xref: /openbmc/linux/fs/ext4/fast_commit.c (revision 2fa5ebe3)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /*
4  * fs/ext4/fast_commit.c
5  *
6  * Written by Harshad Shirwadkar <harshadshirwadkar@gmail.com>
7  *
8  * Ext4 fast commits routines.
9  */
10 #include "ext4.h"
11 #include "ext4_jbd2.h"
12 #include "ext4_extents.h"
13 #include "mballoc.h"
14 
15 /*
16  * Ext4 Fast Commits
17  * -----------------
18  *
19  * Ext4 fast commits implement fine grained journalling for Ext4.
20  *
21  * Fast commits are organized as a log of tag-length-value (TLV) structs. (See
22  * struct ext4_fc_tl). Each TLV contains some delta that is replayed TLV by
23  * TLV during the recovery phase. For the scenarios for which we currently
24  * don't have replay code, fast commit falls back to full commits.
25  * Fast commits record delta in one of the following three categories.
26  *
27  * (A) Directory entry updates:
28  *
29  * - EXT4_FC_TAG_UNLINK		- records directory entry unlink
30  * - EXT4_FC_TAG_LINK		- records directory entry link
31  * - EXT4_FC_TAG_CREAT		- records inode and directory entry creation
32  *
33  * (B) File specific data range updates:
34  *
35  * - EXT4_FC_TAG_ADD_RANGE	- records addition of new blocks to an inode
36  * - EXT4_FC_TAG_DEL_RANGE	- records deletion of blocks from an inode
37  *
38  * (C) Inode metadata (mtime / ctime etc):
39  *
40  * - EXT4_FC_TAG_INODE		- record the inode that should be replayed
41  *				  during recovery. Note that iblocks field is
42  *				  not replayed and instead derived during
43  *				  replay.
44  * Commit Operation
45  * ----------------
46  * With fast commits, we maintain all the directory entry operations in the
47  * order in which they are issued in an in-memory queue. This queue is flushed
48  * to disk during the commit operation. We also maintain a list of inodes
49  * that need to be committed during a fast commit in another in memory queue of
50  * inodes. During the commit operation, we commit in the following order:
51  *
52  * [1] Lock inodes for any further data updates by setting COMMITTING state
53  * [2] Submit data buffers of all the inodes
54  * [3] Wait for [2] to complete
55  * [4] Commit all the directory entry updates in the fast commit space
56  * [5] Commit all the changed inode structures
57  * [6] Write tail tag (this tag ensures the atomicity, please read the following
58  *     section for more details).
59  * [7] Wait for [4], [5] and [6] to complete.
60  *
61  * All the inode updates must call ext4_fc_start_update() before starting an
62  * update. If such an ongoing update is present, fast commit waits for it to
63  * complete. The completion of such an update is marked by
64  * ext4_fc_stop_update().
65  *
66  * Fast Commit Ineligibility
67  * -------------------------
68  *
69  * Not all operations are supported by fast commits today (e.g extended
70  * attributes). Fast commit ineligibility is marked by calling
71  * ext4_fc_mark_ineligible(): This makes next fast commit operation to fall back
72  * to full commit.
73  *
74  * Atomicity of commits
75  * --------------------
76  * In order to guarantee atomicity during the commit operation, fast commit
77  * uses "EXT4_FC_TAG_TAIL" tag that marks a fast commit as complete. Tail
78  * tag contains CRC of the contents and TID of the transaction after which
79  * this fast commit should be applied. Recovery code replays fast commit
80  * logs only if there's at least 1 valid tail present. For every fast commit
81  * operation, there is 1 tail. This means, we may end up with multiple tails
82  * in the fast commit space. Here's an example:
83  *
84  * - Create a new file A and remove existing file B
85  * - fsync()
86  * - Append contents to file A
87  * - Truncate file A
88  * - fsync()
89  *
90  * The fast commit space at the end of above operations would look like this:
91  *      [HEAD] [CREAT A] [UNLINK B] [TAIL] [ADD_RANGE A] [DEL_RANGE A] [TAIL]
92  *             |<---  Fast Commit 1   --->|<---      Fast Commit 2     ---->|
93  *
94  * Replay code should thus check for all the valid tails in the FC area.
95  *
96  * Fast Commit Replay Idempotence
97  * ------------------------------
98  *
99  * Fast commits tags are idempotent in nature provided the recovery code follows
100  * certain rules. The guiding principle that the commit path follows while
101  * committing is that it stores the result of a particular operation instead of
102  * storing the procedure.
103  *
104  * Let's consider this rename operation: 'mv /a /b'. Let's assume dirent '/a'
105  * was associated with inode 10. During fast commit, instead of storing this
106  * operation as a procedure "rename a to b", we store the resulting file system
107  * state as a "series" of outcomes:
108  *
109  * - Link dirent b to inode 10
110  * - Unlink dirent a
111  * - Inode <10> with valid refcount
112  *
113  * Now when recovery code runs, it needs "enforce" this state on the file
114  * system. This is what guarantees idempotence of fast commit replay.
115  *
116  * Let's take an example of a procedure that is not idempotent and see how fast
117  * commits make it idempotent. Consider following sequence of operations:
118  *
119  *     rm A;    mv B A;    read A
120  *  (x)     (y)        (z)
121  *
122  * (x), (y) and (z) are the points at which we can crash. If we store this
123  * sequence of operations as is then the replay is not idempotent. Let's say
124  * while in replay, we crash at (z). During the second replay, file A (which was
125  * actually created as a result of "mv B A" operation) would get deleted. Thus,
126  * file named A would be absent when we try to read A. So, this sequence of
127  * operations is not idempotent. However, as mentioned above, instead of storing
128  * the procedure fast commits store the outcome of each procedure. Thus the fast
129  * commit log for above procedure would be as follows:
130  *
131  * (Let's assume dirent A was linked to inode 10 and dirent B was linked to
132  * inode 11 before the replay)
133  *
134  *    [Unlink A]   [Link A to inode 11]   [Unlink B]   [Inode 11]
135  * (w)          (x)                    (y)          (z)
136  *
137  * If we crash at (z), we will have file A linked to inode 11. During the second
138  * replay, we will remove file A (inode 11). But we will create it back and make
139  * it point to inode 11. We won't find B, so we'll just skip that step. At this
140  * point, the refcount for inode 11 is not reliable, but that gets fixed by the
141  * replay of last inode 11 tag. Crashes at points (w), (x) and (y) get handled
142  * similarly. Thus, by converting a non-idempotent procedure into a series of
143  * idempotent outcomes, fast commits ensured idempotence during the replay.
144  *
145  * TODOs
146  * -----
147  *
148  * 0) Fast commit replay path hardening: Fast commit replay code should use
149  *    journal handles to make sure all the updates it does during the replay
150  *    path are atomic. With that if we crash during fast commit replay, after
151  *    trying to do recovery again, we will find a file system where fast commit
152  *    area is invalid (because new full commit would be found). In order to deal
153  *    with that, fast commit replay code should ensure that the "FC_REPLAY"
154  *    superblock state is persisted before starting the replay, so that after
155  *    the crash, fast commit recovery code can look at that flag and perform
156  *    fast commit recovery even if that area is invalidated by later full
157  *    commits.
158  *
159  * 1) Fast commit's commit path locks the entire file system during fast
160  *    commit. This has significant performance penalty. Instead of that, we
161  *    should use ext4_fc_start/stop_update functions to start inode level
162  *    updates from ext4_journal_start/stop. Once we do that we can drop file
163  *    system locking during commit path.
164  *
165  * 2) Handle more ineligible cases.
166  */
167 
168 #include <trace/events/ext4.h>
169 static struct kmem_cache *ext4_fc_dentry_cachep;
170 
171 static void ext4_end_buffer_io_sync(struct buffer_head *bh, int uptodate)
172 {
173 	BUFFER_TRACE(bh, "");
174 	if (uptodate) {
175 		ext4_debug("%s: Block %lld up-to-date",
176 			   __func__, bh->b_blocknr);
177 		set_buffer_uptodate(bh);
178 	} else {
179 		ext4_debug("%s: Block %lld not up-to-date",
180 			   __func__, bh->b_blocknr);
181 		clear_buffer_uptodate(bh);
182 	}
183 
184 	unlock_buffer(bh);
185 }
186 
187 static inline void ext4_fc_reset_inode(struct inode *inode)
188 {
189 	struct ext4_inode_info *ei = EXT4_I(inode);
190 
191 	ei->i_fc_lblk_start = 0;
192 	ei->i_fc_lblk_len = 0;
193 }
194 
195 void ext4_fc_init_inode(struct inode *inode)
196 {
197 	struct ext4_inode_info *ei = EXT4_I(inode);
198 
199 	ext4_fc_reset_inode(inode);
200 	ext4_clear_inode_state(inode, EXT4_STATE_FC_COMMITTING);
201 	INIT_LIST_HEAD(&ei->i_fc_list);
202 	INIT_LIST_HEAD(&ei->i_fc_dilist);
203 	init_waitqueue_head(&ei->i_fc_wait);
204 	atomic_set(&ei->i_fc_updates, 0);
205 }
206 
207 /* This function must be called with sbi->s_fc_lock held. */
208 static void ext4_fc_wait_committing_inode(struct inode *inode)
209 __releases(&EXT4_SB(inode->i_sb)->s_fc_lock)
210 {
211 	wait_queue_head_t *wq;
212 	struct ext4_inode_info *ei = EXT4_I(inode);
213 
214 #if (BITS_PER_LONG < 64)
215 	DEFINE_WAIT_BIT(wait, &ei->i_state_flags,
216 			EXT4_STATE_FC_COMMITTING);
217 	wq = bit_waitqueue(&ei->i_state_flags,
218 				EXT4_STATE_FC_COMMITTING);
219 #else
220 	DEFINE_WAIT_BIT(wait, &ei->i_flags,
221 			EXT4_STATE_FC_COMMITTING);
222 	wq = bit_waitqueue(&ei->i_flags,
223 				EXT4_STATE_FC_COMMITTING);
224 #endif
225 	lockdep_assert_held(&EXT4_SB(inode->i_sb)->s_fc_lock);
226 	prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
227 	spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
228 	schedule();
229 	finish_wait(wq, &wait.wq_entry);
230 }
231 
232 static bool ext4_fc_disabled(struct super_block *sb)
233 {
234 	return (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
235 		(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY));
236 }
237 
238 /*
239  * Inform Ext4's fast about start of an inode update
240  *
241  * This function is called by the high level call VFS callbacks before
242  * performing any inode update. This function blocks if there's an ongoing
243  * fast commit on the inode in question.
244  */
245 void ext4_fc_start_update(struct inode *inode)
246 {
247 	struct ext4_inode_info *ei = EXT4_I(inode);
248 
249 	if (ext4_fc_disabled(inode->i_sb))
250 		return;
251 
252 restart:
253 	spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock);
254 	if (list_empty(&ei->i_fc_list))
255 		goto out;
256 
257 	if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
258 		ext4_fc_wait_committing_inode(inode);
259 		goto restart;
260 	}
261 out:
262 	atomic_inc(&ei->i_fc_updates);
263 	spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
264 }
265 
266 /*
267  * Stop inode update and wake up waiting fast commits if any.
268  */
269 void ext4_fc_stop_update(struct inode *inode)
270 {
271 	struct ext4_inode_info *ei = EXT4_I(inode);
272 
273 	if (ext4_fc_disabled(inode->i_sb))
274 		return;
275 
276 	if (atomic_dec_and_test(&ei->i_fc_updates))
277 		wake_up_all(&ei->i_fc_wait);
278 }
279 
280 /*
281  * Remove inode from fast commit list. If the inode is being committed
282  * we wait until inode commit is done.
283  */
284 void ext4_fc_del(struct inode *inode)
285 {
286 	struct ext4_inode_info *ei = EXT4_I(inode);
287 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
288 	struct ext4_fc_dentry_update *fc_dentry;
289 
290 	if (ext4_fc_disabled(inode->i_sb))
291 		return;
292 
293 restart:
294 	spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock);
295 	if (list_empty(&ei->i_fc_list) && list_empty(&ei->i_fc_dilist)) {
296 		spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
297 		return;
298 	}
299 
300 	if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
301 		ext4_fc_wait_committing_inode(inode);
302 		goto restart;
303 	}
304 
305 	if (!list_empty(&ei->i_fc_list))
306 		list_del_init(&ei->i_fc_list);
307 
308 	/*
309 	 * Since this inode is getting removed, let's also remove all FC
310 	 * dentry create references, since it is not needed to log it anyways.
311 	 */
312 	if (list_empty(&ei->i_fc_dilist)) {
313 		spin_unlock(&sbi->s_fc_lock);
314 		return;
315 	}
316 
317 	fc_dentry = list_first_entry(&ei->i_fc_dilist, struct ext4_fc_dentry_update, fcd_dilist);
318 	WARN_ON(fc_dentry->fcd_op != EXT4_FC_TAG_CREAT);
319 	list_del_init(&fc_dentry->fcd_list);
320 	list_del_init(&fc_dentry->fcd_dilist);
321 
322 	WARN_ON(!list_empty(&ei->i_fc_dilist));
323 	spin_unlock(&sbi->s_fc_lock);
324 
325 	if (fc_dentry->fcd_name.name &&
326 		fc_dentry->fcd_name.len > DNAME_INLINE_LEN)
327 		kfree(fc_dentry->fcd_name.name);
328 	kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry);
329 
330 	return;
331 }
332 
333 /*
334  * Mark file system as fast commit ineligible, and record latest
335  * ineligible transaction tid. This means until the recorded
336  * transaction, commit operation would result in a full jbd2 commit.
337  */
338 void ext4_fc_mark_ineligible(struct super_block *sb, int reason, handle_t *handle)
339 {
340 	struct ext4_sb_info *sbi = EXT4_SB(sb);
341 	tid_t tid;
342 
343 	if (ext4_fc_disabled(sb))
344 		return;
345 
346 	ext4_set_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
347 	if (handle && !IS_ERR(handle))
348 		tid = handle->h_transaction->t_tid;
349 	else {
350 		read_lock(&sbi->s_journal->j_state_lock);
351 		tid = sbi->s_journal->j_running_transaction ?
352 				sbi->s_journal->j_running_transaction->t_tid : 0;
353 		read_unlock(&sbi->s_journal->j_state_lock);
354 	}
355 	spin_lock(&sbi->s_fc_lock);
356 	if (sbi->s_fc_ineligible_tid < tid)
357 		sbi->s_fc_ineligible_tid = tid;
358 	spin_unlock(&sbi->s_fc_lock);
359 	WARN_ON(reason >= EXT4_FC_REASON_MAX);
360 	sbi->s_fc_stats.fc_ineligible_reason_count[reason]++;
361 }
362 
363 /*
364  * Generic fast commit tracking function. If this is the first time this we are
365  * called after a full commit, we initialize fast commit fields and then call
366  * __fc_track_fn() with update = 0. If we have already been called after a full
367  * commit, we pass update = 1. Based on that, the track function can determine
368  * if it needs to track a field for the first time or if it needs to just
369  * update the previously tracked value.
370  *
371  * If enqueue is set, this function enqueues the inode in fast commit list.
372  */
373 static int ext4_fc_track_template(
374 	handle_t *handle, struct inode *inode,
375 	int (*__fc_track_fn)(struct inode *, void *, bool),
376 	void *args, int enqueue)
377 {
378 	bool update = false;
379 	struct ext4_inode_info *ei = EXT4_I(inode);
380 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
381 	tid_t tid = 0;
382 	int ret;
383 
384 	tid = handle->h_transaction->t_tid;
385 	mutex_lock(&ei->i_fc_lock);
386 	if (tid == ei->i_sync_tid) {
387 		update = true;
388 	} else {
389 		ext4_fc_reset_inode(inode);
390 		ei->i_sync_tid = tid;
391 	}
392 	ret = __fc_track_fn(inode, args, update);
393 	mutex_unlock(&ei->i_fc_lock);
394 
395 	if (!enqueue)
396 		return ret;
397 
398 	spin_lock(&sbi->s_fc_lock);
399 	if (list_empty(&EXT4_I(inode)->i_fc_list))
400 		list_add_tail(&EXT4_I(inode)->i_fc_list,
401 				(sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
402 				 sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING) ?
403 				&sbi->s_fc_q[FC_Q_STAGING] :
404 				&sbi->s_fc_q[FC_Q_MAIN]);
405 	spin_unlock(&sbi->s_fc_lock);
406 
407 	return ret;
408 }
409 
410 struct __track_dentry_update_args {
411 	struct dentry *dentry;
412 	int op;
413 };
414 
415 /* __track_fn for directory entry updates. Called with ei->i_fc_lock. */
416 static int __track_dentry_update(struct inode *inode, void *arg, bool update)
417 {
418 	struct ext4_fc_dentry_update *node;
419 	struct ext4_inode_info *ei = EXT4_I(inode);
420 	struct __track_dentry_update_args *dentry_update =
421 		(struct __track_dentry_update_args *)arg;
422 	struct dentry *dentry = dentry_update->dentry;
423 	struct inode *dir = dentry->d_parent->d_inode;
424 	struct super_block *sb = inode->i_sb;
425 	struct ext4_sb_info *sbi = EXT4_SB(sb);
426 
427 	mutex_unlock(&ei->i_fc_lock);
428 
429 	if (IS_ENCRYPTED(dir)) {
430 		ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_ENCRYPTED_FILENAME,
431 					NULL);
432 		mutex_lock(&ei->i_fc_lock);
433 		return -EOPNOTSUPP;
434 	}
435 
436 	node = kmem_cache_alloc(ext4_fc_dentry_cachep, GFP_NOFS);
437 	if (!node) {
438 		ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_NOMEM, NULL);
439 		mutex_lock(&ei->i_fc_lock);
440 		return -ENOMEM;
441 	}
442 
443 	node->fcd_op = dentry_update->op;
444 	node->fcd_parent = dir->i_ino;
445 	node->fcd_ino = inode->i_ino;
446 	if (dentry->d_name.len > DNAME_INLINE_LEN) {
447 		node->fcd_name.name = kmalloc(dentry->d_name.len, GFP_NOFS);
448 		if (!node->fcd_name.name) {
449 			kmem_cache_free(ext4_fc_dentry_cachep, node);
450 			ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_NOMEM, NULL);
451 			mutex_lock(&ei->i_fc_lock);
452 			return -ENOMEM;
453 		}
454 		memcpy((u8 *)node->fcd_name.name, dentry->d_name.name,
455 			dentry->d_name.len);
456 	} else {
457 		memcpy(node->fcd_iname, dentry->d_name.name,
458 			dentry->d_name.len);
459 		node->fcd_name.name = node->fcd_iname;
460 	}
461 	node->fcd_name.len = dentry->d_name.len;
462 	INIT_LIST_HEAD(&node->fcd_dilist);
463 	spin_lock(&sbi->s_fc_lock);
464 	if (sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
465 		sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING)
466 		list_add_tail(&node->fcd_list,
467 				&sbi->s_fc_dentry_q[FC_Q_STAGING]);
468 	else
469 		list_add_tail(&node->fcd_list, &sbi->s_fc_dentry_q[FC_Q_MAIN]);
470 
471 	/*
472 	 * This helps us keep a track of all fc_dentry updates which is part of
473 	 * this ext4 inode. So in case the inode is getting unlinked, before
474 	 * even we get a chance to fsync, we could remove all fc_dentry
475 	 * references while evicting the inode in ext4_fc_del().
476 	 * Also with this, we don't need to loop over all the inodes in
477 	 * sbi->s_fc_q to get the corresponding inode in
478 	 * ext4_fc_commit_dentry_updates().
479 	 */
480 	if (dentry_update->op == EXT4_FC_TAG_CREAT) {
481 		WARN_ON(!list_empty(&ei->i_fc_dilist));
482 		list_add_tail(&node->fcd_dilist, &ei->i_fc_dilist);
483 	}
484 	spin_unlock(&sbi->s_fc_lock);
485 	mutex_lock(&ei->i_fc_lock);
486 
487 	return 0;
488 }
489 
490 void __ext4_fc_track_unlink(handle_t *handle,
491 		struct inode *inode, struct dentry *dentry)
492 {
493 	struct __track_dentry_update_args args;
494 	int ret;
495 
496 	args.dentry = dentry;
497 	args.op = EXT4_FC_TAG_UNLINK;
498 
499 	ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
500 					(void *)&args, 0);
501 	trace_ext4_fc_track_unlink(handle, inode, dentry, ret);
502 }
503 
504 void ext4_fc_track_unlink(handle_t *handle, struct dentry *dentry)
505 {
506 	struct inode *inode = d_inode(dentry);
507 
508 	if (ext4_fc_disabled(inode->i_sb))
509 		return;
510 
511 	if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
512 		return;
513 
514 	__ext4_fc_track_unlink(handle, inode, dentry);
515 }
516 
517 void __ext4_fc_track_link(handle_t *handle,
518 	struct inode *inode, struct dentry *dentry)
519 {
520 	struct __track_dentry_update_args args;
521 	int ret;
522 
523 	args.dentry = dentry;
524 	args.op = EXT4_FC_TAG_LINK;
525 
526 	ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
527 					(void *)&args, 0);
528 	trace_ext4_fc_track_link(handle, inode, dentry, ret);
529 }
530 
531 void ext4_fc_track_link(handle_t *handle, struct dentry *dentry)
532 {
533 	struct inode *inode = d_inode(dentry);
534 
535 	if (ext4_fc_disabled(inode->i_sb))
536 		return;
537 
538 	if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
539 		return;
540 
541 	__ext4_fc_track_link(handle, inode, dentry);
542 }
543 
544 void __ext4_fc_track_create(handle_t *handle, struct inode *inode,
545 			  struct dentry *dentry)
546 {
547 	struct __track_dentry_update_args args;
548 	int ret;
549 
550 	args.dentry = dentry;
551 	args.op = EXT4_FC_TAG_CREAT;
552 
553 	ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
554 					(void *)&args, 0);
555 	trace_ext4_fc_track_create(handle, inode, dentry, ret);
556 }
557 
558 void ext4_fc_track_create(handle_t *handle, struct dentry *dentry)
559 {
560 	struct inode *inode = d_inode(dentry);
561 
562 	if (ext4_fc_disabled(inode->i_sb))
563 		return;
564 
565 	if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
566 		return;
567 
568 	__ext4_fc_track_create(handle, inode, dentry);
569 }
570 
571 /* __track_fn for inode tracking */
572 static int __track_inode(struct inode *inode, void *arg, bool update)
573 {
574 	if (update)
575 		return -EEXIST;
576 
577 	EXT4_I(inode)->i_fc_lblk_len = 0;
578 
579 	return 0;
580 }
581 
582 void ext4_fc_track_inode(handle_t *handle, struct inode *inode)
583 {
584 	int ret;
585 
586 	if (S_ISDIR(inode->i_mode))
587 		return;
588 
589 	if (ext4_fc_disabled(inode->i_sb))
590 		return;
591 
592 	if (ext4_should_journal_data(inode)) {
593 		ext4_fc_mark_ineligible(inode->i_sb,
594 					EXT4_FC_REASON_INODE_JOURNAL_DATA, handle);
595 		return;
596 	}
597 
598 	if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
599 		return;
600 
601 	ret = ext4_fc_track_template(handle, inode, __track_inode, NULL, 1);
602 	trace_ext4_fc_track_inode(handle, inode, ret);
603 }
604 
605 struct __track_range_args {
606 	ext4_lblk_t start, end;
607 };
608 
609 /* __track_fn for tracking data updates */
610 static int __track_range(struct inode *inode, void *arg, bool update)
611 {
612 	struct ext4_inode_info *ei = EXT4_I(inode);
613 	ext4_lblk_t oldstart;
614 	struct __track_range_args *__arg =
615 		(struct __track_range_args *)arg;
616 
617 	if (inode->i_ino < EXT4_FIRST_INO(inode->i_sb)) {
618 		ext4_debug("Special inode %ld being modified\n", inode->i_ino);
619 		return -ECANCELED;
620 	}
621 
622 	oldstart = ei->i_fc_lblk_start;
623 
624 	if (update && ei->i_fc_lblk_len > 0) {
625 		ei->i_fc_lblk_start = min(ei->i_fc_lblk_start, __arg->start);
626 		ei->i_fc_lblk_len =
627 			max(oldstart + ei->i_fc_lblk_len - 1, __arg->end) -
628 				ei->i_fc_lblk_start + 1;
629 	} else {
630 		ei->i_fc_lblk_start = __arg->start;
631 		ei->i_fc_lblk_len = __arg->end - __arg->start + 1;
632 	}
633 
634 	return 0;
635 }
636 
637 void ext4_fc_track_range(handle_t *handle, struct inode *inode, ext4_lblk_t start,
638 			 ext4_lblk_t end)
639 {
640 	struct __track_range_args args;
641 	int ret;
642 
643 	if (S_ISDIR(inode->i_mode))
644 		return;
645 
646 	if (ext4_fc_disabled(inode->i_sb))
647 		return;
648 
649 	if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
650 		return;
651 
652 	args.start = start;
653 	args.end = end;
654 
655 	ret = ext4_fc_track_template(handle, inode,  __track_range, &args, 1);
656 
657 	trace_ext4_fc_track_range(handle, inode, start, end, ret);
658 }
659 
660 static void ext4_fc_submit_bh(struct super_block *sb, bool is_tail)
661 {
662 	blk_opf_t write_flags = REQ_SYNC;
663 	struct buffer_head *bh = EXT4_SB(sb)->s_fc_bh;
664 
665 	/* Add REQ_FUA | REQ_PREFLUSH only its tail */
666 	if (test_opt(sb, BARRIER) && is_tail)
667 		write_flags |= REQ_FUA | REQ_PREFLUSH;
668 	lock_buffer(bh);
669 	set_buffer_dirty(bh);
670 	set_buffer_uptodate(bh);
671 	bh->b_end_io = ext4_end_buffer_io_sync;
672 	submit_bh(REQ_OP_WRITE | write_flags, bh);
673 	EXT4_SB(sb)->s_fc_bh = NULL;
674 }
675 
676 /* Ext4 commit path routines */
677 
678 /*
679  * Allocate len bytes on a fast commit buffer.
680  *
681  * During the commit time this function is used to manage fast commit
682  * block space. We don't split a fast commit log onto different
683  * blocks. So this function makes sure that if there's not enough space
684  * on the current block, the remaining space in the current block is
685  * marked as unused by adding EXT4_FC_TAG_PAD tag. In that case,
686  * new block is from jbd2 and CRC is updated to reflect the padding
687  * we added.
688  */
689 static u8 *ext4_fc_reserve_space(struct super_block *sb, int len, u32 *crc)
690 {
691 	struct ext4_fc_tl tl;
692 	struct ext4_sb_info *sbi = EXT4_SB(sb);
693 	struct buffer_head *bh;
694 	int bsize = sbi->s_journal->j_blocksize;
695 	int ret, off = sbi->s_fc_bytes % bsize;
696 	int remaining;
697 	u8 *dst;
698 
699 	/*
700 	 * If 'len' is too long to fit in any block alongside a PAD tlv, then we
701 	 * cannot fulfill the request.
702 	 */
703 	if (len > bsize - EXT4_FC_TAG_BASE_LEN)
704 		return NULL;
705 
706 	if (!sbi->s_fc_bh) {
707 		ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
708 		if (ret)
709 			return NULL;
710 		sbi->s_fc_bh = bh;
711 	}
712 	dst = sbi->s_fc_bh->b_data + off;
713 
714 	/*
715 	 * Allocate the bytes in the current block if we can do so while still
716 	 * leaving enough space for a PAD tlv.
717 	 */
718 	remaining = bsize - EXT4_FC_TAG_BASE_LEN - off;
719 	if (len <= remaining) {
720 		sbi->s_fc_bytes += len;
721 		return dst;
722 	}
723 
724 	/*
725 	 * Else, terminate the current block with a PAD tlv, then allocate a new
726 	 * block and allocate the bytes at the start of that new block.
727 	 */
728 
729 	tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_PAD);
730 	tl.fc_len = cpu_to_le16(remaining);
731 	memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
732 	memset(dst + EXT4_FC_TAG_BASE_LEN, 0, remaining);
733 	*crc = ext4_chksum(sbi, *crc, sbi->s_fc_bh->b_data, bsize);
734 
735 	ext4_fc_submit_bh(sb, false);
736 
737 	ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
738 	if (ret)
739 		return NULL;
740 	sbi->s_fc_bh = bh;
741 	sbi->s_fc_bytes += bsize - off + len;
742 	return sbi->s_fc_bh->b_data;
743 }
744 
745 /*
746  * Complete a fast commit by writing tail tag.
747  *
748  * Writing tail tag marks the end of a fast commit. In order to guarantee
749  * atomicity, after writing tail tag, even if there's space remaining
750  * in the block, next commit shouldn't use it. That's why tail tag
751  * has the length as that of the remaining space on the block.
752  */
753 static int ext4_fc_write_tail(struct super_block *sb, u32 crc)
754 {
755 	struct ext4_sb_info *sbi = EXT4_SB(sb);
756 	struct ext4_fc_tl tl;
757 	struct ext4_fc_tail tail;
758 	int off, bsize = sbi->s_journal->j_blocksize;
759 	u8 *dst;
760 
761 	/*
762 	 * ext4_fc_reserve_space takes care of allocating an extra block if
763 	 * there's no enough space on this block for accommodating this tail.
764 	 */
765 	dst = ext4_fc_reserve_space(sb, EXT4_FC_TAG_BASE_LEN + sizeof(tail), &crc);
766 	if (!dst)
767 		return -ENOSPC;
768 
769 	off = sbi->s_fc_bytes % bsize;
770 
771 	tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_TAIL);
772 	tl.fc_len = cpu_to_le16(bsize - off + sizeof(struct ext4_fc_tail));
773 	sbi->s_fc_bytes = round_up(sbi->s_fc_bytes, bsize);
774 
775 	memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
776 	dst += EXT4_FC_TAG_BASE_LEN;
777 	tail.fc_tid = cpu_to_le32(sbi->s_journal->j_running_transaction->t_tid);
778 	memcpy(dst, &tail.fc_tid, sizeof(tail.fc_tid));
779 	dst += sizeof(tail.fc_tid);
780 	crc = ext4_chksum(sbi, crc, sbi->s_fc_bh->b_data,
781 			  dst - (u8 *)sbi->s_fc_bh->b_data);
782 	tail.fc_crc = cpu_to_le32(crc);
783 	memcpy(dst, &tail.fc_crc, sizeof(tail.fc_crc));
784 	dst += sizeof(tail.fc_crc);
785 	memset(dst, 0, bsize - off); /* Don't leak uninitialized memory. */
786 
787 	ext4_fc_submit_bh(sb, true);
788 
789 	return 0;
790 }
791 
792 /*
793  * Adds tag, length, value and updates CRC. Returns true if tlv was added.
794  * Returns false if there's not enough space.
795  */
796 static bool ext4_fc_add_tlv(struct super_block *sb, u16 tag, u16 len, u8 *val,
797 			   u32 *crc)
798 {
799 	struct ext4_fc_tl tl;
800 	u8 *dst;
801 
802 	dst = ext4_fc_reserve_space(sb, EXT4_FC_TAG_BASE_LEN + len, crc);
803 	if (!dst)
804 		return false;
805 
806 	tl.fc_tag = cpu_to_le16(tag);
807 	tl.fc_len = cpu_to_le16(len);
808 
809 	memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
810 	memcpy(dst + EXT4_FC_TAG_BASE_LEN, val, len);
811 
812 	return true;
813 }
814 
815 /* Same as above, but adds dentry tlv. */
816 static bool ext4_fc_add_dentry_tlv(struct super_block *sb, u32 *crc,
817 				   struct ext4_fc_dentry_update *fc_dentry)
818 {
819 	struct ext4_fc_dentry_info fcd;
820 	struct ext4_fc_tl tl;
821 	int dlen = fc_dentry->fcd_name.len;
822 	u8 *dst = ext4_fc_reserve_space(sb,
823 			EXT4_FC_TAG_BASE_LEN + sizeof(fcd) + dlen, crc);
824 
825 	if (!dst)
826 		return false;
827 
828 	fcd.fc_parent_ino = cpu_to_le32(fc_dentry->fcd_parent);
829 	fcd.fc_ino = cpu_to_le32(fc_dentry->fcd_ino);
830 	tl.fc_tag = cpu_to_le16(fc_dentry->fcd_op);
831 	tl.fc_len = cpu_to_le16(sizeof(fcd) + dlen);
832 	memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
833 	dst += EXT4_FC_TAG_BASE_LEN;
834 	memcpy(dst, &fcd, sizeof(fcd));
835 	dst += sizeof(fcd);
836 	memcpy(dst, fc_dentry->fcd_name.name, dlen);
837 
838 	return true;
839 }
840 
841 /*
842  * Writes inode in the fast commit space under TLV with tag @tag.
843  * Returns 0 on success, error on failure.
844  */
845 static int ext4_fc_write_inode(struct inode *inode, u32 *crc)
846 {
847 	struct ext4_inode_info *ei = EXT4_I(inode);
848 	int inode_len = EXT4_GOOD_OLD_INODE_SIZE;
849 	int ret;
850 	struct ext4_iloc iloc;
851 	struct ext4_fc_inode fc_inode;
852 	struct ext4_fc_tl tl;
853 	u8 *dst;
854 
855 	ret = ext4_get_inode_loc(inode, &iloc);
856 	if (ret)
857 		return ret;
858 
859 	if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA))
860 		inode_len = EXT4_INODE_SIZE(inode->i_sb);
861 	else if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE)
862 		inode_len += ei->i_extra_isize;
863 
864 	fc_inode.fc_ino = cpu_to_le32(inode->i_ino);
865 	tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_INODE);
866 	tl.fc_len = cpu_to_le16(inode_len + sizeof(fc_inode.fc_ino));
867 
868 	ret = -ECANCELED;
869 	dst = ext4_fc_reserve_space(inode->i_sb,
870 		EXT4_FC_TAG_BASE_LEN + inode_len + sizeof(fc_inode.fc_ino), crc);
871 	if (!dst)
872 		goto err;
873 
874 	memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
875 	dst += EXT4_FC_TAG_BASE_LEN;
876 	memcpy(dst, &fc_inode, sizeof(fc_inode));
877 	dst += sizeof(fc_inode);
878 	memcpy(dst, (u8 *)ext4_raw_inode(&iloc), inode_len);
879 	ret = 0;
880 err:
881 	brelse(iloc.bh);
882 	return ret;
883 }
884 
885 /*
886  * Writes updated data ranges for the inode in question. Updates CRC.
887  * Returns 0 on success, error otherwise.
888  */
889 static int ext4_fc_write_inode_data(struct inode *inode, u32 *crc)
890 {
891 	ext4_lblk_t old_blk_size, cur_lblk_off, new_blk_size;
892 	struct ext4_inode_info *ei = EXT4_I(inode);
893 	struct ext4_map_blocks map;
894 	struct ext4_fc_add_range fc_ext;
895 	struct ext4_fc_del_range lrange;
896 	struct ext4_extent *ex;
897 	int ret;
898 
899 	mutex_lock(&ei->i_fc_lock);
900 	if (ei->i_fc_lblk_len == 0) {
901 		mutex_unlock(&ei->i_fc_lock);
902 		return 0;
903 	}
904 	old_blk_size = ei->i_fc_lblk_start;
905 	new_blk_size = ei->i_fc_lblk_start + ei->i_fc_lblk_len - 1;
906 	ei->i_fc_lblk_len = 0;
907 	mutex_unlock(&ei->i_fc_lock);
908 
909 	cur_lblk_off = old_blk_size;
910 	ext4_debug("will try writing %d to %d for inode %ld\n",
911 		   cur_lblk_off, new_blk_size, inode->i_ino);
912 
913 	while (cur_lblk_off <= new_blk_size) {
914 		map.m_lblk = cur_lblk_off;
915 		map.m_len = new_blk_size - cur_lblk_off + 1;
916 		ret = ext4_map_blocks(NULL, inode, &map, 0);
917 		if (ret < 0)
918 			return -ECANCELED;
919 
920 		if (map.m_len == 0) {
921 			cur_lblk_off++;
922 			continue;
923 		}
924 
925 		if (ret == 0) {
926 			lrange.fc_ino = cpu_to_le32(inode->i_ino);
927 			lrange.fc_lblk = cpu_to_le32(map.m_lblk);
928 			lrange.fc_len = cpu_to_le32(map.m_len);
929 			if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_DEL_RANGE,
930 					    sizeof(lrange), (u8 *)&lrange, crc))
931 				return -ENOSPC;
932 		} else {
933 			unsigned int max = (map.m_flags & EXT4_MAP_UNWRITTEN) ?
934 				EXT_UNWRITTEN_MAX_LEN : EXT_INIT_MAX_LEN;
935 
936 			/* Limit the number of blocks in one extent */
937 			map.m_len = min(max, map.m_len);
938 
939 			fc_ext.fc_ino = cpu_to_le32(inode->i_ino);
940 			ex = (struct ext4_extent *)&fc_ext.fc_ex;
941 			ex->ee_block = cpu_to_le32(map.m_lblk);
942 			ex->ee_len = cpu_to_le16(map.m_len);
943 			ext4_ext_store_pblock(ex, map.m_pblk);
944 			if (map.m_flags & EXT4_MAP_UNWRITTEN)
945 				ext4_ext_mark_unwritten(ex);
946 			else
947 				ext4_ext_mark_initialized(ex);
948 			if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_ADD_RANGE,
949 					    sizeof(fc_ext), (u8 *)&fc_ext, crc))
950 				return -ENOSPC;
951 		}
952 
953 		cur_lblk_off += map.m_len;
954 	}
955 
956 	return 0;
957 }
958 
959 
960 /* Submit data for all the fast commit inodes */
961 static int ext4_fc_submit_inode_data_all(journal_t *journal)
962 {
963 	struct super_block *sb = journal->j_private;
964 	struct ext4_sb_info *sbi = EXT4_SB(sb);
965 	struct ext4_inode_info *ei;
966 	int ret = 0;
967 
968 	spin_lock(&sbi->s_fc_lock);
969 	list_for_each_entry(ei, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
970 		ext4_set_inode_state(&ei->vfs_inode, EXT4_STATE_FC_COMMITTING);
971 		while (atomic_read(&ei->i_fc_updates)) {
972 			DEFINE_WAIT(wait);
973 
974 			prepare_to_wait(&ei->i_fc_wait, &wait,
975 						TASK_UNINTERRUPTIBLE);
976 			if (atomic_read(&ei->i_fc_updates)) {
977 				spin_unlock(&sbi->s_fc_lock);
978 				schedule();
979 				spin_lock(&sbi->s_fc_lock);
980 			}
981 			finish_wait(&ei->i_fc_wait, &wait);
982 		}
983 		spin_unlock(&sbi->s_fc_lock);
984 		ret = jbd2_submit_inode_data(journal, ei->jinode);
985 		if (ret)
986 			return ret;
987 		spin_lock(&sbi->s_fc_lock);
988 	}
989 	spin_unlock(&sbi->s_fc_lock);
990 
991 	return ret;
992 }
993 
994 /* Wait for completion of data for all the fast commit inodes */
995 static int ext4_fc_wait_inode_data_all(journal_t *journal)
996 {
997 	struct super_block *sb = journal->j_private;
998 	struct ext4_sb_info *sbi = EXT4_SB(sb);
999 	struct ext4_inode_info *pos, *n;
1000 	int ret = 0;
1001 
1002 	spin_lock(&sbi->s_fc_lock);
1003 	list_for_each_entry_safe(pos, n, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
1004 		if (!ext4_test_inode_state(&pos->vfs_inode,
1005 					   EXT4_STATE_FC_COMMITTING))
1006 			continue;
1007 		spin_unlock(&sbi->s_fc_lock);
1008 
1009 		ret = jbd2_wait_inode_data(journal, pos->jinode);
1010 		if (ret)
1011 			return ret;
1012 		spin_lock(&sbi->s_fc_lock);
1013 	}
1014 	spin_unlock(&sbi->s_fc_lock);
1015 
1016 	return 0;
1017 }
1018 
1019 /* Commit all the directory entry updates */
1020 static int ext4_fc_commit_dentry_updates(journal_t *journal, u32 *crc)
1021 __acquires(&sbi->s_fc_lock)
1022 __releases(&sbi->s_fc_lock)
1023 {
1024 	struct super_block *sb = journal->j_private;
1025 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1026 	struct ext4_fc_dentry_update *fc_dentry, *fc_dentry_n;
1027 	struct inode *inode;
1028 	struct ext4_inode_info *ei;
1029 	int ret;
1030 
1031 	if (list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN]))
1032 		return 0;
1033 	list_for_each_entry_safe(fc_dentry, fc_dentry_n,
1034 				 &sbi->s_fc_dentry_q[FC_Q_MAIN], fcd_list) {
1035 		if (fc_dentry->fcd_op != EXT4_FC_TAG_CREAT) {
1036 			spin_unlock(&sbi->s_fc_lock);
1037 			if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry)) {
1038 				ret = -ENOSPC;
1039 				goto lock_and_exit;
1040 			}
1041 			spin_lock(&sbi->s_fc_lock);
1042 			continue;
1043 		}
1044 		/*
1045 		 * With fcd_dilist we need not loop in sbi->s_fc_q to get the
1046 		 * corresponding inode pointer
1047 		 */
1048 		WARN_ON(list_empty(&fc_dentry->fcd_dilist));
1049 		ei = list_first_entry(&fc_dentry->fcd_dilist,
1050 				struct ext4_inode_info, i_fc_dilist);
1051 		inode = &ei->vfs_inode;
1052 		WARN_ON(inode->i_ino != fc_dentry->fcd_ino);
1053 
1054 		spin_unlock(&sbi->s_fc_lock);
1055 
1056 		/*
1057 		 * We first write the inode and then the create dirent. This
1058 		 * allows the recovery code to create an unnamed inode first
1059 		 * and then link it to a directory entry. This allows us
1060 		 * to use namei.c routines almost as is and simplifies
1061 		 * the recovery code.
1062 		 */
1063 		ret = ext4_fc_write_inode(inode, crc);
1064 		if (ret)
1065 			goto lock_and_exit;
1066 
1067 		ret = ext4_fc_write_inode_data(inode, crc);
1068 		if (ret)
1069 			goto lock_and_exit;
1070 
1071 		if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry)) {
1072 			ret = -ENOSPC;
1073 			goto lock_and_exit;
1074 		}
1075 
1076 		spin_lock(&sbi->s_fc_lock);
1077 	}
1078 	return 0;
1079 lock_and_exit:
1080 	spin_lock(&sbi->s_fc_lock);
1081 	return ret;
1082 }
1083 
1084 static int ext4_fc_perform_commit(journal_t *journal)
1085 {
1086 	struct super_block *sb = journal->j_private;
1087 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1088 	struct ext4_inode_info *iter;
1089 	struct ext4_fc_head head;
1090 	struct inode *inode;
1091 	struct blk_plug plug;
1092 	int ret = 0;
1093 	u32 crc = 0;
1094 
1095 	ret = ext4_fc_submit_inode_data_all(journal);
1096 	if (ret)
1097 		return ret;
1098 
1099 	ret = ext4_fc_wait_inode_data_all(journal);
1100 	if (ret)
1101 		return ret;
1102 
1103 	/*
1104 	 * If file system device is different from journal device, issue a cache
1105 	 * flush before we start writing fast commit blocks.
1106 	 */
1107 	if (journal->j_fs_dev != journal->j_dev)
1108 		blkdev_issue_flush(journal->j_fs_dev);
1109 
1110 	blk_start_plug(&plug);
1111 	if (sbi->s_fc_bytes == 0) {
1112 		/*
1113 		 * Add a head tag only if this is the first fast commit
1114 		 * in this TID.
1115 		 */
1116 		head.fc_features = cpu_to_le32(EXT4_FC_SUPPORTED_FEATURES);
1117 		head.fc_tid = cpu_to_le32(
1118 			sbi->s_journal->j_running_transaction->t_tid);
1119 		if (!ext4_fc_add_tlv(sb, EXT4_FC_TAG_HEAD, sizeof(head),
1120 			(u8 *)&head, &crc)) {
1121 			ret = -ENOSPC;
1122 			goto out;
1123 		}
1124 	}
1125 
1126 	spin_lock(&sbi->s_fc_lock);
1127 	ret = ext4_fc_commit_dentry_updates(journal, &crc);
1128 	if (ret) {
1129 		spin_unlock(&sbi->s_fc_lock);
1130 		goto out;
1131 	}
1132 
1133 	list_for_each_entry(iter, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
1134 		inode = &iter->vfs_inode;
1135 		if (!ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING))
1136 			continue;
1137 
1138 		spin_unlock(&sbi->s_fc_lock);
1139 		ret = ext4_fc_write_inode_data(inode, &crc);
1140 		if (ret)
1141 			goto out;
1142 		ret = ext4_fc_write_inode(inode, &crc);
1143 		if (ret)
1144 			goto out;
1145 		spin_lock(&sbi->s_fc_lock);
1146 	}
1147 	spin_unlock(&sbi->s_fc_lock);
1148 
1149 	ret = ext4_fc_write_tail(sb, crc);
1150 
1151 out:
1152 	blk_finish_plug(&plug);
1153 	return ret;
1154 }
1155 
1156 static void ext4_fc_update_stats(struct super_block *sb, int status,
1157 				 u64 commit_time, int nblks, tid_t commit_tid)
1158 {
1159 	struct ext4_fc_stats *stats = &EXT4_SB(sb)->s_fc_stats;
1160 
1161 	ext4_debug("Fast commit ended with status = %d for tid %u",
1162 			status, commit_tid);
1163 	if (status == EXT4_FC_STATUS_OK) {
1164 		stats->fc_num_commits++;
1165 		stats->fc_numblks += nblks;
1166 		if (likely(stats->s_fc_avg_commit_time))
1167 			stats->s_fc_avg_commit_time =
1168 				(commit_time +
1169 				 stats->s_fc_avg_commit_time * 3) / 4;
1170 		else
1171 			stats->s_fc_avg_commit_time = commit_time;
1172 	} else if (status == EXT4_FC_STATUS_FAILED ||
1173 		   status == EXT4_FC_STATUS_INELIGIBLE) {
1174 		if (status == EXT4_FC_STATUS_FAILED)
1175 			stats->fc_failed_commits++;
1176 		stats->fc_ineligible_commits++;
1177 	} else {
1178 		stats->fc_skipped_commits++;
1179 	}
1180 	trace_ext4_fc_commit_stop(sb, nblks, status, commit_tid);
1181 }
1182 
1183 /*
1184  * The main commit entry point. Performs a fast commit for transaction
1185  * commit_tid if needed. If it's not possible to perform a fast commit
1186  * due to various reasons, we fall back to full commit. Returns 0
1187  * on success, error otherwise.
1188  */
1189 int ext4_fc_commit(journal_t *journal, tid_t commit_tid)
1190 {
1191 	struct super_block *sb = journal->j_private;
1192 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1193 	int nblks = 0, ret, bsize = journal->j_blocksize;
1194 	int subtid = atomic_read(&sbi->s_fc_subtid);
1195 	int status = EXT4_FC_STATUS_OK, fc_bufs_before = 0;
1196 	ktime_t start_time, commit_time;
1197 
1198 	if (!test_opt2(sb, JOURNAL_FAST_COMMIT))
1199 		return jbd2_complete_transaction(journal, commit_tid);
1200 
1201 	trace_ext4_fc_commit_start(sb, commit_tid);
1202 
1203 	start_time = ktime_get();
1204 
1205 restart_fc:
1206 	ret = jbd2_fc_begin_commit(journal, commit_tid);
1207 	if (ret == -EALREADY) {
1208 		/* There was an ongoing commit, check if we need to restart */
1209 		if (atomic_read(&sbi->s_fc_subtid) <= subtid &&
1210 			commit_tid > journal->j_commit_sequence)
1211 			goto restart_fc;
1212 		ext4_fc_update_stats(sb, EXT4_FC_STATUS_SKIPPED, 0, 0,
1213 				commit_tid);
1214 		return 0;
1215 	} else if (ret) {
1216 		/*
1217 		 * Commit couldn't start. Just update stats and perform a
1218 		 * full commit.
1219 		 */
1220 		ext4_fc_update_stats(sb, EXT4_FC_STATUS_FAILED, 0, 0,
1221 				commit_tid);
1222 		return jbd2_complete_transaction(journal, commit_tid);
1223 	}
1224 
1225 	/*
1226 	 * After establishing journal barrier via jbd2_fc_begin_commit(), check
1227 	 * if we are fast commit ineligible.
1228 	 */
1229 	if (ext4_test_mount_flag(sb, EXT4_MF_FC_INELIGIBLE)) {
1230 		status = EXT4_FC_STATUS_INELIGIBLE;
1231 		goto fallback;
1232 	}
1233 
1234 	fc_bufs_before = (sbi->s_fc_bytes + bsize - 1) / bsize;
1235 	ret = ext4_fc_perform_commit(journal);
1236 	if (ret < 0) {
1237 		status = EXT4_FC_STATUS_FAILED;
1238 		goto fallback;
1239 	}
1240 	nblks = (sbi->s_fc_bytes + bsize - 1) / bsize - fc_bufs_before;
1241 	ret = jbd2_fc_wait_bufs(journal, nblks);
1242 	if (ret < 0) {
1243 		status = EXT4_FC_STATUS_FAILED;
1244 		goto fallback;
1245 	}
1246 	atomic_inc(&sbi->s_fc_subtid);
1247 	ret = jbd2_fc_end_commit(journal);
1248 	/*
1249 	 * weight the commit time higher than the average time so we
1250 	 * don't react too strongly to vast changes in the commit time
1251 	 */
1252 	commit_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
1253 	ext4_fc_update_stats(sb, status, commit_time, nblks, commit_tid);
1254 	return ret;
1255 
1256 fallback:
1257 	ret = jbd2_fc_end_commit_fallback(journal);
1258 	ext4_fc_update_stats(sb, status, 0, 0, commit_tid);
1259 	return ret;
1260 }
1261 
1262 /*
1263  * Fast commit cleanup routine. This is called after every fast commit and
1264  * full commit. full is true if we are called after a full commit.
1265  */
1266 static void ext4_fc_cleanup(journal_t *journal, int full, tid_t tid)
1267 {
1268 	struct super_block *sb = journal->j_private;
1269 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1270 	struct ext4_inode_info *iter, *iter_n;
1271 	struct ext4_fc_dentry_update *fc_dentry;
1272 
1273 	if (full && sbi->s_fc_bh)
1274 		sbi->s_fc_bh = NULL;
1275 
1276 	trace_ext4_fc_cleanup(journal, full, tid);
1277 	jbd2_fc_release_bufs(journal);
1278 
1279 	spin_lock(&sbi->s_fc_lock);
1280 	list_for_each_entry_safe(iter, iter_n, &sbi->s_fc_q[FC_Q_MAIN],
1281 				 i_fc_list) {
1282 		list_del_init(&iter->i_fc_list);
1283 		ext4_clear_inode_state(&iter->vfs_inode,
1284 				       EXT4_STATE_FC_COMMITTING);
1285 		if (iter->i_sync_tid <= tid)
1286 			ext4_fc_reset_inode(&iter->vfs_inode);
1287 		/* Make sure EXT4_STATE_FC_COMMITTING bit is clear */
1288 		smp_mb();
1289 #if (BITS_PER_LONG < 64)
1290 		wake_up_bit(&iter->i_state_flags, EXT4_STATE_FC_COMMITTING);
1291 #else
1292 		wake_up_bit(&iter->i_flags, EXT4_STATE_FC_COMMITTING);
1293 #endif
1294 	}
1295 
1296 	while (!list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN])) {
1297 		fc_dentry = list_first_entry(&sbi->s_fc_dentry_q[FC_Q_MAIN],
1298 					     struct ext4_fc_dentry_update,
1299 					     fcd_list);
1300 		list_del_init(&fc_dentry->fcd_list);
1301 		list_del_init(&fc_dentry->fcd_dilist);
1302 		spin_unlock(&sbi->s_fc_lock);
1303 
1304 		if (fc_dentry->fcd_name.name &&
1305 			fc_dentry->fcd_name.len > DNAME_INLINE_LEN)
1306 			kfree(fc_dentry->fcd_name.name);
1307 		kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry);
1308 		spin_lock(&sbi->s_fc_lock);
1309 	}
1310 
1311 	list_splice_init(&sbi->s_fc_dentry_q[FC_Q_STAGING],
1312 				&sbi->s_fc_dentry_q[FC_Q_MAIN]);
1313 	list_splice_init(&sbi->s_fc_q[FC_Q_STAGING],
1314 				&sbi->s_fc_q[FC_Q_MAIN]);
1315 
1316 	if (tid >= sbi->s_fc_ineligible_tid) {
1317 		sbi->s_fc_ineligible_tid = 0;
1318 		ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
1319 	}
1320 
1321 	if (full)
1322 		sbi->s_fc_bytes = 0;
1323 	spin_unlock(&sbi->s_fc_lock);
1324 	trace_ext4_fc_stats(sb);
1325 }
1326 
1327 /* Ext4 Replay Path Routines */
1328 
1329 /* Helper struct for dentry replay routines */
1330 struct dentry_info_args {
1331 	int parent_ino, dname_len, ino, inode_len;
1332 	char *dname;
1333 };
1334 
1335 /* Same as struct ext4_fc_tl, but uses native endianness fields */
1336 struct ext4_fc_tl_mem {
1337 	u16 fc_tag;
1338 	u16 fc_len;
1339 };
1340 
1341 static inline void tl_to_darg(struct dentry_info_args *darg,
1342 			      struct ext4_fc_tl_mem *tl, u8 *val)
1343 {
1344 	struct ext4_fc_dentry_info fcd;
1345 
1346 	memcpy(&fcd, val, sizeof(fcd));
1347 
1348 	darg->parent_ino = le32_to_cpu(fcd.fc_parent_ino);
1349 	darg->ino = le32_to_cpu(fcd.fc_ino);
1350 	darg->dname = val + offsetof(struct ext4_fc_dentry_info, fc_dname);
1351 	darg->dname_len = tl->fc_len - sizeof(struct ext4_fc_dentry_info);
1352 }
1353 
1354 static inline void ext4_fc_get_tl(struct ext4_fc_tl_mem *tl, u8 *val)
1355 {
1356 	struct ext4_fc_tl tl_disk;
1357 
1358 	memcpy(&tl_disk, val, EXT4_FC_TAG_BASE_LEN);
1359 	tl->fc_len = le16_to_cpu(tl_disk.fc_len);
1360 	tl->fc_tag = le16_to_cpu(tl_disk.fc_tag);
1361 }
1362 
1363 /* Unlink replay function */
1364 static int ext4_fc_replay_unlink(struct super_block *sb,
1365 				 struct ext4_fc_tl_mem *tl, u8 *val)
1366 {
1367 	struct inode *inode, *old_parent;
1368 	struct qstr entry;
1369 	struct dentry_info_args darg;
1370 	int ret = 0;
1371 
1372 	tl_to_darg(&darg, tl, val);
1373 
1374 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_UNLINK, darg.ino,
1375 			darg.parent_ino, darg.dname_len);
1376 
1377 	entry.name = darg.dname;
1378 	entry.len = darg.dname_len;
1379 	inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1380 
1381 	if (IS_ERR(inode)) {
1382 		ext4_debug("Inode %d not found", darg.ino);
1383 		return 0;
1384 	}
1385 
1386 	old_parent = ext4_iget(sb, darg.parent_ino,
1387 				EXT4_IGET_NORMAL);
1388 	if (IS_ERR(old_parent)) {
1389 		ext4_debug("Dir with inode %d not found", darg.parent_ino);
1390 		iput(inode);
1391 		return 0;
1392 	}
1393 
1394 	ret = __ext4_unlink(old_parent, &entry, inode, NULL);
1395 	/* -ENOENT ok coz it might not exist anymore. */
1396 	if (ret == -ENOENT)
1397 		ret = 0;
1398 	iput(old_parent);
1399 	iput(inode);
1400 	return ret;
1401 }
1402 
1403 static int ext4_fc_replay_link_internal(struct super_block *sb,
1404 				struct dentry_info_args *darg,
1405 				struct inode *inode)
1406 {
1407 	struct inode *dir = NULL;
1408 	struct dentry *dentry_dir = NULL, *dentry_inode = NULL;
1409 	struct qstr qstr_dname = QSTR_INIT(darg->dname, darg->dname_len);
1410 	int ret = 0;
1411 
1412 	dir = ext4_iget(sb, darg->parent_ino, EXT4_IGET_NORMAL);
1413 	if (IS_ERR(dir)) {
1414 		ext4_debug("Dir with inode %d not found.", darg->parent_ino);
1415 		dir = NULL;
1416 		goto out;
1417 	}
1418 
1419 	dentry_dir = d_obtain_alias(dir);
1420 	if (IS_ERR(dentry_dir)) {
1421 		ext4_debug("Failed to obtain dentry");
1422 		dentry_dir = NULL;
1423 		goto out;
1424 	}
1425 
1426 	dentry_inode = d_alloc(dentry_dir, &qstr_dname);
1427 	if (!dentry_inode) {
1428 		ext4_debug("Inode dentry not created.");
1429 		ret = -ENOMEM;
1430 		goto out;
1431 	}
1432 
1433 	ret = __ext4_link(dir, inode, dentry_inode);
1434 	/*
1435 	 * It's possible that link already existed since data blocks
1436 	 * for the dir in question got persisted before we crashed OR
1437 	 * we replayed this tag and crashed before the entire replay
1438 	 * could complete.
1439 	 */
1440 	if (ret && ret != -EEXIST) {
1441 		ext4_debug("Failed to link\n");
1442 		goto out;
1443 	}
1444 
1445 	ret = 0;
1446 out:
1447 	if (dentry_dir) {
1448 		d_drop(dentry_dir);
1449 		dput(dentry_dir);
1450 	} else if (dir) {
1451 		iput(dir);
1452 	}
1453 	if (dentry_inode) {
1454 		d_drop(dentry_inode);
1455 		dput(dentry_inode);
1456 	}
1457 
1458 	return ret;
1459 }
1460 
1461 /* Link replay function */
1462 static int ext4_fc_replay_link(struct super_block *sb,
1463 			       struct ext4_fc_tl_mem *tl, u8 *val)
1464 {
1465 	struct inode *inode;
1466 	struct dentry_info_args darg;
1467 	int ret = 0;
1468 
1469 	tl_to_darg(&darg, tl, val);
1470 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_LINK, darg.ino,
1471 			darg.parent_ino, darg.dname_len);
1472 
1473 	inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1474 	if (IS_ERR(inode)) {
1475 		ext4_debug("Inode not found.");
1476 		return 0;
1477 	}
1478 
1479 	ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1480 	iput(inode);
1481 	return ret;
1482 }
1483 
1484 /*
1485  * Record all the modified inodes during replay. We use this later to setup
1486  * block bitmaps correctly.
1487  */
1488 static int ext4_fc_record_modified_inode(struct super_block *sb, int ino)
1489 {
1490 	struct ext4_fc_replay_state *state;
1491 	int i;
1492 
1493 	state = &EXT4_SB(sb)->s_fc_replay_state;
1494 	for (i = 0; i < state->fc_modified_inodes_used; i++)
1495 		if (state->fc_modified_inodes[i] == ino)
1496 			return 0;
1497 	if (state->fc_modified_inodes_used == state->fc_modified_inodes_size) {
1498 		int *fc_modified_inodes;
1499 
1500 		fc_modified_inodes = krealloc(state->fc_modified_inodes,
1501 				sizeof(int) * (state->fc_modified_inodes_size +
1502 				EXT4_FC_REPLAY_REALLOC_INCREMENT),
1503 				GFP_KERNEL);
1504 		if (!fc_modified_inodes)
1505 			return -ENOMEM;
1506 		state->fc_modified_inodes = fc_modified_inodes;
1507 		state->fc_modified_inodes_size +=
1508 			EXT4_FC_REPLAY_REALLOC_INCREMENT;
1509 	}
1510 	state->fc_modified_inodes[state->fc_modified_inodes_used++] = ino;
1511 	return 0;
1512 }
1513 
1514 /*
1515  * Inode replay function
1516  */
1517 static int ext4_fc_replay_inode(struct super_block *sb,
1518 				struct ext4_fc_tl_mem *tl, u8 *val)
1519 {
1520 	struct ext4_fc_inode fc_inode;
1521 	struct ext4_inode *raw_inode;
1522 	struct ext4_inode *raw_fc_inode;
1523 	struct inode *inode = NULL;
1524 	struct ext4_iloc iloc;
1525 	int inode_len, ino, ret, tag = tl->fc_tag;
1526 	struct ext4_extent_header *eh;
1527 	size_t off_gen = offsetof(struct ext4_inode, i_generation);
1528 
1529 	memcpy(&fc_inode, val, sizeof(fc_inode));
1530 
1531 	ino = le32_to_cpu(fc_inode.fc_ino);
1532 	trace_ext4_fc_replay(sb, tag, ino, 0, 0);
1533 
1534 	inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1535 	if (!IS_ERR(inode)) {
1536 		ext4_ext_clear_bb(inode);
1537 		iput(inode);
1538 	}
1539 	inode = NULL;
1540 
1541 	ret = ext4_fc_record_modified_inode(sb, ino);
1542 	if (ret)
1543 		goto out;
1544 
1545 	raw_fc_inode = (struct ext4_inode *)
1546 		(val + offsetof(struct ext4_fc_inode, fc_raw_inode));
1547 	ret = ext4_get_fc_inode_loc(sb, ino, &iloc);
1548 	if (ret)
1549 		goto out;
1550 
1551 	inode_len = tl->fc_len - sizeof(struct ext4_fc_inode);
1552 	raw_inode = ext4_raw_inode(&iloc);
1553 
1554 	memcpy(raw_inode, raw_fc_inode, offsetof(struct ext4_inode, i_block));
1555 	memcpy((u8 *)raw_inode + off_gen, (u8 *)raw_fc_inode + off_gen,
1556 	       inode_len - off_gen);
1557 	if (le32_to_cpu(raw_inode->i_flags) & EXT4_EXTENTS_FL) {
1558 		eh = (struct ext4_extent_header *)(&raw_inode->i_block[0]);
1559 		if (eh->eh_magic != EXT4_EXT_MAGIC) {
1560 			memset(eh, 0, sizeof(*eh));
1561 			eh->eh_magic = EXT4_EXT_MAGIC;
1562 			eh->eh_max = cpu_to_le16(
1563 				(sizeof(raw_inode->i_block) -
1564 				 sizeof(struct ext4_extent_header))
1565 				 / sizeof(struct ext4_extent));
1566 		}
1567 	} else if (le32_to_cpu(raw_inode->i_flags) & EXT4_INLINE_DATA_FL) {
1568 		memcpy(raw_inode->i_block, raw_fc_inode->i_block,
1569 			sizeof(raw_inode->i_block));
1570 	}
1571 
1572 	/* Immediately update the inode on disk. */
1573 	ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1574 	if (ret)
1575 		goto out;
1576 	ret = sync_dirty_buffer(iloc.bh);
1577 	if (ret)
1578 		goto out;
1579 	ret = ext4_mark_inode_used(sb, ino);
1580 	if (ret)
1581 		goto out;
1582 
1583 	/* Given that we just wrote the inode on disk, this SHOULD succeed. */
1584 	inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1585 	if (IS_ERR(inode)) {
1586 		ext4_debug("Inode not found.");
1587 		return -EFSCORRUPTED;
1588 	}
1589 
1590 	/*
1591 	 * Our allocator could have made different decisions than before
1592 	 * crashing. This should be fixed but until then, we calculate
1593 	 * the number of blocks the inode.
1594 	 */
1595 	if (!ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA))
1596 		ext4_ext_replay_set_iblocks(inode);
1597 
1598 	inode->i_generation = le32_to_cpu(ext4_raw_inode(&iloc)->i_generation);
1599 	ext4_reset_inode_seed(inode);
1600 
1601 	ext4_inode_csum_set(inode, ext4_raw_inode(&iloc), EXT4_I(inode));
1602 	ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1603 	sync_dirty_buffer(iloc.bh);
1604 	brelse(iloc.bh);
1605 out:
1606 	iput(inode);
1607 	if (!ret)
1608 		blkdev_issue_flush(sb->s_bdev);
1609 
1610 	return 0;
1611 }
1612 
1613 /*
1614  * Dentry create replay function.
1615  *
1616  * EXT4_FC_TAG_CREAT is preceded by EXT4_FC_TAG_INODE_FULL. Which means, the
1617  * inode for which we are trying to create a dentry here, should already have
1618  * been replayed before we start here.
1619  */
1620 static int ext4_fc_replay_create(struct super_block *sb,
1621 				 struct ext4_fc_tl_mem *tl, u8 *val)
1622 {
1623 	int ret = 0;
1624 	struct inode *inode = NULL;
1625 	struct inode *dir = NULL;
1626 	struct dentry_info_args darg;
1627 
1628 	tl_to_darg(&darg, tl, val);
1629 
1630 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_CREAT, darg.ino,
1631 			darg.parent_ino, darg.dname_len);
1632 
1633 	/* This takes care of update group descriptor and other metadata */
1634 	ret = ext4_mark_inode_used(sb, darg.ino);
1635 	if (ret)
1636 		goto out;
1637 
1638 	inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1639 	if (IS_ERR(inode)) {
1640 		ext4_debug("inode %d not found.", darg.ino);
1641 		inode = NULL;
1642 		ret = -EINVAL;
1643 		goto out;
1644 	}
1645 
1646 	if (S_ISDIR(inode->i_mode)) {
1647 		/*
1648 		 * If we are creating a directory, we need to make sure that the
1649 		 * dot and dot dot dirents are setup properly.
1650 		 */
1651 		dir = ext4_iget(sb, darg.parent_ino, EXT4_IGET_NORMAL);
1652 		if (IS_ERR(dir)) {
1653 			ext4_debug("Dir %d not found.", darg.ino);
1654 			goto out;
1655 		}
1656 		ret = ext4_init_new_dir(NULL, dir, inode);
1657 		iput(dir);
1658 		if (ret) {
1659 			ret = 0;
1660 			goto out;
1661 		}
1662 	}
1663 	ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1664 	if (ret)
1665 		goto out;
1666 	set_nlink(inode, 1);
1667 	ext4_mark_inode_dirty(NULL, inode);
1668 out:
1669 	iput(inode);
1670 	return ret;
1671 }
1672 
1673 /*
1674  * Record physical disk regions which are in use as per fast commit area,
1675  * and used by inodes during replay phase. Our simple replay phase
1676  * allocator excludes these regions from allocation.
1677  */
1678 int ext4_fc_record_regions(struct super_block *sb, int ino,
1679 		ext4_lblk_t lblk, ext4_fsblk_t pblk, int len, int replay)
1680 {
1681 	struct ext4_fc_replay_state *state;
1682 	struct ext4_fc_alloc_region *region;
1683 
1684 	state = &EXT4_SB(sb)->s_fc_replay_state;
1685 	/*
1686 	 * during replay phase, the fc_regions_valid may not same as
1687 	 * fc_regions_used, update it when do new additions.
1688 	 */
1689 	if (replay && state->fc_regions_used != state->fc_regions_valid)
1690 		state->fc_regions_used = state->fc_regions_valid;
1691 	if (state->fc_regions_used == state->fc_regions_size) {
1692 		struct ext4_fc_alloc_region *fc_regions;
1693 
1694 		fc_regions = krealloc(state->fc_regions,
1695 				      sizeof(struct ext4_fc_alloc_region) *
1696 				      (state->fc_regions_size +
1697 				       EXT4_FC_REPLAY_REALLOC_INCREMENT),
1698 				      GFP_KERNEL);
1699 		if (!fc_regions)
1700 			return -ENOMEM;
1701 		state->fc_regions_size +=
1702 			EXT4_FC_REPLAY_REALLOC_INCREMENT;
1703 		state->fc_regions = fc_regions;
1704 	}
1705 	region = &state->fc_regions[state->fc_regions_used++];
1706 	region->ino = ino;
1707 	region->lblk = lblk;
1708 	region->pblk = pblk;
1709 	region->len = len;
1710 
1711 	if (replay)
1712 		state->fc_regions_valid++;
1713 
1714 	return 0;
1715 }
1716 
1717 /* Replay add range tag */
1718 static int ext4_fc_replay_add_range(struct super_block *sb,
1719 				    struct ext4_fc_tl_mem *tl, u8 *val)
1720 {
1721 	struct ext4_fc_add_range fc_add_ex;
1722 	struct ext4_extent newex, *ex;
1723 	struct inode *inode;
1724 	ext4_lblk_t start, cur;
1725 	int remaining, len;
1726 	ext4_fsblk_t start_pblk;
1727 	struct ext4_map_blocks map;
1728 	struct ext4_ext_path *path = NULL;
1729 	int ret;
1730 
1731 	memcpy(&fc_add_ex, val, sizeof(fc_add_ex));
1732 	ex = (struct ext4_extent *)&fc_add_ex.fc_ex;
1733 
1734 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_ADD_RANGE,
1735 		le32_to_cpu(fc_add_ex.fc_ino), le32_to_cpu(ex->ee_block),
1736 		ext4_ext_get_actual_len(ex));
1737 
1738 	inode = ext4_iget(sb, le32_to_cpu(fc_add_ex.fc_ino), EXT4_IGET_NORMAL);
1739 	if (IS_ERR(inode)) {
1740 		ext4_debug("Inode not found.");
1741 		return 0;
1742 	}
1743 
1744 	ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1745 	if (ret)
1746 		goto out;
1747 
1748 	start = le32_to_cpu(ex->ee_block);
1749 	start_pblk = ext4_ext_pblock(ex);
1750 	len = ext4_ext_get_actual_len(ex);
1751 
1752 	cur = start;
1753 	remaining = len;
1754 	ext4_debug("ADD_RANGE, lblk %d, pblk %lld, len %d, unwritten %d, inode %ld\n",
1755 		  start, start_pblk, len, ext4_ext_is_unwritten(ex),
1756 		  inode->i_ino);
1757 
1758 	while (remaining > 0) {
1759 		map.m_lblk = cur;
1760 		map.m_len = remaining;
1761 		map.m_pblk = 0;
1762 		ret = ext4_map_blocks(NULL, inode, &map, 0);
1763 
1764 		if (ret < 0)
1765 			goto out;
1766 
1767 		if (ret == 0) {
1768 			/* Range is not mapped */
1769 			path = ext4_find_extent(inode, cur, NULL, 0);
1770 			if (IS_ERR(path))
1771 				goto out;
1772 			memset(&newex, 0, sizeof(newex));
1773 			newex.ee_block = cpu_to_le32(cur);
1774 			ext4_ext_store_pblock(
1775 				&newex, start_pblk + cur - start);
1776 			newex.ee_len = cpu_to_le16(map.m_len);
1777 			if (ext4_ext_is_unwritten(ex))
1778 				ext4_ext_mark_unwritten(&newex);
1779 			down_write(&EXT4_I(inode)->i_data_sem);
1780 			ret = ext4_ext_insert_extent(
1781 				NULL, inode, &path, &newex, 0);
1782 			up_write((&EXT4_I(inode)->i_data_sem));
1783 			ext4_free_ext_path(path);
1784 			if (ret)
1785 				goto out;
1786 			goto next;
1787 		}
1788 
1789 		if (start_pblk + cur - start != map.m_pblk) {
1790 			/*
1791 			 * Logical to physical mapping changed. This can happen
1792 			 * if this range was removed and then reallocated to
1793 			 * map to new physical blocks during a fast commit.
1794 			 */
1795 			ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1796 					ext4_ext_is_unwritten(ex),
1797 					start_pblk + cur - start);
1798 			if (ret)
1799 				goto out;
1800 			/*
1801 			 * Mark the old blocks as free since they aren't used
1802 			 * anymore. We maintain an array of all the modified
1803 			 * inodes. In case these blocks are still used at either
1804 			 * a different logical range in the same inode or in
1805 			 * some different inode, we will mark them as allocated
1806 			 * at the end of the FC replay using our array of
1807 			 * modified inodes.
1808 			 */
1809 			ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 0);
1810 			goto next;
1811 		}
1812 
1813 		/* Range is mapped and needs a state change */
1814 		ext4_debug("Converting from %ld to %d %lld",
1815 				map.m_flags & EXT4_MAP_UNWRITTEN,
1816 			ext4_ext_is_unwritten(ex), map.m_pblk);
1817 		ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1818 					ext4_ext_is_unwritten(ex), map.m_pblk);
1819 		if (ret)
1820 			goto out;
1821 		/*
1822 		 * We may have split the extent tree while toggling the state.
1823 		 * Try to shrink the extent tree now.
1824 		 */
1825 		ext4_ext_replay_shrink_inode(inode, start + len);
1826 next:
1827 		cur += map.m_len;
1828 		remaining -= map.m_len;
1829 	}
1830 	ext4_ext_replay_shrink_inode(inode, i_size_read(inode) >>
1831 					sb->s_blocksize_bits);
1832 out:
1833 	iput(inode);
1834 	return 0;
1835 }
1836 
1837 /* Replay DEL_RANGE tag */
1838 static int
1839 ext4_fc_replay_del_range(struct super_block *sb,
1840 			 struct ext4_fc_tl_mem *tl, u8 *val)
1841 {
1842 	struct inode *inode;
1843 	struct ext4_fc_del_range lrange;
1844 	struct ext4_map_blocks map;
1845 	ext4_lblk_t cur, remaining;
1846 	int ret;
1847 
1848 	memcpy(&lrange, val, sizeof(lrange));
1849 	cur = le32_to_cpu(lrange.fc_lblk);
1850 	remaining = le32_to_cpu(lrange.fc_len);
1851 
1852 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_DEL_RANGE,
1853 		le32_to_cpu(lrange.fc_ino), cur, remaining);
1854 
1855 	inode = ext4_iget(sb, le32_to_cpu(lrange.fc_ino), EXT4_IGET_NORMAL);
1856 	if (IS_ERR(inode)) {
1857 		ext4_debug("Inode %d not found", le32_to_cpu(lrange.fc_ino));
1858 		return 0;
1859 	}
1860 
1861 	ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1862 	if (ret)
1863 		goto out;
1864 
1865 	ext4_debug("DEL_RANGE, inode %ld, lblk %d, len %d\n",
1866 			inode->i_ino, le32_to_cpu(lrange.fc_lblk),
1867 			le32_to_cpu(lrange.fc_len));
1868 	while (remaining > 0) {
1869 		map.m_lblk = cur;
1870 		map.m_len = remaining;
1871 
1872 		ret = ext4_map_blocks(NULL, inode, &map, 0);
1873 		if (ret < 0)
1874 			goto out;
1875 		if (ret > 0) {
1876 			remaining -= ret;
1877 			cur += ret;
1878 			ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 0);
1879 		} else {
1880 			remaining -= map.m_len;
1881 			cur += map.m_len;
1882 		}
1883 	}
1884 
1885 	down_write(&EXT4_I(inode)->i_data_sem);
1886 	ret = ext4_ext_remove_space(inode, le32_to_cpu(lrange.fc_lblk),
1887 				le32_to_cpu(lrange.fc_lblk) +
1888 				le32_to_cpu(lrange.fc_len) - 1);
1889 	up_write(&EXT4_I(inode)->i_data_sem);
1890 	if (ret)
1891 		goto out;
1892 	ext4_ext_replay_shrink_inode(inode,
1893 		i_size_read(inode) >> sb->s_blocksize_bits);
1894 	ext4_mark_inode_dirty(NULL, inode);
1895 out:
1896 	iput(inode);
1897 	return 0;
1898 }
1899 
1900 static void ext4_fc_set_bitmaps_and_counters(struct super_block *sb)
1901 {
1902 	struct ext4_fc_replay_state *state;
1903 	struct inode *inode;
1904 	struct ext4_ext_path *path = NULL;
1905 	struct ext4_map_blocks map;
1906 	int i, ret, j;
1907 	ext4_lblk_t cur, end;
1908 
1909 	state = &EXT4_SB(sb)->s_fc_replay_state;
1910 	for (i = 0; i < state->fc_modified_inodes_used; i++) {
1911 		inode = ext4_iget(sb, state->fc_modified_inodes[i],
1912 			EXT4_IGET_NORMAL);
1913 		if (IS_ERR(inode)) {
1914 			ext4_debug("Inode %d not found.",
1915 				state->fc_modified_inodes[i]);
1916 			continue;
1917 		}
1918 		cur = 0;
1919 		end = EXT_MAX_BLOCKS;
1920 		if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA)) {
1921 			iput(inode);
1922 			continue;
1923 		}
1924 		while (cur < end) {
1925 			map.m_lblk = cur;
1926 			map.m_len = end - cur;
1927 
1928 			ret = ext4_map_blocks(NULL, inode, &map, 0);
1929 			if (ret < 0)
1930 				break;
1931 
1932 			if (ret > 0) {
1933 				path = ext4_find_extent(inode, map.m_lblk, NULL, 0);
1934 				if (!IS_ERR(path)) {
1935 					for (j = 0; j < path->p_depth; j++)
1936 						ext4_mb_mark_bb(inode->i_sb,
1937 							path[j].p_block, 1, 1);
1938 					ext4_free_ext_path(path);
1939 				}
1940 				cur += ret;
1941 				ext4_mb_mark_bb(inode->i_sb, map.m_pblk,
1942 							map.m_len, 1);
1943 			} else {
1944 				cur = cur + (map.m_len ? map.m_len : 1);
1945 			}
1946 		}
1947 		iput(inode);
1948 	}
1949 }
1950 
1951 /*
1952  * Check if block is in excluded regions for block allocation. The simple
1953  * allocator that runs during replay phase is calls this function to see
1954  * if it is okay to use a block.
1955  */
1956 bool ext4_fc_replay_check_excluded(struct super_block *sb, ext4_fsblk_t blk)
1957 {
1958 	int i;
1959 	struct ext4_fc_replay_state *state;
1960 
1961 	state = &EXT4_SB(sb)->s_fc_replay_state;
1962 	for (i = 0; i < state->fc_regions_valid; i++) {
1963 		if (state->fc_regions[i].ino == 0 ||
1964 			state->fc_regions[i].len == 0)
1965 			continue;
1966 		if (in_range(blk, state->fc_regions[i].pblk,
1967 					state->fc_regions[i].len))
1968 			return true;
1969 	}
1970 	return false;
1971 }
1972 
1973 /* Cleanup function called after replay */
1974 void ext4_fc_replay_cleanup(struct super_block *sb)
1975 {
1976 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1977 
1978 	sbi->s_mount_state &= ~EXT4_FC_REPLAY;
1979 	kfree(sbi->s_fc_replay_state.fc_regions);
1980 	kfree(sbi->s_fc_replay_state.fc_modified_inodes);
1981 }
1982 
1983 static bool ext4_fc_value_len_isvalid(struct ext4_sb_info *sbi,
1984 				      int tag, int len)
1985 {
1986 	switch (tag) {
1987 	case EXT4_FC_TAG_ADD_RANGE:
1988 		return len == sizeof(struct ext4_fc_add_range);
1989 	case EXT4_FC_TAG_DEL_RANGE:
1990 		return len == sizeof(struct ext4_fc_del_range);
1991 	case EXT4_FC_TAG_CREAT:
1992 	case EXT4_FC_TAG_LINK:
1993 	case EXT4_FC_TAG_UNLINK:
1994 		len -= sizeof(struct ext4_fc_dentry_info);
1995 		return len >= 1 && len <= EXT4_NAME_LEN;
1996 	case EXT4_FC_TAG_INODE:
1997 		len -= sizeof(struct ext4_fc_inode);
1998 		return len >= EXT4_GOOD_OLD_INODE_SIZE &&
1999 			len <= sbi->s_inode_size;
2000 	case EXT4_FC_TAG_PAD:
2001 		return true; /* padding can have any length */
2002 	case EXT4_FC_TAG_TAIL:
2003 		return len >= sizeof(struct ext4_fc_tail);
2004 	case EXT4_FC_TAG_HEAD:
2005 		return len == sizeof(struct ext4_fc_head);
2006 	}
2007 	return false;
2008 }
2009 
2010 /*
2011  * Recovery Scan phase handler
2012  *
2013  * This function is called during the scan phase and is responsible
2014  * for doing following things:
2015  * - Make sure the fast commit area has valid tags for replay
2016  * - Count number of tags that need to be replayed by the replay handler
2017  * - Verify CRC
2018  * - Create a list of excluded blocks for allocation during replay phase
2019  *
2020  * This function returns JBD2_FC_REPLAY_CONTINUE to indicate that SCAN is
2021  * incomplete and JBD2 should send more blocks. It returns JBD2_FC_REPLAY_STOP
2022  * to indicate that scan has finished and JBD2 can now start replay phase.
2023  * It returns a negative error to indicate that there was an error. At the end
2024  * of a successful scan phase, sbi->s_fc_replay_state.fc_replay_num_tags is set
2025  * to indicate the number of tags that need to replayed during the replay phase.
2026  */
2027 static int ext4_fc_replay_scan(journal_t *journal,
2028 				struct buffer_head *bh, int off,
2029 				tid_t expected_tid)
2030 {
2031 	struct super_block *sb = journal->j_private;
2032 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2033 	struct ext4_fc_replay_state *state;
2034 	int ret = JBD2_FC_REPLAY_CONTINUE;
2035 	struct ext4_fc_add_range ext;
2036 	struct ext4_fc_tl_mem tl;
2037 	struct ext4_fc_tail tail;
2038 	__u8 *start, *end, *cur, *val;
2039 	struct ext4_fc_head head;
2040 	struct ext4_extent *ex;
2041 
2042 	state = &sbi->s_fc_replay_state;
2043 
2044 	start = (u8 *)bh->b_data;
2045 	end = start + journal->j_blocksize;
2046 
2047 	if (state->fc_replay_expected_off == 0) {
2048 		state->fc_cur_tag = 0;
2049 		state->fc_replay_num_tags = 0;
2050 		state->fc_crc = 0;
2051 		state->fc_regions = NULL;
2052 		state->fc_regions_valid = state->fc_regions_used =
2053 			state->fc_regions_size = 0;
2054 		/* Check if we can stop early */
2055 		if (le16_to_cpu(((struct ext4_fc_tl *)start)->fc_tag)
2056 			!= EXT4_FC_TAG_HEAD)
2057 			return 0;
2058 	}
2059 
2060 	if (off != state->fc_replay_expected_off) {
2061 		ret = -EFSCORRUPTED;
2062 		goto out_err;
2063 	}
2064 
2065 	state->fc_replay_expected_off++;
2066 	for (cur = start; cur <= end - EXT4_FC_TAG_BASE_LEN;
2067 	     cur = cur + EXT4_FC_TAG_BASE_LEN + tl.fc_len) {
2068 		ext4_fc_get_tl(&tl, cur);
2069 		val = cur + EXT4_FC_TAG_BASE_LEN;
2070 		if (tl.fc_len > end - val ||
2071 		    !ext4_fc_value_len_isvalid(sbi, tl.fc_tag, tl.fc_len)) {
2072 			ret = state->fc_replay_num_tags ?
2073 				JBD2_FC_REPLAY_STOP : -ECANCELED;
2074 			goto out_err;
2075 		}
2076 		ext4_debug("Scan phase, tag:%s, blk %lld\n",
2077 			   tag2str(tl.fc_tag), bh->b_blocknr);
2078 		switch (tl.fc_tag) {
2079 		case EXT4_FC_TAG_ADD_RANGE:
2080 			memcpy(&ext, val, sizeof(ext));
2081 			ex = (struct ext4_extent *)&ext.fc_ex;
2082 			ret = ext4_fc_record_regions(sb,
2083 				le32_to_cpu(ext.fc_ino),
2084 				le32_to_cpu(ex->ee_block), ext4_ext_pblock(ex),
2085 				ext4_ext_get_actual_len(ex), 0);
2086 			if (ret < 0)
2087 				break;
2088 			ret = JBD2_FC_REPLAY_CONTINUE;
2089 			fallthrough;
2090 		case EXT4_FC_TAG_DEL_RANGE:
2091 		case EXT4_FC_TAG_LINK:
2092 		case EXT4_FC_TAG_UNLINK:
2093 		case EXT4_FC_TAG_CREAT:
2094 		case EXT4_FC_TAG_INODE:
2095 		case EXT4_FC_TAG_PAD:
2096 			state->fc_cur_tag++;
2097 			state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
2098 				EXT4_FC_TAG_BASE_LEN + tl.fc_len);
2099 			break;
2100 		case EXT4_FC_TAG_TAIL:
2101 			state->fc_cur_tag++;
2102 			memcpy(&tail, val, sizeof(tail));
2103 			state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
2104 						EXT4_FC_TAG_BASE_LEN +
2105 						offsetof(struct ext4_fc_tail,
2106 						fc_crc));
2107 			if (le32_to_cpu(tail.fc_tid) == expected_tid &&
2108 				le32_to_cpu(tail.fc_crc) == state->fc_crc) {
2109 				state->fc_replay_num_tags = state->fc_cur_tag;
2110 				state->fc_regions_valid =
2111 					state->fc_regions_used;
2112 			} else {
2113 				ret = state->fc_replay_num_tags ?
2114 					JBD2_FC_REPLAY_STOP : -EFSBADCRC;
2115 			}
2116 			state->fc_crc = 0;
2117 			break;
2118 		case EXT4_FC_TAG_HEAD:
2119 			memcpy(&head, val, sizeof(head));
2120 			if (le32_to_cpu(head.fc_features) &
2121 				~EXT4_FC_SUPPORTED_FEATURES) {
2122 				ret = -EOPNOTSUPP;
2123 				break;
2124 			}
2125 			if (le32_to_cpu(head.fc_tid) != expected_tid) {
2126 				ret = JBD2_FC_REPLAY_STOP;
2127 				break;
2128 			}
2129 			state->fc_cur_tag++;
2130 			state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
2131 				EXT4_FC_TAG_BASE_LEN + tl.fc_len);
2132 			break;
2133 		default:
2134 			ret = state->fc_replay_num_tags ?
2135 				JBD2_FC_REPLAY_STOP : -ECANCELED;
2136 		}
2137 		if (ret < 0 || ret == JBD2_FC_REPLAY_STOP)
2138 			break;
2139 	}
2140 
2141 out_err:
2142 	trace_ext4_fc_replay_scan(sb, ret, off);
2143 	return ret;
2144 }
2145 
2146 /*
2147  * Main recovery path entry point.
2148  * The meaning of return codes is similar as above.
2149  */
2150 static int ext4_fc_replay(journal_t *journal, struct buffer_head *bh,
2151 				enum passtype pass, int off, tid_t expected_tid)
2152 {
2153 	struct super_block *sb = journal->j_private;
2154 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2155 	struct ext4_fc_tl_mem tl;
2156 	__u8 *start, *end, *cur, *val;
2157 	int ret = JBD2_FC_REPLAY_CONTINUE;
2158 	struct ext4_fc_replay_state *state = &sbi->s_fc_replay_state;
2159 	struct ext4_fc_tail tail;
2160 
2161 	if (pass == PASS_SCAN) {
2162 		state->fc_current_pass = PASS_SCAN;
2163 		return ext4_fc_replay_scan(journal, bh, off, expected_tid);
2164 	}
2165 
2166 	if (state->fc_current_pass != pass) {
2167 		state->fc_current_pass = pass;
2168 		sbi->s_mount_state |= EXT4_FC_REPLAY;
2169 	}
2170 	if (!sbi->s_fc_replay_state.fc_replay_num_tags) {
2171 		ext4_debug("Replay stops\n");
2172 		ext4_fc_set_bitmaps_and_counters(sb);
2173 		return 0;
2174 	}
2175 
2176 #ifdef CONFIG_EXT4_DEBUG
2177 	if (sbi->s_fc_debug_max_replay && off >= sbi->s_fc_debug_max_replay) {
2178 		pr_warn("Dropping fc block %d because max_replay set\n", off);
2179 		return JBD2_FC_REPLAY_STOP;
2180 	}
2181 #endif
2182 
2183 	start = (u8 *)bh->b_data;
2184 	end = start + journal->j_blocksize;
2185 
2186 	for (cur = start; cur <= end - EXT4_FC_TAG_BASE_LEN;
2187 	     cur = cur + EXT4_FC_TAG_BASE_LEN + tl.fc_len) {
2188 		ext4_fc_get_tl(&tl, cur);
2189 		val = cur + EXT4_FC_TAG_BASE_LEN;
2190 
2191 		if (state->fc_replay_num_tags == 0) {
2192 			ret = JBD2_FC_REPLAY_STOP;
2193 			ext4_fc_set_bitmaps_and_counters(sb);
2194 			break;
2195 		}
2196 
2197 		ext4_debug("Replay phase, tag:%s\n", tag2str(tl.fc_tag));
2198 		state->fc_replay_num_tags--;
2199 		switch (tl.fc_tag) {
2200 		case EXT4_FC_TAG_LINK:
2201 			ret = ext4_fc_replay_link(sb, &tl, val);
2202 			break;
2203 		case EXT4_FC_TAG_UNLINK:
2204 			ret = ext4_fc_replay_unlink(sb, &tl, val);
2205 			break;
2206 		case EXT4_FC_TAG_ADD_RANGE:
2207 			ret = ext4_fc_replay_add_range(sb, &tl, val);
2208 			break;
2209 		case EXT4_FC_TAG_CREAT:
2210 			ret = ext4_fc_replay_create(sb, &tl, val);
2211 			break;
2212 		case EXT4_FC_TAG_DEL_RANGE:
2213 			ret = ext4_fc_replay_del_range(sb, &tl, val);
2214 			break;
2215 		case EXT4_FC_TAG_INODE:
2216 			ret = ext4_fc_replay_inode(sb, &tl, val);
2217 			break;
2218 		case EXT4_FC_TAG_PAD:
2219 			trace_ext4_fc_replay(sb, EXT4_FC_TAG_PAD, 0,
2220 					     tl.fc_len, 0);
2221 			break;
2222 		case EXT4_FC_TAG_TAIL:
2223 			trace_ext4_fc_replay(sb, EXT4_FC_TAG_TAIL,
2224 					     0, tl.fc_len, 0);
2225 			memcpy(&tail, val, sizeof(tail));
2226 			WARN_ON(le32_to_cpu(tail.fc_tid) != expected_tid);
2227 			break;
2228 		case EXT4_FC_TAG_HEAD:
2229 			break;
2230 		default:
2231 			trace_ext4_fc_replay(sb, tl.fc_tag, 0, tl.fc_len, 0);
2232 			ret = -ECANCELED;
2233 			break;
2234 		}
2235 		if (ret < 0)
2236 			break;
2237 		ret = JBD2_FC_REPLAY_CONTINUE;
2238 	}
2239 	return ret;
2240 }
2241 
2242 void ext4_fc_init(struct super_block *sb, journal_t *journal)
2243 {
2244 	/*
2245 	 * We set replay callback even if fast commit disabled because we may
2246 	 * could still have fast commit blocks that need to be replayed even if
2247 	 * fast commit has now been turned off.
2248 	 */
2249 	journal->j_fc_replay_callback = ext4_fc_replay;
2250 	if (!test_opt2(sb, JOURNAL_FAST_COMMIT))
2251 		return;
2252 	journal->j_fc_cleanup_callback = ext4_fc_cleanup;
2253 }
2254 
2255 static const char * const fc_ineligible_reasons[] = {
2256 	[EXT4_FC_REASON_XATTR] = "Extended attributes changed",
2257 	[EXT4_FC_REASON_CROSS_RENAME] = "Cross rename",
2258 	[EXT4_FC_REASON_JOURNAL_FLAG_CHANGE] = "Journal flag changed",
2259 	[EXT4_FC_REASON_NOMEM] = "Insufficient memory",
2260 	[EXT4_FC_REASON_SWAP_BOOT] = "Swap boot",
2261 	[EXT4_FC_REASON_RESIZE] = "Resize",
2262 	[EXT4_FC_REASON_RENAME_DIR] = "Dir renamed",
2263 	[EXT4_FC_REASON_FALLOC_RANGE] = "Falloc range op",
2264 	[EXT4_FC_REASON_INODE_JOURNAL_DATA] = "Data journalling",
2265 	[EXT4_FC_REASON_ENCRYPTED_FILENAME] = "Encrypted filename",
2266 };
2267 
2268 int ext4_fc_info_show(struct seq_file *seq, void *v)
2269 {
2270 	struct ext4_sb_info *sbi = EXT4_SB((struct super_block *)seq->private);
2271 	struct ext4_fc_stats *stats = &sbi->s_fc_stats;
2272 	int i;
2273 
2274 	if (v != SEQ_START_TOKEN)
2275 		return 0;
2276 
2277 	seq_printf(seq,
2278 		"fc stats:\n%ld commits\n%ld ineligible\n%ld numblks\n%lluus avg_commit_time\n",
2279 		   stats->fc_num_commits, stats->fc_ineligible_commits,
2280 		   stats->fc_numblks,
2281 		   div_u64(stats->s_fc_avg_commit_time, 1000));
2282 	seq_puts(seq, "Ineligible reasons:\n");
2283 	for (i = 0; i < EXT4_FC_REASON_MAX; i++)
2284 		seq_printf(seq, "\"%s\":\t%d\n", fc_ineligible_reasons[i],
2285 			stats->fc_ineligible_reason_count[i]);
2286 
2287 	return 0;
2288 }
2289 
2290 int __init ext4_fc_init_dentry_cache(void)
2291 {
2292 	ext4_fc_dentry_cachep = KMEM_CACHE(ext4_fc_dentry_update,
2293 					   SLAB_RECLAIM_ACCOUNT);
2294 
2295 	if (ext4_fc_dentry_cachep == NULL)
2296 		return -ENOMEM;
2297 
2298 	return 0;
2299 }
2300 
2301 void ext4_fc_destroy_dentry_cache(void)
2302 {
2303 	kmem_cache_destroy(ext4_fc_dentry_cachep);
2304 }
2305