xref: /openbmc/linux/fs/ext4/fast_commit.c (revision 31e67366)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /*
4  * fs/ext4/fast_commit.c
5  *
6  * Written by Harshad Shirwadkar <harshadshirwadkar@gmail.com>
7  *
8  * Ext4 fast commits routines.
9  */
10 #include "ext4.h"
11 #include "ext4_jbd2.h"
12 #include "ext4_extents.h"
13 #include "mballoc.h"
14 
15 /*
16  * Ext4 Fast Commits
17  * -----------------
18  *
19  * Ext4 fast commits implement fine grained journalling for Ext4.
20  *
21  * Fast commits are organized as a log of tag-length-value (TLV) structs. (See
22  * struct ext4_fc_tl). Each TLV contains some delta that is replayed TLV by
23  * TLV during the recovery phase. For the scenarios for which we currently
24  * don't have replay code, fast commit falls back to full commits.
25  * Fast commits record delta in one of the following three categories.
26  *
27  * (A) Directory entry updates:
28  *
29  * - EXT4_FC_TAG_UNLINK		- records directory entry unlink
30  * - EXT4_FC_TAG_LINK		- records directory entry link
31  * - EXT4_FC_TAG_CREAT		- records inode and directory entry creation
32  *
33  * (B) File specific data range updates:
34  *
35  * - EXT4_FC_TAG_ADD_RANGE	- records addition of new blocks to an inode
36  * - EXT4_FC_TAG_DEL_RANGE	- records deletion of blocks from an inode
37  *
38  * (C) Inode metadata (mtime / ctime etc):
39  *
40  * - EXT4_FC_TAG_INODE		- record the inode that should be replayed
41  *				  during recovery. Note that iblocks field is
42  *				  not replayed and instead derived during
43  *				  replay.
44  * Commit Operation
45  * ----------------
46  * With fast commits, we maintain all the directory entry operations in the
47  * order in which they are issued in an in-memory queue. This queue is flushed
48  * to disk during the commit operation. We also maintain a list of inodes
49  * that need to be committed during a fast commit in another in memory queue of
50  * inodes. During the commit operation, we commit in the following order:
51  *
52  * [1] Lock inodes for any further data updates by setting COMMITTING state
53  * [2] Submit data buffers of all the inodes
54  * [3] Wait for [2] to complete
55  * [4] Commit all the directory entry updates in the fast commit space
56  * [5] Commit all the changed inode structures
57  * [6] Write tail tag (this tag ensures the atomicity, please read the following
58  *     section for more details).
59  * [7] Wait for [4], [5] and [6] to complete.
60  *
61  * All the inode updates must call ext4_fc_start_update() before starting an
62  * update. If such an ongoing update is present, fast commit waits for it to
63  * complete. The completion of such an update is marked by
64  * ext4_fc_stop_update().
65  *
66  * Fast Commit Ineligibility
67  * -------------------------
68  * Not all operations are supported by fast commits today (e.g extended
69  * attributes). Fast commit ineligiblity is marked by calling one of the
70  * two following functions:
71  *
72  * - ext4_fc_mark_ineligible(): This makes next fast commit operation to fall
73  *   back to full commit. This is useful in case of transient errors.
74  *
75  * - ext4_fc_start_ineligible() and ext4_fc_stop_ineligible() - This makes all
76  *   the fast commits happening between ext4_fc_start_ineligible() and
77  *   ext4_fc_stop_ineligible() and one fast commit after the call to
78  *   ext4_fc_stop_ineligible() to fall back to full commits. It is important to
79  *   make one more fast commit to fall back to full commit after stop call so
80  *   that it guaranteed that the fast commit ineligible operation contained
81  *   within ext4_fc_start_ineligible() and ext4_fc_stop_ineligible() is
82  *   followed by at least 1 full commit.
83  *
84  * Atomicity of commits
85  * --------------------
86  * In order to guarantee atomicity during the commit operation, fast commit
87  * uses "EXT4_FC_TAG_TAIL" tag that marks a fast commit as complete. Tail
88  * tag contains CRC of the contents and TID of the transaction after which
89  * this fast commit should be applied. Recovery code replays fast commit
90  * logs only if there's at least 1 valid tail present. For every fast commit
91  * operation, there is 1 tail. This means, we may end up with multiple tails
92  * in the fast commit space. Here's an example:
93  *
94  * - Create a new file A and remove existing file B
95  * - fsync()
96  * - Append contents to file A
97  * - Truncate file A
98  * - fsync()
99  *
100  * The fast commit space at the end of above operations would look like this:
101  *      [HEAD] [CREAT A] [UNLINK B] [TAIL] [ADD_RANGE A] [DEL_RANGE A] [TAIL]
102  *             |<---  Fast Commit 1   --->|<---      Fast Commit 2     ---->|
103  *
104  * Replay code should thus check for all the valid tails in the FC area.
105  *
106  * Fast Commit Replay Idempotence
107  * ------------------------------
108  *
109  * Fast commits tags are idempotent in nature provided the recovery code follows
110  * certain rules. The guiding principle that the commit path follows while
111  * committing is that it stores the result of a particular operation instead of
112  * storing the procedure.
113  *
114  * Let's consider this rename operation: 'mv /a /b'. Let's assume dirent '/a'
115  * was associated with inode 10. During fast commit, instead of storing this
116  * operation as a procedure "rename a to b", we store the resulting file system
117  * state as a "series" of outcomes:
118  *
119  * - Link dirent b to inode 10
120  * - Unlink dirent a
121  * - Inode <10> with valid refcount
122  *
123  * Now when recovery code runs, it needs "enforce" this state on the file
124  * system. This is what guarantees idempotence of fast commit replay.
125  *
126  * Let's take an example of a procedure that is not idempotent and see how fast
127  * commits make it idempotent. Consider following sequence of operations:
128  *
129  *     rm A;    mv B A;    read A
130  *  (x)     (y)        (z)
131  *
132  * (x), (y) and (z) are the points at which we can crash. If we store this
133  * sequence of operations as is then the replay is not idempotent. Let's say
134  * while in replay, we crash at (z). During the second replay, file A (which was
135  * actually created as a result of "mv B A" operation) would get deleted. Thus,
136  * file named A would be absent when we try to read A. So, this sequence of
137  * operations is not idempotent. However, as mentioned above, instead of storing
138  * the procedure fast commits store the outcome of each procedure. Thus the fast
139  * commit log for above procedure would be as follows:
140  *
141  * (Let's assume dirent A was linked to inode 10 and dirent B was linked to
142  * inode 11 before the replay)
143  *
144  *    [Unlink A]   [Link A to inode 11]   [Unlink B]   [Inode 11]
145  * (w)          (x)                    (y)          (z)
146  *
147  * If we crash at (z), we will have file A linked to inode 11. During the second
148  * replay, we will remove file A (inode 11). But we will create it back and make
149  * it point to inode 11. We won't find B, so we'll just skip that step. At this
150  * point, the refcount for inode 11 is not reliable, but that gets fixed by the
151  * replay of last inode 11 tag. Crashes at points (w), (x) and (y) get handled
152  * similarly. Thus, by converting a non-idempotent procedure into a series of
153  * idempotent outcomes, fast commits ensured idempotence during the replay.
154  *
155  * TODOs
156  * -----
157  *
158  * 0) Fast commit replay path hardening: Fast commit replay code should use
159  *    journal handles to make sure all the updates it does during the replay
160  *    path are atomic. With that if we crash during fast commit replay, after
161  *    trying to do recovery again, we will find a file system where fast commit
162  *    area is invalid (because new full commit would be found). In order to deal
163  *    with that, fast commit replay code should ensure that the "FC_REPLAY"
164  *    superblock state is persisted before starting the replay, so that after
165  *    the crash, fast commit recovery code can look at that flag and perform
166  *    fast commit recovery even if that area is invalidated by later full
167  *    commits.
168  *
169  * 1) Make fast commit atomic updates more fine grained. Today, a fast commit
170  *    eligible update must be protected within ext4_fc_start_update() and
171  *    ext4_fc_stop_update(). These routines are called at much higher
172  *    routines. This can be made more fine grained by combining with
173  *    ext4_journal_start().
174  *
175  * 2) Same above for ext4_fc_start_ineligible() and ext4_fc_stop_ineligible()
176  *
177  * 3) Handle more ineligible cases.
178  */
179 
180 #include <trace/events/ext4.h>
181 static struct kmem_cache *ext4_fc_dentry_cachep;
182 
183 static void ext4_end_buffer_io_sync(struct buffer_head *bh, int uptodate)
184 {
185 	BUFFER_TRACE(bh, "");
186 	if (uptodate) {
187 		ext4_debug("%s: Block %lld up-to-date",
188 			   __func__, bh->b_blocknr);
189 		set_buffer_uptodate(bh);
190 	} else {
191 		ext4_debug("%s: Block %lld not up-to-date",
192 			   __func__, bh->b_blocknr);
193 		clear_buffer_uptodate(bh);
194 	}
195 
196 	unlock_buffer(bh);
197 }
198 
199 static inline void ext4_fc_reset_inode(struct inode *inode)
200 {
201 	struct ext4_inode_info *ei = EXT4_I(inode);
202 
203 	ei->i_fc_lblk_start = 0;
204 	ei->i_fc_lblk_len = 0;
205 }
206 
207 void ext4_fc_init_inode(struct inode *inode)
208 {
209 	struct ext4_inode_info *ei = EXT4_I(inode);
210 
211 	ext4_fc_reset_inode(inode);
212 	ext4_clear_inode_state(inode, EXT4_STATE_FC_COMMITTING);
213 	INIT_LIST_HEAD(&ei->i_fc_list);
214 	init_waitqueue_head(&ei->i_fc_wait);
215 	atomic_set(&ei->i_fc_updates, 0);
216 }
217 
218 /* This function must be called with sbi->s_fc_lock held. */
219 static void ext4_fc_wait_committing_inode(struct inode *inode)
220 __releases(&EXT4_SB(inode->i_sb)->s_fc_lock)
221 {
222 	wait_queue_head_t *wq;
223 	struct ext4_inode_info *ei = EXT4_I(inode);
224 
225 #if (BITS_PER_LONG < 64)
226 	DEFINE_WAIT_BIT(wait, &ei->i_state_flags,
227 			EXT4_STATE_FC_COMMITTING);
228 	wq = bit_waitqueue(&ei->i_state_flags,
229 				EXT4_STATE_FC_COMMITTING);
230 #else
231 	DEFINE_WAIT_BIT(wait, &ei->i_flags,
232 			EXT4_STATE_FC_COMMITTING);
233 	wq = bit_waitqueue(&ei->i_flags,
234 				EXT4_STATE_FC_COMMITTING);
235 #endif
236 	lockdep_assert_held(&EXT4_SB(inode->i_sb)->s_fc_lock);
237 	prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
238 	spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
239 	schedule();
240 	finish_wait(wq, &wait.wq_entry);
241 }
242 
243 /*
244  * Inform Ext4's fast about start of an inode update
245  *
246  * This function is called by the high level call VFS callbacks before
247  * performing any inode update. This function blocks if there's an ongoing
248  * fast commit on the inode in question.
249  */
250 void ext4_fc_start_update(struct inode *inode)
251 {
252 	struct ext4_inode_info *ei = EXT4_I(inode);
253 
254 	if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) ||
255 	    (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY))
256 		return;
257 
258 restart:
259 	spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock);
260 	if (list_empty(&ei->i_fc_list))
261 		goto out;
262 
263 	if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
264 		ext4_fc_wait_committing_inode(inode);
265 		goto restart;
266 	}
267 out:
268 	atomic_inc(&ei->i_fc_updates);
269 	spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
270 }
271 
272 /*
273  * Stop inode update and wake up waiting fast commits if any.
274  */
275 void ext4_fc_stop_update(struct inode *inode)
276 {
277 	struct ext4_inode_info *ei = EXT4_I(inode);
278 
279 	if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) ||
280 	    (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY))
281 		return;
282 
283 	if (atomic_dec_and_test(&ei->i_fc_updates))
284 		wake_up_all(&ei->i_fc_wait);
285 }
286 
287 /*
288  * Remove inode from fast commit list. If the inode is being committed
289  * we wait until inode commit is done.
290  */
291 void ext4_fc_del(struct inode *inode)
292 {
293 	struct ext4_inode_info *ei = EXT4_I(inode);
294 
295 	if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) ||
296 	    (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY))
297 		return;
298 
299 restart:
300 	spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock);
301 	if (list_empty(&ei->i_fc_list)) {
302 		spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
303 		return;
304 	}
305 
306 	if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
307 		ext4_fc_wait_committing_inode(inode);
308 		goto restart;
309 	}
310 	list_del_init(&ei->i_fc_list);
311 	spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
312 }
313 
314 /*
315  * Mark file system as fast commit ineligible. This means that next commit
316  * operation would result in a full jbd2 commit.
317  */
318 void ext4_fc_mark_ineligible(struct super_block *sb, int reason)
319 {
320 	struct ext4_sb_info *sbi = EXT4_SB(sb);
321 
322 	if (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
323 	    (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))
324 		return;
325 
326 	ext4_set_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
327 	WARN_ON(reason >= EXT4_FC_REASON_MAX);
328 	sbi->s_fc_stats.fc_ineligible_reason_count[reason]++;
329 }
330 
331 /*
332  * Start a fast commit ineligible update. Any commits that happen while
333  * such an operation is in progress fall back to full commits.
334  */
335 void ext4_fc_start_ineligible(struct super_block *sb, int reason)
336 {
337 	struct ext4_sb_info *sbi = EXT4_SB(sb);
338 
339 	if (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
340 	    (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))
341 		return;
342 
343 	WARN_ON(reason >= EXT4_FC_REASON_MAX);
344 	sbi->s_fc_stats.fc_ineligible_reason_count[reason]++;
345 	atomic_inc(&sbi->s_fc_ineligible_updates);
346 }
347 
348 /*
349  * Stop a fast commit ineligible update. We set EXT4_MF_FC_INELIGIBLE flag here
350  * to ensure that after stopping the ineligible update, at least one full
351  * commit takes place.
352  */
353 void ext4_fc_stop_ineligible(struct super_block *sb)
354 {
355 	if (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
356 	    (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))
357 		return;
358 
359 	ext4_set_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
360 	atomic_dec(&EXT4_SB(sb)->s_fc_ineligible_updates);
361 }
362 
363 static inline int ext4_fc_is_ineligible(struct super_block *sb)
364 {
365 	return (ext4_test_mount_flag(sb, EXT4_MF_FC_INELIGIBLE) ||
366 		atomic_read(&EXT4_SB(sb)->s_fc_ineligible_updates));
367 }
368 
369 /*
370  * Generic fast commit tracking function. If this is the first time this we are
371  * called after a full commit, we initialize fast commit fields and then call
372  * __fc_track_fn() with update = 0. If we have already been called after a full
373  * commit, we pass update = 1. Based on that, the track function can determine
374  * if it needs to track a field for the first time or if it needs to just
375  * update the previously tracked value.
376  *
377  * If enqueue is set, this function enqueues the inode in fast commit list.
378  */
379 static int ext4_fc_track_template(
380 	handle_t *handle, struct inode *inode,
381 	int (*__fc_track_fn)(struct inode *, void *, bool),
382 	void *args, int enqueue)
383 {
384 	bool update = false;
385 	struct ext4_inode_info *ei = EXT4_I(inode);
386 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
387 	tid_t tid = 0;
388 	int ret;
389 
390 	if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) ||
391 	    (sbi->s_mount_state & EXT4_FC_REPLAY))
392 		return -EOPNOTSUPP;
393 
394 	if (ext4_fc_is_ineligible(inode->i_sb))
395 		return -EINVAL;
396 
397 	tid = handle->h_transaction->t_tid;
398 	mutex_lock(&ei->i_fc_lock);
399 	if (tid == ei->i_sync_tid) {
400 		update = true;
401 	} else {
402 		ext4_fc_reset_inode(inode);
403 		ei->i_sync_tid = tid;
404 	}
405 	ret = __fc_track_fn(inode, args, update);
406 	mutex_unlock(&ei->i_fc_lock);
407 
408 	if (!enqueue)
409 		return ret;
410 
411 	spin_lock(&sbi->s_fc_lock);
412 	if (list_empty(&EXT4_I(inode)->i_fc_list))
413 		list_add_tail(&EXT4_I(inode)->i_fc_list,
414 				(ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_COMMITTING)) ?
415 				&sbi->s_fc_q[FC_Q_STAGING] :
416 				&sbi->s_fc_q[FC_Q_MAIN]);
417 	spin_unlock(&sbi->s_fc_lock);
418 
419 	return ret;
420 }
421 
422 struct __track_dentry_update_args {
423 	struct dentry *dentry;
424 	int op;
425 };
426 
427 /* __track_fn for directory entry updates. Called with ei->i_fc_lock. */
428 static int __track_dentry_update(struct inode *inode, void *arg, bool update)
429 {
430 	struct ext4_fc_dentry_update *node;
431 	struct ext4_inode_info *ei = EXT4_I(inode);
432 	struct __track_dentry_update_args *dentry_update =
433 		(struct __track_dentry_update_args *)arg;
434 	struct dentry *dentry = dentry_update->dentry;
435 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
436 
437 	mutex_unlock(&ei->i_fc_lock);
438 	node = kmem_cache_alloc(ext4_fc_dentry_cachep, GFP_NOFS);
439 	if (!node) {
440 		ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM);
441 		mutex_lock(&ei->i_fc_lock);
442 		return -ENOMEM;
443 	}
444 
445 	node->fcd_op = dentry_update->op;
446 	node->fcd_parent = dentry->d_parent->d_inode->i_ino;
447 	node->fcd_ino = inode->i_ino;
448 	if (dentry->d_name.len > DNAME_INLINE_LEN) {
449 		node->fcd_name.name = kmalloc(dentry->d_name.len, GFP_NOFS);
450 		if (!node->fcd_name.name) {
451 			kmem_cache_free(ext4_fc_dentry_cachep, node);
452 			ext4_fc_mark_ineligible(inode->i_sb,
453 				EXT4_FC_REASON_NOMEM);
454 			mutex_lock(&ei->i_fc_lock);
455 			return -ENOMEM;
456 		}
457 		memcpy((u8 *)node->fcd_name.name, dentry->d_name.name,
458 			dentry->d_name.len);
459 	} else {
460 		memcpy(node->fcd_iname, dentry->d_name.name,
461 			dentry->d_name.len);
462 		node->fcd_name.name = node->fcd_iname;
463 	}
464 	node->fcd_name.len = dentry->d_name.len;
465 
466 	spin_lock(&sbi->s_fc_lock);
467 	if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_COMMITTING))
468 		list_add_tail(&node->fcd_list,
469 				&sbi->s_fc_dentry_q[FC_Q_STAGING]);
470 	else
471 		list_add_tail(&node->fcd_list, &sbi->s_fc_dentry_q[FC_Q_MAIN]);
472 	spin_unlock(&sbi->s_fc_lock);
473 	mutex_lock(&ei->i_fc_lock);
474 
475 	return 0;
476 }
477 
478 void __ext4_fc_track_unlink(handle_t *handle,
479 		struct inode *inode, struct dentry *dentry)
480 {
481 	struct __track_dentry_update_args args;
482 	int ret;
483 
484 	args.dentry = dentry;
485 	args.op = EXT4_FC_TAG_UNLINK;
486 
487 	ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
488 					(void *)&args, 0);
489 	trace_ext4_fc_track_unlink(inode, dentry, ret);
490 }
491 
492 void ext4_fc_track_unlink(handle_t *handle, struct dentry *dentry)
493 {
494 	__ext4_fc_track_unlink(handle, d_inode(dentry), dentry);
495 }
496 
497 void __ext4_fc_track_link(handle_t *handle,
498 	struct inode *inode, struct dentry *dentry)
499 {
500 	struct __track_dentry_update_args args;
501 	int ret;
502 
503 	args.dentry = dentry;
504 	args.op = EXT4_FC_TAG_LINK;
505 
506 	ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
507 					(void *)&args, 0);
508 	trace_ext4_fc_track_link(inode, dentry, ret);
509 }
510 
511 void ext4_fc_track_link(handle_t *handle, struct dentry *dentry)
512 {
513 	__ext4_fc_track_link(handle, d_inode(dentry), dentry);
514 }
515 
516 void ext4_fc_track_create(handle_t *handle, struct dentry *dentry)
517 {
518 	struct __track_dentry_update_args args;
519 	struct inode *inode = d_inode(dentry);
520 	int ret;
521 
522 	args.dentry = dentry;
523 	args.op = EXT4_FC_TAG_CREAT;
524 
525 	ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
526 					(void *)&args, 0);
527 	trace_ext4_fc_track_create(inode, dentry, ret);
528 }
529 
530 /* __track_fn for inode tracking */
531 static int __track_inode(struct inode *inode, void *arg, bool update)
532 {
533 	if (update)
534 		return -EEXIST;
535 
536 	EXT4_I(inode)->i_fc_lblk_len = 0;
537 
538 	return 0;
539 }
540 
541 void ext4_fc_track_inode(handle_t *handle, struct inode *inode)
542 {
543 	int ret;
544 
545 	if (S_ISDIR(inode->i_mode))
546 		return;
547 
548 	if (ext4_should_journal_data(inode)) {
549 		ext4_fc_mark_ineligible(inode->i_sb,
550 					EXT4_FC_REASON_INODE_JOURNAL_DATA);
551 		return;
552 	}
553 
554 	ret = ext4_fc_track_template(handle, inode, __track_inode, NULL, 1);
555 	trace_ext4_fc_track_inode(inode, ret);
556 }
557 
558 struct __track_range_args {
559 	ext4_lblk_t start, end;
560 };
561 
562 /* __track_fn for tracking data updates */
563 static int __track_range(struct inode *inode, void *arg, bool update)
564 {
565 	struct ext4_inode_info *ei = EXT4_I(inode);
566 	ext4_lblk_t oldstart;
567 	struct __track_range_args *__arg =
568 		(struct __track_range_args *)arg;
569 
570 	if (inode->i_ino < EXT4_FIRST_INO(inode->i_sb)) {
571 		ext4_debug("Special inode %ld being modified\n", inode->i_ino);
572 		return -ECANCELED;
573 	}
574 
575 	oldstart = ei->i_fc_lblk_start;
576 
577 	if (update && ei->i_fc_lblk_len > 0) {
578 		ei->i_fc_lblk_start = min(ei->i_fc_lblk_start, __arg->start);
579 		ei->i_fc_lblk_len =
580 			max(oldstart + ei->i_fc_lblk_len - 1, __arg->end) -
581 				ei->i_fc_lblk_start + 1;
582 	} else {
583 		ei->i_fc_lblk_start = __arg->start;
584 		ei->i_fc_lblk_len = __arg->end - __arg->start + 1;
585 	}
586 
587 	return 0;
588 }
589 
590 void ext4_fc_track_range(handle_t *handle, struct inode *inode, ext4_lblk_t start,
591 			 ext4_lblk_t end)
592 {
593 	struct __track_range_args args;
594 	int ret;
595 
596 	if (S_ISDIR(inode->i_mode))
597 		return;
598 
599 	args.start = start;
600 	args.end = end;
601 
602 	ret = ext4_fc_track_template(handle, inode,  __track_range, &args, 1);
603 
604 	trace_ext4_fc_track_range(inode, start, end, ret);
605 }
606 
607 static void ext4_fc_submit_bh(struct super_block *sb, bool is_tail)
608 {
609 	int write_flags = REQ_SYNC;
610 	struct buffer_head *bh = EXT4_SB(sb)->s_fc_bh;
611 
612 	/* Add REQ_FUA | REQ_PREFLUSH only its tail */
613 	if (test_opt(sb, BARRIER) && is_tail)
614 		write_flags |= REQ_FUA | REQ_PREFLUSH;
615 	lock_buffer(bh);
616 	set_buffer_dirty(bh);
617 	set_buffer_uptodate(bh);
618 	bh->b_end_io = ext4_end_buffer_io_sync;
619 	submit_bh(REQ_OP_WRITE, write_flags, bh);
620 	EXT4_SB(sb)->s_fc_bh = NULL;
621 }
622 
623 /* Ext4 commit path routines */
624 
625 /* memzero and update CRC */
626 static void *ext4_fc_memzero(struct super_block *sb, void *dst, int len,
627 				u32 *crc)
628 {
629 	void *ret;
630 
631 	ret = memset(dst, 0, len);
632 	if (crc)
633 		*crc = ext4_chksum(EXT4_SB(sb), *crc, dst, len);
634 	return ret;
635 }
636 
637 /*
638  * Allocate len bytes on a fast commit buffer.
639  *
640  * During the commit time this function is used to manage fast commit
641  * block space. We don't split a fast commit log onto different
642  * blocks. So this function makes sure that if there's not enough space
643  * on the current block, the remaining space in the current block is
644  * marked as unused by adding EXT4_FC_TAG_PAD tag. In that case,
645  * new block is from jbd2 and CRC is updated to reflect the padding
646  * we added.
647  */
648 static u8 *ext4_fc_reserve_space(struct super_block *sb, int len, u32 *crc)
649 {
650 	struct ext4_fc_tl *tl;
651 	struct ext4_sb_info *sbi = EXT4_SB(sb);
652 	struct buffer_head *bh;
653 	int bsize = sbi->s_journal->j_blocksize;
654 	int ret, off = sbi->s_fc_bytes % bsize;
655 	int pad_len;
656 
657 	/*
658 	 * After allocating len, we should have space at least for a 0 byte
659 	 * padding.
660 	 */
661 	if (len + sizeof(struct ext4_fc_tl) > bsize)
662 		return NULL;
663 
664 	if (bsize - off - 1 > len + sizeof(struct ext4_fc_tl)) {
665 		/*
666 		 * Only allocate from current buffer if we have enough space for
667 		 * this request AND we have space to add a zero byte padding.
668 		 */
669 		if (!sbi->s_fc_bh) {
670 			ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
671 			if (ret)
672 				return NULL;
673 			sbi->s_fc_bh = bh;
674 		}
675 		sbi->s_fc_bytes += len;
676 		return sbi->s_fc_bh->b_data + off;
677 	}
678 	/* Need to add PAD tag */
679 	tl = (struct ext4_fc_tl *)(sbi->s_fc_bh->b_data + off);
680 	tl->fc_tag = cpu_to_le16(EXT4_FC_TAG_PAD);
681 	pad_len = bsize - off - 1 - sizeof(struct ext4_fc_tl);
682 	tl->fc_len = cpu_to_le16(pad_len);
683 	if (crc)
684 		*crc = ext4_chksum(sbi, *crc, tl, sizeof(*tl));
685 	if (pad_len > 0)
686 		ext4_fc_memzero(sb, tl + 1, pad_len, crc);
687 	ext4_fc_submit_bh(sb, false);
688 
689 	ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
690 	if (ret)
691 		return NULL;
692 	sbi->s_fc_bh = bh;
693 	sbi->s_fc_bytes = (sbi->s_fc_bytes / bsize + 1) * bsize + len;
694 	return sbi->s_fc_bh->b_data;
695 }
696 
697 /* memcpy to fc reserved space and update CRC */
698 static void *ext4_fc_memcpy(struct super_block *sb, void *dst, const void *src,
699 				int len, u32 *crc)
700 {
701 	if (crc)
702 		*crc = ext4_chksum(EXT4_SB(sb), *crc, src, len);
703 	return memcpy(dst, src, len);
704 }
705 
706 /*
707  * Complete a fast commit by writing tail tag.
708  *
709  * Writing tail tag marks the end of a fast commit. In order to guarantee
710  * atomicity, after writing tail tag, even if there's space remaining
711  * in the block, next commit shouldn't use it. That's why tail tag
712  * has the length as that of the remaining space on the block.
713  */
714 static int ext4_fc_write_tail(struct super_block *sb, u32 crc)
715 {
716 	struct ext4_sb_info *sbi = EXT4_SB(sb);
717 	struct ext4_fc_tl tl;
718 	struct ext4_fc_tail tail;
719 	int off, bsize = sbi->s_journal->j_blocksize;
720 	u8 *dst;
721 
722 	/*
723 	 * ext4_fc_reserve_space takes care of allocating an extra block if
724 	 * there's no enough space on this block for accommodating this tail.
725 	 */
726 	dst = ext4_fc_reserve_space(sb, sizeof(tl) + sizeof(tail), &crc);
727 	if (!dst)
728 		return -ENOSPC;
729 
730 	off = sbi->s_fc_bytes % bsize;
731 
732 	tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_TAIL);
733 	tl.fc_len = cpu_to_le16(bsize - off - 1 + sizeof(struct ext4_fc_tail));
734 	sbi->s_fc_bytes = round_up(sbi->s_fc_bytes, bsize);
735 
736 	ext4_fc_memcpy(sb, dst, &tl, sizeof(tl), &crc);
737 	dst += sizeof(tl);
738 	tail.fc_tid = cpu_to_le32(sbi->s_journal->j_running_transaction->t_tid);
739 	ext4_fc_memcpy(sb, dst, &tail.fc_tid, sizeof(tail.fc_tid), &crc);
740 	dst += sizeof(tail.fc_tid);
741 	tail.fc_crc = cpu_to_le32(crc);
742 	ext4_fc_memcpy(sb, dst, &tail.fc_crc, sizeof(tail.fc_crc), NULL);
743 
744 	ext4_fc_submit_bh(sb, true);
745 
746 	return 0;
747 }
748 
749 /*
750  * Adds tag, length, value and updates CRC. Returns true if tlv was added.
751  * Returns false if there's not enough space.
752  */
753 static bool ext4_fc_add_tlv(struct super_block *sb, u16 tag, u16 len, u8 *val,
754 			   u32 *crc)
755 {
756 	struct ext4_fc_tl tl;
757 	u8 *dst;
758 
759 	dst = ext4_fc_reserve_space(sb, sizeof(tl) + len, crc);
760 	if (!dst)
761 		return false;
762 
763 	tl.fc_tag = cpu_to_le16(tag);
764 	tl.fc_len = cpu_to_le16(len);
765 
766 	ext4_fc_memcpy(sb, dst, &tl, sizeof(tl), crc);
767 	ext4_fc_memcpy(sb, dst + sizeof(tl), val, len, crc);
768 
769 	return true;
770 }
771 
772 /* Same as above, but adds dentry tlv. */
773 static  bool ext4_fc_add_dentry_tlv(struct super_block *sb, u16 tag,
774 					int parent_ino, int ino, int dlen,
775 					const unsigned char *dname,
776 					u32 *crc)
777 {
778 	struct ext4_fc_dentry_info fcd;
779 	struct ext4_fc_tl tl;
780 	u8 *dst = ext4_fc_reserve_space(sb, sizeof(tl) + sizeof(fcd) + dlen,
781 					crc);
782 
783 	if (!dst)
784 		return false;
785 
786 	fcd.fc_parent_ino = cpu_to_le32(parent_ino);
787 	fcd.fc_ino = cpu_to_le32(ino);
788 	tl.fc_tag = cpu_to_le16(tag);
789 	tl.fc_len = cpu_to_le16(sizeof(fcd) + dlen);
790 	ext4_fc_memcpy(sb, dst, &tl, sizeof(tl), crc);
791 	dst += sizeof(tl);
792 	ext4_fc_memcpy(sb, dst, &fcd, sizeof(fcd), crc);
793 	dst += sizeof(fcd);
794 	ext4_fc_memcpy(sb, dst, dname, dlen, crc);
795 	dst += dlen;
796 
797 	return true;
798 }
799 
800 /*
801  * Writes inode in the fast commit space under TLV with tag @tag.
802  * Returns 0 on success, error on failure.
803  */
804 static int ext4_fc_write_inode(struct inode *inode, u32 *crc)
805 {
806 	struct ext4_inode_info *ei = EXT4_I(inode);
807 	int inode_len = EXT4_GOOD_OLD_INODE_SIZE;
808 	int ret;
809 	struct ext4_iloc iloc;
810 	struct ext4_fc_inode fc_inode;
811 	struct ext4_fc_tl tl;
812 	u8 *dst;
813 
814 	ret = ext4_get_inode_loc(inode, &iloc);
815 	if (ret)
816 		return ret;
817 
818 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE)
819 		inode_len += ei->i_extra_isize;
820 
821 	fc_inode.fc_ino = cpu_to_le32(inode->i_ino);
822 	tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_INODE);
823 	tl.fc_len = cpu_to_le16(inode_len + sizeof(fc_inode.fc_ino));
824 
825 	dst = ext4_fc_reserve_space(inode->i_sb,
826 			sizeof(tl) + inode_len + sizeof(fc_inode.fc_ino), crc);
827 	if (!dst)
828 		return -ECANCELED;
829 
830 	if (!ext4_fc_memcpy(inode->i_sb, dst, &tl, sizeof(tl), crc))
831 		return -ECANCELED;
832 	dst += sizeof(tl);
833 	if (!ext4_fc_memcpy(inode->i_sb, dst, &fc_inode, sizeof(fc_inode), crc))
834 		return -ECANCELED;
835 	dst += sizeof(fc_inode);
836 	if (!ext4_fc_memcpy(inode->i_sb, dst, (u8 *)ext4_raw_inode(&iloc),
837 					inode_len, crc))
838 		return -ECANCELED;
839 
840 	return 0;
841 }
842 
843 /*
844  * Writes updated data ranges for the inode in question. Updates CRC.
845  * Returns 0 on success, error otherwise.
846  */
847 static int ext4_fc_write_inode_data(struct inode *inode, u32 *crc)
848 {
849 	ext4_lblk_t old_blk_size, cur_lblk_off, new_blk_size;
850 	struct ext4_inode_info *ei = EXT4_I(inode);
851 	struct ext4_map_blocks map;
852 	struct ext4_fc_add_range fc_ext;
853 	struct ext4_fc_del_range lrange;
854 	struct ext4_extent *ex;
855 	int ret;
856 
857 	mutex_lock(&ei->i_fc_lock);
858 	if (ei->i_fc_lblk_len == 0) {
859 		mutex_unlock(&ei->i_fc_lock);
860 		return 0;
861 	}
862 	old_blk_size = ei->i_fc_lblk_start;
863 	new_blk_size = ei->i_fc_lblk_start + ei->i_fc_lblk_len - 1;
864 	ei->i_fc_lblk_len = 0;
865 	mutex_unlock(&ei->i_fc_lock);
866 
867 	cur_lblk_off = old_blk_size;
868 	jbd_debug(1, "%s: will try writing %d to %d for inode %ld\n",
869 		  __func__, cur_lblk_off, new_blk_size, inode->i_ino);
870 
871 	while (cur_lblk_off <= new_blk_size) {
872 		map.m_lblk = cur_lblk_off;
873 		map.m_len = new_blk_size - cur_lblk_off + 1;
874 		ret = ext4_map_blocks(NULL, inode, &map, 0);
875 		if (ret < 0)
876 			return -ECANCELED;
877 
878 		if (map.m_len == 0) {
879 			cur_lblk_off++;
880 			continue;
881 		}
882 
883 		if (ret == 0) {
884 			lrange.fc_ino = cpu_to_le32(inode->i_ino);
885 			lrange.fc_lblk = cpu_to_le32(map.m_lblk);
886 			lrange.fc_len = cpu_to_le32(map.m_len);
887 			if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_DEL_RANGE,
888 					    sizeof(lrange), (u8 *)&lrange, crc))
889 				return -ENOSPC;
890 		} else {
891 			fc_ext.fc_ino = cpu_to_le32(inode->i_ino);
892 			ex = (struct ext4_extent *)&fc_ext.fc_ex;
893 			ex->ee_block = cpu_to_le32(map.m_lblk);
894 			ex->ee_len = cpu_to_le16(map.m_len);
895 			ext4_ext_store_pblock(ex, map.m_pblk);
896 			if (map.m_flags & EXT4_MAP_UNWRITTEN)
897 				ext4_ext_mark_unwritten(ex);
898 			else
899 				ext4_ext_mark_initialized(ex);
900 			if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_ADD_RANGE,
901 					    sizeof(fc_ext), (u8 *)&fc_ext, crc))
902 				return -ENOSPC;
903 		}
904 
905 		cur_lblk_off += map.m_len;
906 	}
907 
908 	return 0;
909 }
910 
911 
912 /* Submit data for all the fast commit inodes */
913 static int ext4_fc_submit_inode_data_all(journal_t *journal)
914 {
915 	struct super_block *sb = (struct super_block *)(journal->j_private);
916 	struct ext4_sb_info *sbi = EXT4_SB(sb);
917 	struct ext4_inode_info *ei;
918 	int ret = 0;
919 
920 	spin_lock(&sbi->s_fc_lock);
921 	ext4_set_mount_flag(sb, EXT4_MF_FC_COMMITTING);
922 	list_for_each_entry(ei, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
923 		ext4_set_inode_state(&ei->vfs_inode, EXT4_STATE_FC_COMMITTING);
924 		while (atomic_read(&ei->i_fc_updates)) {
925 			DEFINE_WAIT(wait);
926 
927 			prepare_to_wait(&ei->i_fc_wait, &wait,
928 						TASK_UNINTERRUPTIBLE);
929 			if (atomic_read(&ei->i_fc_updates)) {
930 				spin_unlock(&sbi->s_fc_lock);
931 				schedule();
932 				spin_lock(&sbi->s_fc_lock);
933 			}
934 			finish_wait(&ei->i_fc_wait, &wait);
935 		}
936 		spin_unlock(&sbi->s_fc_lock);
937 		ret = jbd2_submit_inode_data(ei->jinode);
938 		if (ret)
939 			return ret;
940 		spin_lock(&sbi->s_fc_lock);
941 	}
942 	spin_unlock(&sbi->s_fc_lock);
943 
944 	return ret;
945 }
946 
947 /* Wait for completion of data for all the fast commit inodes */
948 static int ext4_fc_wait_inode_data_all(journal_t *journal)
949 {
950 	struct super_block *sb = (struct super_block *)(journal->j_private);
951 	struct ext4_sb_info *sbi = EXT4_SB(sb);
952 	struct ext4_inode_info *pos, *n;
953 	int ret = 0;
954 
955 	spin_lock(&sbi->s_fc_lock);
956 	list_for_each_entry_safe(pos, n, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
957 		if (!ext4_test_inode_state(&pos->vfs_inode,
958 					   EXT4_STATE_FC_COMMITTING))
959 			continue;
960 		spin_unlock(&sbi->s_fc_lock);
961 
962 		ret = jbd2_wait_inode_data(journal, pos->jinode);
963 		if (ret)
964 			return ret;
965 		spin_lock(&sbi->s_fc_lock);
966 	}
967 	spin_unlock(&sbi->s_fc_lock);
968 
969 	return 0;
970 }
971 
972 /* Commit all the directory entry updates */
973 static int ext4_fc_commit_dentry_updates(journal_t *journal, u32 *crc)
974 __acquires(&sbi->s_fc_lock)
975 __releases(&sbi->s_fc_lock)
976 {
977 	struct super_block *sb = (struct super_block *)(journal->j_private);
978 	struct ext4_sb_info *sbi = EXT4_SB(sb);
979 	struct ext4_fc_dentry_update *fc_dentry, *fc_dentry_n;
980 	struct inode *inode;
981 	struct ext4_inode_info *ei, *ei_n;
982 	int ret;
983 
984 	if (list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN]))
985 		return 0;
986 	list_for_each_entry_safe(fc_dentry, fc_dentry_n,
987 				 &sbi->s_fc_dentry_q[FC_Q_MAIN], fcd_list) {
988 		if (fc_dentry->fcd_op != EXT4_FC_TAG_CREAT) {
989 			spin_unlock(&sbi->s_fc_lock);
990 			if (!ext4_fc_add_dentry_tlv(
991 				sb, fc_dentry->fcd_op,
992 				fc_dentry->fcd_parent, fc_dentry->fcd_ino,
993 				fc_dentry->fcd_name.len,
994 				fc_dentry->fcd_name.name, crc)) {
995 				ret = -ENOSPC;
996 				goto lock_and_exit;
997 			}
998 			spin_lock(&sbi->s_fc_lock);
999 			continue;
1000 		}
1001 
1002 		inode = NULL;
1003 		list_for_each_entry_safe(ei, ei_n, &sbi->s_fc_q[FC_Q_MAIN],
1004 					 i_fc_list) {
1005 			if (ei->vfs_inode.i_ino == fc_dentry->fcd_ino) {
1006 				inode = &ei->vfs_inode;
1007 				break;
1008 			}
1009 		}
1010 		/*
1011 		 * If we don't find inode in our list, then it was deleted,
1012 		 * in which case, we don't need to record it's create tag.
1013 		 */
1014 		if (!inode)
1015 			continue;
1016 		spin_unlock(&sbi->s_fc_lock);
1017 
1018 		/*
1019 		 * We first write the inode and then the create dirent. This
1020 		 * allows the recovery code to create an unnamed inode first
1021 		 * and then link it to a directory entry. This allows us
1022 		 * to use namei.c routines almost as is and simplifies
1023 		 * the recovery code.
1024 		 */
1025 		ret = ext4_fc_write_inode(inode, crc);
1026 		if (ret)
1027 			goto lock_and_exit;
1028 
1029 		ret = ext4_fc_write_inode_data(inode, crc);
1030 		if (ret)
1031 			goto lock_and_exit;
1032 
1033 		if (!ext4_fc_add_dentry_tlv(
1034 			sb, fc_dentry->fcd_op,
1035 			fc_dentry->fcd_parent, fc_dentry->fcd_ino,
1036 			fc_dentry->fcd_name.len,
1037 			fc_dentry->fcd_name.name, crc)) {
1038 			ret = -ENOSPC;
1039 			goto lock_and_exit;
1040 		}
1041 
1042 		spin_lock(&sbi->s_fc_lock);
1043 	}
1044 	return 0;
1045 lock_and_exit:
1046 	spin_lock(&sbi->s_fc_lock);
1047 	return ret;
1048 }
1049 
1050 static int ext4_fc_perform_commit(journal_t *journal)
1051 {
1052 	struct super_block *sb = (struct super_block *)(journal->j_private);
1053 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1054 	struct ext4_inode_info *iter;
1055 	struct ext4_fc_head head;
1056 	struct inode *inode;
1057 	struct blk_plug plug;
1058 	int ret = 0;
1059 	u32 crc = 0;
1060 
1061 	ret = ext4_fc_submit_inode_data_all(journal);
1062 	if (ret)
1063 		return ret;
1064 
1065 	ret = ext4_fc_wait_inode_data_all(journal);
1066 	if (ret)
1067 		return ret;
1068 
1069 	/*
1070 	 * If file system device is different from journal device, issue a cache
1071 	 * flush before we start writing fast commit blocks.
1072 	 */
1073 	if (journal->j_fs_dev != journal->j_dev)
1074 		blkdev_issue_flush(journal->j_fs_dev);
1075 
1076 	blk_start_plug(&plug);
1077 	if (sbi->s_fc_bytes == 0) {
1078 		/*
1079 		 * Add a head tag only if this is the first fast commit
1080 		 * in this TID.
1081 		 */
1082 		head.fc_features = cpu_to_le32(EXT4_FC_SUPPORTED_FEATURES);
1083 		head.fc_tid = cpu_to_le32(
1084 			sbi->s_journal->j_running_transaction->t_tid);
1085 		if (!ext4_fc_add_tlv(sb, EXT4_FC_TAG_HEAD, sizeof(head),
1086 			(u8 *)&head, &crc))
1087 			goto out;
1088 	}
1089 
1090 	spin_lock(&sbi->s_fc_lock);
1091 	ret = ext4_fc_commit_dentry_updates(journal, &crc);
1092 	if (ret) {
1093 		spin_unlock(&sbi->s_fc_lock);
1094 		goto out;
1095 	}
1096 
1097 	list_for_each_entry(iter, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
1098 		inode = &iter->vfs_inode;
1099 		if (!ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING))
1100 			continue;
1101 
1102 		spin_unlock(&sbi->s_fc_lock);
1103 		ret = ext4_fc_write_inode_data(inode, &crc);
1104 		if (ret)
1105 			goto out;
1106 		ret = ext4_fc_write_inode(inode, &crc);
1107 		if (ret)
1108 			goto out;
1109 		spin_lock(&sbi->s_fc_lock);
1110 	}
1111 	spin_unlock(&sbi->s_fc_lock);
1112 
1113 	ret = ext4_fc_write_tail(sb, crc);
1114 
1115 out:
1116 	blk_finish_plug(&plug);
1117 	return ret;
1118 }
1119 
1120 /*
1121  * The main commit entry point. Performs a fast commit for transaction
1122  * commit_tid if needed. If it's not possible to perform a fast commit
1123  * due to various reasons, we fall back to full commit. Returns 0
1124  * on success, error otherwise.
1125  */
1126 int ext4_fc_commit(journal_t *journal, tid_t commit_tid)
1127 {
1128 	struct super_block *sb = (struct super_block *)(journal->j_private);
1129 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1130 	int nblks = 0, ret, bsize = journal->j_blocksize;
1131 	int subtid = atomic_read(&sbi->s_fc_subtid);
1132 	int reason = EXT4_FC_REASON_OK, fc_bufs_before = 0;
1133 	ktime_t start_time, commit_time;
1134 
1135 	trace_ext4_fc_commit_start(sb);
1136 
1137 	start_time = ktime_get();
1138 
1139 	if (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
1140 		(ext4_fc_is_ineligible(sb))) {
1141 		reason = EXT4_FC_REASON_INELIGIBLE;
1142 		goto out;
1143 	}
1144 
1145 restart_fc:
1146 	ret = jbd2_fc_begin_commit(journal, commit_tid);
1147 	if (ret == -EALREADY) {
1148 		/* There was an ongoing commit, check if we need to restart */
1149 		if (atomic_read(&sbi->s_fc_subtid) <= subtid &&
1150 			commit_tid > journal->j_commit_sequence)
1151 			goto restart_fc;
1152 		reason = EXT4_FC_REASON_ALREADY_COMMITTED;
1153 		goto out;
1154 	} else if (ret) {
1155 		sbi->s_fc_stats.fc_ineligible_reason_count[EXT4_FC_COMMIT_FAILED]++;
1156 		reason = EXT4_FC_REASON_FC_START_FAILED;
1157 		goto out;
1158 	}
1159 
1160 	fc_bufs_before = (sbi->s_fc_bytes + bsize - 1) / bsize;
1161 	ret = ext4_fc_perform_commit(journal);
1162 	if (ret < 0) {
1163 		sbi->s_fc_stats.fc_ineligible_reason_count[EXT4_FC_COMMIT_FAILED]++;
1164 		reason = EXT4_FC_REASON_FC_FAILED;
1165 		goto out;
1166 	}
1167 	nblks = (sbi->s_fc_bytes + bsize - 1) / bsize - fc_bufs_before;
1168 	ret = jbd2_fc_wait_bufs(journal, nblks);
1169 	if (ret < 0) {
1170 		sbi->s_fc_stats.fc_ineligible_reason_count[EXT4_FC_COMMIT_FAILED]++;
1171 		reason = EXT4_FC_REASON_FC_FAILED;
1172 		goto out;
1173 	}
1174 	atomic_inc(&sbi->s_fc_subtid);
1175 	jbd2_fc_end_commit(journal);
1176 out:
1177 	/* Has any ineligible update happened since we started? */
1178 	if (reason == EXT4_FC_REASON_OK && ext4_fc_is_ineligible(sb)) {
1179 		sbi->s_fc_stats.fc_ineligible_reason_count[EXT4_FC_COMMIT_FAILED]++;
1180 		reason = EXT4_FC_REASON_INELIGIBLE;
1181 	}
1182 
1183 	spin_lock(&sbi->s_fc_lock);
1184 	if (reason != EXT4_FC_REASON_OK &&
1185 		reason != EXT4_FC_REASON_ALREADY_COMMITTED) {
1186 		sbi->s_fc_stats.fc_ineligible_commits++;
1187 	} else {
1188 		sbi->s_fc_stats.fc_num_commits++;
1189 		sbi->s_fc_stats.fc_numblks += nblks;
1190 	}
1191 	spin_unlock(&sbi->s_fc_lock);
1192 	nblks = (reason == EXT4_FC_REASON_OK) ? nblks : 0;
1193 	trace_ext4_fc_commit_stop(sb, nblks, reason);
1194 	commit_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
1195 	/*
1196 	 * weight the commit time higher than the average time so we don't
1197 	 * react too strongly to vast changes in the commit time
1198 	 */
1199 	if (likely(sbi->s_fc_avg_commit_time))
1200 		sbi->s_fc_avg_commit_time = (commit_time +
1201 				sbi->s_fc_avg_commit_time * 3) / 4;
1202 	else
1203 		sbi->s_fc_avg_commit_time = commit_time;
1204 	jbd_debug(1,
1205 		"Fast commit ended with blks = %d, reason = %d, subtid - %d",
1206 		nblks, reason, subtid);
1207 	if (reason == EXT4_FC_REASON_FC_FAILED)
1208 		return jbd2_fc_end_commit_fallback(journal);
1209 	if (reason == EXT4_FC_REASON_FC_START_FAILED ||
1210 		reason == EXT4_FC_REASON_INELIGIBLE)
1211 		return jbd2_complete_transaction(journal, commit_tid);
1212 	return 0;
1213 }
1214 
1215 /*
1216  * Fast commit cleanup routine. This is called after every fast commit and
1217  * full commit. full is true if we are called after a full commit.
1218  */
1219 static void ext4_fc_cleanup(journal_t *journal, int full)
1220 {
1221 	struct super_block *sb = journal->j_private;
1222 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1223 	struct ext4_inode_info *iter, *iter_n;
1224 	struct ext4_fc_dentry_update *fc_dentry;
1225 
1226 	if (full && sbi->s_fc_bh)
1227 		sbi->s_fc_bh = NULL;
1228 
1229 	jbd2_fc_release_bufs(journal);
1230 
1231 	spin_lock(&sbi->s_fc_lock);
1232 	list_for_each_entry_safe(iter, iter_n, &sbi->s_fc_q[FC_Q_MAIN],
1233 				 i_fc_list) {
1234 		list_del_init(&iter->i_fc_list);
1235 		ext4_clear_inode_state(&iter->vfs_inode,
1236 				       EXT4_STATE_FC_COMMITTING);
1237 		ext4_fc_reset_inode(&iter->vfs_inode);
1238 		/* Make sure EXT4_STATE_FC_COMMITTING bit is clear */
1239 		smp_mb();
1240 #if (BITS_PER_LONG < 64)
1241 		wake_up_bit(&iter->i_state_flags, EXT4_STATE_FC_COMMITTING);
1242 #else
1243 		wake_up_bit(&iter->i_flags, EXT4_STATE_FC_COMMITTING);
1244 #endif
1245 	}
1246 
1247 	while (!list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN])) {
1248 		fc_dentry = list_first_entry(&sbi->s_fc_dentry_q[FC_Q_MAIN],
1249 					     struct ext4_fc_dentry_update,
1250 					     fcd_list);
1251 		list_del_init(&fc_dentry->fcd_list);
1252 		spin_unlock(&sbi->s_fc_lock);
1253 
1254 		if (fc_dentry->fcd_name.name &&
1255 			fc_dentry->fcd_name.len > DNAME_INLINE_LEN)
1256 			kfree(fc_dentry->fcd_name.name);
1257 		kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry);
1258 		spin_lock(&sbi->s_fc_lock);
1259 	}
1260 
1261 	list_splice_init(&sbi->s_fc_dentry_q[FC_Q_STAGING],
1262 				&sbi->s_fc_dentry_q[FC_Q_MAIN]);
1263 	list_splice_init(&sbi->s_fc_q[FC_Q_STAGING],
1264 				&sbi->s_fc_q[FC_Q_MAIN]);
1265 
1266 	ext4_clear_mount_flag(sb, EXT4_MF_FC_COMMITTING);
1267 	ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
1268 
1269 	if (full)
1270 		sbi->s_fc_bytes = 0;
1271 	spin_unlock(&sbi->s_fc_lock);
1272 	trace_ext4_fc_stats(sb);
1273 }
1274 
1275 /* Ext4 Replay Path Routines */
1276 
1277 /* Helper struct for dentry replay routines */
1278 struct dentry_info_args {
1279 	int parent_ino, dname_len, ino, inode_len;
1280 	char *dname;
1281 };
1282 
1283 static inline void tl_to_darg(struct dentry_info_args *darg,
1284 				struct  ext4_fc_tl *tl)
1285 {
1286 	struct ext4_fc_dentry_info *fcd;
1287 
1288 	fcd = (struct ext4_fc_dentry_info *)ext4_fc_tag_val(tl);
1289 
1290 	darg->parent_ino = le32_to_cpu(fcd->fc_parent_ino);
1291 	darg->ino = le32_to_cpu(fcd->fc_ino);
1292 	darg->dname = fcd->fc_dname;
1293 	darg->dname_len = ext4_fc_tag_len(tl) -
1294 			sizeof(struct ext4_fc_dentry_info);
1295 }
1296 
1297 /* Unlink replay function */
1298 static int ext4_fc_replay_unlink(struct super_block *sb, struct ext4_fc_tl *tl)
1299 {
1300 	struct inode *inode, *old_parent;
1301 	struct qstr entry;
1302 	struct dentry_info_args darg;
1303 	int ret = 0;
1304 
1305 	tl_to_darg(&darg, tl);
1306 
1307 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_UNLINK, darg.ino,
1308 			darg.parent_ino, darg.dname_len);
1309 
1310 	entry.name = darg.dname;
1311 	entry.len = darg.dname_len;
1312 	inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1313 
1314 	if (IS_ERR(inode)) {
1315 		jbd_debug(1, "Inode %d not found", darg.ino);
1316 		return 0;
1317 	}
1318 
1319 	old_parent = ext4_iget(sb, darg.parent_ino,
1320 				EXT4_IGET_NORMAL);
1321 	if (IS_ERR(old_parent)) {
1322 		jbd_debug(1, "Dir with inode  %d not found", darg.parent_ino);
1323 		iput(inode);
1324 		return 0;
1325 	}
1326 
1327 	ret = __ext4_unlink(NULL, old_parent, &entry, inode);
1328 	/* -ENOENT ok coz it might not exist anymore. */
1329 	if (ret == -ENOENT)
1330 		ret = 0;
1331 	iput(old_parent);
1332 	iput(inode);
1333 	return ret;
1334 }
1335 
1336 static int ext4_fc_replay_link_internal(struct super_block *sb,
1337 				struct dentry_info_args *darg,
1338 				struct inode *inode)
1339 {
1340 	struct inode *dir = NULL;
1341 	struct dentry *dentry_dir = NULL, *dentry_inode = NULL;
1342 	struct qstr qstr_dname = QSTR_INIT(darg->dname, darg->dname_len);
1343 	int ret = 0;
1344 
1345 	dir = ext4_iget(sb, darg->parent_ino, EXT4_IGET_NORMAL);
1346 	if (IS_ERR(dir)) {
1347 		jbd_debug(1, "Dir with inode %d not found.", darg->parent_ino);
1348 		dir = NULL;
1349 		goto out;
1350 	}
1351 
1352 	dentry_dir = d_obtain_alias(dir);
1353 	if (IS_ERR(dentry_dir)) {
1354 		jbd_debug(1, "Failed to obtain dentry");
1355 		dentry_dir = NULL;
1356 		goto out;
1357 	}
1358 
1359 	dentry_inode = d_alloc(dentry_dir, &qstr_dname);
1360 	if (!dentry_inode) {
1361 		jbd_debug(1, "Inode dentry not created.");
1362 		ret = -ENOMEM;
1363 		goto out;
1364 	}
1365 
1366 	ret = __ext4_link(dir, inode, dentry_inode);
1367 	/*
1368 	 * It's possible that link already existed since data blocks
1369 	 * for the dir in question got persisted before we crashed OR
1370 	 * we replayed this tag and crashed before the entire replay
1371 	 * could complete.
1372 	 */
1373 	if (ret && ret != -EEXIST) {
1374 		jbd_debug(1, "Failed to link\n");
1375 		goto out;
1376 	}
1377 
1378 	ret = 0;
1379 out:
1380 	if (dentry_dir) {
1381 		d_drop(dentry_dir);
1382 		dput(dentry_dir);
1383 	} else if (dir) {
1384 		iput(dir);
1385 	}
1386 	if (dentry_inode) {
1387 		d_drop(dentry_inode);
1388 		dput(dentry_inode);
1389 	}
1390 
1391 	return ret;
1392 }
1393 
1394 /* Link replay function */
1395 static int ext4_fc_replay_link(struct super_block *sb, struct ext4_fc_tl *tl)
1396 {
1397 	struct inode *inode;
1398 	struct dentry_info_args darg;
1399 	int ret = 0;
1400 
1401 	tl_to_darg(&darg, tl);
1402 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_LINK, darg.ino,
1403 			darg.parent_ino, darg.dname_len);
1404 
1405 	inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1406 	if (IS_ERR(inode)) {
1407 		jbd_debug(1, "Inode not found.");
1408 		return 0;
1409 	}
1410 
1411 	ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1412 	iput(inode);
1413 	return ret;
1414 }
1415 
1416 /*
1417  * Record all the modified inodes during replay. We use this later to setup
1418  * block bitmaps correctly.
1419  */
1420 static int ext4_fc_record_modified_inode(struct super_block *sb, int ino)
1421 {
1422 	struct ext4_fc_replay_state *state;
1423 	int i;
1424 
1425 	state = &EXT4_SB(sb)->s_fc_replay_state;
1426 	for (i = 0; i < state->fc_modified_inodes_used; i++)
1427 		if (state->fc_modified_inodes[i] == ino)
1428 			return 0;
1429 	if (state->fc_modified_inodes_used == state->fc_modified_inodes_size) {
1430 		state->fc_modified_inodes_size +=
1431 			EXT4_FC_REPLAY_REALLOC_INCREMENT;
1432 		state->fc_modified_inodes = krealloc(
1433 					state->fc_modified_inodes, sizeof(int) *
1434 					state->fc_modified_inodes_size,
1435 					GFP_KERNEL);
1436 		if (!state->fc_modified_inodes)
1437 			return -ENOMEM;
1438 	}
1439 	state->fc_modified_inodes[state->fc_modified_inodes_used++] = ino;
1440 	return 0;
1441 }
1442 
1443 /*
1444  * Inode replay function
1445  */
1446 static int ext4_fc_replay_inode(struct super_block *sb, struct ext4_fc_tl *tl)
1447 {
1448 	struct ext4_fc_inode *fc_inode;
1449 	struct ext4_inode *raw_inode;
1450 	struct ext4_inode *raw_fc_inode;
1451 	struct inode *inode = NULL;
1452 	struct ext4_iloc iloc;
1453 	int inode_len, ino, ret, tag = le16_to_cpu(tl->fc_tag);
1454 	struct ext4_extent_header *eh;
1455 
1456 	fc_inode = (struct ext4_fc_inode *)ext4_fc_tag_val(tl);
1457 
1458 	ino = le32_to_cpu(fc_inode->fc_ino);
1459 	trace_ext4_fc_replay(sb, tag, ino, 0, 0);
1460 
1461 	inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1462 	if (!IS_ERR(inode)) {
1463 		ext4_ext_clear_bb(inode);
1464 		iput(inode);
1465 	}
1466 	inode = NULL;
1467 
1468 	ext4_fc_record_modified_inode(sb, ino);
1469 
1470 	raw_fc_inode = (struct ext4_inode *)fc_inode->fc_raw_inode;
1471 	ret = ext4_get_fc_inode_loc(sb, ino, &iloc);
1472 	if (ret)
1473 		goto out;
1474 
1475 	inode_len = ext4_fc_tag_len(tl) - sizeof(struct ext4_fc_inode);
1476 	raw_inode = ext4_raw_inode(&iloc);
1477 
1478 	memcpy(raw_inode, raw_fc_inode, offsetof(struct ext4_inode, i_block));
1479 	memcpy(&raw_inode->i_generation, &raw_fc_inode->i_generation,
1480 		inode_len - offsetof(struct ext4_inode, i_generation));
1481 	if (le32_to_cpu(raw_inode->i_flags) & EXT4_EXTENTS_FL) {
1482 		eh = (struct ext4_extent_header *)(&raw_inode->i_block[0]);
1483 		if (eh->eh_magic != EXT4_EXT_MAGIC) {
1484 			memset(eh, 0, sizeof(*eh));
1485 			eh->eh_magic = EXT4_EXT_MAGIC;
1486 			eh->eh_max = cpu_to_le16(
1487 				(sizeof(raw_inode->i_block) -
1488 				 sizeof(struct ext4_extent_header))
1489 				 / sizeof(struct ext4_extent));
1490 		}
1491 	} else if (le32_to_cpu(raw_inode->i_flags) & EXT4_INLINE_DATA_FL) {
1492 		memcpy(raw_inode->i_block, raw_fc_inode->i_block,
1493 			sizeof(raw_inode->i_block));
1494 	}
1495 
1496 	/* Immediately update the inode on disk. */
1497 	ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1498 	if (ret)
1499 		goto out;
1500 	ret = sync_dirty_buffer(iloc.bh);
1501 	if (ret)
1502 		goto out;
1503 	ret = ext4_mark_inode_used(sb, ino);
1504 	if (ret)
1505 		goto out;
1506 
1507 	/* Given that we just wrote the inode on disk, this SHOULD succeed. */
1508 	inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1509 	if (IS_ERR(inode)) {
1510 		jbd_debug(1, "Inode not found.");
1511 		return -EFSCORRUPTED;
1512 	}
1513 
1514 	/*
1515 	 * Our allocator could have made different decisions than before
1516 	 * crashing. This should be fixed but until then, we calculate
1517 	 * the number of blocks the inode.
1518 	 */
1519 	ext4_ext_replay_set_iblocks(inode);
1520 
1521 	inode->i_generation = le32_to_cpu(ext4_raw_inode(&iloc)->i_generation);
1522 	ext4_reset_inode_seed(inode);
1523 
1524 	ext4_inode_csum_set(inode, ext4_raw_inode(&iloc), EXT4_I(inode));
1525 	ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1526 	sync_dirty_buffer(iloc.bh);
1527 	brelse(iloc.bh);
1528 out:
1529 	iput(inode);
1530 	if (!ret)
1531 		blkdev_issue_flush(sb->s_bdev);
1532 
1533 	return 0;
1534 }
1535 
1536 /*
1537  * Dentry create replay function.
1538  *
1539  * EXT4_FC_TAG_CREAT is preceded by EXT4_FC_TAG_INODE_FULL. Which means, the
1540  * inode for which we are trying to create a dentry here, should already have
1541  * been replayed before we start here.
1542  */
1543 static int ext4_fc_replay_create(struct super_block *sb, struct ext4_fc_tl *tl)
1544 {
1545 	int ret = 0;
1546 	struct inode *inode = NULL;
1547 	struct inode *dir = NULL;
1548 	struct dentry_info_args darg;
1549 
1550 	tl_to_darg(&darg, tl);
1551 
1552 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_CREAT, darg.ino,
1553 			darg.parent_ino, darg.dname_len);
1554 
1555 	/* This takes care of update group descriptor and other metadata */
1556 	ret = ext4_mark_inode_used(sb, darg.ino);
1557 	if (ret)
1558 		goto out;
1559 
1560 	inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1561 	if (IS_ERR(inode)) {
1562 		jbd_debug(1, "inode %d not found.", darg.ino);
1563 		inode = NULL;
1564 		ret = -EINVAL;
1565 		goto out;
1566 	}
1567 
1568 	if (S_ISDIR(inode->i_mode)) {
1569 		/*
1570 		 * If we are creating a directory, we need to make sure that the
1571 		 * dot and dot dot dirents are setup properly.
1572 		 */
1573 		dir = ext4_iget(sb, darg.parent_ino, EXT4_IGET_NORMAL);
1574 		if (IS_ERR(dir)) {
1575 			jbd_debug(1, "Dir %d not found.", darg.ino);
1576 			goto out;
1577 		}
1578 		ret = ext4_init_new_dir(NULL, dir, inode);
1579 		iput(dir);
1580 		if (ret) {
1581 			ret = 0;
1582 			goto out;
1583 		}
1584 	}
1585 	ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1586 	if (ret)
1587 		goto out;
1588 	set_nlink(inode, 1);
1589 	ext4_mark_inode_dirty(NULL, inode);
1590 out:
1591 	if (inode)
1592 		iput(inode);
1593 	return ret;
1594 }
1595 
1596 /*
1597  * Record physical disk regions which are in use as per fast commit area. Our
1598  * simple replay phase allocator excludes these regions from allocation.
1599  */
1600 static int ext4_fc_record_regions(struct super_block *sb, int ino,
1601 		ext4_lblk_t lblk, ext4_fsblk_t pblk, int len)
1602 {
1603 	struct ext4_fc_replay_state *state;
1604 	struct ext4_fc_alloc_region *region;
1605 
1606 	state = &EXT4_SB(sb)->s_fc_replay_state;
1607 	if (state->fc_regions_used == state->fc_regions_size) {
1608 		state->fc_regions_size +=
1609 			EXT4_FC_REPLAY_REALLOC_INCREMENT;
1610 		state->fc_regions = krealloc(
1611 					state->fc_regions,
1612 					state->fc_regions_size *
1613 					sizeof(struct ext4_fc_alloc_region),
1614 					GFP_KERNEL);
1615 		if (!state->fc_regions)
1616 			return -ENOMEM;
1617 	}
1618 	region = &state->fc_regions[state->fc_regions_used++];
1619 	region->ino = ino;
1620 	region->lblk = lblk;
1621 	region->pblk = pblk;
1622 	region->len = len;
1623 
1624 	return 0;
1625 }
1626 
1627 /* Replay add range tag */
1628 static int ext4_fc_replay_add_range(struct super_block *sb,
1629 				struct ext4_fc_tl *tl)
1630 {
1631 	struct ext4_fc_add_range *fc_add_ex;
1632 	struct ext4_extent newex, *ex;
1633 	struct inode *inode;
1634 	ext4_lblk_t start, cur;
1635 	int remaining, len;
1636 	ext4_fsblk_t start_pblk;
1637 	struct ext4_map_blocks map;
1638 	struct ext4_ext_path *path = NULL;
1639 	int ret;
1640 
1641 	fc_add_ex = (struct ext4_fc_add_range *)ext4_fc_tag_val(tl);
1642 	ex = (struct ext4_extent *)&fc_add_ex->fc_ex;
1643 
1644 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_ADD_RANGE,
1645 		le32_to_cpu(fc_add_ex->fc_ino), le32_to_cpu(ex->ee_block),
1646 		ext4_ext_get_actual_len(ex));
1647 
1648 	inode = ext4_iget(sb, le32_to_cpu(fc_add_ex->fc_ino),
1649 				EXT4_IGET_NORMAL);
1650 	if (IS_ERR(inode)) {
1651 		jbd_debug(1, "Inode not found.");
1652 		return 0;
1653 	}
1654 
1655 	ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1656 
1657 	start = le32_to_cpu(ex->ee_block);
1658 	start_pblk = ext4_ext_pblock(ex);
1659 	len = ext4_ext_get_actual_len(ex);
1660 
1661 	cur = start;
1662 	remaining = len;
1663 	jbd_debug(1, "ADD_RANGE, lblk %d, pblk %lld, len %d, unwritten %d, inode %ld\n",
1664 		  start, start_pblk, len, ext4_ext_is_unwritten(ex),
1665 		  inode->i_ino);
1666 
1667 	while (remaining > 0) {
1668 		map.m_lblk = cur;
1669 		map.m_len = remaining;
1670 		map.m_pblk = 0;
1671 		ret = ext4_map_blocks(NULL, inode, &map, 0);
1672 
1673 		if (ret < 0) {
1674 			iput(inode);
1675 			return 0;
1676 		}
1677 
1678 		if (ret == 0) {
1679 			/* Range is not mapped */
1680 			path = ext4_find_extent(inode, cur, NULL, 0);
1681 			if (IS_ERR(path)) {
1682 				iput(inode);
1683 				return 0;
1684 			}
1685 			memset(&newex, 0, sizeof(newex));
1686 			newex.ee_block = cpu_to_le32(cur);
1687 			ext4_ext_store_pblock(
1688 				&newex, start_pblk + cur - start);
1689 			newex.ee_len = cpu_to_le16(map.m_len);
1690 			if (ext4_ext_is_unwritten(ex))
1691 				ext4_ext_mark_unwritten(&newex);
1692 			down_write(&EXT4_I(inode)->i_data_sem);
1693 			ret = ext4_ext_insert_extent(
1694 				NULL, inode, &path, &newex, 0);
1695 			up_write((&EXT4_I(inode)->i_data_sem));
1696 			ext4_ext_drop_refs(path);
1697 			kfree(path);
1698 			if (ret) {
1699 				iput(inode);
1700 				return 0;
1701 			}
1702 			goto next;
1703 		}
1704 
1705 		if (start_pblk + cur - start != map.m_pblk) {
1706 			/*
1707 			 * Logical to physical mapping changed. This can happen
1708 			 * if this range was removed and then reallocated to
1709 			 * map to new physical blocks during a fast commit.
1710 			 */
1711 			ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1712 					ext4_ext_is_unwritten(ex),
1713 					start_pblk + cur - start);
1714 			if (ret) {
1715 				iput(inode);
1716 				return 0;
1717 			}
1718 			/*
1719 			 * Mark the old blocks as free since they aren't used
1720 			 * anymore. We maintain an array of all the modified
1721 			 * inodes. In case these blocks are still used at either
1722 			 * a different logical range in the same inode or in
1723 			 * some different inode, we will mark them as allocated
1724 			 * at the end of the FC replay using our array of
1725 			 * modified inodes.
1726 			 */
1727 			ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 0);
1728 			goto next;
1729 		}
1730 
1731 		/* Range is mapped and needs a state change */
1732 		jbd_debug(1, "Converting from %d to %d %lld",
1733 				map.m_flags & EXT4_MAP_UNWRITTEN,
1734 			ext4_ext_is_unwritten(ex), map.m_pblk);
1735 		ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1736 					ext4_ext_is_unwritten(ex), map.m_pblk);
1737 		if (ret) {
1738 			iput(inode);
1739 			return 0;
1740 		}
1741 		/*
1742 		 * We may have split the extent tree while toggling the state.
1743 		 * Try to shrink the extent tree now.
1744 		 */
1745 		ext4_ext_replay_shrink_inode(inode, start + len);
1746 next:
1747 		cur += map.m_len;
1748 		remaining -= map.m_len;
1749 	}
1750 	ext4_ext_replay_shrink_inode(inode, i_size_read(inode) >>
1751 					sb->s_blocksize_bits);
1752 	iput(inode);
1753 	return 0;
1754 }
1755 
1756 /* Replay DEL_RANGE tag */
1757 static int
1758 ext4_fc_replay_del_range(struct super_block *sb, struct ext4_fc_tl *tl)
1759 {
1760 	struct inode *inode;
1761 	struct ext4_fc_del_range *lrange;
1762 	struct ext4_map_blocks map;
1763 	ext4_lblk_t cur, remaining;
1764 	int ret;
1765 
1766 	lrange = (struct ext4_fc_del_range *)ext4_fc_tag_val(tl);
1767 	cur = le32_to_cpu(lrange->fc_lblk);
1768 	remaining = le32_to_cpu(lrange->fc_len);
1769 
1770 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_DEL_RANGE,
1771 		le32_to_cpu(lrange->fc_ino), cur, remaining);
1772 
1773 	inode = ext4_iget(sb, le32_to_cpu(lrange->fc_ino), EXT4_IGET_NORMAL);
1774 	if (IS_ERR(inode)) {
1775 		jbd_debug(1, "Inode %d not found", le32_to_cpu(lrange->fc_ino));
1776 		return 0;
1777 	}
1778 
1779 	ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1780 
1781 	jbd_debug(1, "DEL_RANGE, inode %ld, lblk %d, len %d\n",
1782 			inode->i_ino, le32_to_cpu(lrange->fc_lblk),
1783 			le32_to_cpu(lrange->fc_len));
1784 	while (remaining > 0) {
1785 		map.m_lblk = cur;
1786 		map.m_len = remaining;
1787 
1788 		ret = ext4_map_blocks(NULL, inode, &map, 0);
1789 		if (ret < 0) {
1790 			iput(inode);
1791 			return 0;
1792 		}
1793 		if (ret > 0) {
1794 			remaining -= ret;
1795 			cur += ret;
1796 			ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 0);
1797 		} else {
1798 			remaining -= map.m_len;
1799 			cur += map.m_len;
1800 		}
1801 	}
1802 
1803 	ret = ext4_punch_hole(inode,
1804 		le32_to_cpu(lrange->fc_lblk) << sb->s_blocksize_bits,
1805 		le32_to_cpu(lrange->fc_len) <<  sb->s_blocksize_bits);
1806 	if (ret)
1807 		jbd_debug(1, "ext4_punch_hole returned %d", ret);
1808 	ext4_ext_replay_shrink_inode(inode,
1809 		i_size_read(inode) >> sb->s_blocksize_bits);
1810 	ext4_mark_inode_dirty(NULL, inode);
1811 	iput(inode);
1812 
1813 	return 0;
1814 }
1815 
1816 static void ext4_fc_set_bitmaps_and_counters(struct super_block *sb)
1817 {
1818 	struct ext4_fc_replay_state *state;
1819 	struct inode *inode;
1820 	struct ext4_ext_path *path = NULL;
1821 	struct ext4_map_blocks map;
1822 	int i, ret, j;
1823 	ext4_lblk_t cur, end;
1824 
1825 	state = &EXT4_SB(sb)->s_fc_replay_state;
1826 	for (i = 0; i < state->fc_modified_inodes_used; i++) {
1827 		inode = ext4_iget(sb, state->fc_modified_inodes[i],
1828 			EXT4_IGET_NORMAL);
1829 		if (IS_ERR(inode)) {
1830 			jbd_debug(1, "Inode %d not found.",
1831 				state->fc_modified_inodes[i]);
1832 			continue;
1833 		}
1834 		cur = 0;
1835 		end = EXT_MAX_BLOCKS;
1836 		while (cur < end) {
1837 			map.m_lblk = cur;
1838 			map.m_len = end - cur;
1839 
1840 			ret = ext4_map_blocks(NULL, inode, &map, 0);
1841 			if (ret < 0)
1842 				break;
1843 
1844 			if (ret > 0) {
1845 				path = ext4_find_extent(inode, map.m_lblk, NULL, 0);
1846 				if (!IS_ERR(path)) {
1847 					for (j = 0; j < path->p_depth; j++)
1848 						ext4_mb_mark_bb(inode->i_sb,
1849 							path[j].p_block, 1, 1);
1850 					ext4_ext_drop_refs(path);
1851 					kfree(path);
1852 				}
1853 				cur += ret;
1854 				ext4_mb_mark_bb(inode->i_sb, map.m_pblk,
1855 							map.m_len, 1);
1856 			} else {
1857 				cur = cur + (map.m_len ? map.m_len : 1);
1858 			}
1859 		}
1860 		iput(inode);
1861 	}
1862 }
1863 
1864 /*
1865  * Check if block is in excluded regions for block allocation. The simple
1866  * allocator that runs during replay phase is calls this function to see
1867  * if it is okay to use a block.
1868  */
1869 bool ext4_fc_replay_check_excluded(struct super_block *sb, ext4_fsblk_t blk)
1870 {
1871 	int i;
1872 	struct ext4_fc_replay_state *state;
1873 
1874 	state = &EXT4_SB(sb)->s_fc_replay_state;
1875 	for (i = 0; i < state->fc_regions_valid; i++) {
1876 		if (state->fc_regions[i].ino == 0 ||
1877 			state->fc_regions[i].len == 0)
1878 			continue;
1879 		if (blk >= state->fc_regions[i].pblk &&
1880 		    blk < state->fc_regions[i].pblk + state->fc_regions[i].len)
1881 			return true;
1882 	}
1883 	return false;
1884 }
1885 
1886 /* Cleanup function called after replay */
1887 void ext4_fc_replay_cleanup(struct super_block *sb)
1888 {
1889 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1890 
1891 	sbi->s_mount_state &= ~EXT4_FC_REPLAY;
1892 	kfree(sbi->s_fc_replay_state.fc_regions);
1893 	kfree(sbi->s_fc_replay_state.fc_modified_inodes);
1894 }
1895 
1896 /*
1897  * Recovery Scan phase handler
1898  *
1899  * This function is called during the scan phase and is responsible
1900  * for doing following things:
1901  * - Make sure the fast commit area has valid tags for replay
1902  * - Count number of tags that need to be replayed by the replay handler
1903  * - Verify CRC
1904  * - Create a list of excluded blocks for allocation during replay phase
1905  *
1906  * This function returns JBD2_FC_REPLAY_CONTINUE to indicate that SCAN is
1907  * incomplete and JBD2 should send more blocks. It returns JBD2_FC_REPLAY_STOP
1908  * to indicate that scan has finished and JBD2 can now start replay phase.
1909  * It returns a negative error to indicate that there was an error. At the end
1910  * of a successful scan phase, sbi->s_fc_replay_state.fc_replay_num_tags is set
1911  * to indicate the number of tags that need to replayed during the replay phase.
1912  */
1913 static int ext4_fc_replay_scan(journal_t *journal,
1914 				struct buffer_head *bh, int off,
1915 				tid_t expected_tid)
1916 {
1917 	struct super_block *sb = journal->j_private;
1918 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1919 	struct ext4_fc_replay_state *state;
1920 	int ret = JBD2_FC_REPLAY_CONTINUE;
1921 	struct ext4_fc_add_range *ext;
1922 	struct ext4_fc_tl *tl;
1923 	struct ext4_fc_tail *tail;
1924 	__u8 *start, *end;
1925 	struct ext4_fc_head *head;
1926 	struct ext4_extent *ex;
1927 
1928 	state = &sbi->s_fc_replay_state;
1929 
1930 	start = (u8 *)bh->b_data;
1931 	end = (__u8 *)bh->b_data + journal->j_blocksize - 1;
1932 
1933 	if (state->fc_replay_expected_off == 0) {
1934 		state->fc_cur_tag = 0;
1935 		state->fc_replay_num_tags = 0;
1936 		state->fc_crc = 0;
1937 		state->fc_regions = NULL;
1938 		state->fc_regions_valid = state->fc_regions_used =
1939 			state->fc_regions_size = 0;
1940 		/* Check if we can stop early */
1941 		if (le16_to_cpu(((struct ext4_fc_tl *)start)->fc_tag)
1942 			!= EXT4_FC_TAG_HEAD)
1943 			return 0;
1944 	}
1945 
1946 	if (off != state->fc_replay_expected_off) {
1947 		ret = -EFSCORRUPTED;
1948 		goto out_err;
1949 	}
1950 
1951 	state->fc_replay_expected_off++;
1952 	fc_for_each_tl(start, end, tl) {
1953 		jbd_debug(3, "Scan phase, tag:%s, blk %lld\n",
1954 			  tag2str(le16_to_cpu(tl->fc_tag)), bh->b_blocknr);
1955 		switch (le16_to_cpu(tl->fc_tag)) {
1956 		case EXT4_FC_TAG_ADD_RANGE:
1957 			ext = (struct ext4_fc_add_range *)ext4_fc_tag_val(tl);
1958 			ex = (struct ext4_extent *)&ext->fc_ex;
1959 			ret = ext4_fc_record_regions(sb,
1960 				le32_to_cpu(ext->fc_ino),
1961 				le32_to_cpu(ex->ee_block), ext4_ext_pblock(ex),
1962 				ext4_ext_get_actual_len(ex));
1963 			if (ret < 0)
1964 				break;
1965 			ret = JBD2_FC_REPLAY_CONTINUE;
1966 			fallthrough;
1967 		case EXT4_FC_TAG_DEL_RANGE:
1968 		case EXT4_FC_TAG_LINK:
1969 		case EXT4_FC_TAG_UNLINK:
1970 		case EXT4_FC_TAG_CREAT:
1971 		case EXT4_FC_TAG_INODE:
1972 		case EXT4_FC_TAG_PAD:
1973 			state->fc_cur_tag++;
1974 			state->fc_crc = ext4_chksum(sbi, state->fc_crc, tl,
1975 					sizeof(*tl) + ext4_fc_tag_len(tl));
1976 			break;
1977 		case EXT4_FC_TAG_TAIL:
1978 			state->fc_cur_tag++;
1979 			tail = (struct ext4_fc_tail *)ext4_fc_tag_val(tl);
1980 			state->fc_crc = ext4_chksum(sbi, state->fc_crc, tl,
1981 						sizeof(*tl) +
1982 						offsetof(struct ext4_fc_tail,
1983 						fc_crc));
1984 			if (le32_to_cpu(tail->fc_tid) == expected_tid &&
1985 				le32_to_cpu(tail->fc_crc) == state->fc_crc) {
1986 				state->fc_replay_num_tags = state->fc_cur_tag;
1987 				state->fc_regions_valid =
1988 					state->fc_regions_used;
1989 			} else {
1990 				ret = state->fc_replay_num_tags ?
1991 					JBD2_FC_REPLAY_STOP : -EFSBADCRC;
1992 			}
1993 			state->fc_crc = 0;
1994 			break;
1995 		case EXT4_FC_TAG_HEAD:
1996 			head = (struct ext4_fc_head *)ext4_fc_tag_val(tl);
1997 			if (le32_to_cpu(head->fc_features) &
1998 				~EXT4_FC_SUPPORTED_FEATURES) {
1999 				ret = -EOPNOTSUPP;
2000 				break;
2001 			}
2002 			if (le32_to_cpu(head->fc_tid) != expected_tid) {
2003 				ret = JBD2_FC_REPLAY_STOP;
2004 				break;
2005 			}
2006 			state->fc_cur_tag++;
2007 			state->fc_crc = ext4_chksum(sbi, state->fc_crc, tl,
2008 					sizeof(*tl) + ext4_fc_tag_len(tl));
2009 			break;
2010 		default:
2011 			ret = state->fc_replay_num_tags ?
2012 				JBD2_FC_REPLAY_STOP : -ECANCELED;
2013 		}
2014 		if (ret < 0 || ret == JBD2_FC_REPLAY_STOP)
2015 			break;
2016 	}
2017 
2018 out_err:
2019 	trace_ext4_fc_replay_scan(sb, ret, off);
2020 	return ret;
2021 }
2022 
2023 /*
2024  * Main recovery path entry point.
2025  * The meaning of return codes is similar as above.
2026  */
2027 static int ext4_fc_replay(journal_t *journal, struct buffer_head *bh,
2028 				enum passtype pass, int off, tid_t expected_tid)
2029 {
2030 	struct super_block *sb = journal->j_private;
2031 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2032 	struct ext4_fc_tl *tl;
2033 	__u8 *start, *end;
2034 	int ret = JBD2_FC_REPLAY_CONTINUE;
2035 	struct ext4_fc_replay_state *state = &sbi->s_fc_replay_state;
2036 	struct ext4_fc_tail *tail;
2037 
2038 	if (pass == PASS_SCAN) {
2039 		state->fc_current_pass = PASS_SCAN;
2040 		return ext4_fc_replay_scan(journal, bh, off, expected_tid);
2041 	}
2042 
2043 	if (state->fc_current_pass != pass) {
2044 		state->fc_current_pass = pass;
2045 		sbi->s_mount_state |= EXT4_FC_REPLAY;
2046 	}
2047 	if (!sbi->s_fc_replay_state.fc_replay_num_tags) {
2048 		jbd_debug(1, "Replay stops\n");
2049 		ext4_fc_set_bitmaps_and_counters(sb);
2050 		return 0;
2051 	}
2052 
2053 #ifdef CONFIG_EXT4_DEBUG
2054 	if (sbi->s_fc_debug_max_replay && off >= sbi->s_fc_debug_max_replay) {
2055 		pr_warn("Dropping fc block %d because max_replay set\n", off);
2056 		return JBD2_FC_REPLAY_STOP;
2057 	}
2058 #endif
2059 
2060 	start = (u8 *)bh->b_data;
2061 	end = (__u8 *)bh->b_data + journal->j_blocksize - 1;
2062 
2063 	fc_for_each_tl(start, end, tl) {
2064 		if (state->fc_replay_num_tags == 0) {
2065 			ret = JBD2_FC_REPLAY_STOP;
2066 			ext4_fc_set_bitmaps_and_counters(sb);
2067 			break;
2068 		}
2069 		jbd_debug(3, "Replay phase, tag:%s\n",
2070 				tag2str(le16_to_cpu(tl->fc_tag)));
2071 		state->fc_replay_num_tags--;
2072 		switch (le16_to_cpu(tl->fc_tag)) {
2073 		case EXT4_FC_TAG_LINK:
2074 			ret = ext4_fc_replay_link(sb, tl);
2075 			break;
2076 		case EXT4_FC_TAG_UNLINK:
2077 			ret = ext4_fc_replay_unlink(sb, tl);
2078 			break;
2079 		case EXT4_FC_TAG_ADD_RANGE:
2080 			ret = ext4_fc_replay_add_range(sb, tl);
2081 			break;
2082 		case EXT4_FC_TAG_CREAT:
2083 			ret = ext4_fc_replay_create(sb, tl);
2084 			break;
2085 		case EXT4_FC_TAG_DEL_RANGE:
2086 			ret = ext4_fc_replay_del_range(sb, tl);
2087 			break;
2088 		case EXT4_FC_TAG_INODE:
2089 			ret = ext4_fc_replay_inode(sb, tl);
2090 			break;
2091 		case EXT4_FC_TAG_PAD:
2092 			trace_ext4_fc_replay(sb, EXT4_FC_TAG_PAD, 0,
2093 				ext4_fc_tag_len(tl), 0);
2094 			break;
2095 		case EXT4_FC_TAG_TAIL:
2096 			trace_ext4_fc_replay(sb, EXT4_FC_TAG_TAIL, 0,
2097 				ext4_fc_tag_len(tl), 0);
2098 			tail = (struct ext4_fc_tail *)ext4_fc_tag_val(tl);
2099 			WARN_ON(le32_to_cpu(tail->fc_tid) != expected_tid);
2100 			break;
2101 		case EXT4_FC_TAG_HEAD:
2102 			break;
2103 		default:
2104 			trace_ext4_fc_replay(sb, le16_to_cpu(tl->fc_tag), 0,
2105 				ext4_fc_tag_len(tl), 0);
2106 			ret = -ECANCELED;
2107 			break;
2108 		}
2109 		if (ret < 0)
2110 			break;
2111 		ret = JBD2_FC_REPLAY_CONTINUE;
2112 	}
2113 	return ret;
2114 }
2115 
2116 void ext4_fc_init(struct super_block *sb, journal_t *journal)
2117 {
2118 	/*
2119 	 * We set replay callback even if fast commit disabled because we may
2120 	 * could still have fast commit blocks that need to be replayed even if
2121 	 * fast commit has now been turned off.
2122 	 */
2123 	journal->j_fc_replay_callback = ext4_fc_replay;
2124 	if (!test_opt2(sb, JOURNAL_FAST_COMMIT))
2125 		return;
2126 	journal->j_fc_cleanup_callback = ext4_fc_cleanup;
2127 }
2128 
2129 static const char *fc_ineligible_reasons[] = {
2130 	"Extended attributes changed",
2131 	"Cross rename",
2132 	"Journal flag changed",
2133 	"Insufficient memory",
2134 	"Swap boot",
2135 	"Resize",
2136 	"Dir renamed",
2137 	"Falloc range op",
2138 	"Data journalling",
2139 	"FC Commit Failed"
2140 };
2141 
2142 int ext4_fc_info_show(struct seq_file *seq, void *v)
2143 {
2144 	struct ext4_sb_info *sbi = EXT4_SB((struct super_block *)seq->private);
2145 	struct ext4_fc_stats *stats = &sbi->s_fc_stats;
2146 	int i;
2147 
2148 	if (v != SEQ_START_TOKEN)
2149 		return 0;
2150 
2151 	seq_printf(seq,
2152 		"fc stats:\n%ld commits\n%ld ineligible\n%ld numblks\n%lluus avg_commit_time\n",
2153 		   stats->fc_num_commits, stats->fc_ineligible_commits,
2154 		   stats->fc_numblks,
2155 		   div_u64(sbi->s_fc_avg_commit_time, 1000));
2156 	seq_puts(seq, "Ineligible reasons:\n");
2157 	for (i = 0; i < EXT4_FC_REASON_MAX; i++)
2158 		seq_printf(seq, "\"%s\":\t%d\n", fc_ineligible_reasons[i],
2159 			stats->fc_ineligible_reason_count[i]);
2160 
2161 	return 0;
2162 }
2163 
2164 int __init ext4_fc_init_dentry_cache(void)
2165 {
2166 	ext4_fc_dentry_cachep = KMEM_CACHE(ext4_fc_dentry_update,
2167 					   SLAB_RECLAIM_ACCOUNT);
2168 
2169 	if (ext4_fc_dentry_cachep == NULL)
2170 		return -ENOMEM;
2171 
2172 	return 0;
2173 }
2174