue;
1107 
1108 		spin_unlock(&sbi->s_fc_lock);
1109 		ret = ext4_fc_write_inode_data(inode, &crc);
1110 		if (ret)
1111 			goto out;
1112 		ret = ext4_fc_write_inode(inode, &crc);
1113 		if (ret)
1114 			goto out;
1115 		spin_lock(&sbi->s_fc_lock);
1116 	}
1117 	spin_unlock(&sbi->s_fc_lock);
1118 
1119 	ret = ext4_fc_write_tail(sb, crc);
1120 
1121 out:
1122 	blk_finish_plug(&plug);
1123 	return ret;
1124 }
1125 
1126 /*
1127  * The main commit entry point. Performs a fast commit for transaction
1128  * commit_tid if needed. If it's not possible to perform a fast commit
1129  * due to various reasons, we fall back to full commit. Returns 0
1130  * on success, error otherwise.
1131  */
1132 int ext4_fc_commit(journal_t *journal, tid_t commit_tid)
1133 {
1134 	struct super_block *sb = (struct super_block *)(journal->j_private);
1135 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1136 	int nblks = 0, ret, bsize = journal->j_blocksize;
1137 	int subtid = atomic_read(&sbi->s_fc_subtid);
1138 	int reason = EXT4_FC_REASON_OK, fc_bufs_before = 0;
1139 	ktime_t start_time, commit_time;
1140 
1141 	trace_ext4_fc_commit_start(sb);
1142 
1143 	start_time = ktime_get();
1144 
1145 	if (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
1146 		(ext4_fc_is_ineligible(sb))) {
1147 		reason = EXT4_FC_REASON_INELIGIBLE;
1148 		goto out;
1149 	}
1150 
1151 restart_fc:
1152 	ret = jbd2_fc_begin_commit(journal, commit_tid);
1153 	if (ret == -EALREADY) {
1154 		/* There was an ongoing commit, check if we need to restart */
1155 		if (atomic_read(&sbi->s_fc_subtid) <= subtid &&
1156 			commit_tid > journal->j_commit_sequence)
1157 			goto restart_fc;
1158 		reason = EXT4_FC_REASON_ALREADY_COMMITTED;
1159 		goto out;
1160 	} else if (ret) {
1161 		sbi->s_fc_stats.fc_ineligible_reason_count[EXT4_FC_COMMIT_FAILED]++;
1162 		reason = EXT4_FC_REASON_FC_START_FAILED;
1163 		goto out;
1164 	}
1165 
1166 	fc_bufs_before = (sbi->s_fc_bytes + bsize - 1) / bsize;
1167 	ret = ext4_fc_perform_commit(journal);
1168 	if (ret < 0) {
1169 		sbi->s_fc_stats.fc_ineligible_reason_count[EXT4_FC_COMMIT_FAILED]++;
1170 		reason = EXT4_FC_REASON_FC_FAILED;
1171 		goto out;
1172 	}
1173 	nblks = (sbi->s_fc_bytes + bsize - 1) / bsize - fc_bufs_before;
1174 	ret = jbd2_fc_wait_bufs(journal, nblks);
1175 	if (ret < 0) {
1176 		sbi->s_fc_stats.fc_ineligible_reason_count[EXT4_FC_COMMIT_FAILED]++;
1177 		reason = EXT4_FC_REASON_FC_FAILED;
1178 		goto out;
1179 	}
1180 	atomic_inc(&sbi->s_fc_subtid);
1181 	jbd2_fc_end_commit(journal);
1182 out:
1183 	/* Has any ineligible update happened since we started? */
1184 	if (reason == EXT4_FC_REASON_OK && ext4_fc_is_ineligible(sb)) {
1185 		sbi->s_fc_stats.fc_ineligible_reason_count[EXT4_FC_COMMIT_FAILED]++;
1186 		reason = EXT4_FC_REASON_INELIGIBLE;
1187 	}
1188 
1189 	spin_lock(&sbi->s_fc_lock);
1190 	if (reason != EXT4_FC_REASON_OK &&
1191 		reason != EXT4_FC_REASON_ALREADY_COMMITTED) {
1192 		sbi->s_fc_stats.fc_ineligible_commits++;
1193 	} else {
1194 		sbi->s_fc_stats.fc_num_commits++;
1195 		sbi->s_fc_stats.fc_numblks += nblks;
1196 	}
1197 	spin_unlock(&sbi->s_fc_lock);
1198 	nblks = (reason == EXT4_FC_REASON_OK) ? nblks : 0;
1199 	trace_ext4_fc_commit_stop(sb, nblks, reason);
1200 	commit_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
1201 	/*
1202 	 * weight the commit time higher than the average time so we don't
1203 	 * react too strongly to vast changes in the commit time
1204 	 */
1205 	if (likely(sbi->s_fc_avg_commit_time))
1206 		sbi->s_fc_avg_commit_time = (commit_time +
1207 				sbi->s_fc_avg_commit_time * 3) / 4;
1208 	else
1209 		sbi->s_fc_avg_commit_time = commit_time;
1210 	jbd_debug(1,
1211 		"Fast commit ended with blks = %d, reason = %d, subtid - %d",
1212 		nblks, reason, subtid);
1213 	if (reason == EXT4_FC_REASON_FC_FAILED)
1214 		return jbd2_fc_end_commit_fallback(journal);
1215 	if (reason == EXT4_FC_REASON_FC_START_FAILED ||
1216 		reason == EXT4_FC_REASON_INELIGIBLE)
1217 		return jbd2_complete_transaction(journal, commit_tid);
1218 	return 0;
1219 }
1220 
1221 /*
1222  * Fast commit cleanup routine. This is called after every fast commit and
1223  * full commit. full is true if we are called after a full commit.
1224  */
1225 static void ext4_fc_cleanup(journal_t *journal, int full)
1226 {
1227 	struct super_block *sb = journal->j_private;
1228 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1229 	struct ext4_inode_info *iter;
1230 	struct ext4_fc_dentry_update *fc_dentry;
1231 	struct list_head *pos, *n;
1232 
1233 	if (full && sbi->s_fc_bh)
1234 		sbi->s_fc_bh = NULL;
1235 
1236 	jbd2_fc_release_bufs(journal);
1237 
1238 	spin_lock(&sbi->s_fc_lock);
1239 	list_for_each_safe(pos, n, &sbi->s_fc_q[FC_Q_MAIN]) {
1240 		iter = list_entry(pos, struct ext4_inode_info, i_fc_list);
1241 		list_del_init(&iter->i_fc_list);
1242 		ext4_clear_inode_state(&iter->vfs_inode,
1243 				       EXT4_STATE_FC_COMMITTING);
1244 		ext4_fc_reset_inode(&iter->vfs_inode);
1245 		/* Make sure EXT4_STATE_FC_COMMITTING bit is clear */
1246 		smp_mb();
1247 #if (BITS_PER_LONG < 64)
1248 		wake_up_bit(&iter->i_state_flags, EXT4_STATE_FC_COMMITTING);
1249 #else
1250 		wake_up_bit(&iter->i_flags, EXT4_STATE_FC_COMMITTING);
1251 #endif
1252 	}
1253 
1254 	while (!list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN])) {
1255 		fc_dentry = list_first_entry(&sbi->s_fc_dentry_q[FC_Q_MAIN],
1256 					     struct ext4_fc_dentry_update,
1257 					     fcd_list);
1258 		list_del_init(&fc_dentry->fcd_list);
1259 		spin_unlock(&sbi->s_fc_lock);
1260 
1261 		if (fc_dentry->fcd_name.name &&
1262 			fc_dentry->fcd_name.len > DNAME_INLINE_LEN)
1263 			kfree(fc_dentry->fcd_name.name);
1264 		kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry);
1265 		spin_lock(&sbi->s_fc_lock);
1266 	}
1267 
1268 	list_splice_init(&sbi->s_fc_dentry_q[FC_Q_STAGING],
1269 				&sbi->s_fc_dentry_q[FC_Q_MAIN]);
1270 	list_splice_init(&sbi->s_fc_q[FC_Q_STAGING],
1271 				&sbi->s_fc_q[FC_Q_STAGING]);
1272 
1273 	ext4_clear_mount_flag(sb, EXT4_MF_FC_COMMITTING);
1274 	ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
1275 
1276 	if (full)
1277 		sbi->s_fc_bytes = 0;
1278 	spin_unlock(&sbi->s_fc_lock);
1279 	trace_ext4_fc_stats(sb);
1280 }
1281 
1282 /* Ext4 Replay Path Routines */
1283 
1284 /* Helper struct for dentry replay routines */
1285 struct dentry_info_args {
1286 	int parent_ino, dname_len, ino, inode_len;
1287 	char *dname;
1288 };
1289 
1290 static inline void tl_to_darg(struct dentry_info_args *darg,
1291 				struct  ext4_fc_tl *tl)
1292 {
1293 	struct ext4_fc_dentry_info *fcd;
1294 
1295 	fcd = (struct ext4_fc_dentry_info *)ext4_fc_tag_val(tl);
1296 
1297 	darg->parent_ino = le32_to_cpu(fcd->fc_parent_ino);
1298 	darg->ino = le32_to_cpu(fcd->fc_ino);
1299 	darg->dname = fcd->fc_dname;
1300 	darg->dname_len = ext4_fc_tag_len(tl) -
1301 			sizeof(struct ext4_fc_dentry_info);
1302 }
1303 
1304 /* Unlink replay function */
1305 static int ext4_fc_replay_unlink(struct super_block *sb, struct ext4_fc_tl *tl)
1306 {
1307 	struct inode *inode, *old_parent;
1308 	struct qstr entry;
1309 	struct dentry_info_args darg;
1310 	int ret = 0;
1311 
1312 	tl_to_darg(&darg, tl);
1313 
1314 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_UNLINK, darg.ino,
1315 			darg.parent_ino, darg.dname_len);
1316 
1317 	entry.name = darg.dname;
1318 	entry.len = darg.dname_len;
1319 	inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1320 
1321 	if (IS_ERR_OR_NULL(inode)) {
1322 		jbd_debug(1, "Inode %d not found", darg.ino);
1323 		return 0;
1324 	}
1325 
1326 	old_parent = ext4_iget(sb, darg.parent_ino,
1327 				EXT4_IGET_NORMAL);
1328 	if (IS_ERR_OR_NULL(old_parent)) {
1329 		jbd_debug(1, "Dir with inode  %d not found", darg.parent_ino);
1330 		iput(inode);
1331 		return 0;
1332 	}
1333 
1334 	ret = __ext4_unlink(NULL, old_parent, &entry, inode);
1335 	/* -ENOENT ok coz it might not exist anymore. */
1336 	if (ret == -ENOENT)
1337 		ret = 0;
1338 	iput(old_parent);
1339 	iput(inode);
1340 	return ret;
1341 }
1342 
1343 static int ext4_fc_replay_link_internal(struct super_block *sb,
1344 				struct dentry_info_args *darg,
1345 				struct inode *inode)
1346 {
1347 	struct inode *dir = NULL;
1348 	struct dentry *dentry_dir = NULL, *dentry_inode = NULL;
1349 	struct qstr qstr_dname = QSTR_INIT(darg->dname, darg->dname_len);
1350 	int ret = 0;
1351 
1352 	dir = ext4_iget(sb, darg->parent_ino, EXT4_IGET_NORMAL);
1353 	if (IS_ERR(dir)) {
1354 		jbd_debug(1, "Dir with inode %d not found.", darg->parent_ino);
1355 		dir = NULL;
1356 		goto out;
1357 	}
1358 
1359 	dentry_dir = d_obtain_alias(dir);
1360 	if (IS_ERR(dentry_dir)) {
1361 		jbd_debug(1, "Failed to obtain dentry");
1362 		dentry_dir = NULL;
1363 		goto out;
1364 	}
1365 
1366 	dentry_inode = d_alloc(dentry_dir, &qstr_dname);
1367 	if (!dentry_inode) {
1368 		jbd_debug(1, "Inode dentry not created.");
1369 		ret = -ENOMEM;
1370 		goto out;
1371 	}
1372 
1373 	ret = __ext4_link(dir, inode, dentry_inode);
1374 	/*
1375 	 * It's possible that link already existed since data blocks
1376 	 * for the dir in question got persisted before we crashed OR
1377 	 * we replayed this tag and crashed before the entire replay
1378 	 * could complete.
1379 	 */
1380 	if (ret && ret != -EEXIST) {
1381 		jbd_debug(1, "Failed to link\n");
1382 		goto out;
1383 	}
1384 
1385 	ret = 0;
1386 out:
1387 	if (dentry_dir) {
1388 		d_drop(dentry_dir);
1389 		dput(dentry_dir);
1390 	} else if (dir) {
1391 		iput(dir);
1392 	}
1393 	if (dentry_inode) {
1394 		d_drop(dentry_inode);
1395 		dput(dentry_inode);
1396 	}
1397 
1398 	return ret;
1399 }
1400 
1401 /* Link replay function */
1402 static int ext4_fc_replay_link(struct super_block *sb, struct ext4_fc_tl *tl)
1403 {
1404 	struct inode *inode;
1405 	struct dentry_info_args darg;
1406 	int ret = 0;
1407 
1408 	tl_to_darg(&darg, tl);
1409 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_LINK, darg.ino,
1410 			darg.parent_ino, darg.dname_len);
1411 
1412 	inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1413 	if (IS_ERR_OR_NULL(inode)) {
1414 		jbd_debug(1, "Inode not found.");
1415 		return 0;
1416 	}
1417 
1418 	ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1419 	iput(inode);
1420 	return ret;
1421 }
1422 
1423 /*
1424  * Record all the modified inodes during replay. We use this later to setup
1425  * block bitmaps correctly.
1426  */
1427 static int ext4_fc_record_modified_inode(struct super_block *sb, int ino)
1428 {
1429 	struct ext4_fc_replay_state *state;
1430 	int i;
1431 
1432 	state = &EXT4_SB(sb)->s_fc_replay_state;
1433 	for (i = 0; i < state->fc_modified_inodes_used; i++)
1434 		if (state->fc_modified_inodes[i] == ino)
1435 			return 0;
1436 	if (state->fc_modified_inodes_used == state->fc_modified_inodes_size) {
1437 		state->fc_modified_inodes_size +=
1438 			EXT4_FC_REPLAY_REALLOC_INCREMENT;
1439 		state->fc_modified_inodes = krealloc(
1440 					state->fc_modified_inodes, sizeof(int) *
1441 					state->fc_modified_inodes_size,
1442 					GFP_KERNEL);
1443 		if (!state->fc_modified_inodes)
1444 			return -ENOMEM;
1445 	}
1446 	state->fc_modified_inodes[state->fc_modified_inodes_used++] = ino;
1447 	return 0;
1448 }
1449 
1450 /*
1451  * Inode replay function
1452  */
1453 static int ext4_fc_replay_inode(struct super_block *sb, struct ext4_fc_tl *tl)
1454 {
1455 	struct ext4_fc_inode *fc_inode;
1456 	struct ext4_inode *raw_inode;
1457 	struct ext4_inode *raw_fc_inode;
1458 	struct inode *inode = NULL;
1459 	struct ext4_iloc iloc;
1460 	int inode_len, ino, ret, tag = le16_to_cpu(tl->fc_tag);
1461 	struct ext4_extent_header *eh;
1462 
1463 	fc_inode = (struct ext4_fc_inode *)ext4_fc_tag_val(tl);
1464 
1465 	ino = le32_to_cpu(fc_inode->fc_ino);
1466 	trace_ext4_fc_replay(sb, tag, ino, 0, 0);
1467 
1468 	inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1469 	if (!IS_ERR_OR_NULL(inode)) {
1470 		ext4_ext_clear_bb(inode);
1471 		iput(inode);
1472 	}
1473 
1474 	ext4_fc_record_modified_inode(sb, ino);
1475 
1476 	raw_fc_inode = (struct ext4_inode *)fc_inode->fc_raw_inode;
1477 	ret = ext4_get_fc_inode_loc(sb, ino, &iloc);
1478 	if (ret)
1479 		goto out;
1480 
1481 	inode_len = ext4_fc_tag_len(tl) - sizeof(struct ext4_fc_inode);
1482 	raw_inode = ext4_raw_inode(&iloc);
1483 
1484 	memcpy(raw_inode, raw_fc_inode, offsetof(struct ext4_inode, i_block));
1485 	memcpy(&raw_inode->i_generation, &raw_fc_inode->i_generation,
1486 		inode_len - offsetof(struct ext4_inode, i_generation));
1487 	if (le32_to_cpu(raw_inode->i_flags) & EXT4_EXTENTS_FL) {
1488 		eh = (struct ext4_extent_header *)(&raw_inode->i_block[0]);
1489 		if (eh->eh_magic != EXT4_EXT_MAGIC) {
1490 			memset(eh, 0, sizeof(*eh));
1491 			eh->eh_magic = EXT4_EXT_MAGIC;
1492 			eh->eh_max = cpu_to_le16(
1493 				(sizeof(raw_inode->i_block) -
1494 				 sizeof(struct ext4_extent_header))
1495 				 / sizeof(struct ext4_extent));
1496 		}
1497 	} else if (le32_to_cpu(raw_inode->i_flags) & EXT4_INLINE_DATA_FL) {
1498 		memcpy(raw_inode->i_block, raw_fc_inode->i_block,
1499 			sizeof(raw_inode->i_block));
1500 	}
1501 
1502 	/* Immediately update the inode on disk. */
1503 	ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1504 	if (ret)
1505 		goto out;
1506 	ret = sync_dirty_buffer(iloc.bh);
1507 	if (ret)
1508 		goto out;
1509 	ret = ext4_mark_inode_used(sb, ino);
1510 	if (ret)
1511 		goto out;
1512 
1513 	/* Given that we just wrote the inode on disk, this SHOULD succeed. */
1514 	inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1515 	if (IS_ERR_OR_NULL(inode)) {
1516 		jbd_debug(1, "Inode not found.");
1517 		return -EFSCORRUPTED;
1518 	}
1519 
1520 	/*
1521 	 * Our allocator could have made different decisions than before
1522 	 * crashing. This should be fixed but until then, we calculate
1523 	 * the number of blocks the inode.
1524 	 */
1525 	ext4_ext_replay_set_iblocks(inode);
1526 
1527 	inode->i_generation = le32_to_cpu(ext4_raw_inode(&iloc)->i_generation);
1528 	ext4_reset_inode_seed(inode);
1529 
1530 	ext4_inode_csum_set(inode, ext4_raw_inode(&iloc), EXT4_I(inode));
1531 	ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1532 	sync_dirty_buffer(iloc.bh);
1533 	brelse(iloc.bh);
1534 out:
1535 	iput(inode);
1536 	if (!ret)
1537 		blkdev_issue_flush(sb->s_bdev, GFP_KERNEL);
1538 
1539 	return 0;
1540 }
1541 
1542 /*
1543  * Dentry create replay function.
1544  *
1545  * EXT4_FC_TAG_CREAT is preceded by EXT4_FC_TAG_INODE_FULL. Which means, the
1546  * inode for which we are trying to create a dentry here, should already have
1547  * been replayed before we start here.
1548  */
1549 static int ext4_fc_replay_create(struct super_block *sb, struct ext4_fc_tl *tl)
1550 {
1551 	int ret = 0;
1552 	struct inode *inode = NULL;
1553 	struct inode *dir = NULL;
1554 	struct dentry_info_args darg;
1555 
1556 	tl_to_darg(&darg, tl);
1557 
1558 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_CREAT, darg.ino,
1559 			darg.parent_ino, darg.dname_len);
1560 
1561 	/* This takes care of update group descriptor and other metadata */
1562 	ret = ext4_mark_inode_used(sb, darg.ino);
1563 	if (ret)
1564 		goto out;
1565 
1566 	inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1567 	if (IS_ERR_OR_NULL(inode)) {
1568 		jbd_debug(1, "inode %d not found.", darg.ino);
1569 		inode = NULL;
1570 		ret = -EINVAL;
1571 		goto out;
1572 	}
1573 
1574 	if (S_ISDIR(inode->i_mode)) {
1575 		/*
1576 		 * If we are creating a directory, we need to make sure that the
1577 		 * dot and dot dot dirents are setup properly.
1578 		 */
1579 		dir = ext4_iget(sb, darg.parent_ino, EXT4_IGET_NORMAL);
1580 		if (IS_ERR_OR_NULL(dir)) {
1581 			jbd_debug(1, "Dir %d not found.", darg.ino);
1582 			goto out;
1583 		}
1584 		ret = ext4_init_new_dir(NULL, dir, inode);
1585 		iput(dir);
1586 		if (ret) {
1587 			ret = 0;
1588 			goto out;
1589 		}
1590 	}
1591 	ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1592 	if (ret)
1593 		goto out;
1594 	set_nlink(inode, 1);
1595 	ext4_mark_inode_dirty(NULL, inode);
1596 out:
1597 	if (inode)
1598 		iput(inode);
1599 	return ret;
1600 }
1601 
1602 /*
1603  * Record physical disk regions which are in use as per fast commit area. Our
1604  * simple replay phase allocator excludes these regions from allocation.
1605  */
1606 static int ext4_fc_record_regions(struct super_block *sb, int ino,
1607 		ext4_lblk_t lblk, ext4_fsblk_t pblk, int len)
1608 {
1609 	struct ext4_fc_replay_state *state;
1610 	struct ext4_fc_alloc_region *region;
1611 
1612 	state = &EXT4_SB(sb)->s_fc_replay_state;
1613 	if (state->fc_regions_used == state->fc_regions_size) {
1614 		state->fc_regions_size +=
1615 			EXT4_FC_REPLAY_REALLOC_INCREMENT;
1616 		state->fc_regions = krealloc(
1617 					state->fc_regions,
1618 					state->fc_regions_size *
1619 					sizeof(struct ext4_fc_alloc_region),
1620 					GFP_KERNEL);
1621 		if (!state->fc_regions)
1622 			return -ENOMEM;
1623 	}
1624 	region = &state->fc_regions[state->fc_regions_used++];
1625 	region->ino = ino;
1626 	region->lblk = lblk;
1627 	region->pblk = pblk;
1628 	region->len = len;
1629 
1630 	return 0;
1631 }
1632 
1633 /* Replay add range tag */
1634 static int ext4_fc_replay_add_range(struct super_block *sb,
1635 				struct ext4_fc_tl *tl)
1636 {
1637 	struct ext4_fc_add_range *fc_add_ex;
1638 	struct ext4_extent newex, *ex;
1639 	struct inode *inode;
1640 	ext4_lblk_t start, cur;
1641 	int remaining, len;
1642 	ext4_fsblk_t start_pblk;
1643 	struct ext4_map_blocks map;
1644 	struct ext4_ext_path *path = NULL;
1645 	int ret;
1646 
1647 	fc_add_ex = (struct ext4_fc_add_range *)ext4_fc_tag_val(tl);
1648 	ex = (struct ext4_extent *)&fc_add_ex->fc_ex;
1649 
1650 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_ADD_RANGE,
1651 		le32_to_cpu(fc_add_ex->fc_ino), le32_to_cpu(ex->ee_block),
1652 		ext4_ext_get_actual_len(ex));
1653 
1654 	inode = ext4_iget(sb, le32_to_cpu(fc_add_ex->fc_ino),
1655 				EXT4_IGET_NORMAL);
1656 	if (IS_ERR_OR_NULL(inode)) {
1657 		jbd_debug(1, "Inode not found.");
1658 		return 0;
1659 	}
1660 
1661 	ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1662 
1663 	start = le32_to_cpu(ex->ee_block);
1664 	start_pblk = ext4_ext_pblock(ex);
1665 	len = ext4_ext_get_actual_len(ex);
1666 
1667 	cur = start;
1668 	remaining = len;
1669 	jbd_debug(1, "ADD_RANGE, lblk %d, pblk %lld, len %d, unwritten %d, inode %ld\n",
1670 		  start, start_pblk, len, ext4_ext_is_unwritten(ex),
1671 		  inode->i_ino);
1672 
1673 	while (remaining > 0) {
1674 		map.m_lblk = cur;
1675 		map.m_len = remaining;
1676 		map.m_pblk = 0;
1677 		ret = ext4_map_blocks(NULL, inode, &map, 0);
1678 
1679 		if (ret < 0) {
1680 			iput(inode);
1681 			return 0;
1682 		}
1683 
1684 		if (ret == 0) {
1685 			/* Range is not mapped */
1686 			path = ext4_find_extent(inode, cur, NULL, 0);
1687 			if (IS_ERR(path)) {
1688 				iput(inode);
1689 				return 0;
1690 			}
1691 			memset(&newex, 0, sizeof(newex));
1692 			newex.ee_block = cpu_to_le32(cur);
1693 			ext4_ext_store_pblock(
1694 				&newex, start_pblk + cur - start);
1695 			newex.ee_len = cpu_to_le16(map.m_len);
1696 			if (ext4_ext_is_unwritten(ex))
1697 				ext4_ext_mark_unwritten(&newex);
1698 			down_write(&EXT4_I(inode)->i_data_sem);
1699 			ret = ext4_ext_insert_extent(
1700 				NULL, inode, &path, &newex, 0);
1701 			up_write((&EXT4_I(inode)->i_data_sem));
1702 			ext4_ext_drop_refs(path);
1703 			kfree(path);
1704 			if (ret) {
1705 				iput(inode);
1706 				return 0;
1707 			}
1708 			goto next;
1709 		}
1710 
1711 		if (start_pblk + cur - start != map.m_pblk) {
1712 			/*
1713 			 * Logical to physical mapping changed. This can happen
1714 			 * if this range was removed and then reallocated to
1715 			 * map to new physical blocks during a fast commit.
1716 			 */
1717 			ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1718 					ext4_ext_is_unwritten(ex),
1719 					start_pblk + cur - start);
1720 			if (ret) {
1721 				iput(inode);
1722 				return 0;
1723 			}
1724 			/*
1725 			 * Mark the old blocks as free since they aren't used
1726 			 * anymore. We maintain an array of all the modified
1727 			 * inodes. In case these blocks are still used at either
1728 			 * a different logical range in the same inode or in
1729 			 * some different inode, we will mark them as allocated
1730 			 * at the end of the FC replay using our array of
1731 			 * modified inodes.
1732 			 */
1733 			ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 0);
1734 			goto next;
1735 		}
1736 
1737 		/* Range is mapped and needs a state change */
1738 		jbd_debug(1, "Converting from %d to %d %lld",
1739 				map.m_flags & EXT4_MAP_UNWRITTEN,
1740 			ext4_ext_is_unwritten(ex), map.m_pblk);
1741 		ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1742 					ext4_ext_is_unwritten(ex), map.m_pblk);
1743 		if (ret) {
1744 			iput(inode);
1745 			return 0;
1746 		}
1747 		/*
1748 		 * We may have split the extent tree while toggling the state.
1749 		 * Try to shrink the extent tree now.
1750 		 */
1751 		ext4_ext_replay_shrink_inode(inode, start + len);
1752 next:
1753 		cur += map.m_len;
1754 		remaining -= map.m_len;
1755 	}
1756 	ext4_ext_replay_shrink_inode(inode, i_size_read(inode) >>
1757 					sb->s_blocksize_bits);
1758 	iput(inode);
1759 	return 0;
1760 }
1761 
1762 /* Replay DEL_RANGE tag */
1763 static int
1764 ext4_fc_replay_del_range(struct super_block *sb, struct ext4_fc_tl *tl)
1765 {
1766 	struct inode *inode;
1767 	struct ext4_fc_del_range *lrange;
1768 	struct ext4_map_blocks map;
1769 	ext4_lblk_t cur, remaining;
1770 	int ret;
1771 
1772 	lrange = (struct ext4_fc_del_range *)ext4_fc_tag_val(tl);
1773 	cur = le32_to_cpu(lrange->fc_lblk);
1774 	remaining = le32_to_cpu(lrange->fc_len);
1775 
1776 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_DEL_RANGE,
1777 		le32_to_cpu(lrange->fc_ino), cur, remaining);
1778 
1779 	inode = ext4_iget(sb, le32_to_cpu(lrange->fc_ino), EXT4_IGET_NORMAL);
1780 	if (IS_ERR_OR_NULL(inode)) {
1781 		jbd_debug(1, "Inode %d not found", le32_to_cpu(lrange->fc_ino));
1782 		return 0;
1783 	}
1784 
1785 	ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1786 
1787 	jbd_debug(1, "DEL_RANGE, inode %ld, lblk %d, len %d\n",
1788 			inode->i_ino, le32_to_cpu(lrange->fc_lblk),
1789 			le32_to_cpu(lrange->fc_len));
1790 	while (remaining > 0) {
1791 		map.m_lblk = cur;
1792 		map.m_len = remaining;
1793 
1794 		ret = ext4_map_blocks(NULL, inode, &map, 0);
1795 		if (ret < 0) {
1796 			iput(inode);
1797 			return 0;
1798 		}
1799 		if (ret > 0) {
1800 			remaining -= ret;
1801 			cur += ret;
1802 			ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 0);
1803 		} else {
1804 			remaining -= map.m_len;
1805 			cur += map.m_len;
1806 		}
1807 	}
1808 
1809 	ret = ext4_punch_hole(inode,
1810 		le32_to_cpu(lrange->fc_lblk) << sb->s_blocksize_bits,
1811 		le32_to_cpu(lrange->fc_len) <<  sb->s_blocksize_bits);
1812 	if (ret)
1813 		jbd_debug(1, "ext4_punch_hole returned %d", ret);
1814 	ext4_ext_replay_shrink_inode(inode,
1815 		i_size_read(inode) >> sb->s_blocksize_bits);
1816 	ext4_mark_inode_dirty(NULL, inode);
1817 	iput(inode);
1818 
1819 	return 0;
1820 }
1821 
1822 static void ext4_fc_set_bitmaps_and_counters(struct super_block *sb)
1823 {
1824 	struct ext4_fc_replay_state *state;
1825 	struct inode *inode;
1826 	struct ext4_ext_path *path = NULL;
1827 	struct ext4_map_blocks map;
1828 	int i, ret, j;
1829 	ext4_lblk_t cur, end;
1830 
1831 	state = &EXT4_SB(sb)->s_fc_replay_state;
1832 	for (i = 0; i < state->fc_modified_inodes_used; i++) {
1833 		inode = ext4_iget(sb, state->fc_modified_inodes[i],
1834 			EXT4_IGET_NORMAL);
1835 		if (IS_ERR_OR_NULL(inode)) {
1836 			jbd_debug(1, "Inode %d not found.",
1837 				state->fc_modified_inodes[i]);
1838 			continue;
1839 		}
1840 		cur = 0;
1841 		end = EXT_MAX_BLOCKS;
1842 		while (cur < end) {
1843 			map.m_lblk = cur;
1844 			map.m_len = end - cur;
1845 
1846 			ret = ext4_map_blocks(NULL, inode, &map, 0);
1847 			if (ret < 0)
1848 				break;
1849 
1850 			if (ret > 0) {
1851 				path = ext4_find_extent(inode, map.m_lblk, NULL, 0);
1852 				if (!IS_ERR_OR_NULL(path)) {
1853 					for (j = 0; j < path->p_depth; j++)
1854 						ext4_mb_mark_bb(inode->i_sb,
1855 							path[j].p_block, 1, 1);
1856 					ext4_ext_drop_refs(path);
1857 					kfree(path);
1858 				}
1859 				cur += ret;
1860 				ext4_mb_mark_bb(inode->i_sb, map.m_pblk,
1861 							map.m_len, 1);
1862 			} else {
1863 				cur = cur + (map.m_len ? map.m_len : 1);
1864 			}
1865 		}
1866 		iput(inode);
1867 	}
1868 }
1869 
1870 /*
1871  * Check if block is in excluded regions for block allocation. The simple
1872  * allocator that runs during replay phase is calls this function to see
1873  * if it is okay to use a block.
1874  */
1875 bool ext4_fc_replay_check_excluded(struct super_block *sb, ext4_fsblk_t blk)
1876 {
1877 	int i;
1878 	struct ext4_fc_replay_state *state;
1879 
1880 	state = &EXT4_SB(sb)->s_fc_replay_state;
1881 	for (i = 0; i < state->fc_regions_valid; i++) {
1882 		if (state->fc_regions[i].ino == 0 ||
1883 			state->fc_regions[i].len == 0)
1884 			continue;
1885 		if (blk >= state->fc_regions[i].pblk &&
1886 		    blk < state->fc_regions[i].pblk + state->fc_regions[i].len)
1887 			return true;
1888 	}
1889 	return false;
1890 }
1891 
1892 /* Cleanup function called after replay */
1893 void ext4_fc_replay_cleanup(struct super_block *sb)
1894 {
1895 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1896 
1897 	sbi->s_mount_state &= ~EXT4_FC_REPLAY;
1898 	kfree(sbi->s_fc_replay_state.fc_regions);
1899 	kfree(sbi->s_fc_replay_state.fc_modified_inodes);
1900 }
1901 
1902 /*
1903  * Recovery Scan phase handler
1904  *
1905  * This function is called during the scan phase and is responsible
1906  * for doing following things:
1907  * - Make sure the fast commit area has valid tags for replay
1908  * - Count number of tags that need to be replayed by the replay handler
1909  * - Verify CRC
1910  * - Create a list of excluded blocks for allocation during replay phase
1911  *
1912  * This function returns JBD2_FC_REPLAY_CONTINUE to indicate that SCAN is
1913  * incomplete and JBD2 should send more blocks. It returns JBD2_FC_REPLAY_STOP
1914  * to indicate that scan has finished and JBD2 can now start replay phase.
1915  * It returns a negative error to indicate that there was an error. At the end
1916  * of a successful scan phase, sbi->s_fc_replay_state.fc_replay_num_tags is set
1917  * to indicate the number of tags that need to replayed during the replay phase.
1918  */
1919 static int ext4_fc_replay_scan(journal_t *journal,
1920 				struct buffer_head *bh, int off,
1921 				tid_t expected_tid)
1922 {
1923 	struct super_block *sb = journal->j_private;
1924 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1925 	struct ext4_fc_replay_state *state;
1926 	int ret = JBD2_FC_REPLAY_CONTINUE;
1927 	struct ext4_fc_add_range *ext;
1928 	struct ext4_fc_tl *tl;
1929 	struct ext4_fc_tail *tail;
1930 	__u8 *start, *end;
1931 	struct ext4_fc_head *head;
1932 	struct ext4_extent *ex;
1933 
1934 	state = &sbi->s_fc_replay_state;
1935 
1936 	start = (u8 *)bh->b_data;
1937 	end = (__u8 *)bh->b_data + journal->j_blocksize - 1;
1938 
1939 	if (state->fc_replay_expected_off == 0) {
1940 		state->fc_cur_tag = 0;
1941 		state->fc_replay_num_tags = 0;
1942 		state->fc_crc = 0;
1943 		state->fc_regions = NULL;
1944 		state->fc_regions_valid = state->fc_regions_used =
1945 			state->fc_regions_size = 0;
1946 		/* Check if we can stop early */
1947 		if (le16_to_cpu(((struct ext4_fc_tl *)start)->fc_tag)
1948 			!= EXT4_FC_TAG_HEAD)
1949 			return 0;
1950 	}
1951 
1952 	if (off != state->fc_replay_expected_off) {
1953 		ret = -EFSCORRUPTED;
1954 		goto out_err;
1955 	}
1956 
1957 	state->fc_replay_expected_off++;
1958 	fc_for_each_tl(start, end, tl) {
1959 		jbd_debug(3, "Scan phase, tag:%s, blk %lld\n",
1960 			  tag2str(le16_to_cpu(tl->fc_tag)), bh->b_blocknr);
1961 		switch (le16_to_cpu(tl->fc_tag)) {
1962 		case EXT4_FC_TAG_ADD_RANGE:
1963 			ext = (struct ext4_fc_add_range *)ext4_fc_tag_val(tl);
1964 			ex = (struct ext4_extent *)&ext->fc_ex;
1965 			ret = ext4_fc_record_regions(sb,
1966 				le32_to_cpu(ext->fc_ino),
1967 				le32_to_cpu(ex->ee_block), ext4_ext_pblock(ex),
1968 				ext4_ext_get_actual_len(ex));
1969 			if (ret < 0)
1970 				break;
1971 			ret = JBD2_FC_REPLAY_CONTINUE;
1972 			fallthrough;
1973 		case EXT4_FC_TAG_DEL_RANGE:
1974 		case EXT4_FC_TAG_LINK:
1975 		case EXT4_FC_TAG_UNLINK:
1976 		case EXT4_FC_TAG_CREAT:
1977 		case EXT4_FC_TAG_INODE:
1978 		case EXT4_FC_TAG_PAD:
1979 			state->fc_cur_tag++;
1980 			state->fc_crc = ext4_chksum(sbi, state->fc_crc, tl,
1981 					sizeof(*tl) + ext4_fc_tag_len(tl));
1982 			break;
1983 		case EXT4_FC_TAG_TAIL:
1984 			state->fc_cur_tag++;
1985 			tail = (struct ext4_fc_tail *)ext4_fc_tag_val(tl);
1986 			state->fc_crc = ext4_chksum(sbi, state->fc_crc, tl,
1987 						sizeof(*tl) +
1988 						offsetof(struct ext4_fc_tail,
1989 						fc_crc));
1990 			if (le32_to_cpu(tail->fc_tid) == expected_tid &&
1991 				le32_to_cpu(tail->fc_crc) == state->fc_crc) {
1992 				state->fc_replay_num_tags = state->fc_cur_tag;
1993 				state->fc_regions_valid =
1994 					state->fc_regions_used;
1995 			} else {
1996 				ret = state->fc_replay_num_tags ?
1997 					JBD2_FC_REPLAY_STOP : -EFSBADCRC;
1998 			}
1999 			state->fc_crc = 0;
2000 			break;
2001 		case EXT4_FC_TAG_HEAD:
2002 			head = (struct ext4_fc_head *)ext4_fc_tag_val(tl);
2003 			if (le32_to_cpu(head->fc_features) &
2004 				~EXT4_FC_SUPPORTED_FEATURES) {
2005 				ret = -EOPNOTSUPP;
2006 				break;
2007 			}
2008 			if (le32_to_cpu(head->fc_tid) != expected_tid) {
2009 				ret = JBD2_FC_REPLAY_STOP;
2010 				break;
2011 			}
2012 			state->fc_cur_tag++;
2013 			state->fc_crc = ext4_chksum(sbi, state->fc_crc, tl,
2014 					sizeof(*tl) + ext4_fc_tag_len(tl));
2015 			break;
2016 		default:
2017 			ret = state->fc_replay_num_tags ?
2018 				JBD2_FC_REPLAY_STOP : -ECANCELED;
2019 		}
2020 		if (ret < 0 || ret == JBD2_FC_REPLAY_STOP)
2021 			break;
2022 	}
2023 
2024 out_err:
2025 	trace_ext4_fc_replay_scan(sb, ret, off);
2026 	return ret;
2027 }
2028 
2029 /*
2030  * Main recovery path entry point.
2031  * The meaning of return codes is similar as above.
2032  */
2033 static int ext4_fc_replay(journal_t *journal, struct buffer_head *bh,
2034 				enum passtype pass, int off, tid_t expected_tid)
2035 {
2036 	struct super_block *sb = journal->j_private;
2037 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2038 	struct ext4_fc_tl *tl;
2039 	__u8 *start, *end;
2040 	int ret = JBD2_FC_REPLAY_CONTINUE;
2041 	struct ext4_fc_replay_state *state = &sbi->s_fc_replay_state;
2042 	struct ext4_fc_tail *tail;
2043 
2044 	if (pass == PASS_SCAN) {
2045 		state->fc_current_pass = PASS_SCAN;
2046 		return ext4_fc_replay_scan(journal, bh, off, expected_tid);
2047 	}
2048 
2049 	if (state->fc_current_pass != pass) {
2050 		state->fc_current_pass = pass;
2051 		sbi->s_mount_state |= EXT4_FC_REPLAY;
2052 	}
2053 	if (!sbi->s_fc_replay_state.fc_replay_num_tags) {
2054 		jbd_debug(1, "Replay stops\n");
2055 		ext4_fc_set_bitmaps_and_counters(sb);
2056 		return 0;
2057 	}
2058 
2059 #ifdef CONFIG_EXT4_DEBUG
2060 	if (sbi->s_fc_debug_max_replay && off >= sbi->s_fc_debug_max_replay) {
2061 		pr_warn("Dropping fc block %d because max_replay set\n", off);
2062 		return JBD2_FC_REPLAY_STOP;
2063 	}
2064 #endif
2065 
2066 	start = (u8 *)bh->b_data;
2067 	end = (__u8 *)bh->b_data + journal->j_blocksize - 1;
2068 
2069 	fc_for_each_tl(start, end, tl) {
2070 		if (state->fc_replay_num_tags == 0) {
2071 			ret = JBD2_FC_REPLAY_STOP;
2072 			ext4_fc_set_bitmaps_and_counters(sb);
2073 			break;
2074 		}
2075 		jbd_debug(3, "Replay phase, tag:%s\n",
2076 				tag2str(le16_to_cpu(tl->fc_tag)));
2077 		state->fc_replay_num_tags--;
2078 		switch (le16_to_cpu(tl->fc_tag)) {
2079 		case EXT4_FC_TAG_LINK:
2080 			ret = ext4_fc_replay_link(sb, tl);
2081 			break;
2082 		case EXT4_FC_TAG_UNLINK:
2083 			ret = ext4_fc_replay_unlink(sb, tl);
2084 			break;
2085 		case EXT4_FC_TAG_ADD_RANGE:
2086 			ret = ext4_fc_replay_add_range(sb, tl);
2087 			break;
2088 		case EXT4_FC_TAG_CREAT:
2089 			ret = ext4_fc_replay_create(sb, tl);
2090 			break;
2091 		case EXT4_FC_TAG_DEL_RANGE:
2092 			ret = ext4_fc_replay_del_range(sb, tl);
2093 			break;
2094 		case EXT4_FC_TAG_INODE:
2095 			ret = ext4_fc_replay_inode(sb, tl);
2096 			break;
2097 		case EXT4_FC_TAG_PAD:
2098 			trace_ext4_fc_replay(sb, EXT4_FC_TAG_PAD, 0,
2099 				ext4_fc_tag_len(tl), 0);
2100 			break;
2101 		case EXT4_FC_TAG_TAIL:
2102 			trace_ext4_fc_replay(sb, EXT4_FC_TAG_TAIL, 0,
2103 				ext4_fc_tag_len(tl), 0);
2104 			tail = (struct ext4_fc_tail *)ext4_fc_tag_val(tl);
2105 			WARN_ON(le32_to_cpu(tail->fc_tid) != expected_tid);
2106 			break;
2107 		case EXT4_FC_TAG_HEAD:
2108 			break;
2109 		default:
2110 			trace_ext4_fc_replay(sb, le16_to_cpu(tl->fc_tag), 0,
2111 				ext4_fc_tag_len(tl), 0);
2112 			ret = -ECANCELED;
2113 			break;
2114 		}
2115 		if (ret < 0)
2116 			break;
2117 		ret = JBD2_FC_REPLAY_CONTINUE;
2118 	}
2119 	return ret;
2120 }
2121 
2122 void ext4_fc_init(struct super_block *sb, journal_t *journal)
2123 {
2124 	/*
2125 	 * We set replay callback even if fast commit disabled because we may
2126 	 * could still have fast commit blocks that need to be replayed even if
2127 	 * fast commit has now been turned off.
2128 	 */
2129 	journal->j_fc_replay_callback = ext4_fc_replay;
2130 	if (!test_opt2(sb, JOURNAL_FAST_COMMIT))
2131 		return;
2132 	journal->j_fc_cleanup_callback = ext4_fc_cleanup;
2133 }
2134 
2135 static const char *fc_ineligible_reasons[] = {
2136 	"Extended attributes changed",
2137 	"Cross rename",
2138 	"Journal flag changed",
2139 	"Insufficient memory",
2140 	"Swap boot",
2141 	"Resize",
2142 	"Dir renamed",
2143 	"Falloc range op",
2144 	"Data journalling",
2145 	"FC Commit Failed"
2146 };
2147 
2148 int ext4_fc_info_show(struct seq_file *seq, void *v)
2149 {
2150 	struct ext4_sb_info *sbi = EXT4_SB((struct super_block *)seq->private);
2151 	struct ext4_fc_stats *stats = &sbi->s_fc_stats;
2152 	int i;
2153 
2154 	if (v != SEQ_START_TOKEN)
2155 		return 0;
2156 
2157 	seq_printf(seq,
2158 		"fc stats:\n%ld commits\n%ld ineligible\n%ld numblks\n%lluus avg_commit_time\n",
2159 		   stats->fc_num_commits, stats->fc_ineligible_commits,
2160 		   stats->fc_numblks,
2161 		   div_u64(sbi->s_fc_avg_commit_time, 1000));
2162 	seq_puts(seq, "Ineligible reasons:\n");
2163 	for (i = 0; i < EXT4_FC_REASON_MAX; i++)
2164 		seq_printf(seq, "\"%s\":\t%d\n", fc_ineligible_reasons[i],
2165 			stats->fc_ineligible_reason_count[i]);
2166 
2167 	return 0;
2168 }
2169 
2170 int __init ext4_fc_init_dentry_cache(void)
2171 {
2172 	ext4_fc_dentry_cachep = KMEM_CACHE(ext4_fc_dentry_update,
2173 					   SLAB_RECLAIM_ACCOUNT);
2174 
2175 	if (ext4_fc_dentry_cachep == NULL)
2176 		return -ENOMEM;
2177 
2178 	return 0;
2179 }
2180